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Abstract
Type IB topoisomerases relax the torsional stress associated with DNA metabolism in the nucleus and mitochondria and 
constitute important molecular targets of anticancer drugs. Vertebrates stand out among eukaryotes by having two Type IB 
topoisomerases acting specifically in the nucleus (TOP1) and mitochondria (TOP1MT). Despite their major importance, 
the origin and evolution of these paralogues remain unknown. Here, we examine the molecular evolutionary processes act‑
ing on both TOP1 and TOP1MT in Chordata, taking advantage of the increasing number of available genome sequences. 
We found that both TOP1 and TOP1MT evolved under strong purifying selection, as expected considering their essential 
biological functions. Critical active sites, including those associated with resistance to anticancer agents, were found par‑
ticularly conserved. However, TOP1MT presented a higher rate of molecular evolution than TOP1, possibly related with its 
specialized activity on the mitochondrial genome and a less critical role in cells. We could place the duplication event that 
originated the TOP1 and TOP1MT paralogues early in the radiation of vertebrates, most likely associated with the first round 
of vertebrate tetraploidization (1R). Moreover, our data suggest that cyclostomes present a specialized mitochondrial Type IB 
topoisomerase. Interestingly, we identified two missense mutations replacing amino acids in the Linker region of TOP1MT in 
Neanderthals, which appears as a rare event when comparing the genome of both species. In conclusion, TOP1 and TOP1MT 
differ in their rates of evolution, and their evolutionary histories allowed us to better understand the evolution of chordates.
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Introduction

DNA topoisomerases introduce reversible breaks in the 
DNA phosphodiester backbone allowing for modifications 
in DNA topology during DNA replication, recombination, 
transcription and chromosome condensation (Pommier et al. 
2022, 2016). Concerning Type I topoisomerases, they are 

monomeric and cleave one DNA strand at a time without 
requiring an energy cofactor. These topoisomerases are tra‑
ditionally classified into two groups (Type IA and Type IB) 
without sequence or structural similarity. Indeed, while Type 
IA breaks the DNA by forming a covalent bond to the 5′ end, 
Type IB binds covalently to the 3′ end of the break (Capran‑
ico et al. 2017; Cheng et al. 1998; Redinbo et al. 1998).
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Type IB topoisomerases were found in some bacteria and 
Poxviruses and in eukaryotes (Champoux 2001; Forterre 
et al. 2007). All eukaryotes have at least one topoisomerase 
I (TOP1) for relaxing both negative and positive supercoils 
in front of moving polymerases during replication and tran‑
scription. Studies in yeast suggest that a single TOP1 may 
act in both the nuclear and mitochondrial genomes (de la 
Loza and Wellinger 2009; Wang et al. 1995). However, a 
second Type IB topoisomerase (TOP1MT) was identified in 
vertebrates, encoded in the nuclear genome. The TOP1MT 
exclusively localizes to mitochondria via a mitochondrial 
targeting sequence (MTS) at its N-terminal domain (Zhang 
et al. 2001). Among model organisms, TOP1 is essential for 
mouse and fruit fly development (Lee et al. 1993; Morham 
et al. 1996). TOP1MT seems to be dispensable for mouse 
development, but its absence causes increased negative 
supercoiling of mitochondrial DNA (mtDNA) and affects 
cellular energy metabolism (Douarre et al. 2012; Zhang 
et al. 2014) by interfering with biological processes such as 
liver regeneration (Khiati et al. 2015). Despite the biological 
relevance of both genes, their origin and molecular evolu‑
tionary patterns are still unknown.

In humans, the TOP1 gene is located in the chromosome 
region 20q12 (Juan et al. 1988) and encodes a 91 kDa pro‑
tein with 765 amino acids. Two TOP1 pseudogenes have 
been identified on chromosomes 1 (ψ1-hTOP1) and 22 
(ψ2-hTOP1) resulting from truncated mRNA transcripts of 
the active gene (Fig. 1A) (Yang et al. 1990). The TOP1MT 
gene maps to chromosome region 8q24 resulting in a 70 kDa 
protein with 601 amino acids (Zhang et al. 2001). Although 
TOP1 has 21 exons and TOP1MT has 14 exons, the terminal 
13 exons are conserved between both genes (Zhang et al. 
2004).

Considering the molecular structure and sequence conser‑
vation, TOP1 and TOP1MT proteins are organized into four 
distinct domains: N-terminal, Core, Linker and C-terminal 
domains (Fig. 1B, C). The N-terminal domain is poorly con‑
served across species and varies considerably when com‑
paring both proteins. In particular, the TOP1 N-terminal is 
highly charged and relatively unstructured, being dispensa‑
ble for the enzyme activity, mediates protein–protein inter‑
actions and includes nuclear localization signals (NLSs) 
(Alsner et al. 1992; Mo et al. 2000; Palle et al. 2008). The 
TOP1MT N-terminal is much shorter than that from TOP1 
and includes a MTS. The core domain is highly conserved 
and contains essential catalytic residues, being connected to 
the C-terminal domain by a poorly conserved Linker region 
formed by an extended pair of α-helices. TOP1 forms a 
toroidal fold with two modules entrapping the DNA mol‑
ecule, a capping module matching the first half of the core 
domain (CAP domain or core sub-domains I and II) and 
a catalytic module comprising the second half of the core 
domain (CAT domain or core sub-domain III), the Linker 

and the C-terminal domain (Redinbo et al. 1998; Stewart 
et al. 1998; Takahashi et al. 2022). The catalytic module 
includes several active sites relevant for the protein activity 
(Champoux 2001). The Hinge is a five-residue loop con‑
necting the capping and catalytic modules whose flexibility 
permits the opening/closing of the enzyme and the entry 
of DNA (Takahashi et al. 2022). The C-terminal domain is 
highly conserved and includes the Tyr723 active site which 
forms a transient phosphotyrosyl linkage to one DNA strand, 
catalysing changes in DNA topology (Stewart et al. 1996).

Importantly, TOP1 is the target of the camptothecin fam‑
ily of anticancer agents that binds to and reversibly stabi‑
lizes the covalent TOP1-DNA complex, resulting in double 
stranded DNA breaks and apoptosis, preferentially in cancer 
cells that often overexpress TOP1 (Pommier 2006; Pom‑
mier et al. 2010). TOP1MT is also sensitive to camptothecin 
agents, but it is not an in vivo target due to the alkaline mito‑
chondria matrix that inactivates the drug (Tua et al. 1997; 
Zhang et al. 2001; Zhang and Pommier 2008). However, 
several mutations in TOP1 are known to impact the efficacy 
of camptothecin (Chrencik et al. 2004; Cretaio et al. 2007; 
Saleem et al. 2000).

Previous works have compared Type IB topoisomerases 
from different species, but often focused on a specific section 
of the protein or explored only a few animal species [e.g., 
(Champoux 1998; Takahashi et al. 2022; Zhang et al. 2004)]. 
Here, we present a detailed examination of the evolutionary 
history of Type IB topoisomerases using a variety of animals 
that represent the main taxonomic groups of Chordata. In 
particular, we evaluated the molecular evolution and adap‑
tation processes and the origin of the TOP1 and TOP1MT 
paralogues in vertebrates.

Material and Methods

TOPIB Sequences

TOPIB protein sequences from the main Metazoa phyla were 
retrieved from the NCBI non-redundant protein sequences 
(nr) database via the protein–protein BLAST (blastp) suite, 
using as query sequences from species close to the target 
taxonomic group (Supplementary Fig. S1). Short sequences 
with less than half of the average of TOPIB length were 
ignored since they often represent partial protein sequences 
derived from gaps in assembled genomes in which the con‑
tigs do not cover the complete genomic region. Possibly by 
the same reason, we fail to detect one or both the paralogues 
in the sequenced genome of some species.

Denisovan and Neanderthal TOP1 and TOP1MT 
sequences were downloaded from the UCSC 
Genome Browser (http://​genome.​ucsc.​edu/) (Kent 
et  al. 2002). All BAM reads for tracks Denisova and 

http://genome.ucsc.edu/
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Neanderthal Cntgs matching the Human Mar. 2006 
(NCBI36/hg18) chr20:39,090,876–39,186,540 (TOP1) and 
chr8:144,462,903–144,488,425 (TOP1MT) were down‑
loaded. The BAM reads from each track were then reas‑
sembled against the human TOP1 (NC_000020.11) and 
TOP1MT (NC_000008.11) reference sequences using 
Geneious v2022.1.1 (http://​www.​genei​ous.​com). We only 
considered a variable position in Denisovan and Neander‑
thal genomes when: (1) at least two reads overlap in that 
position; (2) the variant represents more than 75% of all the 

reads and (3) the difference is not at the end of a read. The 
variations between modern humans and Neanderthals were 
also confirmed in the assembly available at The Neandertal 
Genome Project (http://​neand​ertal.​ensem​blgen​omes.​org).

TOPIB Sequence Alignments

The TOPIB protein sequences were aligned with the 
Geneious alignment in three datasets: Metazoa (n = 161), 
Chordata TOP1 (n = 48) and Chordata TOP1MT (n = 48). 

Fig. 1   Organization of human nuclear (TOP1) and mitochondrial 
(TOP1MT) DNA topoisomerases I. A Multiple sequence align‑
ment of human TOP1 and TOP1MT mRNA sequences and the two 
TOP1 pseudogenes identified in chromosomes 1 (ψ1-hTOP1) and 

22 (ψ2-hTOP1). B Pairwise alignment of TOP1 and TOP1MT pro‑
tein sequences, annotated with the most relevant protein domains and 
sites. C Illustrative representation of the human TOP1 protein struc‑
ture with major domains highlighted

http://www.geneious.com
http://neandertal.ensemblgenomes.org


195Journal of Molecular Evolution (2023) 91:192–203	

1 3

The conservation across the alignments was measured with 
the percentage of pairwise identity (PI) that compares base 
pairs at every site. The same species were used in the Chor‑
data alignments to avoid biases and facilitate the compari‑
son of results. The coding domain sequences (CDS) of the 
orthologues of human TOP1 (ENSG00000198900) and 
TOP1MT (ENSG00000184428) were obtained from the 
Ensembl Genome Server (Hunt et al. 2018).

Phylogenetic Analyses

We analysed the TOPIB duplication events in chordates with 
a phylogenetic tree built with 37 protein sequences from 
Cephalochordata, Tunicata and Vertebrata species, and con‑
sidering Acanthaster planci and Strongylocentrotus purpu-
ratus (Echinodermata) as outgroups. We used Gblocks 0.91b 
server, running on Phylogeny.fr (Dereeper et al. 2008), to 
remove poorly aligned positions under the settings for a less 
stringent selection (Castresana 2000; Talavera and Castre‑
sana 2007). The best-fitting amino acid substitution model of 
evolution (LG + I + G4 + F) was determined with ModelTest-
NG (Darriba et al. 2020; Flouri et al. 2015). Next, we build a 
Bayesian phylogenetic tree with MrBayes v3.2.7a (Huelsen‑
beck and Ronquist 2001; Ronquist and Huelsenbeck 2003) 
running on the CIPRES Science Gateway v3.3 (Miller et al. 
2010). The Metropolis-coupled Markov chain Monte Carlo 
(MCMC) process was set with two independent runs, each 
with four independent chains that ran simultaneously dur‑
ing 4,000,000 iterations. The average standard deviation of 
split frequencies of the final tree was 0.002339, indicating 
convergence among the independent runs. A burn-in value 
of 0.25 was applied following the program recommenda‑
tion. The resulting phylogenetic tree was edited with FigTree 
v1.4.3 (http://​tree.​bio.​ed.​ac.​uk/​softw​are/​figtr​ee).

Evaluation of Selection

Molecular adaptation signatures in TOP1 and TOP1MT 
protein-coding sequence alignments were evaluated with 
the nonsynonymous/synonymous substitution rates ratio 
(dN/dS) (Del Amparo et al. 2021; Jeffares et  al. 2015). 
First, we selected the best-fitting substitution model of 
DNA evolution and reconstructed a maximum likelihood 
(ML) phylogenetic tree. Next, we estimated dN/dS under 
a ML method, considering the reconstructed phylogenetic 
tree, implemented in the evolutionary framework Hyphy 
(Kosakovsky Pond and Frost 2005; Kosakovsky Pond et al. 
2020). In particular, we applied the single-likelihood ances‑
tor counting (SLAC) method for the dN/dS estimation, which 
has an accuracy similar to that from other likelihood-based 
methods and includes statistical evaluations (Kosakovsky 
Pond and Frost 2005).

Template of TOPIB Protein Structure

We considered as an illustrative template of the human 
TOPIB protein structure, the protein structure of the Pro‑
tein Data Bank (PDB) (Berman et al. 2000) with code 1A36 
(Stewart et al. 1998). The structure was analysed with Mol* 
(Sehnal et al. 2021) and RCSB PDB.

Results and Discussion

TOP1 and TOP1MT Paralogues Originated in the First 
Round of Vertebrate Tetraploidization (1R)

Previous works have shown that TOPIB topoisomerases 
are ubiquitous in eukaryotes, and that only vertebrates have 
two TOPIB paralogues, named TOP1 and TOP1MT (For‑
terre et al. 2007; Zhang et al. 2004). Our extensive search 
for TOPIB genes in the genome of all available chordates 
only retrieved paralogues in the cyclostomes (jawless ver‑
tebrates) and gnathostomes (jawed vertebrates), confirming 
the previous claiming that TOPIB paralogues only occur 
in vertebrates (Zhang et al. 2004). Our phylogeny placed 
cephalochordates at the root of Chordata (Fig. 2). The Tuni‑
cata (Urochordata) and Vertebrata form a clade known as 
Olfactores (Delsuc et al. 2006; Putnam et al. 2008; Satoh 
et al. 2014). The fast-evolving Oikopleura dioica forms a 
particularly long branch, as we previously found for TOPIIA 
(Moreira et al. 2022).

The timing of the duplication event that gave rise to both 
paralogues remains unclear, particularly considering that 
the origin of vertebrates is associated with several gene and 
genome duplication events. Two rounds of tetraploidization, 
known as 1R and 2R, are believed to have occurred early in 
vertebrate evolution (Ohno 2013; Smith and Keinath 2015; 
Van de Peer et al. 2009). The timing of the tetraploidization 
events is still a matter of debate, but it was recently proposed 
that 1R preceded the divergence between cyclostomes and 
gnathostomes and 2R only occurred in gnathostomes (Aase-
Remedios and Ferrier 2021; Nakatani et al. 2021; Sima‑
kov et al. 2020). Previous works observed that vertebrata 
TOP1 and TOP1MT form two separate clusters (Forterre 
et al. 2007; Wang et al. 2009; Zhang et al. 2007), but were 
performed without sequences from cyclostomes. Our search 
for TOPIB genes in cyclostomes allowed us to retrieve two 
complete TOPIB sequences in two species, Petromyzon 
marinus and Eptatretus burgeri. We also noticed the pres‑
ence of at least two paralogues in other cyclostomes (e.g., 
Lethenteron camtschaticum, Entosphenus tridentatus), but 
the genomic sequences were incomplete and thus were not 
used in the phylogenies. Therefore, it is likely that cyclos‑
tomes have at least two TOPIB paralogues, as observed in 
other vertebrates. In this concern, the TOPIB paralogues 

http://tree.bio.ed.ac.uk/software/figtree
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from P. marinus and E. burgeri did not cluster together 
in our phylogeny (Fig. 2). Instead, one pair clusters with 
TOP1MT sequences. Indeed, these two paralogues also dis‑
play long branches, which are typical for the fast-evolving 
TOP1MT. Therefore, our analyses suggest that cyclostomes 
have a mitochondrial Type IB topoisomerase. The other pair 
of TOPIB paralogues from P. marinus and E. burgeri split 
from Gnathostomata TOP1 and TOP1MT at similar times. 
Our analysis is compatible with the idea that the duplication 
event that originated TOP1 and TOP1MT is related with the 
first round of tetraploidization (1R). In this situation, TOP1 
and TOP1MT originated during the whole genome duplica‑
tion in the early vertebrate evolution. The paralogues then 
diverged independently during the evolution of vertebrates, 
clustering in two separate branches (Fig. 2). The main dif‑
ference between the phylogeny of the two genes is the place‑
ment of TOP1 from cyclostomes, which does not cluster 
with TOP1 from gnathostomes, as in the TOP1MT clade. 
Further analyses with additional sequences from Cyclosto‑
mata are necessary to better define the evolutionary history 
of these genes.

The specialization for acting on mtDNA may have 
occurred early in the radiation of vertebrates. In this con‑
cern, we previously identified that TOPIIA paralogues 
(TOP2A and TOP2B) present a different origin within chor‑
dates (Moreira et al. 2022). Here, we found that TOP2A 

and TOP2B paralogues from Cyclostomata cluster together 
in a separate branch from all Gnathostomata paralogues. 
Altogether, our findings suggest that the different classes 
of topoisomerases present different evolutionary histories 
in chordates.

Strong Purifying Selection Acting on TOP1 
and TOP1MT

We estimated the dN/dS ratio to evaluate selection acting on 
TOP1 and TOP1MT paralogues of chordates (Table 1). We 
found that both genes present genetic signatures of nega‑
tive (purifying) selection (dN/dS < 1), as noticed before in 
other topoisomerases (TOP3B, TOP2A, TOP2B) (Moreira 
et al. 2021, 2022). The paralogue pairs TOP1/TOP1MT 
and TOP2B (dN/dS = 0.156) / TOP2A (dN/dS = 0.238) 
(Moreira et al. 2022) presented higher dN/dS ratios than 
TOP3B (dN/dS = 0.076) (Moreira et al. 2022), which has 
no paralogue.

Paralogues can exhibit asymmetric rates of sequence evo‑
lution (Conant and Wagner 2003; Scannell and Wolfe 2008; 
Van de Peer et al. 2001). The strength of negative selec‑
tion was higher in TOP1 (dN/dS = 0.154) than in TOP1MT 
(dN/dS = 0.307). Indeed, TOP1 also exhibits a lower diver‑
sity compared with TOP1MT (Table  1). The essential 
activity of TOP1 across species (Lee et al. 1993; Morham 

Fig. 2   Phylogenetic analysis of TOPIB in chordates. Bayesian phylo‑
genetic tree built with an alignment of 37 TOPIB protein sequences 
from chordates and considering two Echinodermata species as out‑
group. The Bayesian posterior probabilities are shown on the inter‑

nal nodes. The scale bar indicates substitutions per site. The putative 
occurrence of two rounds of tetraploidization (1R and 2R) is indi‑
cated
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et al. 1996) in different biological processes can explain its 
relatively high conservation. On the other hand, TOP1MT 
presents the highest dN/dS ratio among all the topoisomer‑
ases studied by us (Moreira et al. 2021, 2022). Although 
it still evolved under negative selection, TOP1MT seems 
more permissive to accept amino acid changes than other 
topoisomerases. The higher diversity estimated in TOP1MT 
(in comparison to TOP1) can also be observed in the Chor‑
data phylogeny, where TOP1MT branches are considerably 
longer than those for TOP1 (Fig. 2). The fast rate of change 
in TOP1MT can explain why finding orthologues for this 
gene is difficult. For example, the Ensembl genome browser 
only recognizes 77 orthologues for TOP1MT, in compari‑
son with the 272 orthologues identified for TOP1 (accessed 
in April 2022). TOP1MT was also recognized as the only 
topoisomerase with highly frequent single nucleotide vari‑
ants (SNVs) in the human population (Zhang et al. 2017). It 
was speculated that TOP1MT varies more than other topoi‑
somerases due to several factors: (i) it is a nonessential gene 
under less constraints to mutate; (ii) it is in a subtelomeric 
end of a chromosome and/or (iii) it is a relatively recent 
gene under adaptation to its activity in mitochondria (Zhang 
et al. 2017). Thus, the observed pattern can be the result 
from a combination of those factors. Comparing with our 
previous results, TOP2B and TOP2A are more conserved 
than TOP1MT despite being also paralogues that originated 
early in vertebrate evolution (Moreira et al. 2022). Thus, we 
believe that these paralogues could be a good comparative 
model to study TOP1MT in future investigations.

Two Missense Mutations Identified 
in the Neandertals TOP1MT Linker Region

Neanderthals and Denisovans are extinct groups of homi‑
nins that inhabited Eurasia until around 40,000 years ago 
(Green et al. 2010; Reich et al. 2010). Previous works iden‑
tified a few amino acid changes among modern humans 
and other hominins, some of which may have contributed 
to unique human traits (Green et al. 2010; Kuhlwilm and 
Boeckx 2019). Here, we searched for sequence differences 
in coding regions among modern human, Denisovan and 
Neanderthal TOP1 and TOP1MT genes. However, we 

did not identify polymorphic positions in TOP1 coding 
regions covered by Neanderthals or Denisovans sequence 
reads. On the contrary, we identified three nucleotide dif‑
ferences in the coding regions of TOP1MT (Table 2). A 
silent mutation in the CAP TOP1MT domain occurred in 
the human lineage. Next, two missense mutations were 
identified in the Neanderthal lineage. In particular, the 
mutations involved changes in two close amino acid 
positions (533 and 536) that belong to the Linker region 
(Fig. 3). Notice that the occurrence of missense mutations 
between modern humans and Neanderthals is rare (Green 
et al. 2010; Kuhlwilm and Boeckx 2019). When compar‑
ing present-day human and Neanderthals, Kuhlwilm and 
Boeckx (2019) identified 647 amino acid-changes in 571 
genes. Among those genes, only 68 had two or more amino 
acid changes. Assuming that humans have 19,969 genes 
(Nurk et al. 2022), only 0.34% of those genes have more 
than one amino acid change, making it a rare event.  

Two mutations occurring in the same sequence read 
seems particularly improbable. However, we identified the 
mutations in several reads, including both our assembly 
and the assembly available at the Neandertal Genome Pro‑
ject (Supplementary Fig. S2). Moreover, we fail to align 
the Neandertal reads with any other available sequence 
in GenBank, including TOP1 gene and pseudogenes, 
which excludes a possible misplacement of reads from 
those regions in TOP1MT. The two mutations involved 
amino acids with different physicochemical properties. In 
particular, two glutamines (polar uncharged side chain) 
were replaced by an arginine and a lysine (positively 
charged, basic, side chain). These different properties 
could affect the protein function, but further experimental 
analyses are required to corroborate this possibility. We 
previously identified two missense mutations in TOP2A 
when comparing present-day humans and Neanderthals 
(Moreira et al. 2022). It is interesting to note that missense 
mutations were only identified in the two topoisomerases 
(TOP1MT and TOP2A) that are less conserved in chor‑
dates, which supports the credibility of the identified 
sequence differences. The sequencing of additional Nean‑
derthal and Denisovan samples will allow us to confirm if 
these sequence variations were fixed among these species.

Table 1   Selection pressure in 
TOP1 and TOP1MT 

*Global (entire sequences) dN/dS including the 95% confidence interval. Positively selected sites (PSS) 
were not detected

Gene Dataset n Best substitution model Global dN/dS* Pairwise 
identity 
(%)

TOP1 Chordata 74 SYM + G 0.154 [0.147–0.162] 82.0
TOP1MT Chordata 74 SYM + I + G 0.307 [0.300–0.315] 61.3
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Relevant TOP1 and TOP1MT Sites for Catalytic 
Activities Tend to be Conserved Across Animals

The alignment of TOP1 and TOP1MT protein sequences 
from 48 representative chordate species confirms that 
TOP1MT (77% of pairwise sequence identity) is less con‑
served than TOP1 (sequence identity of 83.6%) (Fig. 3, 
Table  3). This result agrees with the long branches of 
TOP1MT in the Chordata phylogeny (Fig. 2) and its higher 
genetic diversity (Table 2). The N-terminal domain is the 
less conserved region in both proteins (sequence identities 
of 64.1% in TOP1 and 53.3% in TOP1MT), as noticed since 
the first studies on TOP1 (Champoux 1998, 2001; Stewart 
et al. 1996). The function of the N-terminal domain remains 
poorly understood, partially due to a lack of structural infor‑
mation. However, it is dispensable for the catalytic activ‑
ity of the enzyme (Alsner et al. 1992), suggesting that it 
could accept mutations without compromising the protein 
activity. Moreover, the N-terminal domain mediates TOP1 
interactions with other proteins (Czubaty et al. 2005). These 
protein–protein interactions might experience different co-
evolution processes among species that could explain the 
poor sequence conservation of the domain. The protein–pro‑
tein binding regions identified in N-terminal domains of 
TOP1 (NLSs) and TOP1MT (MTS) are also poorly con‑
served, possibly due to evolution driven by different species 
requirements. Only TOP1 NLS-II and NLS-IV are relatively 
conserved in chordates (Table 3).

The core domain (CAP, Hinge and CAT) is highly con‑
served due to its fundamental function on DNA binding dur‑
ing catalysis. We also found high conservation in the DNA-
binding regions in other topoisomerases (Moreira et al. 
2021, 2022), suggesting that these regions cannot accommo‑
date changes due to maintaining the topoisomerase activity 
through a proper interaction with DNA. The CAT region is 
slightly more conserved than the CAP region, which agrees 
with the observation that only the CAT region is conserved 
in bacterial, viral and eukaryotic topoisomerases (Patel et al. 
2010; Perry et al. 2006). The five-residue loop Hinge is con‑
served across metazoan (84.8% sequence identity), specifi‑
cally the first two residues (TOP1 positions 428–429) that 
present the same amino acids in all the analysed species 
(Fig. 3). In addition, the tyrosine upstream of the Hinge 
(position 426) was also found conserved, in agreement with 
a previous work suggesting that this position interacts with 
the DNA duplex and guides the motion of the CAP domain 
upon DNA binding to enable the enzyme closing (Takahashi 
et al. 2022). Within the CAT region, we noticed that near the 
Linker there are two conserved stretches of around 20 amino 
acids that flank a poorly conserved region (Fig. 3). In par‑
ticular, we identified a region with 6 amino acids AKVFRT 
(TOP1 reference positions 586–591) that is 100% conserved 
across all the 161 metazoan analysed species. This region Ta
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includes several active sites. The CAP and CAT regions 
include sites conferring resistance to camptothecin and all 
of them are 100% conserved. The only variable sites confer‑
ring resistance to camptothecin were observed in the Linker 
(site 653, sequence identity of 77.2%) and C-terminal (site 
729, sequence identity of 66.3%) regions.

We found that the Linker region is more variable than the 
surrounding core and C-terminal domains (Fig. 3, Table 3). 
The Linker consists of two long alpha helices connected 
by a short turn, forming an antiparallel coiled-coil con‑
figuration that protrudes away from the remainder of the 

enzyme (Stewart et al. 1998). We found that its conserva‑
tion decreases with the increasing distance to the flanking 
domains and to the catalytic region of the enzyme (Fig. 3). 
The short turn at the end of the Linker (TOP1 positions 
675–678) is extremely variable across species (21.4% of 
sequence identity), including some variation in length, sug‑
gesting that it can vary without affecting the protein func‑
tion. The increase in conservation of the Linker in regions 
closer to the core of the enzyme indicates that amino acid 
replacements are less tolerated if they occur close to the 
catalytic region, possibly due to affecting the protein activity 
or the Linker connections to the DNA strand.

The C-terminal domain folds into a globular structure 
(Figs. 1C, 3) that includes the active-site nucleophile Tyr723 
(Redinbo et al. 1998). This region also includes 8 residues 
near the Linker (718–722) with significant structural simi‑
larity with the bacteriophage family of DNA integrases 
(Redinbo et  al. 1998). Our results confirmed previous 

Fig. 3   Structural conservation of TOPIB. The sequence identity plot 
was estimated from the 161 TOPIB protein sequences of the major 
chordate groups. The most conserved positions are indicated with 
brown bars, while the less conserved positions are shown using red 
bars. The sequence logo and an illustration of the protein structure for 
the highlighted regions are included (Color figure online)

◂

Table 3   Organization and conservation of TOP1 and TOP1MT protein domains and relevant sites. The percentage of pairwise identity was 
obtained in an alignment with all metazoans and with chordates alone

Protein domains TOP1 TOP1MT TOPIB

Human reference Chordata (n = 48) Human reference Chordata (n = 48) Metazoa (n = 161)

Position Length (aa) Pairwise identity 
(%)

Position Length (aa) Pairwise identity 
(%)

Pairwise identity 
(%)

Complete protein 1–765 765 83.6 1–601 601 77 70.5
N-terminal domain 1–213 213 64.1 1–49 49 53.3 41.9
Core domain CAP 214–427 214 89 50–263 214 77.3 69.8

Hinge 428–432 5 98.3 264–268 5 84.1 84.8
CAT​ 433–635 202 94.5 269–470 202 81.4 78.4

Linker 636–714 80 87 471–550 80 63.1 57.3
C-terminal domain 715–765 51 93 551–601 51 85.4 82.5
N-terminal locali‑

zation signals
TOP1 NLS 117–146 30 56.8 – – – –
TOP1 NLS-I 59–65 7 62.9 – – – –
TOP1 NLS-II 150–156 7 86.9 – – – –
TOP1 NLS-III 174–180 7 35.4 – – – –
TOP1 NLS-IV 192–198 7 79.2 – – – –
TOP1MT MTS – – – 1–40 40 34.8 –

Active sites CAT​ 488 R 100 324 R 91.8 97.5
CAT​ 532 K 100 368 K 95.8 100
CAT​ 590 R 100 426 R 100 100
CAT​ 632 H 100 468 H 100 100
C-terminal 723 Y 100 559 Y 100 100

Camptothecin-
resistant muta‑
tions

CAP 361 F 100 197 F 100 98.8
CAP 363 G 100 199 G 100 98.8
CAP 364 R 100 200 R 100 100
CAP 418 E 100 254 E 100 97.5
CAT​ 503 G 100 339 G 91.8 97.5
CAT​ 533 D 100 369 D 95.8 98.8
Linker 653 A 77.2 489 A 62.8 51.6
C-terminal 722 N 100 558 N 100 100
C-terminal 729 T 66.3 565 S 71.6 65.8
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observations about the high conservation of the C-terminal 
domain (Champoux 2001). In particular, we found that the 
14 amino acids closer to the Linker (human TOP1 positions 
715–728) are almost 100% conserved in all the analysed 
animal species (Fig. 3).

Conclusions

Type IB topoisomerases are widespread in the animal king‑
dom. Indeed, vertebrates present specialized topoisomerases 
to operate with the nuclear and mitochondrial genomes. 
However, little is known about its evolution and its genetic 
similarities among species. Here we analysed the molecular 
evolution of topoisomerases among a variety of animal spe‑
cies. Our phylogenetic investigation placed the event that 
originated the specialized TOP1 and TOP1MT proteins in 
the early evolution of vertebrates, possibly associated with 
whole-genome duplications. After the duplication event, 
the long-term evolution of both paralogues was primarily 
driven by strong purifying selection probably to maintain 
the protein function. However, we found that TOP1MT 
evolved much faster than TOP1 and other topoisomerases, 
perhaps related with its specific role within the mitochon‑
dria. The fast evolution of TOP1MT was also evident in the 
missense mutations detected in the Neanderthals, displaying 
a rare case of protein differences among hominids. Finally, 
comparison of topoisomerases among species showed that 
the relevant protein sites for catalytic activities are mainly 
conserved across animals, again probably caused by their 
relevant biological roles.
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