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Universidade de Coimbra
Preprint Number 06–10

INTERNAL DEFORMATION OF LIE ALGEBROIDS AND
SYMPLECTIC REALIZATIONS
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Keywords: Lie algebroids, internal dynamics, Poisson structures.

AMS Subject Classification (2000): 17B66,70F99, 53D17.

1. Introduction

In the last twenty years the Lie algebroids were shown to be an important
instrument in the geometrical formulation of many problems in mathematics,
mechanics and theoretical physics. Roughly speaking, a Lie algebroid is a
generalization of both a Lie algebra and a tangente bundle, these being the
simplest examples of Lie algebroids. For a detailed study of this subject we
refer the books of Cannas et. al. [1] and of Mackenzie [18].

Since Pradines [22], who introduced the Lie algebroids as infinitesimal ob-
jects corresponding to Lie grupoids, several authors have studied the theory
of Lie algebroids giving important contributions for the knowledge of their
properties and applications. Among others, Higgins et.al. [10] introduced
the notion of prolongation of a Lie algebroid over a map; Weinstein [23]
was the first to study Lagrangian mechanics on Lie algebroids (see also [17])
and obtained the Euler-Lagrange equations using the natural linear Poisson
structure existing on the dual of a Lie algebroid and the Legendre transfor-
mation of a regular Lagrangian; Mart́ınez [21] answered a question posed
by Weinstein of whether it was possible to develop a Lagrangian mechanics
on Lie algebroids similar to Klein’s formalism for classical Lagrangian me-
chanics, and developed the formalism for the Lagrangian mechanics on Lie
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algebroids, generalizing the fundamental geometrical elements of Lagrangian
mechanics (see also [15] and references therein).

In this paper we generalize the concept of Lie algebroid in such a way that
its dual vector bundle is endowed with a non-linear Poisson structure, such
that the Poisson bracket of basic functions is non-zero and moreover the dual
of the anchor map of this generalized Lie algebroid is a symplectic realization
of its dual bundle. In classical mechanics these non-linear Poisson structures
are usually related with dynamical systems that have additional degrees of
freedom (associated to spin and isospin) to which we call internal degrees
of freedom (see [4]). We will study in a future work dynamical systems on
Lie algebroids with internal degrees of freedom, as well as we shall solve the
generalized Feynman problem on Lie algebroids, i.e. the problem of given
a second order differential equation dynamical system, finding all Poisson
tensors on a Lie algebroid such that it is a Hamiltonian vector field.

This article is organized in the following way. In Section 2 we describe the
motivation for introducing generalized Lie algebroids and recall the definition
of symplectic realization. In section 3 the definition and some properties of
Lie algebroids are reviewed. In section 4, we “deform” the linear Poisson
structure on a Lie co-algebroid A∗ by a Poisson structure on a fibre bundle
F , using a flat connection on the bundle. This process is called an internal
deformation. We will show that when the connection satisfies a certain com-
patibility condition the deformed structure is a quadratic Poisson structure
on the extended vector bundle F ⊲⊳ A∗. The Poisson manifold F ⊲⊳ A∗ is
called a quadratic co-algebroid. Then, given a flat connection on the fibre
bundle F , we define on the extended vector bundle F ⊲⊳ A a structure to
which we call generalized Lie algebroid and, by imposing the compatibility
condition, we obtain a quadratic algebroid. In a parallel way with the case
of Lie algebroids, we study the properties of these generalized Lie algebroids.
We prove that the dual bundle of a generalized Lie algebroid is endowed
with a linear Poisson structure and that the dual of a quadratic algebroid is
a quadratic co-algebroid. In section 5, we show that the anchor of a quadratic
algebroid is a Poisson morphism between quadratic co-algebroids. Finally, in
the last section some examples of internal deformation of Lie algebroids are
given. The paper closes with an Appendix where we review the concept of a
connection of a surjective submersion.
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2. Lie algebroids

We recall that a Lie algebroid over a differentiable manifold M is a vector
bundle p : A → M whose linear space of sections is endowed with a real Lie
algebra structure [·, ·]A and a vector bundle morphism ρ : A → TM over the
identity map on M , called the anchor, that induces a map between the space
of sections, represented by the same symbol, and that satisfy the following
Leibniz-like compatibility condition:

[v1, fv2]A = f [v1, v2]A + (ρ(v1)f) v2, (1)

for all pairs (v1, v2) of sections of the bundle A and for all differentiable
functions f on the base M . The Lie algebroid is denoted by (A, ρ, [·, ·]A) or
simply by A whenever is clear to which Lie algebroid we refer to.

The space Γ(A) of sections of the bundle p : A → M is a C∞(M)-module
and the anchor map ρ is a C∞(M)-linear map from the space Γ(A) into the
space X(M) of vector fields on M . From the condition (1) and the Jacobi
identity of the Lie bracket [·, ·]A, one can easily show that the anchor is a Lie
algebra homomorphism.

Given a Lie algebroid (A, ρ, [·, ·]A) over a manifold M , let {xi | i : 1, ..., m}
be a local coordinate set on the open set U of M and {eα | α : 1, ..., r} a basis
of local sections on U of the vector bundle A. In such local coordinates, the
anchor map and the Lie bracket on Γ(A) are given by∗:

[eα, eβ]A = cαβ
γ eγ, ρ(eα) = ρi

α ∂xi,

where cαβ
γ and ρi

α are differentiable functions on an open set of M , that
we call structure functions of the Lie algebroid. Since ρ is a homomorphism
of Lie algebras, these functions satisfy:

ρj
α

∂ρi
β

∂qj
− ρj

β

∂ρi
α

∂qj
= ρi

γ cαβ
γ , i = 1, . . . , m . (2)

Moreover, the Leibniz condition and the Jacobi identity imply:

∑

cycl(α,β,γ)

[
ρi

γ

∂cβα
µ

∂qi
+ cαβ

ν cνγ
µ

]
= 0 , µ = 1, . . . , r . (3)

The equations (2) and (3) are known as the compatibility equations of the
structure functions or structure equations of the Lie algebroid.

∗Hereafter summation in repeated indices will be understood.
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The simplest (non-trivial) examples of Lie algebroids are the tangent bun-
dle TM → M , with ρ = idTM and the Lie bracket on Γ(TM) being the
usual bracket of vector fields on M , and the finite dimensional Lie algebra
g considered as a vector bundle over a single point g → {·}. In this case,
the anchor is the zero map and the Lie bracket on sections coincides with
the bracket on the Lie algebra. Now we will recall other examples of Lie
algebroids that we will use ahead in the last section.

Example 2.1 (Lie algebra bundle). Let (A, p, M) be a vector bundle and [·, ·]
a bilinear and skew-symmetric bracket, defined on the fibreed product A×M A
with values in A, such that each fibre of A endowed with the bracket is a Lie
algebra. In these conditions, we define a Lie bracket [·, ·]A on the sections of
A by setting

[v, w]A(x) = [v(x), w(x)],

for all x ∈ M and v, w ∈ Γ(A). The bundle (A, p, M) endowed with the
bracket [·, ·]A and the zero map between A and the tangent bundle TM is a
Lie algebroid, which is called the Lie algebra bundle over the manifold M .

Example 2.2 (The action groupoid). Let φ : M ×G → M be a right action
of a Lie group G on the manifold M . For each X in the Lie algebra g

of G, there exists a vector field on M that we call the fundamental vector
associated with X, defined by XM(m) = d/dt[φ(m, exp(tX))]|t=0 = φm∗(X),
for all m ∈ M . Moreover, it is well known that [XM , YM ] = [X, Y ]M . We
may identify the linear space Γ(M ×g) of sections of the bundle M ×g → M
with the space C∞(M, g) of differentiable functions on M with values in g.
Note that each section V ∈ Γ(M ×g) is of the form V (x) = (x, V (x)), for all
x ∈ M , where V ∈ C∞(M, g), and this is a one-to-one correspondence which
allows us to identify V with V .

The trivial vector bundle M × g → M can be endowed with a Lie algebroid
structure whose anchor map ρ is given by the infinitesimal action of g on M .
This action is considered as a bundle map from M ×g → M into TM → M ;
ρ(x, X) = XM(x), for all x ∈ M and X ∈ g. The Lie bracket on the space
Γ(M × g) ∼= C∞(M, g) is given by

[V, W ]M×g(x) = (x, [V (x), W (x)]g + (V (x))MW (x) − (W (x))MV (x)) , (4)

for all V, W ∈ Γ(M × g). This Lie algebroid structure can also be character-
ized as the unique Lie algebroid structure such that [X, Y ]M×g = [X, Y ]g for
any pair of constant sections and ρ(x, X) = XM(x) [3].
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Example 2.3 (Poisson manifold). Let (M, Λ) be a Poisson manifold. The
bivector Λ defines a Poisson structure in M by {f, g} := Λ(df, dg) and in-
duces a vector bundle morphism Λ♯ : T ∗M → TM by means of

〈
βx, Λ

♯
x(αx)

〉
=

Λx(αx, βx), for all αx, βx ∈ T ∗
xM and x ∈ M . This vector bundle map induces

a liner map between the linear spaces of their sections, to be represented by
the same symbol, Λ♯ : Ω1(M) −→ X(M). The cotangent bundle T ∗M can be
endowed with a Lie algebroid structure whose anchor map is Λ♯ and the Lie
bracket of sections is defined by (see [9, 19])

[α, β]T ∗M = £Λ♯(α)β − £Λ♯(β)α − d(Λ(α, β)). (5)

For exact forms, this bracket reduces to [df, dg]T ∗M = d{f, g}, for all f, g ∈
C∞(M). The triple (T ∗M, Λ♯, [·, ·]T ∗M) is called the Lie algebroid of the Pois-
son manifold (M, Λ).

Another very remarkable property is that the dual bundle τ : A∗ → M of a
given Lie algebroid (A, ρ, [·, ·]A) over a m-dimensional manifold M is endowed
with a natural linear Poisson structure {·, ·}A∗, i.e. the Poisson bracket of
linear functions on A∗ is still a linear function on A∗.

In fact, in order to describe the Poisson structure of A∗ it suffices to give
the Poisson brackets of a class of functions such that their differentials span
the cotangent space at each point of A∗. Such a class of functions is given by
functions which are affine in the fibres. Those functions which are constant
on the fibres, basic functions, correspond to pull-back of functions on M . On
the other hand, each section v of A can be identified as a function on A∗ that
is linear in the fibres, i.e. χ : Γ(A) → L(A∗) maps each section v of A into
the linear function χ(v) on A∗ given by χ(v)(α) = 〈α, v〉, for all α ∈ Γ(A∗),
with 〈·, ·〉 the duality bracket between Γ(A∗) and Γ(A). The bracket {·, ·}A∗

is given by (see e.g. [5]):

{f ◦ τ, g ◦ τ}A∗ = 0, {χ(v), f ◦ τ}A∗ = ρ(v)f ◦ τ, {χ(v), χ(w)}A∗ = χ([v, w]A),

for all f, g ∈ C∞(M) and v, w ∈ Γ(A).
The linear Poisson bracket {·, ·}A∗ defines a Poisson tensor that we repre-

sent by ΛA∗. Let
{
xi | i = 1, ..., m

}
be a local coordinate set on an open set

U of the manifold M and {eα | α = 1, ..., r} a basis of local sections of A. In
local coordinates, the Poisson tensor ΛA∗ is given by

ΛA∗ = ρi
α∂µα

∧ ∂xi + cαβ
γµγ ∂µα

∧ ∂µβ
,
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where µα = χ(eα) is the linear function on A∗ associated with the section eα

of the basis of sections of A, and ρi
α and cαβ

γ are the structure functions of
the Lie algebroid A.

We shall call Lie co-algebroid to the pair formed by the dual bundle A∗

and the linear Poisson structure.
Let (A, ρ, [·, ·]A) be a Lie algebroid over M and let us consider the cotangent

bundle T ∗M endowed with its canonical symplectic structure. Then we have
the following result:

Proposition 2.4 ([20]). The dual map of the anchor of a Lie algebroid
(A, ρ, [·, ·]A) over M , (ρ∗,idM) : (T ∗M, π, M) → (A∗, τ, M), is a symplectic
realization of the Lie co-algebroid (A∗, {·, ·}A∗).

3. Internal deformation of Lie algebroids

In this section, we consider a Lie algebroid (A, ρ, [·, ·]A) over a manifold
M and a fibre bundle π : F → M , where F is endowed with both a flat
connection and a Poisson structure Λ. The Poisson structure Λ on F will
satisfy the property of localizability on the bundle, that is, Λ is π-projectable
onto 0: if xi represents the local coordinates on the base manifold M and
(xi, ξa) represent local coordinates on the fibre bundle F , then the Poisson
tensor Λ is given in local coordinates by

Λ(x, ξ) = Cab(x, ξ) ∂ξa ∧ ∂ξb.

Note that the localizability property of the Poisson tensor Λ on F just means
that Λ(dxi, dxj) = Λ(dxi, dξa) = 0. This property corresponds in the quan-
tum case to the fact that the position variables xi must be compatible (“si-
multaneously measurable”) among themselves, and also with the variables
ξa.

Definition 3.1 ([4]). A localizable Poisson tensor on a fibre bundle π : F →
M is a bundle Poisson tensor, i.e. a smooth assignment to each fibre of a
Poisson tensor Λ.

When the matrix C = (Cab) is regular, we will say that the Poisson struc-
ture Λ on F is regular along the fibres. The bundle F is called the internal
bundle and the local coordinates ξa are called internal variables [4].

The main goal of this section is to “deform” the linear Poisson structure on
the Lie co-algebroid A∗ by the Poisson structure on F , in such a way that we
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obtain a non-linear Poisson structure on the extended bundle F ⊲⊳ A∗ → F .
We call this process an internal deformation of the Lie co-algebroid.

3.1. Quadratic Poisson structure on F ⊲⊳ A∗. Let us consider the pull-
back of the Lie co-algebroid τ0 : A∗ → M by the bundle map π : F → M ,
π!A∗ = {(q, α) ∈ F × A∗ | π(q) = τ0(α)}:

π!A∗

τ1

��

τ2
// A∗

τ0

��

F
π

// M

We will represent the pull-back bundle π!A∗ by F ⊲⊳ A∗. This space is a
vector bundle over F whose fibres are isomorphic to the fibres of τ0 : A∗ → M ;
τ−1
1 (q) ≃ A∗

x with x = π(q).
The vector bundle τ1 : F ⊲⊳ A∗ → F can be endowed with a bivector ΛF⊲⊳A∗

which is τ1-projectable onto Λ and τ2-projectable onto ΛA∗, defined by:

{f ◦ τ1, g ◦ τ1}F⊲⊳A∗ = {f, g} ◦ τ1,

{χ(v) ◦ τ2, g ◦ τ1}F⊲⊳A∗ = ρ̃(v)g ◦ τ1, (6)

{χ(v) ◦ τ2, χ(w) ◦ τ2}F⊲⊳A∗ = χ([v, w]A) ◦ τ2,

for all f, g ∈ C∞(F) and v, w ∈ Γ(A), where {·, ·} is the Poisson bracket
defined by the Poisson tensor Λ on F , and

ρ̃(v)(q) := (Tπ|Hq
)−1( ρ(v)(π(q)) ),

is the horizontal lift of the vector field ρ(v) on M to a vector field on F
defined by the connection of π : F → M (see appendix). I.e., it is defined by
a distribution H of F which is complementary to the vector bundle T πF of
π-vertical vector fields on F , such that Tqπ : Hq → Tπ(q)M is an isomorphism
for all q ∈ F ; therefore, TF = H ⊕ T πF .

We observe that the bracket {·, ·}F⊲⊳A∗ is completely defined by equations
(6), because the cotangente space to F ⊲⊳ A∗ is generated by the differentials
of the linear functions of the form χ(v) ◦ τ2 and the differentials of basic
functions f◦τ1 on F ⊲⊳ A∗. Moreover, {·, ·}F⊲⊳A∗ is an almost-Poisson bracket,
i.e. all the properties of a Poisson bracket are satisfied except possibly the
Jacobi identity.

Let now {(xi, µα) | i = 1, ..., m, α = 1, ..., r} be a set of local coordinates on
the vector bundle A∗, where the xi’s represent a set of local coordinates on
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the manifold M and the µα = χ(eα)’s are the linear functions associated with
the elements eα’s of a basis of local sections of A; we call this local coordinates
external variables. In local coordinates, the bivector ΛF⊲⊳A∗ defined by (6) is
given by

ΛF⊲⊳A∗ = Γb
j ρj

α∂µα
∧ ∂ξb + ρi

α∂µα
∧ ∂xi + cαβ

γµγ ∂µα
∧ ∂µβ

+ Cab ∂ξa ∧ ∂ξb ,

where ρ̃(eα)(x, ξ) = ρi
α(x)∂xi +Γb

j(x, ξ)ρj
α(x)∂ξb, ρi

α and cαβ
γ are the struc-

ture functions of A and the symbols Γb
j represent the connection “coeffi-

cients”.

Proposition 3.2. The bivector ΛF⊲⊳A∗ is a Poisson bivector, i.e. the bracket
defined on F ⊲⊳ A∗ verifies the Jacobi identity, if and only if £

ρ̃(v)
Λ = 0, for

all v ∈ Γ(A), which is equivalent to

ρ̃(v) {f, g} =
{
ρ̃(v)f, g

}
+
{

f, ρ̃(v)g
}

, (7)

for all f, g ∈ C∞(F) and v ∈ Γ(A).

Proof : In order to prove the statement, we have to consider the Jacobi iden-
tity for any triple of differentiable functions on F or, equivalently, for: three
basic functions, three linear functions, one basic function and two linear
functions and finally one linear function and two basic functions. In the first
case, the Jacobi identity holds because {·, ·} is a Poisson bracket on F . In
the second case, it also holds because [·, ·]A is a Lie bracket. When we have
two linear functions and one basic function, the Jacobi identity is satisfied
because the connection is flat. In the last case, we have that

{χ(v) ◦ τ2, {f ◦ τ1, g ◦ τ1}F⊲⊳A∗}F⊲⊳A∗ = {{χ(v) ◦ τ2, f ◦ τ1}F⊲⊳A∗ , g ◦ τ1}F⊲⊳A∗

+ {f ◦ τ1, {χ(v) ◦ τ2, g ◦ τ1}F⊲⊳A∗}F⊲⊳A∗

is equivalent, from the definition of {·, ·}F⊲⊳A∗, to

ρ̃(v) {f, g} ◦ τ1 =
{

ρ̃(v)f ◦ τ1, g ◦ τ1

}
F⊲⊳A∗

+
{
f ◦ τ1, ρ̃(v)g ◦ τ1

}
F⊲⊳A∗

,

that is,

ρ̃(v) {f, g} ◦ τ1 =
{

ρ̃(v)f, g
}
◦ τ1 +

{
f, ρ̃(v)g

}
◦ τ1

which is condition (7).
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In local coordinates, the compatibility condition (7) is expressed in the
following way:

ρi
α

(
∂Cab

∂xi
+ Γd

i

∂Cab

∂ξd
− Cdb

∂Γa
i

∂ξd
− Cad

∂Γb
i

∂ξd

)
= 0,

which allows one to conclude that it is satisfied when the anchor is zero.
If ΛF⊲⊳A∗ is a Poisson tensor, then the Poisson bracket is quadratic {·, ·}F⊲⊳A∗,

i.e. the Poisson bracket of linear functions is quadratic on linear functions:

{f(χ(v) ◦ τ2), g(χ(w) ◦ τ2)}F⊲⊳A∗

= {f, g} (χ(v) ◦ τ2)(χ(w) ◦ τ2) − ([g ρ̃(w)f ] ◦ τ1)(χ(v) ◦ τ2)

+([f ρ̃(v)g] ◦ τ1)(χ(w) ◦ τ2) + fg(χ([v, w]A) ◦ τ2) ,

for all f, g ∈ C∞(F) and v, w ∈ Γ(A). Therefore, the Poisson structure
ΛF⊲⊳A∗ on F ⊲⊳ A∗ is non-linear.

Definition 3.3. Given a Lie co-algebroid τ0 : A∗ → M and a fibre bundle
π : F → M equipped with a flat connection and a localizable Poisson struc-
ture Λ that satisfies the compatibility condition (7), then the vector bundle
F ⊲⊳ A∗ → F endowed with the non-linear Poisson structure ΛF⊲⊳A∗ given
above is called a quadratic co-algebroid.

3.2. Generalized Lie algebroid structure on F ⊲⊳ A. In this section,
we will relate the quadratic co-algebroid structure on F ⊲⊳ A∗ with a Lie
algebroid structure on its dual bundle. Note that, the dual (F ⊲⊳ A∗)∗ of
the extended bundle F ⊲⊳ A∗ coincides with p1 : F ⊲⊳ A → F the pull-back
of the vector bundle p0 : A → M by the projection π : F → M , because,
(F ⊲⊳ A∗)∗q

∼= (A∗)∗π(q) = (A∗
π(q))

∗ = Aπ(q)
∼= (F ⊲⊳ A)q, for all q ∈ F . The

pull-back of the vector bundle p0 : A → M by the projection π : F → M ,
F ⊲⊳ A = π!A = {(q, v) ∈ F × A | π(q) = p0(v)}, is a vector bundle over F
whose fibres are isomorphic to the fibres of A, and we have the following
commutative diagram:

F ⊲⊳ A
p1

��

p2
// A

p0

��

F
π

// M

where p1(q, v) = q and p2(q, v) = v. Note that the space of sections of F ⊲⊳ A
is a C∞(F)-modulo generated by sections of the form v(q) = (q, v(π(q)))
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with v ∈ Γ(A), and this allows us to conclude that the space Γ(F ⊲⊳ A)
is isomorphic to the space of sections of A along the map π, Γπ(A) =
{Z : F → A | p0 ◦ Z = π} (see [10]):

v ∈ Γ(F ⊲⊳ A) 7→ v ◦ π ∈ Γπ(A).

Let us consider a Lie algebroid (A, ρ, [·, ·]A) over a manifold M and a fibre
bundle π : F → M endowed with a localizable Poisson structure Λ of the
form Λ = Cabξ

a ∧ ξb. Given a flat connection in the bundle F , the horizontal
lift of a vector field X ∈ X(M) is given by a vector field X̃ ∈ X(F) defined
by

X̃(q) = (Tπ|Hq
)−1(X(π(q))) ,

for all q ∈ F . Since the connection is flat, these vector fields satisfy:

[̃X, Y ] = [X̃, Ỹ ] , (8)

for all X, Y ∈ X(M), where the bracket on the left hand side is the bracket
of vector fields on M and the bracket on the right one is the bracket of vector
fields on F .

We are going to endow the vector bundle F ⊲⊳ A over F with a structure
that we call a generalized Lie algebroid structure. The generalized anchor
̺ : F ⊲⊳ A → F ⊲⊳ TM is defined by

̺(q, v(π(q))) = (q, ρ(v)(π(q))),

for all q ∈ F and v ∈ Γ(A). This generalized anchor induces a map between
the spaces of sections, that we represent by the same symbol,

̺(fv) = f ρ(v),

whose action on differentiable functions on F is defined by

̺(fv)g := f ρ̃(v)g,

for all f, g ∈ C∞(F) and v ∈ Γ(A). In the space of sections of F ⊲⊳ A we
introduce the following bilinear and skew-symmetric bracket

[v, gw]F⊲⊳A := g[v, w]A + (̺(v)g)w , (9)

for all v, w ∈ Γ(A) and g ∈ C∞(F).
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Remark 3.4. From the definition of the generalized anchor, we conclude that
it is C∞(F)-linear because ̺(fv) = fρ(v) = f̺(v), for all f ∈ C∞(F) and
v ∈ Γ(A).

Proposition 3.5. The bracket defined by (9) on the space of sections of
F ⊲⊳ A is a Lie bracket.

Proof : The bracket (9) is bilinear and skew-symmetric. To verify the Jacobi
identity, we have to show that

∑

cycl

[[fv, gw]F⊲⊳A, hz]F⊲⊳A = 0 ,

for all f, g, h ∈ C∞(F) and v, w, z ∈ Γ(A). From the definition of [·, ·]F⊲⊳A,
we have

∑

cycl

[[fv, gw]F⊲⊳A, hz]F⊲⊳A

=
∑

cycl

(
fgh[[v, w]A, z]A + {fg̺([v, w]A)h}z − h̺(z)(fg)[v, w]A

)

+
∑

cycl

(
(fh̺(v)g)[w, z]A + (f̺(v)g)(̺(w)h)z − h̺(z)(f̺(v)g)w

)

−
∑

cycl

(
gh(̺(w)f)[v, z]A + (g̺(w)f)(̺(v)h)z − h̺(z)(g̺(w)f)v

)
.(10)

Since the bracket on the sections of A satisfies the Jacobi identity and ρ is a
homomorphism of Lie algebras, we have

∑

cycl

(
fgh[[v, w]A, z]A + {fg̺([v, w]A)h}z

)
=
∑

cycl

(
fg{ ˜[ρ(v), ρ(w)]h}z

)
.



12 J.F. CARIÑENA, J.M. NUNES DA COSTA AND PATRÍCIA SANTOS

If we reorganize the terms of (10) we obtain

∑

cycl

[[fv, gw]F⊲⊳A, hz]F⊲⊳A

(8)
=
∑

cycl

(
fg{[ρ̃(v), ρ̃(w)]h}z − fh(̺(z)̺(v)g) w + gh(̺(z)̺(w)f)v

)

+
∑

cycl

(
fh(̺(v)g)[w, z]A − h̺(z)(fg)[v, w]A − gh(̺(w)f)[v, z]A

)

+
∑

cycl

( f(̺(v)g)(̺(w)h)z − h(̺(z)f)(̺(v)g)w )

+
∑

cycl

( h(̺(z)g)(̺(w)f)v − g(̺(w)f)(̺(v)h)z ) = 0,

because each cyclic sum is zero. Therefore, the bracket [·, ·]F⊲⊳A satisfies the
Jacobi identity.

Definition 3.6. The vector bundle p1 : F ⊲⊳ A → A endowed with the
generalized anchor ̺ : F ⊲⊳ A → F ⊲⊳ TM and the Lie bracket on the
sections of F ⊲⊳ A defined by (9) is called a generalized Lie algebroid.

Let
{
(xi, ξa) | i = 1, ..., m, a = 1, ..., n

}
be a set of local coordinates on the

bundle π : F → M and {eα | α = 1, ..., r} a basis of local sections of the
vector bundle p0 : A → M . In local coordinates, the generalized Lie algebroid
structure on F ⊲⊳ A is given by:

[eα, eβ]F⊲⊳A = cαβ
γ eγ, ̺(eα)xi = ρi

α, ̺(eα)ξa = Γa
jρ

j
α. (11)

The local functions cαβ
γ, ρi

α and Γa
jρ

j
α are called the structure functions of

the generalized Lie algebroid F ⊲⊳ A.

Example 3.7. Let us consider the tangent bundle τM : TM → M endowed
with its usual Lie algebroid structure. The fibre bundle F ⊲⊳ TM → F is
endowed with a generalized Lie algebroid structure. The generalized anchor
is the identity map on F ⊲⊳ TM ,

̺(q, X(π(q))) = (q, X(π(q))),
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and the Lie bracket on the sections of F ⊲⊳ TM is given, for all X, Y ∈ X(M)
and f ∈ C∞(F), by

[X, fY ]F⊲⊳TM = f [X, Y ] + (X̃f)Y ,

where [·, ·] is the usual bracket of vector fields on M . In local coordinates
(xi, ξa) on the bundle π : F → M and in the basis of sections {∂xi | i = 1, ..., n}
of the tangent bundle TM , the generalized anchor and bracket are respectively
given by:

[∂xi, ∂xj ] = 0, ̺(∂xi)xj = δi
j, ̺(∂xi)ξa = Γa

i .

Since the anchor ρ of the Lie algebroid A is a homomorphism of Lie alge-
bras, from the definition of the generalized anchor ̺ and the bracket [·, ·]F⊲⊳A,
we can easily prove that the generalized anchor is a homomorphism of the Lie
algebra (Γ(F ⊲⊳ A), [·, ·]F⊲⊳A) into the Lie algebra (Γ(F ⊲⊳ TM), [·, ·]F⊲⊳TM):

̺([fv, gw]F⊲⊳A) = ̺
(

fg[v, w]A + (̺(fv)g)w − (̺(gw)f)v
)

= fgρ([v, w]A) + (̺(fv)g)ρ(w) − (̺(gw)f)ρ(v)

= fg[ρ(v), ρ(w)] + (̺(fv)g)ρ(w) − (̺(gw)f)ρ(v)

= [̺(fv), ̺(gw)]F⊲⊳TM ,

for all f, g ∈ C∞(F) and v, w ∈ Γ(A).
Let us recall the following result:

Proposition 3.8 ([5]). The vector bundle p : A → M is a Lie algebroid over
M if and only if the dual bundle admits a Poisson structure whose linear
functions form a Lie subalgebra.

As in the case of Lie algebroids, the dual vector bundle F ⊲⊳ A∗ of the
generalized Lie algebroid can be endowed with a linear Poisson structure
given by:

{f ◦ τ1, g ◦ τ1}
1
F⊲⊳A∗ = 0

{χ(v) ◦ τ2, g ◦ τ1}
1
F⊲⊳A∗ = ρ̃(v)g ◦ τ1 (12)

{χ(v) ◦ τ2, χ(w) ◦ τ2}
1
F⊲⊳A∗ = χ([v, w]A) ◦ τ2.

This linear Poisson bracket is obtained from (6) in the case where the Poisson
structure on F is the trivial one. Note that, in this particular case, the
compatibility condition 7 is trivially satisfied.
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Since F ⊲⊳ A∗ is equipped with a linear Poisson structure, the vector bundle
F ⊲⊳ A is endowed with a Lie algebroid structure over F . So, there exists
an anchor map ρ̃ : F ⊲⊳ A → TF and a Lie bracket [·, ·]F⊲⊳A that satisfy the
Leibniz rule:

[v, fw]F⊲⊳A = f [v, w]F⊲⊳A + ρ̃(v)f w ,

for all v, w ∈ Γ(F ⊲⊳ A) and f ∈ C∞(F). In fact, the anchor is just the map

ρ̃(v) := ρ̃(v), for all v ∈ Γ(F ⊲⊳ A), and the Lie bracket [·, ·]F⊲⊳A on sections
of F ⊲⊳ A is the one defined by (9). This Lie algebroid (F ⊲⊳ A, ρ̃, [·, ·]F⊲⊳A)
over F is an action Lie algebroid A ⋉ π, defined by an action Φ : Γ(A) →
X(F) of the Lie algebroid A over π, where Φ is the R-linear map defined by

Φ(v) = ρ̃(v), for all v ∈ Γ(A), which satisfy the following conditions:

Φ(fv) = (f ◦ π)ρ̃(v), Φ(v)(f ◦ π) = ρ(v)f ◦ π, Φ([v, w]A) = [Φ(v), Φ(w)],

for all v, w ∈ Γ(A) and f ∈ C∞(M). From what we have seen so far, the only
difference between the Lie algebroid (F ⊲⊳ A, ρ̃, [·, ·]F⊲⊳A) and the generalized
Lie algebroid (F ⊲⊳ A, ̺, [·, ·]F⊲⊳A) is on the anchor map. But this is not so
important, because the action on functions is the same and, therefore, the
structure functions of the generalized Lie algebroid, given by (11), coincide
with the structure functions of the Lie algebroid (F ⊲⊳ A, ρ̃, [·, ·]F⊲⊳A). Fur-
thermore, the structure equations of the Lie algebroid F ⊲⊳ A coincide with
equations (2) and (3). We notice that ̺ = π̃ ◦ ρ̃, where π̃ : TF → F ⊲⊳ TM
represents the projection of the tangent bundle TF onto the bundle F ⊲⊳ TM
and ρ̃ = h◦̺, where h : F ⊲⊳ TM → TF is a section of the map π̃ associated
with the flat connection of π : F → M . Therefore, given a Lie algebroid
A and an internal bundle F , a generalized Lie algebroid structure on the
extended bundle F ⊲⊳ A corresponds to a Lie algebroid structure on F ⊲⊳ A.

Since F ⊲⊳ A is a Lie algebroid, we can consider its exterior derivative dρ̃,
which is a derivation of degree one of the exterior algebra Ω•(F ⊲⊳ A) and
nilpotent of order two, d2

ρ̃ = 0. On F ⊲⊳ A-k-forms, this operator is defined
in the usual way by:

dρ̃α(v1, ..., vk, vk+1) =
k+1∑

i=1

(−1)i+1ρ̃(vi)α(v1, ..., v̂i, ..., vk+1) (13)

+
∑

1≤i<j≤k+1

(−1)i+jα([vi, vj]F⊲⊳A, ..., v̂i, ..., v̂j, ..., vk+1),
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where α ∈ Ωk(F ⊲⊳ A) and v1, ..., vk, vk+1 ∈ Γ(F ⊲⊳ A); the symbol ·̂ means
omission of such element. Let dρ be the exterior derivative of the Lie algebroid
(A, ρ, [·, ·]A) and d the de Rham operator on the manifold M . Then:

Proposition 3.9. The exterior derivative dρ̃ of the Lie algebroid F ⊲⊳ A
satisfies the following properties:

(i) dρ̃ ◦ p∗2 = p∗2 ◦ dρ;
(ii) dρ̃ ◦ (ρ ◦ p2)

∗ = (ρ ◦ p2)
∗ ◦ d,

where p2 : F ⊲⊳ A → A.

Proof : (i) Since dρ̃ and dρ are derivations of degree one on the exterior
algebras Ω•(F ⊲⊳ A) and Ω•(A), respectively, we just need to prove
the equality dρ̃ ◦ p∗2 = p∗2 ◦ dρ for forms of degrees zero and one. With
forms of degree zero we obtain

Tπ ◦ ρ̃ = ρ ◦ p2, (14)

and in forms of degree one we have

p2 ◦ [v, w]F⊲⊳A = [v, w]A ◦ π , (15)

for all v, w ∈ Γ(A). From the definitions of the anchor map ρ̃ and of
the Lie bracket [·, ·]F⊲⊳A, we can conclude that (14) and (15) hold.

(ii) From condition (i) we have dρ̃ ◦ p∗2 ◦ ρ∗ = p∗2 ◦ dρ ◦ ρ∗. Since ρ is a
homomorphism of Lie algebroids then dρ ◦ ρ∗ = ρ∗ ◦ d. Therefore,
dρ̃ ◦ p∗2 ◦ ρ∗ = p∗2 ◦ ρ∗ ◦ d.

Let {eα | α = 1, ..., r} be a basis of local sections of F ⊲⊳ A associated to
the local basis of sections {eα | α = 1, ..., r} of A and let {eα | α = 1, ..., r} be
the corresponding dual basis of sections of F ⊲⊳ A∗. The exterior derivative
is characterized by its value on 0-forms and 1-forms, so in local coordinates:

dρ̃ = Γb
i ρi

α ∂ξb ⊗ eα + ρi
α ∂xi ⊗ eα −

1

2
cαβ

γeγ ⊗ eα ∧ eβ.

Note that the structure equations (2) and (3) of the Lie algebroid F ⊲⊳ A are
equivalent to d2

ρ̃ xi = d2
ρ̃ ξa = 0 and d2

ρ̃ eν = 0, respectively.
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One can define on the dual bundle F ⊲⊳ A∗ another non-linear Poisson
structure by setting:

{f ◦ τ1, g ◦ τ1}
0
F⊲⊳A∗ = {f, g} ◦ τ1

{χ(v) ◦ τ2, g ◦ τ1}
0
F⊲⊳A∗ = 0 (16)

{χ(v) ◦ τ2, χ(w) ◦ τ2}
0
F⊲⊳A∗ = 0.

This non-linear Poisson bracket is obtained from (6) in the case where the Lie
algebroid structure of A is the trivial one. Note that, in this case, the com-
patibility condition (7) is trivially satisfied. Therefore, the almost-Poisson
structure on F ⊲⊳ A∗ given by (6) is the sum of the linear Poisson structure
(12) with the Poisson structure (16),

{·, ·}F⊲⊳A∗ = {·, ·}0
F⊲⊳A∗ + {·, ·}1

F⊲⊳A∗ .

So, when the Lie algebroid (A, ρ, [·, ·]A) and the internal bundle (F , {·, ·})
satisfy the compatibility condition (7), i.e. the bracket {·, ·}F⊲⊳A∗ is Poisson,
we have that the two Poisson structures (12) and (16) are compatible.

Definition 3.10. Given a Lie algebroid p0 : A → M and a fibre bundle
π : F → M equipped with a flat connection and a localizable Poisson structure
that satisfy the compatibility condition (7), then the vector bundle F ⊲⊳ A
→ F endowed with the generalized Lie algebroid structure (̺, [·, ·]F⊲⊳A) is
called a quadratic algebroid.

From the above definition, we can conclude that the internal deformation
of a Lie algebroid A by a fibre bundle F , endows the extended bundle F ⊲⊳ A
with a structure of quadratic algebroid. Moreover, we conclude that the dual
bundle of a quadratic algebroid is a quadratic co-algebroid. Note that a Lie
algebroid is a particular case of a generalized Lie algebroid. In fact, a Lie
algebroid is a generalized Lie algebroid deformed by the bundle π = idM :
M → M , where M ⊲⊳ A ≡ A and M ⊲⊳ TM ≡ TM .

Example 3.11 (Tangent bundle). Let us consider the tangent bundle TM
endowed with its natural Lie algebroid structure and a differential manifold
N . Let be F = M×N and π : F = M×N → M the product bundle endowed
with the natural connection and a localizable Poisson structure of the form
Λ = Cab(ξ) ∂ξa ∧ ∂ξb. The connection is given by the horizontal distribution
of F , Hq = Tπ(q)M , for all q ∈ F and the horizontal lift of a vector field

X ∈ X(M) to F is given by X̃ = (X, 0) ≡ X and therefore the connection is
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flat. The vector bundle κ1 : F ⊲⊳ TM → F

F ⊲⊳ TM
κ1

��

κ2
// TM

κ0

��

F
π

// M

is endowed with a generalized Lie algebroid structure over F . The bundle
F ⊲⊳ TM is a quadratic algebroid because the compatibility condition (7) is
satisfied

X̃ {h1, h2} =
{
X̃h1, h2

}
+
{

h1, X̃h2

}
,

for all h1, h2 ∈ C∞(F) and X ∈ X(M). This condition holds because the
function Cab(ξ) =

{
ξa, ξb

}
does not depend on the local coordinates xi; note

that X̃
{
ξa, ξb

}
= 0, for all X ∈ X(M). Since F ⊲⊳ TM is a quadratic

algebroid, we may define on the dual bundle F ⊲⊳ T ∗M

F ⊲⊳ T ∗M
π1

��

π2
// T ∗M

π0

��

F
π

// M

a quadratic co-algebroid structure, whose non-linear Poisson structure is
given in matricial form (using Darboux coordinates for the symplectic mani-
fold T ∗M) by:

ΛF⊲⊳T ∗M =




0 0 −I
0 C 0
I 0 0


 . (17)

When the matrix C is invertible the Poisson structure ΛF⊲⊳T ∗M is regular,
i.e. the Poisson structure is non-degenerated. In this case, F ⊲⊳ T ∗M is a
symplectic manifold.

Given a Lie algebroid (A, ρ, [·, ·]) over a manifold M and an internal bundle
π : F → M , it is important to observe that when the extended bundle
F ⊲⊳ TM is a quadratic algebroid, then the extended bundle F ⊲⊳ A is also
a quadratic algebroid, however the converse is false.

In the conditions of the above example, let us suppose that the Poisson
structure Λ = Cab(ξ) ∂ξa ∧ ∂ξb on F is such that Cab(0) = 0. Let (Φ, φ) :
(T ∗M, π0, M) → (F ⊲⊳ T ∗M, π1,F) be the dual morphism of
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κ2 : F ⊲⊳ TM → TM where φ is such that π ◦ φ = idM and satisfies
φ∗xi = xi and φ∗ξa = 0. Then, we can establish the following:

Proposition 3.12. The morphism (Φ, φ) is a Poisson morphism, i.e.

{F ◦ Φ, G ◦ Φ}T ∗M = {F, G}F⊲⊳T ∗M ◦ Φ , (18)

for all F, G ∈ C∞(F ⊲⊳ T ∗M), where T ∗M is endowed with its canonical
symplectic structure and F ⊲⊳ T ∗M is equipped with the Poisson structure
(17).

Proof : We just have to prove the above condition for either two basic func-
tions, f ◦ π1, or two linear functions χ0(v) ◦ π2 and for one basic and a linear
one. Let us first consider two basic functions on F ⊲⊳ T ∗M , F = f ◦ π1 and
G = g ◦ π1. Then, from the above definition of the bracket {·, ·}F⊲⊳T ∗M , we
have

{F, G}F⊲⊳T ∗M ◦ Φ = {f ◦ π1, g ◦ π1}F⊲⊳T ∗M ◦ Φ = {f, g} ◦ π1 ◦ Φ

and because π1 ◦ Φ = φ ◦ π0, we still have

{F, G}F⊲⊳T ∗M ◦ Φ = {f, g} ◦ φ ◦ π0 = Cab(ξ)
∂f

∂ξa

∂g

∂ξb

◦ φ ◦ π0.

Since Cab(ξ ◦ φ) = Cab(0) = 0, we can conclude that

{F, G}F⊲⊳T ∗M ◦ Φ = 0.

On the other hand, from the definition of the Poisson bracket on T ∗M , we
have

{F ◦ Φ, G ◦ Φ}T ∗M = {f ◦ φ ◦ π0, g ◦ φ ◦ π0}T ∗M = 0

and the condition (18) holds. Let us now consider two linear functions F =
χ0(v) ◦ π2 and G = χ0(w) ◦ π2, with v, w ∈ Γ(A). Since π2 ◦ Φ = idT ∗M , we
have

{F ◦ Φ, G ◦ Φ}T ∗M = {χ0(v), χ0(w)}T ∗M := χ0([v, w]),

that is,

{F ◦ Φ, G ◦ Φ}T ∗M = χ0([v, w]) ◦ π2 ◦ Φ.

Once again, from the definition of the bracket {·, ·}F⊲⊳T ∗M , we have

{F ◦ Φ, G ◦ Φ}T ∗M = {χ0(v) ◦ π2, χ0(w) ◦ π2}F⊲⊳T ∗M ◦ Φ = {F, G}F⊲⊳T ∗M ◦ Φ.
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Finally, we have to prove (18) in the case where F = χ0(v)◦π2 and G = g◦π1.
Then,

{F ◦ Φ, G ◦ Φ}T ∗M = {χ0(v) ◦ π2 ◦ Φ, g ◦ π1 ◦ Φ}T ∗M

= {χ0(v), g ◦ φ ◦ π0}T ∗M

:= v(g ◦ φ) ◦ π0.

Since Tφ ◦ v = ṽ ◦ φ, we obtain

{F ◦ Φ, G ◦ Φ}T ∗M = ṽg ◦ φ ◦ π0 = ṽg ◦ π1 ◦ Φ ,

and from the definition of {·, ·}F⊲⊳T ∗M , we conclude that

{F ◦ Φ, G ◦ Φ}T ∗M = {χ0(v) ◦ π2, g ◦ π1}F⊲⊳T ∗M ◦ Φ = {F, G}F⊲⊳T ∗M ◦ Φ.

4. Symplectic realizations of F ⊲⊳ A∗

Let us consider a quadratic algebroid (F ⊲⊳ A, ̺, [·, ·]F⊲⊳A) obtained by in-
ternal deformation of the Lie algebroid (A, ρ, [·, ·]A) over M by the internal
bundle F → M endowed with a localizable Poisson tensor and a flat con-
nection. We are going to prove that the dual map of the generalized anchor,
̺∗ : F ⊲⊳ T ∗M → F ⊲⊳ A∗, of the quadratic co-algebroid F ⊲⊳ T ∗M is a
Poisson morphism.

T ∗M
π0

��

F ⊲⊳ T ∗M
π2

oo

π1

��

̺∗
// F ⊲⊳ A∗

τ1

��

τ2
// A∗

τ0

��

M Fπ
oo

idF

// F π
// M

When the Poisson structure on F is regular along the fibres, i.e. when the
matrix of entries Cab =

{
ξa, ξb

}
is invertible, the map ̺∗ provides a symplectic

realization of the quadratic co-algebroid F ⊲⊳ A∗.
Let H = χ(v) be a linear function on A∗ associated to v ∈ Γ(A). Then:

H ◦ τ2 = χ′(v),

H ◦ τ2 ◦ ̺∗ = χ′
0(̺(v)) = χ′

0( ρ(v) ) = χ0(ρ(v)) ◦ π2, (19)

where χ′ : Γ(F ⊲⊳ A) → L(F ⊲⊳ A∗) and χ′
0 : Γ(F ⊲⊳ TM) → L(F ⊲⊳ T ∗M)

are isomorphisms, and L(F ⊲⊳ A∗), L(F ⊲⊳ T ∗M) denote the spaces of linear
functions on F ⊲⊳ A∗ and F ⊲⊳ T ∗M , respectively.
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Proposition 4.1. Let (F ⊲⊳ TM, ̺0, [·, ·]F⊲⊳TM) and (F ⊲⊳ A, ̺, [·, ·]F⊲⊳A) be
quadratic algebroids obtained by internal deformation of the Lie algebroids
TM and A, respectively, by the bundle F → M endowed with a localizable
Poisson structure and a flat connection. Then, ̺∗ : F ⊲⊳ T ∗M → F ⊲⊳ A∗ is
a Poisson morphism.

Proof : We have to show that ̺∗ is a Poisson morphism, that is,

{F, G}F⊲⊳A∗ ◦ ̺∗ = {F ◦ ̺∗, G ◦ ̺∗}F⊲⊳T ∗M , (20)

for all affine functions F, G ∈ C∞(F ⊲⊳ A∗). With f, g ∈ C∞(F), we have

{f ◦ τ1 ◦ ̺∗, g ◦ τ1 ◦ ̺∗}F⊲⊳T ∗M = {f ◦ idF ◦ π1, g ◦ idF ◦ π1}F⊲⊳T ∗M = {f, g} ◦ π1

and therefore,

{f ◦ τ1 ◦ ̺∗, g ◦ τ1 ◦ ̺∗}F⊲⊳T ∗M = {f, g} ◦ τ1 ◦ ̺∗ = {f ◦ τ1, g ◦ τ1}F⊲⊳A∗ ◦ ̺∗.

Now, let us suppose that F = χ(v) ◦ τ2 is a linear function on F ⊲⊳ A∗,
associated to the section v of A, and G = g ◦ τ1 is a basic function on
F ⊲⊳ A∗. Then, from (19),

{F ◦ ̺∗, G ◦ ̺∗}F⊲⊳T ∗M = {χ0(ρ(v)) ◦ π2, g ◦ π1}F⊲⊳T ∗M = ρ̃(v)g ◦ τ1 ◦ ̺∗.

On the other hand,

{F, G}F⊲⊳A∗ ◦ ̺∗ = {χ(v) ◦ τ2, g ◦ τ1}F⊲⊳A∗ ◦ ̺∗ = ρ̃(v)g ◦ τ1 ◦ ̺∗

and condition (20) holds. Finally, let now F ◦ τ2 = χ(v) ◦ τ2 and G ◦ τ2 =
χ(w) ◦ τ2 be two linear functions on F ⊲⊳ A∗, where v and w are sections of
A. Then,

{F ◦ ̺∗, G ◦ ̺∗}F⊲⊳T ∗M = {χ0(ρ(v)) ◦ π2, χ0(ρ(w)) ◦ π2}F⊲⊳T ∗M

= χ0([ρ(v), ρ(w)]) ◦ π2.

Since ρ is a Lie algebra homomorphism, we also have

{F ◦ ̺∗, G ◦ ̺∗}F⊲⊳T ∗M = χ0(ρ([v, w]A)) ◦ π2

= χ([v, w]A) ◦ τ2 ◦ ̺∗

= {χ(v) ◦ τ2, χ(w) ◦ τ2}F⊲⊳A∗ ◦ ̺∗

and therefore (20) holds.

As we said before, when the Poisson structure on F is regular along the
fibres, the non-linear Poisson structure on F ⊲⊳ T ∗M is regular. Then F ⊲⊳
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T ∗M is a symplectic manifold, and therefore the dual map of the generalized
anchor is a symplectic realization of the quadratic co-algebroid F ⊲⊳ A∗.

We notice that, in general, the generalized Lie algebroid F ⊲⊳ TM is not
a quadratic algebroid because it does not satisfy the compatibility condition
(7). Nevertheless, the vector bundle F ⊲⊳ T ∗M is endowed with an almost-
Poisson structure given by (6), when A = TM . In this case, we say that the
dual map of the anchor is an almost-Poisson morphism.

Now, let us suppose that the fibre bundle F satisfies the conditions of
Proposition 4.1 and that the Poisson tensor on F is of the form Λ =
Cab(ξ) ∂ξa∧∂ξb, regular along the fibres, with Cab(0) = 0. Then, the morphism
(Φ, φ) : (T ∗M, π0, M) → (F ⊲⊳ T ∗M, π1,F), introduced in Proposition 3.12,
is a symplectic realization of the quadratic co-algebroid F ⊲⊳ T ∗M . More-
over, we conclude that the composition ̺∗ ◦Φ : T ∗M → F ⊲⊳ A∗ is a Poisson
morphism over the map φ : M → F and, therefore, it is a symplectic re-
alization of the quadratic co-algebroid F ⊲⊳ A∗. The dual map of ̺∗ ◦ Φ
is the vector bundle morphism σ = κ2 ◦ ̺ : F ⊲⊳ A → TM over the map
π : F → M ,

F ⊲⊳ A
p1

��

̺
// F ⊲⊳ TM

κ1

��

κ2
// TM

κ0

��

F
idF

// F π
// M

given by

σ(q, v(π(q))) = ρ(v)(π(q)),

for all q ∈ F and v ∈ Γ(A). The following conditions hold

(i) σ = Tπ ◦ ρ̃,
(ii) σ ◦ [v, w]F⊲⊳A = [ρ(v), ρ(w)] ◦ π,

for all v, w ∈ Γ(A). Thus, σ is a Lie algebroid homomorphism.

5. Some examples of internal deformation

In this section, we will give some examples of internal deformations of a
Lie algebroid (A, ρ, [·, ·]A) over a manifold M by internal bundles F → M
endowed with a localizable Poisson structure Λ and a flat connection.

5.1. Lie algebra bundle. Let π : F → {·} be a fibre bundle with a
unique fibre F endowed with a localizable Poisson structure of the form
Λ = Cab ∂ξa ∧ ∂ξb, where Cab are constants. The natural connection of this
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bundle is defined by the distribution Hq = {0}, for all q ∈ F , and the

horizontal lift to F of the vector field X = 0 is X̃ = 0. Therefore, the
connection is obviously flat. Given a finite dimensional Lie algebra g, we can
consider g as a Lie algebroid over the set {·}– the anchor ρ is zero and the
bracket on the sections is given by the Lie bracket of the Lie algebra. The
internal deformation of g by F is represented by the following diagram:

F ⊲⊳ g

p1

��

p2
// g

p0

��

F
π

// {·}

where p1(q, X) = q and p2(q, X) = X, for all q ∈ F and X ∈ g. The
generalized Lie algebroid structure on F ⊲⊳ g is given by:

[eα, eβ]F⊲⊳g = cαβ
γ eγ ,

̺(eα)ξa = 0 ,

where cαβ
γ are the structure constants of the Lie algebra g and eα are the

elements of a basis of sections in the space Γ(F ⊲⊳ g) ≃ C∞(F ; g). Note that
the space C∞(F ; g) is generated by a set of constant functions sα(q) = eα,
where the elements eα define a basis of g. Since the trivial bundle F × g →
F coincides with the vector bundle F ⊲⊳ g → F , one can show that the
structures of Lie algebra bundle and Lie algebroid on F ⊲⊳ g are the same.

In these conditions, we easily prove the compatibility condition (7):

̺(X) {f, g} =
{
̺(X)f, g

}
+
{
f, ̺(X)g

}
,

for all X ∈ Γ(g) and f, g ∈ C∞(F); note that ̺(X)f = ρ̃(X)f = 0. There-
fore, the vector bundle p1 : F ⊲⊳ g → F is endowed with a quadratic alge-
broid structure and its dual τ1 : F ⊲⊳ g∗ → F is endowed with a quadratic
co-algebroid structure, whose non-linear Poisson bracket is given by:

{χ(eα), χ(eβ)}F⊲⊳g∗ = cαβ
γχ(eγ) ,

{χ(eα), ξa}F⊲⊳g∗ = 0 ,

{ξa, ξb}F⊲⊳g∗ = Cab .

In the matricial form, the Poisson structure on F ⊲⊳ g∗ is given by

ΛF⊲⊳g∗ =

(
C 0
0 c

)
,
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where C = (Cab) and c = (cαβ) with cαβ = cαβ
γχ(eγ).

5.2. Poisson manifold. Let (M, Π) be a Poisson manifold and N a differen-
tiable manifold. We will deform the Lie algebroid structure on T ∗M , defined
by the Poisson tensor Π, by the internal bundle π : F =
M × N → M endowed with a localizable Poisson structure of the form
Λ(x, ξ) = Cab(ξ) ∂ξa ∧ ∂ξb. The natural connection of the bundle F is defined
by the distribution Hq = Tπ(q)M , for all q ∈ F . In this case, the horizontal

lift of X ∈ X(M) to F is a vector field on F given by X̃(q) = (X(π(q)), 0) ≡
X(π(q)), for all q ∈ F .

Let us consider a generalized Lie algebroid structure on the vector bundle
π1 : F ⊲⊳ T ∗M → F . Since the compatibility condition (7) holds, F ⊲⊳ T ∗M
is a quadratic algebroid. The dual vector bundle κ1 : F ⊲⊳ TM → F
is endowed with a non-linear (quadratic) Poisson structure, given in the
matricial form by:

ΛF⊲⊳TM =




0 0 Π
0 C 0
Π 0 Υ


 ,

where C = (Cab), Π = (Πij) and Υ = (Υij) with

Υij =
{
χ(dxi) ◦ κ2, χ(dxj) ◦ κ2

}
F⊲⊳TM

.

If Π is a non-degenerated tensor and C is invertible, then the non-linear
Poisson tensor ΛF⊲⊳TM is regular.

5.3. Group action. Let G be a Lie group with a Lie algebra g that acts
on the Poisson manifold (M, {·, ·}M) and let π : F = M × N → M be
the product bundle, where N is a differentiable manifold, endowed with a
localizable Poisson structure {·, ·}. As we have already remarked, the natural
connection of the bundle F is defined by the distribution Hq = Tπ(q)M , for
all q ∈ F . In this case, the horizontal lift of X ∈ X(M) to F is a vector field

on F given by X̃(q) = (X(π(q)), 0) ≡ X(π(q)), for all q ∈ F .
Let us suppose that the group action is Hamiltonian, i.e. for each X ∈ g

there is a function HX ∈ C∞(M) such that the fundamental vector field XM

on M is Hamiltonian with Hamiltonian function HX . Such correspondence is
linear. Suppose also that the Poisson bracket on M defines a Poisson bracket
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{·, ·}F on F which is compatible with the bracket {·, ·}:

{f ◦ π, g ◦ π}F = {f, g}M ◦ π ,

{f ◦ π, G}F = 0 ,

{F, G}F = 0 ,

for all f, g ∈ C∞(M) and where F and G are functions on F that only depend
on N .

The internal deformation of the Lie algebroid M × g → M by the bundle
F is a quadratic algebroid. Indeed,

ρ̃(sX) = {HX ◦ π, ·}F

because ρ(sX) = XM = {HX , ·}M for all constant section sX(x) = (x, X) of
the trivial bundle M × g → M . Since the Poisson brackets {·, ·}F and {·, ·}
are compatible, we have

ρ̃(sX) {F, G} = {HX ◦ π, {F, G}}F = {{HX ◦ π, F}F , G}+{F, {HX ◦ π, G}F} ,

that is,

ρ̃(sX) {F, G} =
{

ρ̃(sX)F, G
}

+
{
F, ρ̃(sX)G

}
,

for all F, G ∈ C∞(F). The quadratic algebroid structure of F ⊲⊳ (M × g) is
given by:

[v, w]F⊲⊳(M×g) = [v, w]M×g ,

̺(sX)xi = ρ(sX)xi = XMxi ,

̺(sX)ξa = 0 ,

for all X ∈ g and v, w ∈ Γ(M×g). The dual vector bundle F ⊲⊳ (M×g∗) → F
is a quadratic co-algebroid, and so it is endowed with a quadratic Poisson
structure.

5.4. Free motion. Let F be the trivial vector bundle Q×V → Q where Q is
a m-dimensional manifold with local coordinates qi and V is a n-dimensional
real linear space with coordinates Ia. The free motion on V is characterized
by

İa = 0.
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Let η be a Riemannian metric on Q. Free motion on Q would be described
by the geodesics of such a metric. Consider now, the following singular
Lagrangian associated to the free system

L = T + ĉ,

where T is the kinetic energy of the system defined by the metric η, and ĉ
is the linear function on TV defined by a 1-form c on V , by setting ĉ(w) =
〈cI , w〉 for all w ∈ TIV ≡ V , such that, the 2-form dc is symplectic on V .
The 2-form dc defines a regular Poisson structure on V ,

Λ = Cab(I) ∂Ia
∧ ∂Ib

,

this Poisson structure can be consider as a localizable Poisson structure on
the bundle F = Q× V → Q. In local coordinates, the Lagrangian is written
in the following way

L(q, v, I, İ) =
1

2
ηij(q)v

ivj + ca(I)İa

and the Cartan forms of order one and two are given by:

θL = ηijv
idqj + ca(I)dIa ,

ωL = vi

(
∂ηij

∂qk
−

∂ηik

∂qj

)
dqj ∧ dqk + ηkjdqj ∧ dvk + CabdIa ∧ dIb ,

where Cab are the entries of the inverse matrix of (Cab). Let Π : TF →
F ⊲⊳ TQ be the projection of TF onto F ⊲⊳ TQ. The pre-symplectic form
ωL in TF is Π-projectable: there exists a symplectic form ω on F ⊲⊳ TQ
such that Π∗ω = ωL. Thus, the fundamental Poisson brackets characterizing
such symplectic structure on F ⊲⊳ TQ are:
{
vi, qj

}
F⊲⊳TQ

= −ηij,
{
vi, vj

}
F⊲⊳TQ

= ηirarlη
lj, {Ia, Ib}F⊲⊳TQ = Cab,

where vi = χ′(dqi) is the linear function on F ⊲⊳ TQ associated to the
local section dqi of T ∗Q, ηjk represents the entries of the inverse matrix of
η = (ηkj) and arl = vk

(
∂ηkl/∂qr − ∂ηkr/∂ql

)
. Note that

{
qi, qj

}
F⊲⊳TQ

= 0 ={
qi, Ia

}
F⊲⊳TQ

.

The vector bundle F ⊲⊳ TQ endowed with the above Poisson structure is
a quadratic co-algebroid. Therefore, the dual bundle F ⊲⊳ T ∗Q is endowed
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with the following generalized Lie algebroid structure:

[
dqi, dqj

]
F⊲⊳A

= ηir

(
∂ηkl

∂qr
−

∂ηkr

∂ql

)
ηlj dqk ,

̺( dqi )qj = −ηij ,

̺( dqi )Ia = 0.

6. Appendix: Connection of a surjective submersion

Let us consider a fibre bundle π : F → M . We denote by T πF the vertical
distribution of vector fields on F with zero projection by the differential of
π. A connection of π (or Ehresmann connection) is given by a differential
distribution H of F , that we call horizontal distribution. This distribution is
a complementary distribution of T πF that projects onto TM , that is, Hq ≃
Tπ(q)M for all q ∈ F . Then, the tangente bundle TF can be decomposed as
a direct sum TF = H ⊕ T πF . There are other (equivalent) ways of defining
a connection of π (see [2, 8, 16]). For example, we can define a connection as
a global section of the first jet bundle J1π → F or as a splitting of the exact
sequence

0 −→ T πF −→ TF
π̃

−→ F ⊲⊳ TM −→ 0,

where F ⊲⊳ TM = π!(TM) = {(f, X) ∈ F × TM | π(f) = κ0(X)} is the
pull-back of the tangent bundle κ0 : TM → M by the map π : F → M ,

F ⊲⊳ TM
κ1

��

κ2
// TM

κ0

��

F π
// M

and π̃ represents the projection of the tangent bundle TF onto the bundle
F ⊲⊳ TM , i.e., a splitting of the exact sequence is a section for π̃: a dif-
ferentiable map h : F ⊲⊳ TM → TF such that π̃ ◦ h is the identity map
on the vector bundle F ⊲⊳ TM . Examples of these connections and their
applications in Physics can be found in [11, 12, 13, 14].

From the definition of ρ-connection of π given by Cantrijn et. al. [2], the
map h : F ⊲⊳ TM → TF is a idTM -connection of π, i.e. it is a morphism of
vector bundles over the identity map on F such that the following diagram
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is commutative:

F ⊲⊳ TM
κ2

��

h
// TF

Tπ
��

TM
idTM

// TM

where κ2 : F ⊲⊳ TM → TM is a projection given in local coordinates by

κ2(x
i, ξa, vj) = (xi, vj),

where (xi, vj) represents the local coordinates on the tangent bundle TM
and (xi, ξa) represents the local coordinates on the fibre bundle F . In local
coordinates, h is given by

h(xi, ξa, vj) = (xi, ξa, vj, Γa
jv

j) ≡ vj∂xj + Γa
jv

j∂ξa,

where the symbols Γa
j are called the “coefficients” of the connection h.

Let X be a vector field on M that locally is written as X = Xj∂xj . The
horizontal lift X̃ of the vector field X associated with the connection h is
given locally by

X̃ = h(xi, ξa, Xj) = Xj∂xj + Γa
jX

j∂ξa.

There is a map C : X2(M) → T πF associated with the connection h of
π : F → M called curvature form (see [18]), defined by setting

C(X, Y ) = [̃X, Y ] − [X̃, Ỹ ].

The curvature form mesures the lack of integrability of the horizontal dis-
tribution H associated with the connection h. The distribution H is inte-
grable if the connection is flat, i.e. if the curvature form is zero. Given
X, Y ∈ X(M), the horizontal lift of the vector fields X and Y are locally

given by X̃ = X i∂xi + Γa
kX

k∂ξa and Ỹ = Y j∂xj + Γb
rY

r∂ξb , respectively. In
local coordinates, the connection is flat if:

X iY j

(
∂Γb

j

∂xi
−

∂Γb
i

∂xj
+ Γa

i

∂Γb
j

∂ξa
− Γa

j

∂Γb
i

∂ξa

)
= 0,

that is, (
∂Γb

j

∂xi
−

∂Γb
i

∂xj
+ Γa

i

∂Γb
j

∂ξa
− Γa

j

∂Γb
i

∂ξa

)
= 0.
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