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ABSTRACT: A variant of the dual RSK correspondence [10, 12] gives a bijection
between classes of skew-tableaux and tableau-pairs of conjugate shapes. The prob-
lem of a matrix realization, over a local principal ideal domain with prime p, of the
pair (7,K(0)) with (o) a key associated with the permutation o € §;, and 7 a
skew-tableau with the same evaluation as IC(0), is addressed. If 7 corresponds by
this variant of the dual RSK to the tableau-pair (P, Q) of conjugate shapes, there
exists a matrix realization for (7,/K(0)), 0 € &, only if P = K(o) [2, 4, 5, 6].
This necessary condition has also been proved to be sufficient [7], by exhibiting an
explicit matrix realization, in the case the frank word ¢@Q is a union of row words
whose lengths define the conjugate shape of Q. Here, we extend the matrix real-
ization given in [7] to any tableau-pair (K(o), Q) of conjugate shapes, with o € Sy.
This is carried out by stretching the frank words with shape (2,1,1,2) which are
not the union of one row of length four with one of length two, those associated to
431421 = K(¢,(1,0,1,0)), with e € {1423,1432,4123,4132}, to row words of length
six associated with the key 654321 in Sg.
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1. Introduction

A variant of the dual RSK correspondence ([10], Appendix A.4.3) defines
a bijection between a tableau-pair (P, Q), P € [t|*, Q € [n]*, of conjugate
shapes and a class of skew-tableaux whose word is congruent with P, and the
word u = uy - - - up with u; the column word defined by the places of the letter
¢ in 7, is congruent with Q. We observe that french notation is used, see
Section 2. Given o € §;, t > 1, a key K(0) associated with o € & [9, 16], is a
tableau whose columns are the ¢ reordered left factors of ¢ with multiplicity
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(I¢, ..., 11) assigned. A tableau-pair (K(0), Q), 0 € &, of conjugate shapes is
in bijective correspondence with the class of skew-tableaux whose word is in
the Knuth class of (o) and w is the frank word in Q whose column lengths
are the o permutation of the column lengths of Q in reverse order. Moreover,
the frank word u is a union of rows with lengths given by the conjugate shape
of Q iff the word of the skew-tableau is in the shuffle of the columns of (o).
The Knuth class of a key (o), 0 € S, contains the shuffle of their columns.
In general, unless the permutation o € S;, t < 3, or the permutation word
o €S, t > 4, satisfies certain conditions, we do not have equality. In Sy,
equality fails only for the permutations € € {1423,1432,4123,4132}. The
words congruent to the key (e, (14, 3,12, 1)) with Iy, ls > 0, either are in the
shuffle of the columns or in the shuffle of the columns and 431421. Their
associated frank words are therefore either the union of rows or the union of
rows and frank words associated with 431421. The frank words associated
with 431421 are those of shape (2, 1, 1, 2) which can not be written as a union
of one row of length four with one of length two. However the entries of those
frank words satisfy a row condition which allows us to stretch them to a row
of six columns associated with the key 654321 in Sg.

Given a pair (P, Q) of tableaux of conjugate shapes which corresponds by
the variant of the dual RSK to a skew-tableau 7", we consider the problem
of a matrix realization, over a local principal ideal domain with prime p, of
a pair (7,F) with F a tableau with the same evaluation as 7 (Section 4,

Definition 4.1). The set of tableaux in [t]* with evaluation (mq,...,m;) is a
rooted tree with root the unique row tableau of evaluation (mq,...,m;) and
where the key of evaluation (mq,...,m;) is a leaf [13]. We focus our study

in the case F is a key associated with ¢ € &;. However, in example 4.1, a
matrix realization is given when F is the root of the tree of the tableaux
of evaluation (m,n), and, in this case, P is running over the tableaux in
this tree. It has been shown in [5] that there exists a matrix realization for
(7,K(0)) only if P = K(o). Equivalently, only if u is the frank word in
Q whose column lengths are in the reverse order of the permutation o of
the column lengths of Q. This necessary condition has also been proved to
be sufficient [7], by exhibiting an explicit matrix realization, in the case the
frank word u in the class of Q is a union of row words whose lengths define
the conjugate shape of Q. By stretching the frank words of shape (2,1, 1, 2),
associated with 431421, to a row word of length six associated with the key



KEYS, FRANK WORDS AND MATRIX REALIZATIONS OF PAIRS OF TABLEAUX 3

654321 in S, we extend the matrix realization given in [7] to (7, K(o)) with
o € Sy.

The paper is divided in five sections. In section 2, definition and properties
of keys and frank words are given and a variant of the dual RSK correspon-
dence for skew-tableaux is considered [10], Appendix A.4.3. In section 3,
we study in detail the words congruent with keys associated with S; and
the frank words with four columns. Special attention is addressed to the
words congruent with keys K(e), e € {1423,1432,4123,4132} and their as-
sociated frank words. In section 4, regarding the correspondence between
tableau-pairs of conjugate shape and skew-tableaux given by a variant of the
dual RSK, the concept of matrix realization, over a local principal ideal do-
main with prime p, of a pair (7, F) with 7 a skew-tableau and F a tableau
with the same evaluation as 7, is discussed. A matrix realization for the pair
(7T,K(0)), with 0 € Sy, is exhibited, reducing its construction to the case the
frank word o @ is a union of rows whose lengths define the conjugate shape
of Q. In the last section, remarks and extensions of this matrix construction,
in some special cases, are made for ¢ € S;, t > 5.

2. Keys, frank words and a variant of the dual RSK
correspondence

2.1. Keys and frank words. Let N be the set of positive integers with the
usual order “ < 7. Given k,t € N, k <, [k, t] denotes the set {k,... ,t} in
N. When k£ = 1, we put [t] := [1,¢]. We denote by [t]* the free monoid in the
alphabet [t] and by A the empty word.

A partition is a sequence of nonnegative integers a = (ay, as, . ..), all but a
finite number of which are nonzero, such that a; > as > --- The maximum
value of ¢ for which a; > 0 is called the length of a. If the length of a is
zero, we have the null partition a = (0,0,...). If a; = 0, for i > k, we write
a = (ay,...,a;) as well. Sometimes it is convenient to use the notation a =
(™, a3, ...,a;""), where a; > ag > ... > aj and a; ", with m; > 0, means that
a; appears m; times as a part of a. Thus, every partition can be written as a =
(t, ..., 22 1) for some ¢ > 1 and nonnegative integers ;, 1 < i < t. Given
the sequence (I, ...,l;) of nonnegative integers, we associate the partition
m = (Z}Z:l Ik, ..., li—1+1, 1), the conjugate partition of (¢, ... 2" 1%2). Let
S; denote the symmetric group of degree t > 1. We define the action of o € &;
on the partition m by putting om := (my,...,m;), where m,;) = Z}Z:Z Iy,
i=1,...,t. We have (¢, ... 22 1h) = Zle(lmdi)). The reverse sequence
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of (mqy,...,my) is (mq,...,m)"" := (revo)m = (my,...,mq), where rev =
t---21 denotes the reverse permutation in &;.

Given a word w = x7-- -z, over the alphabet [¢], we denote by |w|; the
multiplicity of the letter j € [¢t] in w. Here k is the length of w, denoted by
lw|. The sequence (|wly, ..., |w|) is called the evaluation of w, denoted by
ev(w). The length and evaluation of the empty word are zero. The word w,
with £ > 1, is said a row if 1 < --- < 3, and a column if z; > -+ > x;.
If w is a column, in the planar representation, the letters are displayed in

5
a column by decreasing order from top to bottom. For example, 2 is the

1
planar representation of 521. Let V' denote the set of all columns in [t]*.
Every word in [t]* has a unique factorization as a product of a minimal
number of columns w = vjvy---v,, with v; € V. We call it the column
factorization of w and denote it occasionally by vy - vg - ... v,.. The shape of
w is the sequence ||w|| = (|v1],. .., |vr|) of the lengths of the column factors
v; of w. For instance, w = 43-32- 21 is the column factorization of w. Given
the sequence of nonnegative integers u = (uq,--- ,u,), we define the word
uM =wu...1 yyt+us... vy +1 .. .-u+ ..U U+ u L
whose shape is the vector obtained by suppressing in u the null entries [16].
We identify u with the shape of uM. For instance, (3,1,2)M = 321 -4 - 65.

The underlying set of a column defines a bijection v — {v} between the
set V and the family 2/ of subsets of [t]. According to this bijection we often
identify a column with its underlying set. This bijection allows to extend
to V the order < on 2/ by letting v < v if and only if there is an injection
i : {u} — {v}, x <i(x). For instance, 52 < 542 < 6432. In particular, if
{u} C {v} we have u < v. We define another order > on 2/, and extend it
to V, putting {u} > {v} if and only if there is an injection ¢ : {v} — {u},
x > i(x) [16]. For instance, 5431 > 542> 3. A word w = vy - vg - ... - U,
v; € V., is called a tableau if vi > v9 > --- > v,. The shape of a tableau is,
therefore, a partition. For instance,

5321 >41p>42>4 =

— N W Ot
—
DO W~
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is a tableau of shape (4,2,2,1) = (41,322, 11). The conjugate partition
(4,3,1,1) defines the length of the rows of the tableau.

The plactic or Knuth congruence = on words, over the alphabet [t], [12, 13,
14], is obtained by means of Schensted’s construction [19]. As usual P(w)
denotes the unique tableau congruent with w € [t]* and Q(w) the @-symbol
of w, the recording tableau of the row insertion of w in the Schensted’s
construction. The RS-correspondence w « (P(w), Q(w)) is summarized as
follows: each plactic class contains a unique tableau P; and the elements
of the plactic class of a tableau P are in bijection with the set of standard
tableaux of the same shape as P.

A tableau whose columns are pairwise comparable for the inclusion order is
called a key [16]. That is, a tableau u,.-...-uy is a key if {u,} 2 -+ D {us} 2
{u1}. Equivalently, a key K is the tableau whose shape is the conjugate of
its evaluation by nonincreasing order. This means that the key of evaluation
(mq,...,my) is the unique tableau such that std(K)T = (ev(K))M, where

“std” stands for standardization and “I” for transposition. For instance,
5
IC=>532151515= s (1)
2 55
1115

is the key with evaluation (3,1,1,0,4), the unique tableau with evaluation
(3,1,1,0,4) such that std(K)T =321-4-5-9876.

Keys are also tableaux whose columns are the left reordered factors of a
permutation with multiplicity assigned. For each pair consisting of a per-
mutation o € S;, written as a word 0 = a1 ---a; € [t]*, and a sequence of
nonnegative integers (I, . . ., [1), Ehresmann [9] associated a key, here denoted
by K(o, (lt,...,1l1)), putting

IC(O—a (lt7 ceey ll)) = (Tcr,t)lt (Ta,t—l)ltil v (TU,I)Zla

where 7, . is the column with underlying set {a1, ..., a;}, 1 <k <t. This key
is the tableau with shape (¢, ...,2% 14) and evaluation om. When o = id,
K(id, (It, ..., 11)) is said the Yamanouchi tableau of evaluation m, that is,
the tableau whose shape is the conjugate of the evaluation. The congruent
words are called Yamanouchi words of evaluation m.

A word w € [t]* is said frank [16], [10], Appendix A.5, if its shape is a
permutation of the shape of P(w). The following theorem, proved by Lascoux
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and Schiitzenberger in [16], shows that the frank words, in a plactic class, are
in bijection with the set of permutations of the shape of the tableau in that
class. Frank words are completely determined by the conditions imposed on
their ) symbols.

Theorem 2.1. Let QO be a tableau with shape m. For each permutation
o € S;, there exists one and only one word cQ = Q with shape om. cQ is
such that the Q-symbol is = (om)M.

Keys and frank words are therefore related as follows.

Corollary 2.2. The frank words J' with shape om are those whose transposi-
tion of the QQ-symbol 1s the standardization of the key IC with evaluation om,
that is, Q(J') = std(K)T. The frank words J of shape (om)™ are those such
that Q(J) = evacQ(J') = std(K")T, with K' = evacK the key of evaluation
(om)"™", where “evac” stands for the evacuation operation.

A skew-tableau T in [t]* [15] is a tableau on the alphabet [t] U {@}, where
the extra letter @ is such that @ < @ <1 <2 < --- < t. The word w(7) of
the skew-tableau 7 is the word in [t]* obtained by eliminating from 7 the
extra letter @, and the evaluation of 7 is the evaluation of w(7).

Let a be the partition defined by the number of letters @ in each column
of 7. Then, if ¢ is the shape of 7, c¢/a, called the skew-shape of T, denotes
the sequence of number of letters of w(7) in each column of 7, from left
to right. In particular, a tableau in [t]* is a skew-tableau with @ = 0. For
example, 7 = 430000 - 430200 - 42100 - 10D - 4@ - 21 is a skew-tableau
of skew-shape (6,6,5,3,3,2)/(4,4,2,2,2,0) = (2,2,3,1,1,2), and its planar
representation is

(2)

QQ -

1
%]
1%

QQQQ ®w-
QQQQ ww-
QA o

2
1

A skew-tableau with word w; ---w, and skew-shape (|wi,..., |w,|) is in
the compact form if the inner shape a = (D 1, |wi| — |vi, ..., |wa] — |vn], 0)
where v; is the left factor of w; of maximal length satisfying w;_1 > v;. Using
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jeu de taquin [10, 20] in consecutive columns from right to left, every skew-
tableau can be put in the compact form. We identify skew-tableaux having
the same compact form. The skew-tableau (2) is in the compact form.

2.2. A variant of the dual RSK-correspondence. Regarding the ma-
trix problem addressed in the Introduction, we consider a variant of the
dual Robinson-Schensted-Knuth correspondence [12], [10], Appendix A.4.3,
to establish a bijection between tableau-pairs (P, Q) of conjugate shapes and
skew-tableaux in the compact form.

Let ( v ) = ( U men Uk ) be a biword with no repeated biletters, where
v v o Uk
Uy, ..., up € [n] and vy, ...,v; € [t]. Sorting the biletters of (Z) by

nondecreasing rearrangement with respect to the anti-lexicographic order
with priority on the first row, we get

fi .. fn
2:<11 n ) (3)

where ev(u) = (Jwi], ..., |wy,|) and w = wy - - - w,, € [t]*, w; € VU{A}; and by
nonincreasing rearrangement of the biletters of :j for the lexicographic

order with priority on the second row, we get

) A
N EE] )
where ev(v) = (|J1],...,|J|) and J = J;--- Jy € [n]*, J; € VU {A}.
Consider the transformation ¥ < ¥/ defined by sorting the biletters of X
in nonincreasing rearrangement with respect to the lexicographic order with
priority on the second row, and by sorting the biletters of ¥’ in nondecreasing

rearrangement with respect to the anti-lexicographic order with priority on
the first row. ;From Greene’s theorem, we have

Lemma 2.3. (a) The transformation ¥ < X' establishes a bijective corre-
spondence between the k-tuples of disjoint nondecreasing subwords of J =
Jy - -+ J1 and those of decreasing subwords of w = wy - - - w,,.

(b) The tableaux P(w) and P(J) have conjugate shapes with (ev(w))™ =
(|, -, 1)) and ev(J) = (Junl, ..., |wn]).
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A biword ( :j ) without repeated biletters determines a unique pair of

biwords ¥ = < UwT >, Y = ( UJL > defined as above (we write v | (u T) for

v by nonincreasing (for u by nondecreasing) order). Two biwords are said
equivalent if they consist of the same biletters. We consider the variant of
the dual RSK-correspondence, here denoted by RSK*, [10], Appendix A.4.3,
for an arbitrary biword without repeated billeters by

(“)RLK*(P,Q),

()

where P = P(w) and Q@ = P(J). This pair of tableaux is related as follows.

Theorem 2.4. Let ¥ = ( UwT ) and ¥ = ( UJL > as before.

(a) P(J) is the unique tableau of evaluation (|wil,...,|w,|) such that
Q(w) = std(P(J))".

(b) P(w) is the unique tableau of evaluation (|Ji|,...,|Jt|) such that

Q(J) = std(evac P(w))T, where evac stands for the evacuation operation.

The tableau-pair (I, Q) of conjugate shapes with I a key and the frank
words with ¢ columns are characterized as follows.
Theorem 2.5. Let (K, Q), with K € [t]*, Q € [n]*, be a pair of tableaux of
conjugate shapes such that ev(K) = om and o € S;. Let ( QwT ), ( ICJL >
correspond by RSK* to the pair (K, Q). The following statements are equiv-
alent

(a) KC is the key associated with o and (I;, ..., 1).

(b) J is the frank word of shape (om)™" in the class of Q.

(c) std(K)T = [ev(K)]M = Q(J') = evacQ(J), where J' is the frank word
of shape om in the class of Q.

J s called a frank word associated with w.

"¢V are those associated

The frank words J with ¢ columns and shape (om)
with some w = K(o, (Iy, ..., 11)) with I; > 0.

We give now an interpretation of the RSK* correspondence in terms of
compact skew-tableaux. Given a word w € [t|* with evaluation (mq,...,my),

let 7 be a skew-tableau in the compact form with word w and skew-shape
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(fi,-- fn) = (Jwi| ..., |wy|) such that w = wy - - - wy, w; € VU {A}. Define

the biword
g:<7ﬁ ”k>:(1 n ) (5)
xl o« . e xk wl o o e wn
Then the top word mymy - - -, = 151272 ... nf is such that 7; is the column
index, counting from left to right, of the letter z; in 7, 1 < j < k. Thus,

the billeter < " > means that the letter z; is placed in the column 7; of

L j
T. For each i in [t], let J; =y} > --- > ¢! € [n]* defined by the indices of
the columns of the m; letters ¢ in 7. The columns words .Ji,. .., J; are said

the indexing sets of 7 and, as we have just seen, each J; records the indices
of the columns where the m; letters i of w are placed, with respect to the
planar representation of 7. Indeed we have another biword

R A/ SR |1
2_<tmt co. QM2 1m1>a (6)

where ( Z;{; ) is the biword with bottom word " and top word the column

For example, the biwords 3 and 3 of the skew-tableau (2) are, respectively,
[ 11223334566 ;( 9321 21 63 643
Z_<43434211421> and E_(44443322111>' (7)

Regarding this analysis, we write often 7 = (a,X) = (a,%’) or (a,II)
with II any other equivalent biword with Y. Certainly skew-tableaux with
the same compact form are characterized by the same class of biwords. We
are now in conditions to introduce another definition of skew-tableau which
relates the combinatorial and matrix settings. Given J C [t], we define the
characteristic function of J by (x”/); = 1, if i € J, and (x”/); = 0 otherwise.
Given a skew-tableau 7 = (a, ¥'), we may associate the sequence of partitions
(a®,at, ..., a") by setting a’ := a and a' := a;_y + x”, i = 1,...,t. Clearly,
each a' = (al,...,a’) is a partition and satisfy

aj < at' <aj+1, (8)
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fori=0,1,...,t—1,and [ = 1,...,n. Conversely, any sequence of partitions
(a%,al, ..., a') satisfying (8) gives rise to a skew-tableau 7" with biword de-
fined by the sets J; = {l : a! = a] '+1},i=1,...,t. For instance, the skew-
tableau (2) is defined by the sequence of partitions 7 = (a, ..., a*), where
o =(4,4,2.2.2).0' =(4,4,3,3,2,1),0 =(4,4,4.3,2,2) .0 =(5,5,4,3,2,2)
and a' = (6,6,4,3,3,2).

. From this and theorem 2.4 we have

Theorem 2.6. The RSK* correspondence defined above sets up a one-to-one
correspondence between pairs (P, Q), with P € [t|*, Q € [n]*, of tableaux of
conjugate shapes and

(a) [10, 12] biwords ¥ (3).

(b) [10, 12] n x t 0-1 matrices, where the entry (i,7) is 1 iff (;) is a biletter
of ¥ (X)),

(¢) skew-tableaux in the compact form with n columns and word in [t]*.

In the case of a tableau-pair (P, Q) of conjugate shapes, with Q a Ya-
manouchi tableau, we have

Corollary 2.7. Let (P, Q), with P € [t]*, Q € [n]*, be a pair of tableaux of
conjugate shapes. Let ( %l ), ( PJl ) correspond by RSK* to the pair (P,

Q). The following statements are equivalent
a) w =P is of shape b = ev(Q).
ev(Q) = [|P|| =b.

)
) Q is the Yamanouchi tableau of evaluation b.

(e) J = Jp---Jq is such that Jy,--- , Ji are the idexing sets of P.

In particular, if P = K(o, (I, - -+ ,11)), the indexing sets of P are defined by
the columns of the frank word [my] - .. .-[mq] congruent with the Yamanouchi
tableau of shape m. (If l; =0, some m; =0.)

Since there is a bijection between biwords ¥ and ' and n x t 0-1 matrix
A = (ay;), where the entry a,; = 1 exactly when the biletter (¥) occurs in
the biword, we may represent them in a lattice of points of N? according to
the bijection (Y) — (y,7) € N? such that y € J;, 1 < ¢ < ¢. In drawing such
a lattice of points, we shall adopt the convention, as with matrices, that the
first coordinate, the row index, increases as one goes downwards, and the
second coordinate, the column index, increases as one goes from left to right.
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The points (y,i), y € J;, 1 < i < t, in this lattice are said the vertices of
the biwords X, ¥/ or any equivalent biword. For example, the vertices of the
biwords (7) are represented in the following grid:

L2 g

| ft

2

3111 . 9)
5 o

6

The word w is read, in the grid, along rows, from right to left, starting in
the top downwards to the bottom one, and the word J along columns, from
bottom to top, starting in the rightmost one to the left one. Compare with

(2).

3. The keys associated with S,, their associated frank
words and graphical representation

3.1. Keys associated with S; and their associated frank words. The
algorithm in section 4 as well as previous algorithms for matrix realizations of
pairs of tableaux [2, 4, 6, 7] have been based on frank words ¢ Q which are the
union of rows whose lengths define the conjugate shape of Q. Frank words
with two, three columns or, in general, for certain permutations defining
the shape, this property holds. In the case of four columns, there are frank
words of shape (2, 1,1, 2) which can not be splitted into a union of one row of
length four with one of length two. However, those frank words satisfy a row
condition which enables us to stretch them to a row of length six. Regarding
the RSK* correspondence, this phenomenon is related with words which in
the shuffle of the columns of a key.

Let w = x1---x € [t]* and let I be a subset of [k]. We denote by w|]
the word x;, -+ - x;,, if [ = {iy < iy < --- < 4;}. Such a word w|[ is called a
subword of w. Given g words uy,...,u, € [t]* of lengths ky,..., k,, respec-
tively, put & = ki + --- + k; and let [k] = Uj_I;, where (I1,...,1,) is a
g-tuple of pairwise disjoint subsets of [k] with |[;| = k;, j = 1,...,¢. The
word w|(Iy, ..., I;) defined by w|l; = u;j, for j =1,...,¢, [11, 18], is called a
shuffle of uy, ..., u,. The words uy, ..., u, are said the shuffle components of
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w|(y,...,1;). Notice that we may have w|(/y,...,1;) = w|(/1,...,J;), with
(J1,...,J;) another g-tuple in the conditions above.
The shuffle of ¢ words uy, ..., u, is the set

Sh(ul, ce ,uq) = {’UJ‘(Il, .. .,Iq) : U?lej = [k], |]j| = ]{Zj, ’UJ‘I] = uyj, J € [Q]},

where (Iy,---,1,) is a ¢-tuple of pairwise disjoint subsets of [k]. Given a
multiset A = {uq, ..., u,} C [t]*, we put Sh(A) = Sh(u,...,uy). If Cis
another multiset, we put Sh(A,C) = Sh(AUC).

Let 0 € &, t > 1, and (I3, ..., 1) a sequence of nonnegative integers. For
i=1,...,t, let Ri” be the multiset defined by I; columns r, ;. The shuffle of

the columns of K (o, (I3, ...,11)), Sh(Ri;t, e ,Rlal’l), is a subset of its plactic
class [5, 7]. To Characterlze the frank words associated with these words
described by the shuffle operation, we introduce the notion of union of frank
words.

Definition 3.1. Let I, J be multisets in [k] with its elements by nonincreas-
ing order, and let x,y € [n]* be frank words with |z| = |I| and |y| = |J| such
that the biword ( 77 ) has no repeated billeters. By sorting the biletters,
consider the transformation

x Y r o Ik e
() (4 &)

We say that the word x; Uy := Ji -+ Jy is the [I, J]-union of z,y.

For instance, the [321, 21]-union of the frank words 244 and 13 is 2 411 ;l :
A word congruent with K (o, (I;,...,[1)) is in the shuffle of its columns iff
any associated frank word J; - ... Jy is the [(r44)%, ..., (rs1)"]-union of ¥
row words of length 7, 1 < 5 <'t, that is,
Jt“n]:l: jlulllgl
for some rows I with length j, fori =1,...,1;, j =1, ...t [7]. This means

that, for k =t¢,..., 1, there are setsA J )\(Ak 1U UA UAO )
with Ag(i) := (), such that \A’; ol = lk, for i=1,. k and Ak < Ak s if
o(7) <o(i) 1,2, 3, 4, 6].
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In general, Sh(R?’t, e ,Riﬁvl) is a proper subset of the plactic class of the
key K(o, (lt, ..., l1)). By imposing conditions on ¢ € S; and on the mul-
tiplicity sequence (I, ..., [l;) the following result allows us to check whether

the plactic class of a key either is the shuffle of its columns or not.

Theorem 3.1. [5] Let 0 € S; and (Iy,...,11), l; > 0. The plactic class of
Ko, (l,..., 1)) is Sh(RQ’t, . ,Rgl) if and only if, for k =2,...,t—1 with
l >0 and o1 = ay - - - a1, the difference a — a; s at most k.

Whenever a permutation o satisfy the conditions of this theorem the same
is true for rev 0. Therefore, the plactic class of a key associated with the iden-
tity or with the reverse permutation in &;, t > 1, or with any permutation in
S;, t < 3, coincides with the shuffle of its columns and thus associated frank
words are union of rows with length given by the shape of the key. In Sy we
find the first examples where the shuffle of the columns of an associated key
is not all the plactic class. For the permutations o € {1423, 1432,4123,4132}
we may describe the plactic class of any associated key with the shuffle oper-
ation, by adding, in those cases where the columns of the key are not enough,
the single word 431421. Denote by ﬁg“” the multiset consisting of n; words
T5 = 431421 = K(0, (1,0, 1,0)).

Theorem 3.2. [5] Let (ly,...,1l1) be a sequence of nonnegative integers.
(a) Let o € Sy. The plactic class of K(o, (ly, .. .,11)) does not coincide with
Sh(RY,, ..., R})) if and only if o € {1423,1432,4123,4132} and I, 1, > 0.
(b) Let o € {1423,1432,4123,4132} C S;. The plactic class of the key
K(o,(ly, ..., 1)) is the union of the sets

Sh(RY, RY,,...,RM),
where 0 < ny < min{ly, 4}, n; =1;, i =1,3, andn; = l; — ns, i = 2,4.

To describe the frank words with four columns, that is, the frank words
associated with words congruent with keys associated with §; and multiplic-
ity (Ig, -+ ,l1), l4 > 0, it remains to characterize the frank words associated
with 75 = 431421 = K(0, (1,0, 1,0)). From theorem 2.5 we have

Proposition 3.3. Let J = dabefc be a word. The following conditions are
equivalent

(a) J is a frank word associated with 431421.

(b) J satisfiesa <b<c<d<e<f.
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If we Sh(ﬁgiRZ’j, o, ByY), ns > 0, define a biword X as in (3), and
fix a shuffle decomposition of w = w|(X7®, ..., X3,..., X1, ..., X]), where
(X2o . X XD X is a (ng + -+ + ng)-tuple of pairwise disjoint
subsets of [| Y21, in; + 6ns|], with w| X} =1,4,1 € [nj], j € [4], and w| X} =
75, i € [ns]. Denote by v the first row of ¥ and let v| X} = ', i € [n],
J € [5]. Then, I’ must be a row with length j, for j € [4], and we must have
P =abidde flwitha <b <c <d <e < fi forie [15].

G
Therefore, ¥ is a shuffle of the biwords ( ! > , 1 € [nj], j € [4], and

Toj

5,i
( - ), i € [ns], and we may consider the equivalent biword
5

X AN £ TS £ S AU £
M:=( " . : (10)
fr‘5 o o e /”’5 TO',4 o e e ””0_74 “ e e /”’0_71 o o e TO',l

with bottom row the word (75)"(r,4)™ - - - (r5.1)™. In general, there is more

than one biword II associated with X, each corresponding to a different shuf-

fle decomposition of w in Sh(R5®, ..., R}). On the other hand, sorting the

biletters of II by nondecreasing rearrangement for the antilexicographic order

with priority of the first row, we get the biword . Notice that this amounts
I 5,i

to shuffle appropriately the biwords ( 7{ >, 1 <75 <4, and ( ]? > of
o,j 5

IT. Sorting the biletters of II by nonincreasing rearrangement for the lexi-

cographic order with priority of the second row we get Y. This rearrange-

. 754\ 7i B d a b e fid
ment transforms the biword ( 7 ) into ( - ) = (4 13 2 1 1).

: : : RN
Thus, Y is also obtained from II by transforming each factor ( . ) into
0,5

Ti 7ii
( }]; >, and then shuffling appropriately the biwords < | >, 1<j <4,
0.j
-
and ( {\ ):
-
r r r074 r074 7“0’1 700’1
Proposition 3.4. Let 0 € S;, (l4,...,11), I > 0 a sequence of nonnegative

integers, and m = (Z?Zl liy...,la+13,1ly). Then
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(a) If o € {1423,1432,4123,4132}, Jy - J5 - Jy - J; with shape (om)"
is frank iff there exist rows I’ of length j , j € [4], i € [nj], and words
Ji = dia'b'e’ fict, with a° < b < ¢ < d" < e < f', i € [ns], such that
Jy-oo ) = (U?Lj@ U (Ui, U, 1), where T = 443211, and 0 < n5 <
min{lo, 4}, n;, =1;, i = 1,3, and n; = l; — ns, i = 2, 4.

(¢) Jy-J3- Jy- J1 with shape om is frank iff there is a set decomposition of
the columns according to the following diagram,

H
BCD
EFd I iy,
] , . E FG
. g1
/ XV
A ABCD .
"BRE .. gy EUEG pECD 3
I S AT [YZ Apep
T ABCD \\ TUYZ
iy / <N oasep s Aon Y
J T~—uancC “ARCD ETRG_—% XV
/ EFG ?E ? a1 N
H 1 : J ;;/
ABCD \\ 3
EFG S ABCD ABCD
HI P EFG TUYZ
J D H T EF G
\ %ﬁzogf C/§ L
gggl) ............... Agg 8
YT R
HI
J
where A < B < (C< D, E<F<GHC<I andT <U <V <
X <Y < Z, with [A] = |B] = [C] = |D|, |E|] = |F| = |G|, [H| = |1,
T =|U|=|V|=|X|=|Y]|=|Z|, and in each column the sets are pairwise
disjoints.

We have outlined the frank words with shape om, for each permutation o €
{4123,4132,1423,1432}, by linking them with double lines. When [y, 14 > 0,
some of them are not only union of rows of length 5, 1 < 5 < 4, but also
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of frank words of shape (2,1, 1,2), which can not be splitted into a union of
X
rows of length four and two, giving rise to the component 7" -U ‘Y -Z .
V

3.2. Graphical representation of words in S h(ﬁg“”, -+, 1Y) and their

associated frank words. Let w € Sh(R™,--- R}'), with o a permutation
in {1423,1432,4123,4132}, and consider a biword X, as in (3). Fix a shuffle

decomposition for w and consider the correspondent biword II equivalent to
)y

X R I £ TSN £ S AU £
/”’5 o o e /”’5 ””0_74 . e e ””0_74 o e e TO',l o o e TO',l

where each /" is a row with [I'*| = j, i € [ny], j € [4], and I* = a’bc'd’e’ f*
with o' < b < <d" <e" < f') i€ [nsl.
Consider the graphical representation of the vertices of II. Linking, by a

J5t
straight line, the vertices of consecutive biletters of each factor < > and

To,j
[5,z'
=~ ) we get a graphical representation of each shuffle component of w.
5

Therefore (11) is graphically represented by n; + - - - +n; polygonal lines, n;
polygonal lines of nonnegative slope corresponding to the shuffle component

g 5,i
( TI ), i €[nj], 7 € 4], and ns to ( I? ), i € [ns], where the line linking
0. 5

the vertices <Cl > and <Ci ) have negative slope.

Example 3.1. Consider the biword ¥ (7), whose bottom word is a shuffle of
431421,4321 and 4. We may sort the billeters of X in several ways, in order
to obtain a biword II. Take, for instance, the biword

(12)

- 113566 2234 3
-\ 431421 4321 4
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113566 )

Linking, respectively, the vertices of the consecutive billeters of ( 431491

and < Zggéf ) by a polygonal line, we get the following graphical represen-

tation of the bottom word 43434211421 of ¥ where the underlined letters
indicate the shuffle component 4321, and the upperlined letter indicates the
shuffle component 4:

1 2 3 4

(13)

SOk WN -

—r

Since the shuffle components 7, ;, 7 = 1,...,4, are columns, the rightmost
letter of r,; corresponds, in the graphical representation, to the leftmost
vertex of its polygonal line. By the leftmost vertex of a polygonal line of
r5 = 431421, we mean the vertex in column 1, in that polygonal line, having
the biggest row value, which corresponds to the rightmost letter of 5. For
instance, in (13), the leftmost vertex (6,1) of the polygonal line of 431421
corresponds to the rightmost letter 1 of this shuffle component.

Two vertices (a, b), (z,y) of Il are linked if they are consecutive vertices of a
polygonal line. In this case, if b < y and a > x, (a,b) is said positively-linked
to (z,y), and (x,y) is said negatively-linked to (a,b). For instance, in the
graphical representation (13), the vertex (5,4) is negatively-linked to (6, 2),
but is not positively-linked to any vertex.

Definition 3.2. Let u, v be two shuffle components of w. A vertex (b,y) € u
is said a critical vertex of {u, v} if one of the following conditions holds:

(i) (b,y) is negatively-linked to a vertex (b',y') with y — 3" > 1, or it
represents the right most letter of u, and there is a pair of linked vertices
(b,z),(a,y) in v, with y > x > y/.

(73) (b,y) is positively-linked to (a,z) and there is a vertex (a,y) in v.

Notice that if (b,y) € u is a critical vertex satisfying condition (i) above,
then we must have b = 4 or b = 3, and u is either r,; = 4, or 7,2 = 41, or
res =421, or 1,3 = 431, or 75 = 431421.



18 0. AZENHAS AND R. MAMEDE

Example 3.2. In (13), the vertex (4, 1) € 4321 is a critical vertex of {431421,

4321}, since it is positively-linked to (3,2) and there is a vertex (3,1) €
1122 223

4321 431 )"”here(2’3)

is a critical vertex, since it is negatively-linked to (3,1), with 3 —1 > 1, and

the vertices (2,2) and (1, 3) are linked:

431421. Another example is given by the biword (

L2 5 4
2
3 ;/ 1
A word w in Sh(ﬁg“”, e RZ}l), has, in general, several shuffle decomposi-

tions. Given a shuffle decomposition of w, it is a simple task to adjust, if
necessary, the links between the vertices of the biword II, and, therefore, the
shuffle decomposition itself, in order to form a new biword I satisfying the
conditions of the following lemma.

Lemma 3.5. There is a shuffle decomposition of w such that the correspond-
ing biword 11 (11) satisfies the following conditions:
(a) Any two shuffle components have no critical vertices.

> abedef '\ . _
(b) If ( 7 > = < 431491 > is a shuffle component of 11, then.:

(1) in row c there is, at most, one more vertez, placed in column 4, which
must be negatively-linked to a verter in column 3;

(19) if d # e, in row d there is, at most, one more vertex, placed in column
1, which must be positively-linked;

(#i1) if d # e, in row e, to the right of (e,2), there are no vertices.

Proof: We prove only condition (b)(#ii). All other conditions are proven in a
similar way. Recall that we must have a < b <c<d <e < f. If (¢,3) is
also a vertex of II, then it must belong to one of the words 431421, 4321 or
431. In these cases, II must have a sub-biword either of the form

_ (abcdef gehjkl = abcdef geht _ (abcdef geh
— \ 431421 431421/ ©* 431421 4321) * 431421 431)°
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with g < e < h <1< j <k <I[. We may re-link the vertices of these shuffle
components by replacing in II the biword «, § or v with the biword

abcjkl geef dh abedhi  gee f geef abc dh
431421 4321 41)°\431421 4321) ' \4321 431 41)°

respectively. In any case, the vertex (e, 2) belongs now to the new shuffle com-
ponent 4321, and is linked to (e, 3). Notice also that we have only changed
the links between the two shuffle components. Therefore, we may assume,
without loss of generality, that if (e, 2) is a vertex of a shuffle component 73,
there are no vertex in position (e, 3).

Assume now that (e,4) is a vertex, but (e, 3) is not. An analysis similar
to the one done above shows that if (e, 4) represents one of the letters 4 of
431421, or belongs to the columns 4321, 431, 421,41 or 4, then we may re-link
the vertices of these shuffle components in such a way that the vertex (e, 2)

is linked to (e,4). Therefore, we may assume that (e,4) is not a vertex of II.
[l

Example 3.3. The biword II (12), graphically represented in (13), fails to
satisfy condition (b)(i) of the lemma above, since the middle letter 1 of 431421
is represented by the vertex (3, 1), and there is a vertex in row 3, column 2.
Rearranging the links between the vertices, and therefore the shuffle decom-

114566 2233 3 >, which satisfy

position itself, we obtain the biword II = ( 431421 4391 4

all the required conditions of lemma 3.5.
1 2 3 4

| ]
1
2
3 : 14
i I/\\ (14)
)
61—+
: 1122 223
Example 3.4. In example 3.2, the biword II = <4321 131 ) does not
satisfy condition (i), since (2,3) is a critical vertex. Rearranging the links
2222 113

between the vertices, we obtain the biword Il = ( 4391 431

) , represented
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below, which satisfy all the required conditions of lemma 3.5:
1 2 3 4

et

In what follows, we assume that our shuffle decomposition of w satisfies
the conditions of lemma 3.5.

Definition 3.3. [7] Consider the biword II (11). For each vertex (a,b) of II,
define the map

[Ovb] - [1,&]
n — S?a,b)

defined as follows:
(I) If there is no vertex of Il in row a to the left of column b, then let
S?a b) = a.
(I1) Otherwise, let (a,bt’), b’ < b, be the rightmost vertex of II, in row a, to
the left of (a,b).

(a) If b’ < n, put Slap) = @

(b) If & > n and (a,b’) is positively-linked to a vertex (z,y) of II, with
r < a, put S(a b = S( )
(c) Else, put s, ;) := Slabr):

The number 37(1 )’ with n < b, indicates, according to a certain path, a row

r < a with a vertex (z,y), n <y < b, such that there are no vertices in the
interval |n,y[. Since by lemma 3.5 (a), there are no critical vertices in our
fixed shuffle decomposition, we find that s, 7é a only if b = 4 and (a,4)
is either negatively-linked to a vertex in Column 1 or it corresponds to the
shuffle component r,; = 4.

For instance, consider the biword I displayed in example 3.3. Since the
vertex (6, 1) is placed in column 1, by rule (I) we have 5(6 ;) = 6. By the

same reason, 5?371) = 3. To compute 3(()3’4), note that (3,2) is the vertex

closest to (3,4), and it is positively-linked to (2,3). Thus, by rule (I71)(b),

?3 5 = 3(()2 3) = = 2, since there are no vertices to the left of this last vertex.

We have S( 4 =1, by rule (I1)(a), and 5?174) = 3(()1’3) =1, by (II)(c) and (I).
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Corollary 3.6. (a) If (a,i) is the leftmost vertex of a shuffle component rq,
then S(()a@ # a only if o € {4123,4132}, i =4, k = 1, and the nearest vertex
i row a 18 in column 1, representing the underlined letter 1 of 431421, 4321,
431 or 421, or in column 2, representing the underlined letter 2 of 4321.

(b) If (b,7), (a,i) are linked vertices of a shuffle component r, ., then sza’i) +#
a only if 7 = 1, 1 = 4, and the nearest verter in row a is in column 2,
representing the underlined letter 2 of 4321.

Proof: Follows from lemma 3.5 (a). O

3.3. An injection of the plactic class of a key associated with
Sy into Sg. For each 0 = o(1)0(2)0(3)0(4) € Sy, define the permutation
a(1)a(2)a(3)a(4)34 € Sg, where

_ o(k), ok)=1,2
o(k) = { a(/@glz, a((k)): 34

This correspondence is a bijection between &4 and the set
{7 = a34 € S¢ : a a permutation on {1256} } C Sg.

In particular, the set S := {1423,1432,4123,4132} is transformed into
(162534, 165234, 612534, 615234}. Let p @ {75,710, 1 j € 4]} — {rs; 1 j €
6]}, such that p(75) = rz6 and p(ry;) =r5,, 1 =1,2,3,4.

Given o € S§; and a sequence (ly, . . ., [1) of nonnegative integers with [y > 0,
Ko, (lyy ..., 1) ={weld] :w=K(o,(lg,...,11))} =

) SMRYY, . RYY), ifc eSS, \S, oroe S andly, =0;
U Sh(RE R, R, if o€ S and Iy # 0,

where n; =1[;, 1 =1,3, and n; = [; — ns, 1 = 2,4.

For each ns = 0, ..., min{ls, 4}, the map p can be extended, by shuffling,
to a bijection between Sh(R!™, Ry, ..., R}Y) and Sh(Ang, e YY) &
[K(7, (ns5,0,n4,n3,n9,m1))]. Thus every word in the plactic class of the key
K(o,(l,...,1l1)) has a copy in the shuffle of the columns of some key, associ-
ated with Sg.

Let w € Sh(Ry°, R}Y, ..., RyY), and ¥ a biword with bottom row w. Fix
a shuffle decomposition satisfying the conditions of lemma 3.5 and consider
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the correspondent biword II (10). Let

— 5,15 e 5,1 4,n4 e 4,1 e I,y e L1
T <I T 1 1 1 ) (15)

56 *° 156 154 - T4 -+ Tg1 " T51

jsi
be the biword obtained by transforming each shuffie component (7{ > and
0.j

a'biddie’ f! _ i abicidict fi | i
(43 14921 ) of II, into (Tﬁ,y) and ( 654391 > respectively, where a' <

b <c <d <e < f'. Let ¥ be the biword obtained by sorting the biletters
of II by nondecreasing rearrangement for the antilexicographic order with
priority on the first row. The second row of 3, denoted p(w), is a shuffle of
columns r5 j, j = 6,4, 3,2, 1. After this injection the frank word d'a’-b"-€’- f'c’,
satisfying @' < b < ¢ < d' < €' < f?, associated with 431421, is stretched
to a row word a’ b’ c' d' e’ f associated with p(431421) = 654321. Thus the
frank word Jy - J3 - Jo - J; with four columns having d'a’ - b' - €' - fic' as a
component is transformed into one of six columns Jg - J5 - - - J;, now a union
of rows having the row a’bicid’e’ ! as a component, such that J; = J; \ {c’ :
1€ [n5]}, 72 = Jo, 75 = Js, 73 = {ClZ D1 € [TL5]}, 74 = {Ci D1 € [n5]}, and
Jo = Jy\{d" : i € [ns]}.

Example 3.5. Let ¢ = 4123, consider the biword ¥ (7), whose bottom

. ) B ) ~ 114566 2233 3
word is a shuffle in Sh(75, 7,4, 751), and the biword II = <431421 4391 4>

5

graphically represented in example 3.3. The frank word associ-

— N W

2 6 6
1 3 4
3
ated with w is a [44211, 4321, 4]-union of the frank words 51 -1 -6 - 64, 2233
and 3. We have 7 = 612534. Applying the map p, we obtain the biword
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=

B ( 114566 2233 3

654321 6521 6 ), whose graphical representation is given below

1 2 3 4 5 6

A

*

(16)

SOk W

The bottom word of the biword 5 associated with 11 is p(w) = 65656214321,
a shuffle of the columns 654321, 6521 and 6, precisely the words read along

the polygonal lines, now all having nonnegative slope. The frank word
3

2 2
1

) associated with p(w) is now a [654321, 6521, 6]-union of row

456 6
3 3
frank words 114566, 2233 and 3.

In the next proposition, we state some properties of the biword II.

Proposition 3.7. Let II be the biword defined above, and ( ggfgg‘i ) one

of its shuffle components. Then,

(a) II has no critical vertices.

(b) There are no vertices neither in row c to the left of (c,4), nor in row d
to the right of (d,3), nor in row e to the right of (e, 2).

Proof: It is a consequence of the definition of IT and lemma 3.5. (]

We are now ready to get into the matrix framework.

4. Matrix realizations of pairs of tableaux

4.1. An algorithm and statement of results. Let R, be a local principal
ideal domain with maximal ideal (p), and let U,, be the group of n x n
unimodular matrices over R,. All the matrices in this paper are n x n
nonsingular matrices with entries over R,,. Given a matrix A, AT will denote
the transpose of A. Given matrices A and B, we say that B is left equivalent
to A (written B ~j, A) if B = U A for some unimodular matrix U; B is right
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equivalent to A (written B ~r A) if B = AV for some unimodular matrix V/;
and B is equivalent to A (written B ~ A) if B = UAV for some unimodular
matrices U, V. The relations ~, ~r and ~ are equivalence relations in the
set of all n x n matrices over R,,.

Let A be an n X n nonsingular matrix. By the Smith normal form theorem
[8, 17], there exist nonnegative integers a, ..., a, with a; > ... > a, such that
A is equivalent to

diag(p™, ..., p"").

The sequence a = (ay, ..., a,), of the exponents of the p-powers in the Smith
normal form of A, is a partition of length < n, uniquely determined by the
matrix A. We call a the invariant partition of A. More generally, if we are
given a sequence of nonnegative integers eq, ..., e,, the following notation for
p-powered diagonal matrices will be used:

diagy(ei, ..., en) = diag(p™, ..., p™).

Given a subset J C [n], we put D, := diag,(x”).
We denote by E;; the n x n matrix having 1 in position (7, ) and 0's
elsewhere, and define the elementary unimodular matrices T;;(x) as follows:
Tij(x) =1+ xE;;, wherei# j and x € Ry;
Tii(v) =1+ (v—1)E;, wherevisa unit of R,.
It is obvious, that E;;E,.s = d;,E;s, where ¢, denotes the Kronecker symbol,
that is, 0, = 1 if j = r, and equals 0 otherwise. In the lemma below we state

some basic properties of the these elementary matrices 7;;(x), which will be
used later.

Lemma 4.1. Let i,j,7,s,m € [n], and x,y,v € R,, such that v is a unit.
whenever v # s and j # r.

Then,
(2) sz(x)Trs(y) - Trs(y)Tij( );
“) Tz](x)T]s(y) = Tjs(y)Tw(gj) zs(gjy) if i # s
i T,s(ux) T (v), for some unit u.
[ zg();lfljéé[]

( _
(22d) Tii(v)Trs(x) =

(tv) Tij(2) Dyny = D

(v) Tij(@) Dy = Dy Tij(xp), if © ¢ [m] and j € [m].

Proof: Straightforward. O]

Given a partition a, let A, := diag,(a).
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Theorem 4.2. Let U € U,,, and 1 < m < n. Given a partition a of length
< n, there exist J C [n], with |J| = m, and V € U, such that A,UD,) ~g
AV Dy~ ADjy = diagy(a+ x7), with a + x’ a partition.

Proof: See the proof of theorem 3.7 in [6]. O

We recall now the discussion in section 2.2 and put it into our matrix
framework. Given a sequence of n x n nonsingular matrices By, ..., By, where

B, has elementary invariant partition (1™*), for k = 1,...,t, there exist
Ul,...,Ut € U, such that B;...B; ~p UID[ml]U2D[m2]---UkD[mk]7 for k£ =
1,...,t. Using previous theorem, we also find matrices V5,...,V; € U,, and

sets Iy, ..., Fy C [n], with |F}| = m;, 2 < i <t, such that, for k =1,...,¢,
B1By--- By ~g Ui D}y Us Dy - - - U Diyyyy
~gr U1 Dy )VaDp, - - - Vi Dp,
~1 Dy Dr, -+ - Dp,

= diag,(X"™ + x™ + -+ x"), (17)
with bF := xl™l 4 P 4+ ... 4 y Pk a partition. Therefore, we may assume
without loss of generality, that our sequence By, ..., B; has the form

ViDp,...,ViDp, (18)

where Vi,...,V; € U, and Fy = [mq|, Fy, ..., F; C [n], with |F;| = m,,
i <14 <t, such that diag,(x™! + x2 + - -+ x*) is a partition, k = 1,...,¢.
The sets Fi,..., F; are uniquely determined by the sequence By, Bo, ..., B;.
In particular, when F; = [m;], 1 <i <, it has been proved [2, 4, 6] that we
may consider in (18), Vo = .-+ = V; = [,,. In general, however, this is not
the case. For instance, consider the sequence By, By, B3, where By := Dy,
B; = D{Q}, t = 2,3, and note that B1ByB3 ~ D{l}D{Q}D{l}. Assume the
existence of an unimodular matrix U € Uy such that (i) UDgy ~r Dy,
(ii) UD{l}D{Q} ~R D{l}D{Q} and (iii) UD{l}D{z}D{z} ~R D{l}D{Q}D{l}. By
theorem 3.5 in [6], we may write U = T,,P,QL, for some o € Sy, where L is
lower triangular with units along the main diagonal, () is upper triangular
with 1’s along the main diagonal and multiples of p above it, and T, =
1 xp"
0 1
n > 0. But then,

UDyDioy Doy ~r Tn D1y Doy Doy ~r Dy DyayDyay g Dy Doy Dy,

, for some n > 0. Since UDyyy ~g Dy1y, we must have o = id and
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contradicting condition (#i7). Hence there is not a matrix U € U, satisfying
conditions (), (#¢) and (ii).
The sequence (17) gives rise to the biwords ¥ = < B B >,

me . 1M

by e by,
Yp = ( 110 Z} ), with wy - ... w, a tableau of shape b = (by,...,b,)
Lo w,
and indexing sets Fi,..., F}, and corresponds by RSK* to the tableau-pair
(Pp, Qp) of conjugate shapes, where Pp = wy - ... w, € [t|* and Qp =
P(F;...Fy) € [n]* the Yamanouchi tableau of evaluation ||Pg||.
Let a be a partition, and consider now the sequence A,, By, ..., B;. Us-

ing (17), (18), we may assume without loss of generality, that the sequence
A,, By, ..., B; has the form

Ay, ViDp ,VoDp,, ..., ViDp,. (19)

Using again theorem 4.2, there exist matrices U{,...,U] € U, and sets
Ji, ... Jy C[n], with |J;| = |F;| = m;, 1 <i <t, such that

A.By..By ~p AJViDpVaDp,..ViDy,
~r AJIDLULD,, - - ULD,,
~r diagy(a+x" + x4+ X,

with a + x + x”2 + - -+ + x’* a partition, for k = 1,...,t. The sequence
(19) gives rise to the skew-tableau 7 := (a, ¥ = < Joo )) and

me L. 1M

corresponds by RSK* to the tableau-pair (P, Q) of conjugate shapes, where
Q = P(J;---Jp) and P is the tableau congruent with the word of 7, and
simultaneously to the pair (Pg, Qp) of tableaux of conjugate shapes, where
P and Pp have the same evaluation (my, ..., m;) and Qp is the Yamanouchi
tableau of evaluation ||Pg||.

We have proved in [5] that when (17) has the form UDy,, - - Dj,,), then
P = Pp is the key of evaluation (mq,---,m;), and Qp is the Yamanouchi
tableau of shape (myq,...,m;) by nonincreasing order. Thus the sequence
A,UDyy, -+ - Dy, gives rise to the pairs (P, Q) and (P, Qp) of tableaux of
conjugate shapes such that P is the key of evaluation (my,---,m;) and Qp
the Yamanouchi tableau of shape (my,...,m;) by nonincreasing order. The
key of evaluation (my,...,m;) is a leaf of the rooted tree of all tableaux of
evaluation (mq,...,m;). In general, we do not have P = Ppg, as we may
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observe in the next example, where Ppg is the root of the tree, the unique
row tableau of evaluation (mq,...,my).

Example 4.1. (a) Let By = PouyPss D23y, B = Dyasy. The sequence
B1By ~p Dyi233Dys5 gives rise to the biword ¥ = 2421 ?ﬁ , and

hence to the pair (Pp, Qp), where Pp = 11122. On the other hand, the
sequence A B1By ~p AyDy 453D 23 leads to the skew-tableau <a, Y =

( 3; ?Zﬁ ) ), and corresponds to the tableau-pair (P, Q), where P = 21 -
21-1.
(b) Let B1 = P(34)D{172’3}, B2 = D{475}. The sequence B1B2 ~ D{1’273}D{475}
54 321

gives rise to the biword ¥’; = 99 111 | and to the pair (Pp, Qp), where

Pp = 11122. On the other hand, the sequence A,B1By ~p AqDy1 243D (35

leads to the skew-tableau (a, Y = ( gg Lllﬂ ) ) and corresponds to the
tableau-pair (P, Q), with P =21-1-1-2.

(c) Let By = D123y, B2 = Dygsy. The sequence BiBy = Dy 23y D5

gives rise to the biword X5 = 2121 ?ﬁ , and to the pair (Pp, Qp), where
Pp = 11122. But the sequence A,B1By = AyDy1 233D 45 gives the skew-
tableau (a, Y = g;l i’ﬁ > > and corresponds to the tableau-pair (P, Q),

with P = 11122 = Pg.

Therefore the sequences A,, UDy; 231, Dys 5y, with U running over Us, give
rise to skew tableaux with words congruent with P running over the set
{11122; 21 -1-1-2; 21 - 21 - 1} the set of all tableaux of evaluation (3,2).
This example can be easily generalized to all tableaux of evaluation (m,n),
over U, 1y, give rise to words congruentjvx}ith P runriiflg over the tableaux of
evaluation (m,n).

Regarding the RSK* correspondence between skew-tableaux and pairs of
tableaux of conjugate shapes, following [2, 4, 6], we introduce the definition
of a matrix realization of a pair of tableaux (7, F) with 7 a skew-tableau
and F a tableau with the same evaluation as 7.
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Definition 4.1. Let (P, Q) and (Pp, Qp), P,Pp € [t|", Q,Qp € [n]*, be
two pairs of tableaux of conjugate shapes such that ev(P) = ev(Pp) =
(mq,...,m), and Qp is the Yamanouchi tableau of evaluation ||Pg||. Let
T = (a% a, ..., a') be a skew-tableau which corresponds by RSK* to (P, Q)
and let Pg = (0,b%, ..., b"). We say that a sequence of n x n nonsingular ma-
trices Ao, By, ..., By is a matrix realization of [(P, Q); (Pg, Qp)] or (7, Pp)
if:
[. For each r € {1, ..., t}, the matrix B, has invariant partition (1"r).
I1. For each r € {1, ...,t}, the matrix Bj...B, has invariant partition b".
III. For each r € {0,1,...,t}, the matrix A, := AyBj...B, has invariant
partition a”.
The pair [(P, Q); (Pg, Qp)], or (T, Ppg), is called admissible.

For the purpose of this paper, we shall consider only the pairs (P, Q) and
(KC,Y) of tableaux of conjugate shapes with ev(P) = ev(K) such that K
is the key of evaluation (mg,...,m;) and ) is the Yamanouchi tableau of
shape (my, ..., m;) by nonincreasing order. Thus, in order to verify property
I1, it is sufficient to show that Bj - - - By has invariant partition (1™) + ... +
(™) = ||K]|. Given the sequence (myq,...,m;) of nonnegative integers, the
tableau with this evaluation and shape >>'_ (1) is the key K = (0, (1™),
(1) 4 (172), ..., 32 (1™)). Therefore, definition 4.1 becomes:

Definition 4.2. Let (P, Q) and (K,)), K € [t]*, Q@ € [n]*, be two pairs
of tableaux of conjugate shapes such that ev(P) = ev(K), K is the key of
evaluation (my, ..., m;) and ) the Yamanouchi tableau of shape (mq, ..., m;)
by nonincreasing order. Let 7 = (a”,al,...,a') be a skew-tableau which
corresponds by RSK* to (P, Q). We say that a sequence of n x n nonsingular

matrices Ay, By, .. ., By is a matrix realization of [(P, Q); (IC, V)] or (7, K) if:
[. For each r € {1, ..., t}, the matrix B, has invariant partition (1"r).
II. The matrix Bj...B; has invariant partition |||
III. For each r € {0,1,...,t}, the matrix A, := AyBj...B, has invariant
partition a”.

It has been shown in [5] that [(P, Q); (K,))] is an admissible pair only if
P=K.

Let 0 € & and (I;,...,l1) be a sequence of nonnegative integers. Let
Li1:=0 and Ly := Ly1 + 1, K = 1,...,t. The next algorithm, described
in [7], gives a procedure to obtain a matrix realization for the pair (7,
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K(o,(ls,...,11))) in the case the word of 7 is in the shuffle of the columns
of K(o,(ly,...,11)), equivalently, the word formed by the indexing sets of 7°
is a union of I; rows of length j, 1 < j <t¢. Then we may write 7 = (a, II)
such that

H_(;t,zt Lt 2k .. 21 gl ]1,1>

TU,t .o TUJ RN 700’2 .o 7'072 rU,l RN 7'071

(20)

with I7" a row of length j, for 1 <4 <{;, j =1,...t, is in RSK* correspon-
dence with 7.
First we need

Definition 4.3. Let 0 € S, and consider two integers x > y in [n]. We
define the n x n matrix S(z,y, o) whose s;; entry satisfy

1 jifo(i)=zando(j) =y #=x
%= 0 , otherwise.

Clearly, I + S(z,y,0) is an elementary matrix 7;;(1), for some integers
i,7 € [n]. When x =y, S(z,z,0) is the null matrix.

Recall that there is a bijection between pairs of tableaux of conjugate
shapes and skew-tableaux in the compact form. Our construction in the
next algorithm only depends on the class of the biwords that is on the class
of the skew-tableaux and not on the particular partition a defining the inner
shape of our skew-tableau.

A

e ... 1M

Algorithm 1. Let II as in (20) and let X' = ) equivalent

to II. Our algorithm is presented as a three-step definition:

Step 1. Foreach k = 1,...,t, let X;, € N? be the set of the leftmost vertices

ki
of the [ shuffle components ( 1 ), 1 <1 <, and define

Tok
S(Xk) = {S?x,]) : ('I.h?) < Xk} - {SOL;C+1+1 << SOLk.g_l-f—lk} g [n]

Let 01 € S, such that oy(i) = s?, for i € [Ly].

Step 2. Fork =1,...,t—1,let J, := {z € Ji : (z, k) is positively-linked} =
{ah < ... < :z:’;k} C Jyand vff :==id € S,. For each k = 1,...,t — 1 and
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j=1,...,q, let (yf, k;) be the vertex negatively-linked to (xf, k), and define
inductively

k1 . gk K k ko (o k k
ST by 1= S(:z:j,s(yf’kj),uj_lok), and v} 1= (] Sy k) ) P
— .,k N . T4 k+1 k+1
Define 0y11 := v, 011 := Opg10%, and Sgy = [[15,(L + ST k)([ S kyk) .

Step 3. Let a be a partition of length < n such that (a IT) is a skew-tableau.
Put Ay := diag,(a) and By, := SpDy,,), for k= 1,...,t, with S; := P, , and
define inductively

Ak = Ak—lBk-
Theorem 4.3. [7] Let 0 € S; and (I, ..., 11) a sequence of nonnegative inte-
gers. Let T be a skew-tableau with the same evaluation as KC(o, (Iy, ..., 11)))

such that w(7T) € Sh(Ri;t, ...,Rlal’l). Then, there is a biword 11 (20) cor-
responding by RSK* to T such that the sequence Ay, Bi,..., B, given by
the application of algorithm 1 to 11, is a matriz realization for (T, K(o, (I,

1))

If IT (20) has no critical vertices (see [7]), the conditions imposed on
the biword II in order the algorithm 1 to produce a matrix realization for
(7T,K(o,(ly, ...,11))), are satisfied. However, we notice that in general this
is not the case, as we can see in [7], example 2.5. When the biword II (20)
has no critical vertices, the sequence of matrices produced by algorithm 1
has the following properties.

Lemma 4.4. In the conditions of the algorithm 1, if II (20) has no critical
vertices, we have:

(a) AgBy--- By is left equivalent to diag,(a + x* + -+ + x"=)P,,, k =
1.t

(b) for k=1,...,t — 1, there are integers i = o~ *(u) € [my] and j & [my]
such that I + S];,;Z],; = T;;(1), where (u,1) is the leftmost vertex of the shuffle
component containing (z%, k). Moreover, if I + Sj,jyl,? = Ty (1) is another
matriz, then 1 # . o
Proof: See [7]. O

As we have already seen in lemma 3.5 and proposition 3.7, when o is
1423,1432,4123 or 4132, there are always biwords IT (11) and II (15) without
critical vertices. We are now in conditions to prove
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Main Theorem 4.5. Let 0 € Sy and (ly, ..., 1l1) be a sequence of nonnega-
tive integers. Let [(KC(o, (ly,...,11)),Q); (K(o, (lg, ..., 11)), V)] be two pairs of
tableaux of conjugate shapes with Y a Yamanouchi tableau. Then, the pair

[(K(o, (lgy ..., 1)), Q); (K(o, (ly, - .., 11)), V)] is admissible.

Proof: Assume that o € {1423,1432,4123,4132} and 4,5 > 0. Recall that in
any other case, the plactic class of (o, (Iy, . . ., {1)) is shuffle of their columns
and, thus, by the theorem above, the pair of tableaux [(K(a, (Is,...,[1)), Q);
(K(a, (lt, ..., 11)),Y)] is admissible.

Let ¥ = QT and ¥/ = Jioe be the biwords associated
w gma L qm

with the pair (K(o, (l4,...,101)), Q), and assume without loss of generality

that w is in the set Sh(R5*, R}Y, ..., R}), for some 0 < ns < min{ly, l4},

where n;, = [;, ©+ = 1,3, and n; = [; — n5, ¢+ = 2,4. Notice that either
my1 = 2n5+ng+ng+ns+ny and my = 2ns5+ny+ng+ne, if o € {1423, 1432},
or my = 2ns + ng + ng + no + ny and my = 2n5 + ng + n3 + ny otherwise.
Let a be a partition such that 7 = (a,X) is a skew-tableau. Let II (11)
be a biword corresponding by RSK* to (K(o, (lg,...,11)), Q) and satisfying
lemma 3.5. Consider the injection p and the correspondent biword II (15),
whose bottom word is (@, (ns, 0, n4, 13, 12,n1)). Let @ be a partition such
that 7 = (a,Y) is a skew-tableau, where £ and ¥ are the biwords equivalent
to II.

For each 1 = 1,...,n;5, let <abcdef

654321
Then, if Jg---J; is the top word of il, we have J; = J; \ {c¢' : i € [ns]},
72 = Jg, 75 = J3, 73 = {dl 11 E [TL5]}, 74 = {Ci 11 E [n5]}, and 76 = J4\{ClZ :
i € [ns]}. Note also that, by proposition 3.7, there are no vertices in row ¢!
to the left of (c!,4), neither in row d’, to the right of (d’,3). Then, we may
apply algorithm 1 to II, choosing a permutation oy € S, in the conditions of
step 1, and satisfying additionally

) be a shuffle component of II.

01(n1+---+n5+i):ci,

for 2 = 1,...,n5. Denote by Ag, B, ..., Bg the sequence of n X n nonsin-
gular matrices obtained with this procedure. Then, Ay = diag,(a), B, =
PCle[ml—ng)]v B2 = SQD[m2], Bk = SkD[ns], for k£ = 3,4, B5 = S5D[m3], and
Bg = S¢Dyy,—ny- By theorem 4.3, this sequence is a matrix realization for
the pair (7, K(7, (ns,0,n4, n3,n2,m1))). In particular, using lemma 4.4, this
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means that
oi([mi —ns]) = L\ {c' 1 € [n5]}, oa([ma]) = T, (21)
o3([ns]) = {d' i € [ns]}, oul[ns]) = {c' i € [ns]}, (22)
o5([ms]) = J3, and og([my —ns)) = Jy \ {d" : i € [ns]}. (23)

Consider the sequence of n X n nonsingular matrices
Ay, By, By, By, By,
defined by Ay = diag,(a), By := P, Dr,, Bj := By, By := 5935455 Dy, and
B := S¢Dr,, where 'y = [mq], 'y = [mg—ns)U{my+n1+1,... , my+ni+ns}
if o € {1423,1432}, and I'y = [my —ns|U{mi+n1+1,... ., mi+ni+ns}, Iy =
[my4] otherwise.

By (21) and definition of oy, it is clear that A\B| = diag,(a)F, Dr, =
diag,(a+ x")F,,, and AyB{ By ~, diagy(a + x”") Py, Dy, = diagy(a+ x +
x"?)P,,. Next, by (22) and (23), we find that A{B}ByB, ~, diag,(a+ x”* +
X"2) Py, Djppy) = diagy(a + x + x" + x”)P,,. Finally, consider the product
AB1ByByB) ~ diagy(a + x”* + x”* + x”*) P, Dr,, and notice that for each
i=1,...,n5 we may write o5 = a4(c'd")al, with (¢'d’) the transposition of ¢'
with d’, for some o, o} € S, satisfying ai(c') = ¢ and ob(d') = d’, since by
lemma 3.7 there are no vertices of IT neither in row ¢’ to the left of (¢!, 4), nor
in row d’ to the right of (d', 3). Therefore, o({ms+ni+1,...,my+ni+ns}) =
{d': i € [ns]}, and by (23), we must have

A\B! ByBLB) ~1 diagy(a + x" + x + x* + x™).

Thus, A}, B, B, BS, B) satisfy conditions I and III of definition 4.2. Tt re-
mains to show that B}- - - B} is equivalent to the diagonal matrix Dy, - - Djpy,).-
We start by using lemmas 4.1 and 4.4 to write for k = 2, 3, 4,

Sk Sk
Bllc - HTiljl(l)Cka Hleil(_DDFm
=1 =1

where I'; = [my] for | = 2,3, Cy Dy is the identity matrix for £k = 2,4, and
C [respectively, D3] is a product of upper [respectively, lower| elementary
matrices T};/(7), for some integers j, j' € [mg], and 7 = £1. Next, use again
lemma 4.1 to write B} --- B} as
lsil Tiljl (pyl)D[Fl] 112 leil(_1> lsil Tizjl (p)D[mz]C3D3 lsil leil(_1>-
: lsil Tiljz (p)D[mg] lsil leiz (_1>D[F4]7 (24)
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for some 1; > 0. Notice that we may eliminate by left equivalence any upper
triangular matrix 7;;(p”), v > 0, using lemma 4.1. This operation may create
new elementary matrices Ty, (p”/), but, as we have mentioned, using lemma
4.1, we may assume without loss of generality that this is not the case. Thus,
we may write

(24) ~L D[Fl] H leiz(_l)D[mz]C?’D3 H leil(_l)D[m?,] H szil(_l)D[H]'
=1 =1

1=2

(25)
Use again lemma 4.1 to eliminate by left equivalence all upper triangular
matrices present in C5. New elementary matrices may be created. Among
these ones, eliminate by left equivalence all those which are upper triangular.
Finally, starting from right and moving to left, eliminate by right equivalence
all lower triangular matrices left in the product. It is now clear that By - - - By
is equivalent to the diagonal matrix Dip ) Dy,  Dig Dpr,)- Since my < nj +
ng+n3+ng, k=2,3,and I'y CI'yor I'y C I'y, we find that this last diagonal
matrix is equivalent to Dy, |-+ - Dy, [l

Attending to the necessary condition for the admissibility of a pair [(P, Q);
(K, V)] with K a key associated with a permutation S, [5], and to corollary
3.2, theorem 4.3 and the main theorem above, we have the following charac-
terization for the admissibility of two pairs of tableaux [(P, Q); (K, )] with
KC a key associated with a permutation Sy.

Theorem 4.6. Let [(P, Q); (K, V)] be two pairs of tableauzr of conjugate
shapes with ev(P) = ev(K) such that K is a key associated with a permuta-
tion in Sy, and Y a Yamanouchi tableau. Then, [(P, Q); (KC,Y)] is admissible
if and only if P = K.

Example 4.2. Consider again the biwords > and ¥’ (7), and recall that the
bottom word of ¥ is a shuffle of Sh(75,7,4,751), with 0 = 4123. Take the

. 114566 2233 3
I
biword 11" = <431421 4321 4

consider the correspondent biword
7 — ( 114566 2233 3 )

> in examples 3.3, 3.5 and using the map p,

654321 6521 6

whose graphical representation is exhibited in example 3.5. Let @ be a par-
tition such that 7 = (@, ) is a skew-tableau.
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Following step 1 of algorithm 1, we may consider o = (16)(23) € Sg, since

3?671) = 6, 3?371) = 3, 3?376) =2, and (4,4) is a vertex of the shuffle component
114566 .
(654321)' Next, define the matrices
I—’_S?%’?) :]+562,6:I?
I+ S?:i? =1+ 5(3, 2, 01) = ng(l),
I + Sg,5 =1 + 5(6, 5, (3 2)0’1) = T15(1),
T+S%, =1I+58(54,(65)(32)01) = Tu(1),
I+8}, =1+S5(4,1,(54)(65)(32)01) = T1s(1),
I+87, =1+85,=1,
and the permutations oy := 01, 03 := (65)(32)09, 04 := (54)0o3, 05 :=

(41)oy4, and o := o05. Finally, define Ay = diag,(a), By = F, Dy, By =
D[Q], B; = T24(1)T42(—1)T15(1) T51(—1>D[1], By = T14(1)T41(—1)D[1], By =
T16(1)T61(—1)D[2], and BG = D[g]

Then, by theorem 4.3, the sequence Ay, By, ..., Bg is a matrix realization
for the pair (7, K (7, (1,0,1,0,0,1))). Consider now the sequence Ay, B, Bb,
Bj, BY, where Ay = diagy(a), with a a partition such that (a,X) is a skew
tableau, B) = P, Dy 9.4y, By = By,

B = To4(1)Tyo(—1)T15(1)T51(—=1)T14(1) T (—1)T16(1)T61(—1) Dy,

and BZL = D[4]
By the definition, o1({1,2,4}) = Ji, thus AyB| ~ diag,(a + x'*). Also,
we have AgBiBjy ~y diagy(a® + x”* + x”), since AyB1By ~, diagy(a’ +
x"") Py, Dig) ~r diag,(a” + ' 4+ x”2) and Ty = J,. In a similar way, we find
that AoB|ByBj ~ diagy(a® + x”" + x”2 + x”*) and AyB|ByB,B] ~ diag,(a® +
X+ x4+ x% + x7t). Therefore, the sequence Ay, By, By, By, B} satisfy
conditions I and II of definition 4.2. It remains to show that it also satisfy
condition III. So, bearing in mind lemma 4.1, we may write

B{ByByB) ~1 D194 DpgTaa(—1)Tsy(—1)Tsa(—1)Tas (—1)Tsa(—1) Digy Dy
~r D124y Do) Dpp) Dy ~ Dig) Dig) Dig) D).

Therefore, the sequence Ay, B}, BS, B}, B} is a matrix realization for [(P(w),
P(JiJsJar)), (P(w), V)]
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5. Final remarks

For t > 4, the number of words needed to add to the columns of a key
in order to generate, by shuffling operations, the plactic class of that key
depends, in general, on the multiplicities of their columns. For instance, in
Ss, by theorem 3.1, the Knuth class of (15234, (1,0,0,1,0)) = 5432151 is
larger than Sh(54321,51), but is described, in terms of shuffling, by adding
two words, 5431521 and 5415321, to the their columns. But if we consider
the key K(15234,(2,0,0,1,0)) = 543215432151, we need to add seventeen
new words to the set of columns of that key in order to describe its Knuth
class in terms of shuffling. For some particular cases, however, these words
have a “similar” behaviour to the word 431421, and we may use algorithm
1 to give a matrix realization for [(IC, Q); (K, V)], two pairs of tableaux of
conjugate shapes as before such that IC is a key. We illustrate this with a
simple example.

Let k,k + 1, 1 > 3, be integers in [t], t > 4, and let 0 = kk + ley or
k+1key €Sy, written in the word notation, where €5 denotes a permutation
word on the alphabet [t] \ {k,k + [}. Then, r,2 = k + { k. We consider the
key

K(o,(1,0,...,0,1,0)) = res7s.0.

The analysis of the effect of a Knuth transformation on a shuffle of r,; and
.2 shows that the plactic class of (o, (1,0,...,0,1,0)) is the set

Sh(ret,ro2) U{q:i=k+1—-1,... k+ 2},

where ¢; :=tt —1---1kk+10i—1---21. For example, whent =4, k =1
and k + [ = 4, we have g3 = 431421, and the plactic class of (o, (1,0, 1,0))
is the set Sh(ry4,752) U{qs} (see theorem 3.2).

Theorem 5.1. The pair [(P, Q); (K(o,(1,0,...,0,1,0)), V)] is admissible if
and only if P = K(o,(1,0,...,0,1,0)).

Proof: Let ¥ = (%}T> corresponds by RSK* to (P, Q). As we have already

seen, the condition is necessary [5], and is also sufficient when w is a shuffle
of ry4 and 7,9 [7]. So, assume w = ¢;, for some i =k +1—1,...,k+ 2, and

Y — At+2 Q41 - Gi42 Q41 a; ai—1 -+ ai
t t—1 --- 1 k k+0i:—-1 --- 1)°
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where a;1 < a;. Replacing the bottom row of X by r;g:12 € Si12, we obtain

. - Qty2  App1 00 Aj42 Qi1 A7 Q-1 - a4l .
the biword %=1, 15 441 0 042 i+1 0 i—1 - 1) , Which
clearly has no critical vertices.

Let @ be a partition for which 7 = (@,X) is a skew-tableau, and let
Ag, B1,...,B;is be the sequence of matrices obtained applying algorithm
1 to ¥, choosing the permutation oy = (lay)(2a;41) € S, in step 1 of
this algorithm. We have Ay = diag,(@), By = P, Dy, and B; = S;Dy,
Jg=2,...,t+2 Also, 0; = (aj_1a;)0;_1, for j = 2,...,t + 2. By theorem
4.3, this sequence is a matrix realization for the pair (7, K(id, (1,0,---,0))).

Let a be a partition such that 7 = (a, X)) is a skew-tableau. Consider now
the sequence

67 17 7B£7 (26)

where Ay = diagy(a), B] = P, Dy, Bj = By, fori =2,..., k-1, B, = S; Dy,
B; = Bj, fOl"j =k+ 1, .. .,i - 1, B; = SZ'SZ'+1Si+2D[1], B; = Bj_|_2, fOl"j =
i+1,...,k+1l—=1, By ;= Skr12Dp), and B; = By, for j=k+1+1,... t.

We claim that the sequence Aj{, Bi,--- , B; is a matrix realization for the
pair (7,K(0,(1,0,...,0,1,0))). In fact, from the definition of ¢; and since
Ay, By, ..., Bio is a matrix realization for (7, K(id, (1,0,---,0))), we find
that AGB; --- B} ~ diagy(a + x" + --- + x%), for j = 1,...,t. Moreover,
using lemma 4.1, and following the proof of theorem 4.5, we find that (26) ~
Djyyy -+ Dpy,)- Therefore, (26) is a matrix realization for [(P, Q); (K(w, (1,0,
...,0,1,0)), V)] ]

Example 5.1. Let 0 = €169 € Sg, where ¢ is a permutation word on 2, 6, and
€2 a permutation word on 1, 3,4, 5, and consider the key K(o,(1,0,0,0,1,0))=
654321 62, whose plactic class is the set Sh(654321, 62)U{ g5 = 65264321, ¢4 =

65426321}. Let 11 = ¥ = ( 11123455 ), and ¥/ = ( 31114525 ), repre-

65426321 66543221
sented by
L2345
1 B S
2 1 . (27)
3 ——*
4 //
ShA
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. . . = = 11123455
Notice that w = q4. Next, consider the biword II = > = ( 87654321 ),
represented below, whose bottom row is rgs:

1 2 3 4 5 @ I7 é|3
(28)

Gt W~

*

Applying algorithm 1 to X, choosing the permutation oy = (15) € Ss, we
obtain the sequence Ay, By, ..., B, where Ay = diagy,(a), with @ a partition
for which 7 = (@,%) is a skew-tableau, B; = P, Dy, By = Dy, By =
T14(1)T4(=1)Dpy, By = T13(1)T31(—1)Dpy, Bs = Th2(1)151(—1)Dpy, Bs =
T15(1)T51(—1)D[1], and B7 = Bg = D[l]

By theorem 4.3, the sequence Ay, B, ..., Bg is a matrix realization for
(T,K(id,(1,0,0,...,0))). Let a be a partition such that 7 = (a, X) is a skew-
tableau. The sequence Aj, BY, ..., By, defined by Aj = diag,(a), B} = B,
By = Dy, By = B3, By = T13(1)T31(—1) Th2(1)T51(—1) T15(1) T5:(—1)Dpy,
By = Dyy and B = Dy, is a matrix realization for (7', K(o, (1,0,0,0,1,0))).

Acknowledgement: We thanks to Christian Krattenthaler for pointing us the
dual RSK-correspondence in [12].
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