
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2023) 30:2041–2080
https://doi.org/10.1007/s11831-022-09864-y

REVIEW ARTICLE

Software Development Analytics in Practice: A Systematic Literature
Review

João Caldeira1  · Fernando Brito e Abreu1  · Jorge Cardoso2,3  · Rachel Simões4  · Toacy Oliveira4  ·
José Pereira dos Reis5 

Received: 26 March 2022 / Accepted: 19 November 2022 / Published online: 10 January 2023
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023

Abstract
Software development analytics is a research area concerned with providing insights to improve product deliveries and
processes. Many types of studies, data sources and mining methods have been used for that purpose. This systematic lit-
erature review aims at providing an aggregate view of the relevant studies on Software Development Analytics in the past
decade, with an emphasis on its application in practical settings. Definition and execution of a search string upon several
digital libraries, followed by a quality assessment criteria to identify the most relevant papers. On those, we extracted a set
of characteristics (study type, data source, study perspective, development life-cycle activities covered, stakeholders, mining
methods, and analytics scope) and classified their impact against a taxonomy. Source code repositories, exploratory case
studies, and developers are the most common data sources, study types, and stakeholders, respectively. Testers also get mod-
erate attention from researchers. Product managers’ concerns are being addressed frequently and project managers are also
present but with less prevalence. Mining methods are rapidly evolving, as reflected in their identified long list. Descriptive
statistics are the most usual method followed by correlation analysis. Being software development an important process in
every organization, it was unexpected to find that process mining was present in only one study. Most contributions to the
software development life cycle were given in the quality dimension. Time management and costs control were less preva-
lent. The analysis of security aspects is even more reduced, however, evidences suggest it is an increasing topic of concern.
Risk management contributions are also scarce. There is a wide improvement margin for software development analytics
in practice. For instance, mining and analyzing the activities performed by software developers in their actual workbench,
i.e., in their IDEs. Together with mining developers’ behaviors, based on the evidences and trend, in a short term period we
expect an increase in the volume of studies related with security and risks management.

 *	 João Caldeira
	 jcppc@iscte-iul.pt

	 Fernando Brito e Abreu
	 fba@iscte-iul.pt

	 Jorge Cardoso
	 jcardoso@dei.uc.pt

	 Rachel Simões
	 rachelvital@cos.ufrj.br

	 Toacy Oliveira
	 toacy@cos.ufrj.br

	 José Pereira dos Reis
	 jvprs@iscte-iul.pt

1	 Iscte - Instituto Universitário de Lisboa, ISTAR-Iscte,
Lisboa, Portugal

2	 University of Coimbra, Coimbra, Portugal
3	 Huawei Munich Research Center, Munich, Germany
4	 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
5	 Iscte - Instituto Universitário de Lisboa, ISTAR-Iscte,

Lisbon, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-022-09864-y&domain=pdf
http://orcid.org/0000-0003-0960-0179
http://orcid.org/0000-0002-9086-4122
http://orcid.org/0000-0001-8992-3466
http://orcid.org/0000-0002-6046-8620
http://orcid.org/0000-0001-8184-2442
http://orcid.org/0000-0002-2505-9565

2042	 J. Caldeira et al.

1 3

1  Introduction

Defining new processes and allocating the right resources,
particularly for large organizations, is a challenging
task for software project managers, primarily because it
requires acquaintance on existing processes and tools, the
understanding of different stakeholders, and the coordi-
nation of technical expertise in multiple domains [38].
Failing to properly manage these various aspects, namely
when decisions are based on “gut feeling” (often dubbed
“personal experience from past projects”) may cause soft-
ware development projects to produce hard to maintain
technical artifacts, to surpass budget and schedule, and
deliver defective products [19, 43].

The Software Development Analytics (SDA) research
field aims at mitigating the aforementioned risks by pro-
viding the stakeholders’ decision-making process with
structured data-driven pieces of evidence, such as insights
on software products and processes.

1.1 � Motivation

The term “software analytics” (SA) emerged naturally
expressing the work of several research groups aiming
to expand the traditional scope on analyzing software
artifacts by means of mining software repositories [77].
These groups conducted cutting-edge research and tech-
nology innovation in an interdisciplinary area that spans
across big data, machine learning, systems, and software
engineering. This approach led software practitioners to
perform data exploration and analysis in order to obtain
insightful and actionable information for completing vari-
ous tasks around software systems, software users, and
software development processes [76].

Software Development Analytics (SDA), the adoption
of analytics methods with the focus on the management of
software development projects, was proposed in [6]. It dif-
fers from software cybernetics, which is a subdivision of
“cybernetics” in the domain of software engineering [73].
It references the description of “cybernetics” by Wiener,
if software is regarded as part of the machine, and can be
defined simply as communication and control in software.
However, most researchers in the area believe software
cybernetics is more diverse in scope. In fact, it is described
as the interplay between software or software behaviour
and control [8]. In its simplest form, the field of software
cybernetics treated software problems and control prob-
lems in an integrated way [9].

In turn, SDA is broader in its scope and based on a
structured framework to identify adequate resources, ask
meaningful questions, collect and analyze information

properly, provide insights to the stakeholders and finally
to identify the benefits for the software development life-
cycle, either by looking at its past, present or future per-
spectives [6]. Although a few aspects of software cyber-
netics may seem to overlap with SDA, for instance, the
software development activities, the mining method or
the type of study, many others are missing, such as the
stakeholders, the analytics scope and more importantly,
the potential contributions towards the relevant properties
of software projects and where those can effectively sup-
port the decisions taken by managers.

Since the time analytics was proposed for the prac-
tice of developing software, a vast amount of literature
was produced presenting stakeholders with new ways of
improving the efficiency and effectiveness in developing
software products, by providing insights on how to stream-
line the processes or to optimize resource allocation [1].

1.2 � Contributions

A decade has elapsed since the first discussions on meth-
odologies, techniques and tools to boost the adoption of
analytics in the software development practice. However,
there have been a small number of reports on the practice
impact or benefits that software development analytics
results have created on software development [77]. This
systematic literature review (SLR) identifies, analyzes and
aggregates the relevant primary studies in this period, fol-
lowing a well defined protocol, aligned with the best prac-
tices [18, 32]. Its main objectives are to:

–	 summarize the main types of empirical studies per-
formed, target software life cycle activities, and cor-
responding data sources;

–	 identify the mining methods and analytics that were
applied;

–	 evaluate the contributions of the selected primary stud-
ies;

–	 define a taxonomy to classify the impact provided by
each primary study on software development dimen-
sions such as: quality/technical debt, time, costs, risks
and security.

This paper is organized as follows: Sect. 2 provides back-
ground related to the research area and emphasizes the
differences between this and previous systematic reviews
in the domain. We outline the research methodology and
systematic review planning in Sect. 3, present the system-
atic review execution, data analysis, results discussion and
threats to validity in Sect. 4, and the concluding comments
appear in Sect. 5.

2043Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

2 � Background

Mining software repositories is currently a widespread
method to gather insights from the software develop-
ment process [23, 40, 48]. As these methods evolved, the
software engineering practice took advantage of lessons
learned and applied them in real live scenarios [39]. The
last decade has seen the birth of a multitude of analyt-
ics related companies, solutions and methodologies [39,
48, 63], often powered by machine learning techniques.
It was also a period where process mining saw bound-
less adoption in several business domains [22, 64, 65].
Both approaches, machine learning and process mining,
are nowadays being used to reduce the costs of producing
software products, to improve their quality, reduce time-
to-market, and support the decision making-process.

2.1 � Related Work

Many SLRs have been published in the field of software
engineering [32]. However, the ones addressing SDA con-
cerns, from a holistic perspective, are scarce and often
insufficiently detailed, since several aspects we deem
relevant to advance the current state of the art are lack-
ing or did not have exhaustive scrutiny. Notwithstanding,
we briefly describe hereinafter all the systematic reviews
whose scope somehow intersects the usual topics of SDA.

A SLR covering primary studies from 2000 to 2014,
aiming to identify gaps in knowledge and open research
areas in SA was presented in [1]. It considered 19 pri-
mary studies out of 135 and the authors concluded that
the practitioners who benefited most from SA studies were
developers, testers, project managers (PM), portfolio man-
agers, and higher management, with 47% of the consid-
ered studies supporting only developers. Maintainability
and reverse engineering, team collaboration and dash-
boards, incident management and defect prediction, the
SA platform, and software effort estimation were among
the domains mostly studied, with 47% of them analyzing
only one artifact. Based on their analysis, since most of the
research addresses only the low-level analytics of source
code, the authors recommended researchers to use more
datasets, to achieve higher confidence level in the results.
They also suggested to target higher-level business deci-
sion making profiles, like portfolio management, market-
ing strategy, and sales directions.

A survey of the publicly available repositories and
the classification of the most common ones is presented
in [54]. Authors also discussed the problems faced by
researchers when applying machine learning or statistical
techniques to them. The conclusions highlight the fact that

some of the problems, such as outliers or noise, have been
extensively studied in software engineering, whilst others
need further research. They authors pointed out the need
of further research work to deal with the imbalance and
data shifting from the machine learning point of view and
replication of primary studies.

A mapping study on the investigation of frequently
applied empirical methods, targeted research purposes, used
data sources, and applied data processing approaches and
tools in empirical software engineering (ESE) was reported
in [78]. The goal was to identify new trends and obtain
interesting observations of ESE across different sub-fields
of software engineering on 538 selected articles from Janu-
ary 2013 to November 2017. The authors observed that the
trend of applying empirical methods in software engineering
is continuously increasing and the most commonly applied
methods are experiments, case studies and surveys, with
open source projects being frequently used as data sources.

A systematic mapping study aiming at identifying the
quantity, topic, and empirical methods used, targeting the
analysis of how software development practices are influ-
enced by the use of a distributed social coding platform like
GitHub, was presented in [13]. The authors assessed 80
publications from 2009 to 2016, and the results showed that
most works focus on the interaction around coding-related
tasks and project communities. They also identified some
concerns about how reliable were those results based on
the fact that, overall, papers used small data sets and poor
sampling techniques, employed a scarce variety of method-
ologies and/or were hard to replicate. As a conclusion, they
attested the high activity of research work around the field
of open source collaboration, identified shortcomings and
proposed actions to mitigate them.

A systematic mapping study providing an overview of
the concerns addressed in the different phases of the soft-
ware development life cycle (SDLC), was published in [15].
Results are reported from different viewpoints and conclu-
sions highlight that there is a considerable variation in the
use of terminologies and addressing concerns in different
phases of the SDLC.

Inspired by the increasing usage of data analytics in
all areas of science and engineering, a systematic map-
ping study, aiming to investigate the usage of different
types of analytics for software project management was
presented in [47]. The authors analyzed the accessibility
of the data, as well as the degree of validation reported in
the final 115 studies selected for appraisal. Results pro-
vided evidences that the majority of studies were focusing
on predictive and prescriptive analytics, with almost half
of the studies being essentially predictive. When compar-
ing information versus insight as the direction of analyt-
ics, the authors found that information oriented analyt-
ics (descriptive and predictive) had a greater number of

2044	 J. Caldeira et al.

1 3

related studies (60% of papers) than analytics searching
for insight (diagnostic or prescriptive). As a final remark,
their systematic mapping findings was compared with the
results obtained by [7].

A systematic mapping study published in [3] aims at
providing an overview of the sub-domains, contribution
types, research types, research methods and identify the
role of software analytics in the field of “green software
engineering”. Findings show, that 163 papers out of the
260 initially found on digital libraries, used software ana-
lytical methods like statistical analysis and static analy-
sis. Furthermore, only 11 out of the 50 papers kept for
final data extraction, used software analytics techniques
to foster green software engineering. Results revealed the
need to develop new/improved automated software ana-
lytics tools for software practitioners, along with metrics
explaining the correlation between energy usage and other
quality attributes.

Our SLR aims to expand the existing knowledge about
SDA, by adapting and extending the data perspectives,
dimensions, and concerns identified and used by the
above works. The target properties we deem as most
important for a primary study to be considered relevant
in this SLR are the following:

–	 Quality. To assess the delivery of a good product or
project outcome.

–	 Scope. To evaluate the meeting of requirements and
objectives.

–	 Time. To track the project delivering on time.
–	 Cost. To manage the delivery within estimated cost

and effort.
–	 Reusability. The use of existing assets in some form

within the software product development process.
–	 Maintainability. To asses the degree to which an

application is understood, repaired, or enhanced.
–	 Evolvability. Used to describe a multifaceted quality

attribute to evaluate a software system’s ability to eas-
ily accommodate future changes.

–	 Performance. To measure how effective a software
system is with respect to the allocation of resources
and correspondent time constraints.

–	 Security. A cross-cutting appraise that takes into
account mechanisms, such as access control, and
robust design to prevent software attacks.

–	 Risk. To address the possibility that one or more of
the above properties are exposed to such levels of
uncertainty that may lead them to produce undesired
outcomes.

Based on this set, we propose a taxonomy to classify
primary studies.

3 � Research Methodology

In contrast to a non-structured review process, a SLR
reduces bias and follows a precise and rigorous sequence
of methodological steps to research literature [31, 68]. A
SLR relies on a well-defined and evaluated review proto-
cols to search, extract, analyze, and document results as
stages. This section describes the methodology applied
for those activities.

3.1 � Planning the Review

3.1.1 � Research Questions

This SLR is driven by the following research questions:

RQ1. What type of empirical studies have been conducted
in SDA?

Justification. The list of the main types of studies
reported in SDA literature can provide a comprehensive
view, both for practitioners and researchers, not only to
identify areas of opportunity, but also to optimize estab-
lished methods.

RQ2. What are the main data sources used for SDA related
studies?

Justification. Identifying those data sources is help-
ful, to provide soundness to the corresponding studies, to
facilitate replication, and to stimulate the appearance of
new datasets to address knowledge gaps in the field.

RQ3. What type of process/project perspective analysis was
conducted?

Justification. It refers to the ability to identify if the
studies are being done before (pre-mortem) or after (post-
mortem) a process/project is finished. While the latter is
more frequent, namely due to the use of existing software
repositories, a pre-mortem perspective can add additional
value in the decision making process, as taking corrective
actions on a timely manner is fundamental to keep projects
or processes on track.

RQ4. What are the most studied SDLC activities?
Justification. Understanding what SDLC activities

are targeted the most (and those that are not), will help
practitioners identify where most concerns and challenges
are within the software development practice. It can also
contribute to open new research streams to foster a deeper
understanding of the complete SDLC.

2045Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

RQ5. Who were the target stakeholders of these studies?
Justification. Software projects are risky to conduct and

continue to be difficult to predict [6]. SDA in practice, holds
out the promise to provide decision-makers with data-driven
evidences in order to better manage risk, improve efficiency
and effectiveness on development projects. Studies should
address the needs of different stakeholders. Identifying those
beneficiaries is vital to understand if the right tools, methods
and insights are reaching the ones that most need support on
their daily activities.

RQ6. What are the main mining methods being used?
Justification. Assessing the types of mining methods

utilized helps to comprehend deeper the goals of past and
current research, the limitations of their methods, benefits
and conclusions and, highlight opportunities for novel
approaches in future research.

RQ7. Which type/form of analytics was applied?
Justification. When exploring large volumes of data

and many types of metrics, one may exploit different lev-
els of analytics; descriptive/diagnostics, predictive and
prescriptive [16]. Providing stakeholders in the develop-
ment process with deep insights and potentially prescrib-
ing actions to take under certain circumstances is desirable.
Predicting the future and prescribing actions are advanced
forms of analytics which researchers and practitioners in the
software development domain are expected to use.

RQ8. What were the relevant contributions to the SDLC ?
Justification. On every single software development

study, we should have clear benefits identified, either from
using a new tool or by improving a process using a specific
method. Failing to do so, reduces substantially the interest
we may find in that literature and shortens the applicability
of those methods in the field. SDA in practice is expected to
contribute at least (but not limited to) to the following areas
of concern in a software project: technical debt/quality,
costs, time, risk and security.

3.1.2 � Search Strategy

Search Terms. Based on the research questions, keywords
were extracted and used to search the primary study sources.
The search string included the main terms from the topics
being researched, including synonyms, related items and
alternative spelling. It is based on the same strategy used by
[11] and is presented as follows:

(“software analytics” OR “software development ana-
lytics”) AND (“process mining” OR “data mining”
OR “big data” OR “data science”) AND (“study” OR

“empirical” OR “evidence based” OR “experimen-
tal” OR “in vivo”)

Digital Libraries Searched. A significant phase in a SLR
is the search for relevant literature within the domain under
study. To search for all the available literature pertinent to
our research questions, in addition to some articles we added
manually, the following digital libraries were queried:

–	 ACM Digit​al Libra​ry
–	 IEEE Xplore
–	 Scien​ceDir​ect
–	 Scopus
–	 Sprin​gerLi​nk
–	 Web of Scien​ce
–	 Wiley​ Online
–	 Googl​e Schol​ar

Publications Time Frame. As mentioned earlier, the SDA
research field emerged approximately a decade ago. Since
then, as studies have gained a more structured and formal
approach, it makes sense to only account for publications in
journals, conferences papers, workshops and book chapters,
starting from January, 1st of 2010 till the end of 2021.

3.1.3 � Selection Criteria

We selected the above libraries based on the eagerness of
collecting as many articles/papers as possible, not only
because they are recognized as the most representative for
Software Engineering research. Google Scholar was selected
to account for articles eventually not yet published, but also
relevant to the software development domain.

Search Stages Overview The outputs of the process fol-
lowed to conduct the search is depicted in Fig. 8 in Appen-
dix 1. It compounds 4 sequential stages, which are described
as:

Stage 1—Retrieve automatically results from the digital
libraries The referred libraries were searched using the spe-
cific syntax of each database. The search was configured in
each repository to select only papers carried out within the
prescribed period. The automatic search was later comple-
mented by a manual search, according to the guidelines of
Wohlin [68].

Stage 2—Read titles and abstracts to identify potentially
relevant studies Identification of potentially relevant studies
based on the analysis of title and abstract. Studies that are
clearly irrelevant to the search and duplicates were discarded
across the digital libraries. If there was any doubt about

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://www.scopus.com
https://link.springer.com
https://www.webofknowledge.com
https://onlinelibrary.wiley.com
https://scholar.google.com

2046	 J. Caldeira et al.

1 3

whether a study should be included or not, it was included
for consideration in a later stage.

Stage 3—Apply inclusion and exclusion criteria on read-
ing the introduction, methods and conclusion Selected stud-
ies in previous stages were reviewed, by reading the intro-
duction, methodology section and conclusion. Afterwards,
exclusion and inclusion criteria were applied as defined in
Table 1. At this stage, in case of doubt preventing a conclu-
sion, the study was read in its entirety.

Stage 4—Obtain primary studies and assess them - A
list of primary studies was obtained and later submitted to
critical examination using the 13 quality assessment criteria
which is set out in Table 2.

3.1.4 � Quality Assessment

The strategy to evaluate the quality of the studies is based
on a checklist with thirteen criteria. The criteria were
based on good practices for conducting empirical research
[32] and in the Critical Appraisal Skills Programme
(CASP) used in different types of publications [18].

The criteria developed to assess quality covered four
main quality issues considered necessary when evaluating
primary papers:

–	 Reporting. Three criteria (QC1-QC3) assess if the
rationale, goals and context have been clearly stated.

–	 Rigor. Five criteria (QC4-QC8) evaluate if a meticu-
lous and convenient approach have been applied.

Table 1   Exclusion and inclusion criteria applied at Stage 3

Criterion Description

Exclusion criteria (EC)
 EC1 Studies published before 2010
 EC2 Studies not written in English
 EC3 Studies not related to the software development process
 EC4 Studies not supported by data collected on any well designed experiment or did not use empirical data from a third

party
 EC5 Studies merely theoretical or based on expert opinion without locating a specific experience, such as: editorials, pref-

aces, summaries of articles, interviews, news, analysis/reviews, readers’ letters, summaries of tutorials, workshops,
panels, round tables, keynotes and poster sessions

 EC6 Studies aiming only at describing new development tools or works with the goal of simply assessing and/or validating
new analytical methods without a clear statement to the benefits they may provide for the SDLC

Inclusion criteria (IC)
 IC1 Publications should be “journal” or “conference” or “workshop” or “book”
 IC2 Works that put validated analytical methods into practice with the goal of understanding and/or improving the software

development process
 IC3 Articles that clearly addressed any of the analytics depth (RQ7) and provided benefits for the SDLC on any dimension

identified in RQ8

Table 2   Quality criteria Criterion Description

QC1 Is the paper based on research (or merely a “lessons learned” report based on expert opinion)?
QC2 Is there a clear statement of the aims of the research?
QC3 Is there an adequate description of the context in which the research was carried out?
QC4 Was the research design appropriate to address the aims of the research?
QC5 Was the recruitment strategy appropriate to the aims of the research?
QC6 Was there a control group with which to compare treatments?
QC7 Was the data collected in a way that addressed the research issue?
QC8 Was the data analysis sufficiently rigorous?
QC9 Has the relationship between researcher and participants been adequately considered?
QC10 Are the datasets available to the public, thus allowing replication ?
QC11 Is there a clear statement of findings?
QC12 Is the study of value for research or practice?
QC13 Did the study identified any clear benefits for the SDLC according to RQ8?

2047Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

–	 Credibility. Two criteria (QC9-QC10) check if the
findings are well presented and the gathered insights
are plausible and/or credible.

–	 Relevance. The remain criteria (QC11-QC13) are related
with the relevancy of the study for the SDLC, stakehold-
ers and the research community.

Selection of primary studies. The quality of each publi-
cation should be assessed by the authors after the selec-
tion process in Stage 3. The checklist presented in Table 2
was used to assess the credibility and thoroughness of the
selected publications. The steps that guided the selection of
primary studies to reach the final results, are presented in
Fig. 8 in Appendix 1.

Each of the 13 questions was marked as “Yes”, “Par-
tially” or “No”. We considered a question answered as “Par-
tially” in cases where we could derive relevant contents from
the text, even if the details were not clearly reported. These
answers were scored as follows: “Yes”=1, “Partially”=0.5,
and “No”=0. For each selected study, its quality score was
computed by summing up the scores of the answers to all the
quality criteria questions, being the minimum value admis-
sible “0” and the maximum “13”, in case all the questions
were marked with a “1”.

To provide validation and credibility in the quality assess-
ment, and due to the ordinal scale for the quality criteria
score, we computed using a random sample of the 173 arti-
cles, the intraclass correlation value between the raters. The
results are presented later in Table 4 in Sect. 3.2.2. When-
ever agreement was not possible, the first author choice was
taken into consideration.

3.1.5 � Data Extraction

To gather standard information regarding the papers under
analysis, we created a data collection form as represented in
Table 10 in Appendix 1. This data collection form helped
us to identify the date, venue and authors of the publica-
tions and also how each of them addressed the topics of our
research questions.

3.1.6 � Data Synthesis

The synthesis aimed at grouping findings from the studies in
order to: identify the answers to the RQs presented earlier
in Sect. 3.1 and were organized in a spreadsheet form. This
data extraction process was manually conducted by the main

author. The spreadsheet was loaded and analyzed using the
R statistical engine1 and has now been disclosed2.

Obtained results, plots and findings are presented and
discussed in Sect. 3.2.

3.2 � Conducting the Review

This phase is responsible for executing the actions defined
in Sect. 3.1.

3.2.1 � Execute Search

We started the review with an automatic search followed
by a manual search and afterwards applied the inclusion/
exclusion criteria. The search as detailed in Sect. 3.1.2, was
performed in mid 2019 and updated in the end of the last
quarter of 2021, with the search string syntax being adapted
to support the different search engines. Initially we identified
3154 articles, and upon reading their titles and abstracts, the
dataset was reduced to 681 articles. Following, we filtered
them with the inclusion and exclusion criteria. Table 3 and
Fig. 8 in Appendix 1, present the summary results and work-
flow, respectively, for this research.

3.2.2 � Apply Quality Assessment Criteria

The selection criteria was based on exclusions and inclu-
sions. Table 1, defined, in Sect. 3.1.3 those criteria used to
assess remaining works in Stage 3. In case of any doubt, the
study was kept for analysis at a later stage. Stage 3 provided

Table 3   Digital library initial search and stages

Digital Library Stages

1 2 3 4

Libraries
 (ACM, Scopus, Web of Science,

Science Direct, IEEE, Wiley
Online, SpringerLink)

1144

|−− > 3154 681 173 42
 Google Scholar and Manually

Added
2010

Total (Input for Stage 1) 3154

Table 4   Intraclass correlation (ICC) (95% confidence interval)

Subjects Raters ICC Model Type

30 2 0.801 OneWay Agreement

1  https://​www.r-​proje​ct.​org, https://​rstud​io.​com
2  doi:​10.​17632/​d3wdz​gz88s.2

https://www.r-project.org
https://rstudio.com
http://dx.doi.org/10.17632/d3wdzgz88s.2

2048	 J. Caldeira et al.

1 3

as inputs for Stage 4, 173 articles, which were then assessed
in their quality dimension. At Stage 4, we applied the quality
criteria described in Sect. 3.1.4, resulting in 42 articles to
further extract data and to answer the eight research ques-
tions (Table 4).

We classified the studies quality level by plotting their
descriptive statistics and analyzing the correspondent
quartiles:

–	 Min: 6, 1st Q.: 8.5, Median: 9.0, Mean: 9.007, 3rd Q.:
9.5, Max: 12

As seen above, the third quartile is at score 9.5, there-
fore, we selected only the studies scoring above that
mark. Based on the high level of quality, 42 studies were
selected for final data extraction. Figure 1 shows the dis-
tribution of all studies per Year right after the quality
assessment scoring task.

4 � Document the Review

All selected studies and the details to support the statistics
we show in Sect. 4.1, are presented in Table 11 in Appen-
dix 2. In Sect. 4.2, we present the main findings, comments
and answers to each of the research questions.

Fig. 1   Studies score per year at
Stage 4

6

8

10

12

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Year

S
c
o
re

Studies
(n=173)

1 1 1 1 3

1 4 6 7 9 3 4

1Workshop

Conference

Journal

2014 2015 2016 2017 2018 2019 2020 2021

Year

V
en

u
e

T
y
p
e

Fig. 2   Number of studies per venue type per year

2049Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

4.1 � Demographics

Figure 2 shows clearly that the majority of the selected stud-
ies were published in journals. An increasing trend in publi-
cations volume is also present.

The remaining articles were published in conferences
with the exception of one which comes from a workshop.
As it is possible to observe, only studies published after
2014 made the final stage of this SLR, and almost 65% of
them were published in the last 4 years. This provides some
indication that, not only SDA is a relatively new practice,
but also, that it is becoming mature only in the very last few
years of this decade.

Looking in-depth to the publication where the stud-
ies appeared, we easily find that the Empirical Software
Engineering Journal has a strong dominance among all
the others. The distribution of studies per Publication over
the Years is presented in Fig. 10 in Appendix 2. Here we
can observe that only the Software Quality Journal and the
Journal of Systems and Software have more than one study
published within our final set of articles.

North America and Asia are the most active regions
researching on Software Analytics as plotted previously in
Fig. 3. The collaboration between institutions from these two
regions is easily detected in the large number of studies that
were published in cooperation as can bee seen in Table 12.

Canada, Singapore, USA, Australia and China are the most
effective countries in producing work in this domain. The
most active institutions are also from these countries as we
can observe on Fig. 4.

Regarding authorship, which we present the details in
Fig. 9 in Appendix 2, we found that only 4 main authors
appear with 2 studies in the selected papers, and one of them
appear with more than one study per year. All the remain-
ing authors are present with only one publication. This may
resonate the difficulty that is to setup, document and publish
such type of studies. Figure 4 in Appendix 2, present the fre-
quency of contributions regarding continents, countries and
institutions involved, either as primary or secondary authors,
on all studies.

4.2 � Analysis and Findings

It is widely accepted that we lack experimentation in Soft-
ware Engineering in general. This phenomenon is even more
acute on what concerns experimentation related with analyt-
ics in practice for software development. Even if this work is
scarce, we should look at it collectively to try to draw some
picture of the current state-of-the-art. For that purpose, a
summary table with the complete information extracted to

Fig. 3   Number of studies per
continent

North America : 23

(54.76%)

Asia : 17

(40.48%)

Europe : 7

(16.67%)

Oceania : 7

(16.67%)

South America : 1

(2.38%)

2050	 J. Caldeira et al.

1 3

answer all the RQs, is presented in Table 16 in Appendix 3.
In this section we present each research question and the
correspondent dimension findings and their frequencies3.

4.2.1 � RQ1. What Type of Empirical Studies have been
Conducted?

According to the type of empirical studies provided by
[75], from the total number of publications, more than half,
53.12%, are Exploratory Case Studies. Quasi-Experiments
and Exploratory Case Studies combined account for 90.62%.
This is probably not a surprise, since the remaining study
types are, quite often, harder to setup due to technical limita-
tions in the data collection process or blocked by data pri-
vacy concerns raised by the entities involved.

One publication, [S13], combines three study types:
Exploratory Case Study, Quasi-Experiment and a Survey.
Having two types of empirical studies presented, we find
[S31] and [S23] which combine a Exploratory Case Study

Fig. 4   Number of studies per
country and institution (> 1
study only)

16
9

8
7

6

4
4

2
2

1
1
1
1
1
1
1
1

Belgium

Brazil

Finland

Portugal

Republic of Korea

Russian

Spain

The Netherlands

Mexico

Switzerland

India

Italy

China

Australia

USA

Singapore

Canada

0 5 10 15

11

7

4

4

3

3

3

2

2

2

2

Hong Kong University of Science and Technology

Nanyang Technological University

University of Adelaide

University of Zurich

École Polytechnique de Montréal

Monash University

Rochester Institute of Technology

Concordia University

Zhejiang University

Singapore Management University

Queen's University

0 3 6 9

1

1 3 2 3

1

1 1 3 5 3 4 2

1 2 1 6 2 1

1 1 3

Analyze and Compare Methodologies

Controlled Experiment

Case Study

Survey

Quasi-Experiment

Exploratory Case Study

2014 2015 2016 2017 2018 2019 2020 2021

Year

S
tu

d
y

 T
y

p
e

Fig. 5   Frequencies of study types per year

3  The sum of frequencies might be bigger than the total number of
selected studies(n = 42) because some publications have been clas-
sified with more than one Study Type, Data Source, SDLC Activity,
Stakeholder, Mining Method and/or Analytics Scope.

2051Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

and a Survey. Having a Quasi-Experiment and a Survey we
have [S6] and [S24]. The remaining publications have only
one empirical study type given. Study Types found and the
plot of their distribution per Year is shown on Fig. 5.

No Meta-Analysis, Experience Report or Discussion
had quality to reach the final stage of this SLR. Particularly
for the Controlled Experiment studies reduced presence,
its worth elaborate that a controlled experiment is one in
which all factors are held constant except for one: the inde-
pendent variable. It is common to compare a control group
against an experimental group where all factors are identical
between the two groups except for the factor being tested.
This approach has the advantage that is easier to eliminate
uncertainty about the significance of the results, however,
it also has a considerable drawback—the effort needed to
design and execute such experiments which may explain
partially why there is only one study present in our final list
(Table 5).

We believe that sufficient conditions needed to conduct
such experiments are not yet being met in software devel-
opment organizations. Experiments where treatments are
applied to some factors in order to later evaluate the out-
comes are almost non-existent in real live scenarios. This
may reveal that, due to revenue generation pressure, costs
control and/or time restrictions, organizations are not will-
ing to spend time and resources to test and experiment novel
approaches on analytics even when they promise potential
benefits.

RQ1. Highlights

i) Controlled Experiment studies look neglected by the community.
ii) 88.09% (37/42) of works pertain to only one study type (Table 16).
iii) Evidences suggest an increasing trend in the publications quality.

4.2.2 � RQ2: What are the Main Data Sources Used
for Software Development Related Studies?

The top four data sources: Github Repositories, Google Play
Store, Git Repositories and BugZilla combined are the data
sources for more than 80% of the studies. This was somehow
expected as they are generally under the public domain and
contain the code, issue reports and product compilations of
the most used open source projects, which are, very often
used in empirical studies. This provides some evidence that
the community is probably studying the most what is possi-
ble to study, simply because the datasets are under the public
domain.

Interesting to mention is the high number of publica-
tions using datasets from App Stores such as Google Play
Store. This might be a relevant indicator that the research-
ers’ focus, the profile of the end-user and the developers’
characteristics are quickly and fundamentally changing.

Figure 11, presented in Appendix 2 plots the frequen-
cies of all studies regarding RQ2. It is proper to highlight
that, from all the data sources used in more than one study,
4 are related with software configuration management
systems, 2 with App Stores and each of the remaining 3
with: Bug/Issue Tracking Systems, a Q &A Service and
an Online Survey.

RQ2. Highlights

i) Code management and bug/issue tracking systems are used frequently.
ii) App Stores, Q&A services, Wikis and Forums are promising sources.
iii) Repositories containing developers’ project interactions are scarce.

Table 5   Study type findings

Type Freq. % Ref.

Exploratory case study 19 45.24 [S04], [S05], [S09], [S10], [S13], [S16], [S20], [S22], [S23], [S25], [S26], [S27],
[S28], [S29], [S30], [S31], [S32], [S37], [S40]

Quasi-experiment 13 30.95 [S06], [S07], [S11], [S12], [S13], [S14], [S15], [S17], [S18], [S19], [S21], [S24], [S34]
Case study 9 21.43 [S01], [S02], [S03], [S08], [S33], [S36], [S39], [S41], [S42]
Survey 5 11.9 [S06], [S13], [S23], [S24], [S31]
Analyze and compare meth-

odologies
1 2.38 [S35]

Controlled experiment 1 2.38 [S38]

2052	 J. Caldeira et al.

1 3

4.2.3 � RQ3: What Type of Process/Project Perspective
Analysis was Conducted?

We found that all the studies were focused on a Post-Mortem
approach, meaning the study was not designed to help the
product/project managers take any corrective measures on
a timely manner to the artifact under study. As such, any
insights gathered could only impact future developments. A
Post-Mortem approach provides benefits for the next product
release or project, but usually, not for the one being studied
as it brings no added value when proactive corrective actions
are desired.

RQ3. Highlights

i) Ineffective approach to improve project under study.
ii) Real-time development operational support is missing.
iii) Worthless approach if project actions recommendation is needed.

4.2.4 � RQ4: What are the SDLC Activities Mostly Studied?

According to [27], in Table 6 we summarize which activi-
ties of the SDLC, are being researched the most. Our
findings show that 90.48% and 61.9% of the studies were
targeting the Implementation and Maintenance phases,
respectively. Regarding Testing, we found 13 studies.
These results, which confirm that some phases are under-
researched, require the attention of practitioners and even-
tually the opening of new streams of investigation on the
SDLC. Software under operation was the focus of 6 studies
and those were mainly related with software deployed to
App Stores. Figure 13 present the statistics about all the
activities studied. Table 6 details the activities and sum-
marizes their frequencies and identify the studies on each
of them.

RQ4. Highlights

i) More than 90% of articles focus on the analysis of programming activities.
ii) Analytics for software under operation is almost non existing.
iii) Requirements Engineering and Design activities are not being studied.

Table 6   SDLC activities findings

Activity Freq. % Ref.

Implementation 38 90.48 [S01], [S02], [S04], [S06], [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14],
[S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26],
[S27], [S28], [S29], [S30], [S31], [S32], [S33], [S34], [S35], [S36], [S37], [S40],
[S41], [S42]

Maintenance 26 61.9 [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14], [S17], [S18], [S20], [S21],
[S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30], [S34], [S35], [S38],
[S39], [S40]

Testing 13 30.95 [S01], [S24], [S30], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], [S41], [S42]
Debugging 7 16.67 [S07], [S08], [S09], [S10], [S11], [S12], [S39]
Operations 6 14.29 [S03], [S05], [S18], [S20], [S28], [S35]

Table 7   Stakeholders findings

Stakeholder Freq. % Ref.

Developers 42 100 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14], [S15],
[S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29],
[S30], [S31], [S32], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], [S41], [S42]

Product managers 17 40.48 [S03], [S06], [S12], [S18], [S20], [S27], [S28], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40],
[S41], [S42]

Testers 8 19.05 [S01], [S24], [S33], [S34], [S35], [S37], [S40], [S42]
Project managers 3 7.14 [S26], [S29], [S37]
Researchers 3 7.14 [S17], [S20], [S29]
Educators 1 2.38 [S29]
End-users 1 2.38 [S20]
Requirements engineers 1 2.38 [S18]

2053Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

4.2.5 � RQ5: Who were the Target Stakeholders of These
Studies?

All the studies targeted the Developers, and 7 were
addressing Product Managers concerns. Only 5 publica-
tions could bring any value to Testers: [S01], [S24], Edu-
cators: [S29], End-Users: [S20] and Requirements Engi-
neers: [S18]. These findings are aligned with the results
found in previous SLRs mentioned in Sect. 2.1. We are
predisposed to think that these results are related with the
data sources also identified previously. When the major-
ity of data sources used are product code related, it is
somehow plausible that the stakeholder for that study is a
developer. On summarizing the data about the individu-
als that could benefit from each study, we argue that the
proper insights are not reaching all those who need support
on their daily activities, namely Project Managers, Test-
ers and Requirements Engineers. Figure 13 supports our
comments by plotting the frequencies of all stakeholders
targeted (Table 7, 8).

RQ5. Highlights

i) Developers keep being the main target stakeholder for SDA.

ii) SDA for Testers are less frequent than expected.

iii) High-Level management needs are not being addressed.

4.2.6 � RQ6. What are the main mining methods being used?

All articles, as expected, present descriptive statistics about
the domain under study. We know that, very often, research
starts with just exploratory actions. However, understand-
ing “What happened” is a reduced perspective for what
analytics can do for software development. It is also not
surprising that the following most frequent methods used
are approaches which target the extraction of knowledge,
either by correlating factors or by classifying or grouping

Table 8   Mining methods findings

Stakeholder Freq. % Ref.

Descriptive statistics 41 97.62 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09],
[S10], [S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18],
[S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26], [S27],
[S28], [S29], [S30], [S31], [S32], [S33], [S34], [S36], [S37],
[S38], [S39], [S40], [S41], [S42]

Correlation analysis 23 54.76 [S01], [S02], [S04], [S05], [S08], [S11], [S14], [S15], [S17],
[S18], [S19], [S20], [S21], [S22], [S24], [S25], [S27], [S28],
[S32], [S39], [S40], [S41], [S42]

Classifier learning 10 23.81 [S06], [S07], [S08], [S11], [S18], [S21], [S25], [S32], [S40], [S41]
Pattern extraction 9 21.43 [S01], [S02], [S03], [S06], [S07], [S09], [S10], [S13], [S23]
Hyphotesis testing 8 19.05 [S04], [S05], [S11], [S14], [S15], [S17], [S18], [S39]
Analysis 4 9.52 [S33], [S34], [S35], [S38]
Cluster analysis 4 9.52 [S20], [S22], [S25], [S32]
Topic modeling 3 7.14 [S19], [S22], [S29]
Feature extraction 2 4.76 [S08], [S11]
Redundancy analysis 2 4.76 [S08], [S11]
Regression models 2 4.76 [S19], [S20]
Association rules 1 2.38 [S30]
Generalized suffix trees 1 2.38 [S32]
Genetic algorithms 1 2.38 [S29]
Heuristic features 1 2.38 [S07]
Mixed-effect models 1 2.38 [S20]
Natural language processing 1 2.38 [S30]
Process mining 1 2.38 [S16]

2054	 J. Caldeira et al.

1 3

subjects. Hypothesis testing appears less frequently as one
would expect. This may be related with the fact that all stud-
ies have, as mentioned earlier, a post-mortem approach and
any results obtained are not to be used immediately to per-
form any corrections in the studied project. If used properly,
that is what hypothesis testing may bring in advanced forms
of analtyics.

Being software development a process, one would expect
to find Process Mining methods often in the assessed stud-
ies. Looking deep into the data, we can confirm that it does
not hold true, which may reveal that practitioners are study-
ing processes without the proper plethora of methods and
tools. Figure 12 provide evidences for the most used mining
methods.

RQ6. Highlights

i) Few studies try to make any predictions.

ii) Hypothesis Testing appear in only 7(21.88%) of the studies.

iii) Only 1 study (3.12%) used Process Mining methods and tools.

4.2.7 � RQ7: Which Type/Form of Analytics was Applied?

Following the rationale in RQ6, we found all studies used
Descriptive and Diagnostics Analytics together. It makes
sense that understanding “hat happened” is complemented
with “Why it happened”. However, this observation is not
fully aligned with the results mentioned in previous SLRs,
namely in [47]. Although 28.12% of the studies had some
sort of prediction as a goal, that is not reflected in the pre-
scriptive domain, where only 1 study, [S30] aims at suggest-
ing stakeholders actions to improve or correct a development
activity. Figure 13 presented in Appendix 2 complements the
analysis to this RQ (Table 9).

RQ7. Highlights

i) Descriptive and Diagnostics Analytics seems to be found together.

ii) An increasing trend exists in predictive studies (Tables 11 & 16).

iii) Management actions recommendation is not a common practice.

4.2.8 � RQ8. What were the relevant contributions
to the SDLC?

Technical Debt. All the studies had some sort of contri-
bution to the quality dimension of software and no study
was found to be classified with “Absent” under this realm.
With “Moderate” contributions we find [S03], [S22], [S23],
[S26], [S28], [S31], [S35], [S38], [S42]. Having a “Strong”
impact we identify [S01], [S02], [S04], [S05], [S06], [S07],
[S08], [S09], [S10], [S11], [S12], [S13], [S14], [S15], [S16],
[S17], [S18], [S19], [S20], [S24], [S25], [S30], [S32], [S36],
[S37], [S39], [S40], [S41]. Very few studies have “Weak”
benefits identified [S21], [S27], [S29], [S33], [S34].

Time Management. The management of project times is
analyzed in less than half of the studies since 54.76% of the
studies provide no contribution under this dimension. We
identify 11 studies, [S15], [S21], [S26], [S34], [S35], [S36],
[S37], [S38], [S39], [S40], [S41] with “Moderate” contri-
butions to manage the duration of product/project develop-
ment. “Weak” benefits are present in 8 (19.05%) studies
[S01], [S02], [S08], [S11], [S18], [S19], [S23], [S30].

Costs Control. A similar scenario happens with the
control of costs as only 4 [S34], [S35], [S36], [S37] and
9 studies [S01], [S02], [S04], [S08], [S11], [S21], [S38],
[S39], [S40] have “Moderate” and “Weak” contributions,
respectively.

Table 9   Analytics scope
findings

Scope Freq. % Ref.

Descriptive 42 100 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10],
[S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20],
[S21], [S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30],
[S31], [S32], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40],
[S41], [S42]

Diagnostics 38 90.48 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10],
[S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20],
[S21], [S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30],
[S31], [S32], [S34], [S36], [S38], [S39], [S40], [S41]

Predictive 11 26.19 [S06], [S08], [S11], [S18], [S19], [S20], [S21], [S25], [S32], [S39], [S40]
Prescriptive 1 2.38 [S30]

2055Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

Risk Assessment. Despite the fact that risk is cross-cut
to all other dimensions identified in RQ8, we found only
4 studies, [S01], [S35], [S36], [S37], concerned exactly
with the risk associated with the security within the soft-
ware development process. The contributions given were
“Weak” though. This means that 90.48% of the studies did
not address at all any concerns involving risk management.

Security Analysis. Regarding software security imple-
mentation and operations, we found very few studies where
their main contributions were related to this domain. We
found 5 studies, [S01], [S27], [S29], [S30] and [S36], where
only the first one has a “Strong” classification regarding this
contribution. Te remaining studies (88.1%) did not mention
or identified any benefits under this realm.

RQ8. Highlights

i) The software quality dimension consume most research resources.
ii) Time and Costs concerns are not being addressed sufficiently.
iii) Security and Risks matters need extra and aligned effort to evolve.

4.3 � Summary

Most of the works focus on the software quality dimen-
sion and other features are barely touched by practitioners.
Improving or understanding better a project costs, risks and
security aspects are contributions rare to find. Only two

studies, [S1] and [S36], provide contributions across all the
dimensions we assessed and they are essentially “Moder-
ate” or “Weak” contributions. No study was classified as
“Complete” on any of the contribution areas identified for
the SDLC.

Based on the evidences provided by this study, we
observe that 80.9% (34 out of 42) of the studies were pub-
lished in Journals, being the Empirical Software Engineering
the one with more publications, 24 (57.1%). North America
and Asia are the most active regions researching on Soft-
ware Analytics as plotted previously in Fig. 3. The collabo-
ration between institutions from these two regions is easily
detected in the large number of studies that were published
in cooperation as can bee seen in Table 12. Canada, Sin-
gapore, USA, Australia and China are the most effective
countries in producing work in this domain. The most active
institutions are also from these countries as we can observe
on Fig. 4.

Figure 13, which supports our answers to RQ1, RQ4,
RQ5, RQ7, plots the frequencies of studies related with the
analytics depth, study types, stakeholders and SDLC activi-
ties studied.

Figure 6 renders the evaluation off all studies across the
five dimensions used to answer RQ8. As it is clear from the
plots, Technical Debt and Time are the dimensions mostly
studied. A list of all studies with a short summary, their
context, methods and results are presented in B. A holistic
perspective of all the RQs findings is presented in C (Fig. 7).

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

S15 S16 S17 S18 S19 S20 S21

S08 S09 S10 S11 S12 S13 S14

S01 S02 S03 S04 S05 S06 S07

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Fig. 6   Classification combining all 5 contribution dimensions to SDLC(RQ8)

2056	 J. Caldeira et al.

1 3

4.4 � Threats to Validity

The following types of validity issues were considered when
interpreting the results from this review.

4.4.1 � Construct Validity

The studies identified from the systematic review were accu-
mulated from multiple literature databases covering relevant
journals, proceedings and books. One possible threat is bias
in the selection of publications. This is addressed through
specifying a research protocol that defines the objectives
of the study, the research questions, the search strategy and
search strings used. Inclusion, exclusion criteria and blue-
print for data extraction and quality assessment comple-
ments the approach to mitigate such bias.

Although supported by important literature under the
software engineering domain, we followed a self-defined
classification criteria for some RQs, specifically for RQ8.
This method is somehow subjective as someone else might
have chosen any other classification categories.

Our dataset contains studies published until mid July,
2019. There are some evidences pointing to an increas-
ing trend in the publishing of studies in the SDA domain,
however, articles published in the second-half of 2019
which might also had good quality, were not included in
this review. We excluded works where their goal was only
to propose new algorithms and/or methods to analyze soft-
ware development. Some of these studies had also validation
experiments, however, their conclusions were related with

the quality of the methods and not with any benefits poten-
tially provided by them for the software development pro-
cess. Some of those studies had also interesting approaches
to improve analytics as a practice, however, they are not
present in this review.

4.4.2 � Internal Validity

One possible threat is the selection bias and we addressed
it during the selection step of the review, i.e. the studies
included in this review were identified through a thorough
selection process which comprises of multiple stages. We
were aiming to find high quality studies, therefore, a quality
assessment was introduced and a final selection for stud-
ies ranking above the third quartile was conducted. This
approach may have excluded studies with very important
contributions on any of the dimensions we assessed in RQ8
or other dimensions not covered by this review. We used an
ordinal/categorical taxonomy to assess the studies regard-
ing RQ8. This classification method is still subjective and
depends on the authors’ contents interpretation.

4.4.3 � External Validity

There may exist other valid studies on other digital libraries
which we did not search. However, we tried to reduce this
limitation by exploiting the most relevant software engineer-
ing literature repositories. Studies written not in English
were excluded which can also have excluded important work
which otherwise would have been also mentioned.

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

Cost

Tech.
Debt

Risk

Sec.

Time

S36 S37 S38 S39 S40 S41 S42

S29 S30 S31 S32 S33 S34 S35

S22 S23 S24 S25 S26 S27 S28

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Absent

Weak

Moderate

Strong

Fig. 7   Classification combining all 5 contribution dimensions to SDLC(RQ8)

2057Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

4.4.4 � Conclusion Validity

There may be bias in the data extraction phase, however,
this was addressed through defining a data extraction form
to ensure consistent extraction of proper data to answer the
research questions. We should also refer that, the findings
and further comments are based on this extracted data.
Despite the fact that high levels of validation were applied
in the statistics computation of this study, there is always a
small chance that any figures might be inaccurate. For this
reason, we publish our final dataset to enable replication and
thus allowing for further validation.

5 � Conclusions

We conducted a Systematic Literature Review on SDA in
practice, covering a time span between 2010 and 2021. From
an initial population of 3,154 papers, we kept 42 of them for
appraisal.

It targeted eight specific aspects related with the goals,
sources, methods used and contributions provided in cer-
tain areas of the SDLC. Our goal was to extract the most
relevant dimensions associated with software development
practices and highlight where and what were the potential
contributions given by those works to the SDLC. From a
quality assessment perspective, our aim was also to classify
the benefits provided by those studies to significant software
development concerns such as: quality/technical debt, time,
costs, risks and security, therefore, a taxonomy was created
to evaluate them.

Source code repositories, such as GitHub and Git, and
App stores like Google Play Store (top 3 > 50%), explora-
tory case studies ( 45.24% ), and developers ( 100% ) are the
most common data sources, study types, and stakeholders,
respectively. Testers ( 19.05% ) also get moderate attention
from researchers. Product managers’ ( 40.48% ) concerns are
being addressed frequently and project managers ( 7.14% )
are also present but with less prevalence. Mining methods
are rapidly evolving, as reflected in their identified long list.
Descriptive statistics ( 97.62% ) are the most usual method
followed by correlation analysis ( 54.76% ). Being software
development an important process in every organization, it
was unexpected to find that process mining was present in
only one study ( 2.38% ). Most contributions to the software
development life cycle were given in the quality dimen-
sion ( 100% ). Time management ( 45.2% ) and costs control
( 30.9% ) were less prevalent. The analysis of security aspects
appear in ( 11.9% ) of the studies. Although with a small pres-
ence in this analysis, evidences suggest it is an increasing
topic of concern. Risk management contributions are scarce
( 9.52%).

Our analysis highlighted a number of limitations and
shortcomings on the SDA practice and bring the focus to
open issues that need to be addressed by future research. It is
our understanding, that our work may provide a baseline for
conducting future research and the findings presented here
will lead to higher quality research in this domain.

5.1 � Call for Action

As a final remark and to trigger a call for action in the
research community, the following issues should be
addressed:

–	 Repository Diversity. We suggest researchers to explore
different and non trivial software development related
repositories, such as the IDE or other archives contain-
ing development events(eg: decisions, fine grain actions
executed, etc). More and distinct datasets are expected to
expand the analytics coverage on software development.

–	 Keep working on the needs of different stakeholders.
We have evidences that the practitioners who benefit
most from the current SDA studies are the developers
and many other profiles are left behind. We suggest to
increase the focus on the real needs of requirements engi-
neers, project, product and portfolio managers and higher
level executives.

–	 Aim at Software Development Operational Support.
No studies were found providing clear evidences that the
outcome of that study could benefit on a timely manner
the ongoing project or product versions. If organizations
want to focus effectively on detecting, predicting and
recommending corrective actions on a timely manner,
meaning, any insights gathered will have impact on cur-
rent project and not solely on the next project or product
version, researchers and practitioners should focus on
designing advanced tools and methods to address soft-
ware development operational support.

–	 Software Development Process Mining. Despite the
fact that Process Mining is now a mature topic, almost
no software process related studies uses it. We suggest
its techniques and tools, to study deeper the interaction
of software development stakeholders and to comple-
ment the effectiveness of assessing certain software
development tasks, such as, project effort prediction,
code maintenance activities and/or bug detection meth-
ods.

–	 Project Time and Costs. We suggest more and deeper
studies covering the Time and Costs of software projects.
These are dimensions barely addressed by the studies we
evaluated. The aforementioned topics are extremely rel-
evant to forecast resource allocation for future projects.

–	 Address Security and Risks holistically. Due to the
unceasing digital transformation present nowadays in the

2058	 J. Caldeira et al.

1 3

society, the security of information systems will be even
more critical to any organization. We now have robust
methods to assess security vulnerabilities in software
code. However, very little is known about the developers
behaviour during the Implementation and Maintenance
phases, just to name a few. Even if, in the last years,
security in general became quickly a pertinent topic, the
security around development processes and the involved
resources are still not clearly addressed. This is a topic
with increasing relevance and deserves the rapid and
focused attention from the practitioners.

–	 Blockchain. One of the most interesting, promising and
relevant technological contributions to the society, was
created roughly ten years ago - the birth of bitcoin [46].
Although bitcoin is an implementation of electronic
money, it is supported by something very powerful,
which can be used for many other use cases, called -
blockchain [60]. The blockchain is a mechanism which
is able to keep a book of data records immutable and
distributed across a multi-node network of servers. It is
virtually indestructible since it has no central authority
controlling it and preserves data integrity by potentially

not allowing rollback on any past transactions. Addition-
ally, if required, it guarantees that only the data owners
are able to view or change their personal records and yet
permit third-parties to be granted view only privileges to
a selected dataset. This technology may be used embed-
ded in SDA to anonymize and grant privacy to organiza-
tions sharing data without spoil the context associated
with the development process under study.

Appendices

Appendix 1: Data Extraction

Selection Process

See Fig. 8, Table 10.

Appendix 2: Studies List

See Table 11.

A Data Extraction

Selection Process

Google Scholar
Manual Add
(n=2010)

ACM Scopus Web of Science ScienceDirect IEEE Wiley Online SpringerLink

Eligible Studies
(n=42)

Retrieved
(n=1144) Invalid Scope/

Language
(n=531)

Excluding
Common
(n=56)

Retrieved
(n=625)

Retrieved
(n=442)

Retrieved
(n=239)

Duplicated
(n=171)

Not Meeting
Quality
(n=131)

Apply Exclusion
Criteria
(n=452)

Stage 1
(n=3154)

Stage 2
(n=681)

Stage 3
(n=173)

Stage 4
(n=42)

Invalid Scope/
Language
(n=1632)

Duplicated
(n=139)

Fig. 8   Study selection process stages

2059Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

Comments on Studies

[S01] explores the correlation between software vulnerabil-
ities and code-level constructs called micro patterns. The
authors analyzed the correlation between vulnerabilities
and micro patterns from different viewpoints and explored
whether they are related. The conclusion shows that certain
micro patterns are frequently present in vulnerable classes
and that there is a high correlation between certain patterns
that coexist in a vulnerable class [58].

[S02] presents an empirical study to analyze commit
histories of Android manifest files of hundreds of apps to
understand their evolution through configuration changes.
The results is a contribution to help developers in identifying
change-proneness attributes, including the reasons behind
the changes and associated patterns and understanding the
usage of different attributes introduced in different versions

of the Android platform. In summary, the results show that
most of the apps extend core functionalities and improve
user interface over time. It detected that significant effort is
wasted in changing configuration and then reverting back the
change, and that very few apps adopt new attributes intro-
duced by the platform and when they do, they are slow in
adopting new attributes. Configuration changes are mostly
influenced by functionalities extension, platform evolution
and bug reports [29].

[S03] studied updates in the Google Play Store by exam-
ining more than 44,000 updates of over 10,000 mobile apps,
from where 1,000 were identified as emergency updates.
After studying the characterirstics of the updates, the authors
found that the emergency updates often have a long life-
time (i.e., they are rarely followed by another emergency
update) and that updates preceding emergency updates often

Table 10   Data collection form

Item Description

General Information
 1 Publication Id A sequential identifier for each publication
 2 Extraction date Date/Time when the data was extracted
 3 Bibliography reference The references of each publication
 4 Publication date The Date/Time of publishing
 5 Publication type The type publication (e.g. Journal, Conference, etc)
 6 Publisher name The name of the publisher
 7 Publication Author(s) The author(s) of the publication

Addressing RQs
 8 Study Type(s) Extracting the type of empirical study as defined in [42, 75]
 9 Data source(s) The different types of data sources used in the publications. Admissible values are open
 10 Process perspective The timing of when the study was conducted (e.g. Pre-Mortem, if study was executed before

project/product was finished, Post-Mortem, if it was conducted after)
 11 SDLC Activity(ies) We followed the SWEBOK to build our list of admissible values [27]. Implementation - refers

to the activity of constructing artifacts for a new product based on new defined requirements
and design. Maintenance - refers to the task of maintaining, by changing or evolving an
existing software under operation according to early defined specifications. Testing - refers
to the automated or manual task of finding bugs and/or errors. Debugging - is the effort of
fixing those known bugs. Operations - is related with the phase where the software is under
exploration by the end-users. Our approach extends the taxonomy used by [15]

 12 Study Stakeholder(s) The publication outcomes should be targeted to specific individuals in the software develop-
ment process. We identify them here

 13 Mining Method(s) The identification of the methods used for data mining/analysis
 14 Analytics Scope(s) Identifies what type of analytics was performed. We used the valid options(Descriptive Ana-

lytics, Diagnostics Analytics, Predictive Analytics and Prescriptive Analytics) identified
in [16]

 15 Contribution(s) to SDLC We framed the admissible options to the following assessment dimensions of software: Techni-
cal Debt/Quality, Time, Costs, Risk and Security. Our approach adapt and extends some of
the dimensions and concerns identified earlier in Sect. 2.1

Findings
 16 Findings and conclusions What were the interpretation of the results obtained
 17 Validity Identifying the threats to the validity of the publication
 18 Relevance What other relevant outcomes could be inferred from the publication other then the ones in

item 15

2060	 J. Caldeira et al.

1 3

Table 11   Systematic literature review studies

Score Year Author Title Publication

S01 12 2019 Sultana et al. A study examining relationships between micro
patterns and security vulnerabilities

Software Quality Journal

S02 10.5 2019 Jha et al. An empirical study of configuration changes
and adoption in Android apps

Journal of Systems and Software

S03 10 2017 Hassan et al. An empirical study of emergency updates for
top android mobile apps

Empirical Software Engineering

S04 10 2016 W. Wu et al. An exploratory study of api changes and usages
based on apache and eclipse ecosystems

Empirical Software Engineering

S05 10.5 2017 Taba et al. An exploratory study on the usage of common
interface elements in android applications

Journal of Systems and Software

S06 10 2019 Prana et al. Categorizing the Content of GitHub README
Files

Empirical Software Engineering

S07 10 2018 R. Wu et al. ChangeLocator: locate crash-inducing changes
based on crash reports

Empirical Software Engineering

S08 10.5 2019 Yan et al. Characterizing and identifying reverted com-
mits

Empirical Software Engineering

S09 10 2018 Salza et al. Do developers update third-party libraries in
mobile apps?

International Conference on Program Compre-
hension

S10 10 2019 Liu et al. DroidLeaks: a comprehensive database of
resource leaks in Android apps

Empirical Software Engineering

S11 11 2018 Fan et al. Early prediction of merged code changes to
prioritize reviewing tasks

Empirical Software Engineering

S12 10 2016 McIlroy et al. Fresh apps: an empirical study of frequently-
updated mobile apps in the Google play store

Empirical Software Engineering

S13 11 2018 Saborido et al. Getting the most from map data structures in
Android

Empirical Software Engineering

S14 10 2017 Guerrouj et al. Investigating the relation between lexical
smells and change- and fault-proneness: an
empirical study

Software Quality Journal

S15 10 2014 Fucci et al. On the role of tests in test-driven development:
a differentiated and partial replication

Empirical Software Engineering

S16 10 2014 Mittal et al. Process mining software repositories from
student projects in an undergraduate software
engineering course

International Conference on Software Engineer-
ing

S17 10.5 2018 Rakha et al. Revisiting the performance of automated
approaches for the retrieval of duplicate
reports in issue tracking systems that perform
just-in-time duplicate retrieval

Empirical Software Engineering

S18 10 2018 Morales-Ramirez et al. Speech-acts based analysis for requirements
discovery from online discussions

Information Systems Journal

S19 10.5 2018 Li et al. Studying software logging using topic models Empirical Software Engineering
S20 11 2018 Hassan et al. Studying the dialogue between users and devel-

opers of free apps in the Google Play Store
Empirical Software Engineering

S21 10 2016 Rakha et al. Studying the needed effort for identifying
duplicate issues

Empirical Software Engineering

S22 10.5 2017 Ye et al. The structure and dynamics of knowledge net-
work in domain-specific Q &A sites: a case
study of stack overflow

Empirical Software Engineering

S23 10.5 2019 Sawant et al. To react, or not to react: Patterns of reaction to
API deprecation

Empirical Software Engineering

S24 10 2019 Cruz et al. To the attention of mobile software developers:
guess what, test your app!

Empirical Software Engineering

S25 10 2017 Li et al. Towards just-in-time suggestions for log
changes

Empirical Software Engineering

S26 10 2017 Izquierdo-Cortazar et al. Using Metrics to track code review perfor-
mance

International Conference on Evaluation and
Assessment in Software Engineering

2061Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

receive a higher ratio of negative reviews than the emer-
gency updates [25].

[S04] analyzed and classified API changes and usages
together in 22 framework releases from the Apache and
Eclipse ecosystems and their client programs. The authors
conclude that missing classes and methods happen more
often in frameworks and affect client programs more often
than the other API change types do, and that missing inter-
faces occur rarely in frameworks but affect client programs
often. In summary, framework APIs are used on average
in 35% of client classes and interfaces and most of such
usages could be encapsulated locally and reduced in number.
Around 11% of APIs usages could cause ripple effects in
client programs when these APIs change. Some suggestions
for developers and researchers were made to mitigate the

impact of API evolution through language mechanisms and
design strategies [70].

[S05] extracted commonly used UI elements, denoted
as Common Element Sets (CESs), from user interfaces of
applications. The highlight the characteristics of CESs that
can result in a high user-perceived quality by proposing vari-
ous metrics. From an empirical study on 1292 mobile appli-
cations, the authors observed that CESs of mobile applica-
tions widely occur among and across different categories,
whilst certain characteristics of CESs can provide a high
user-perceived quality. A recommendation is made, aiming
to improve the quality of mobile applications, consisting on
the adoption of reusable UI templates that are extracted and
summarized from CESs for developers [59].

Table 11   (continued)

Score Year Author Title Publication

S27 10 2016 Munaiah et al. Vulnerability severity scoring and bounties:
Why the disconnect?

International Workshop on Software Analytics

S28 10 2015 Tian et al. What are the characteristics of high-rated apps?
A case study on free Android Applications

International Conference on Software Mainte-
nance and Evolution

S29 11 2016 Yang et al. What security questions do developers ask? a
large-scale study of stack overflow posts

Journal of Computer Science and Technology

S30 10.5 2019 Chen et al. What’s Spain’s Paris ? Mining analogical
libraries from Q &A discussions

Empirical Software Engineering

S31 10 2017 Jiang et al. Why and how developers fork what from
whom in GitHub

Empirical Software Engineering

S32 10.5 2019 Thongtanunam et al. Will this clone be short-lived? Towards a better
understanding of the characteristics of short-
lived clones

Empirical Software Engineering

S33 11 2020 Avila et al. A Data Driven Platform for Improving Per-
formance Assessment of Software Defined
Storage Solutions

Advances in Intelligent Systems and Computing

S34 12 2021 Wani et al. A Generic Analogy-Centered Software Cost
Estimation Based on Differential Evolution
Exploration Process

Computer Journal

S35 12 2020 Rana et al. A Study of Hyper-Parameter Tuning in the
Field of Software Analytics

International Conference on Electronics, Com-
munication and Aerospace Technology

S36 12 2021 Vashisht et al. An empirical study of heterogeneous cross-pro-
ject defect prediction using various statistical
techniques

International Journal of e-Collaboration

S37 10.5 2020 Capizza et al. Anomaly Detection in DevOps Toolchain International Workshop on Software Engineer-
ing Aspects of Continuous Development and
New Paradigms of Software Production and
Deployment

S38 11 2020 Avila et al. Effects of contextual information on mainte-
nance effort: A controlled experiment

Journal of Systems and Software

S39 12 2021 Qu et al. Evaluating network embedding techniques
performances in software bug prediction

Empirical Software Engineering

S40 11 2020 Krishna et al. Learning actionable analytics from multiple
software projects

Empirical Software Engineering

S41 10 2020 Bangash et al. On the time-based conclusion stability of cross-
project defect prediction models

Empirical Software Engineering

S42 10 2021 AIOmar et al. Toward the automatic classification of Self-
Affirmed Refactoring

Journal of Systems and Software

2062	 J. Caldeira et al.

1 3

[S06] performed a qualitative study involving the manual
annotation of 4,226 README file sections from 393 ran-
domly sampled GitHub repositories and design and evaluate
a classifier and a set of features that can categorize these
sections automatically. The findings show that information
discussing the ’What’ and ’How’ of a repository hapens very
often, while at the same time, many README files lack
information regarding the purpose and status of a repository.
A classifier was built to predict multiple categories and the
F1 score obtained encourages its usage by software reposi-
tories owners. The approach presented is said to improve
the quality of software repositories documentation and it
has the potential to make it easier for the software develop-
ment community to discover relevant information in GitHub
README files [49].

[S07] conducted an empirical study on characterizing the
bug inducing changes for crashing bugs (denoted as crash-
inducing changes). ChangeLocator was also proposed as a
method to automatically locate crash-inducing changes for
a given bucket of crash reports. The study approach is based
on a learning model that uses features originated from the
empirical study itself and a model was trained using the
data from the historical fixed crashes. ChangeLocator was
evaluated with six release versions of the Netbeans project.
The analysis and results show that it can locate the crash-
inducing changes for 44.7%, 68.5%, and 74.5% of the bugs
by examining only top 1, 5 and 10 changes in the recom-
mended list, respectively, which is said to outperform other
approaches [69].

[S08] explored if one can characterize and identify which
commits will be reverted. The authors characterized com-
mits using 27 commit features and build an identification
model to identify commits that will be reverted. Reverted
commits were identified by analyzing commit messages and
comparing the changed content, and extracted 27 commit
features that were divided into three dimensions: change,
developer and message. An identification model (e.g., ran-
dom forest) was built and evaluated on an empirical study
on ten open source projects including a total of 125,241
commits. The findings show that the ’developer’ is the most
discriminative dimension among the three dimensions of
features for the identification of reverted commits. However,
using all the three dimensions of commit features leads to
better performance of the created models [71].

[S09] conducted an empirical study on the evolution
history of almost three hundred mobile apps, by investigat-
ing whether mobile developers actually update third-party
libraries, checking which are the categories of libraries
with respect to the developers’ proneness to update their
apps, looking for what are the common patterns followed by
developers when updating a software library, and whether
high- and low-rated apps present any particular update pat-
terns. Results showed that mobile developers rarely update

their apps with respect to the used libraries, and when they
do, they mainly tend to update the libraries related to the
Graphical User Interface, with the aim of keeping the mobile
apps updated with the latest design trends. In some cases
developers ignore updates because of a poor awareness of
the benefits, or a too high cost/benefit ratio [56].

[S10] extracted real resource leak bugs from a bug data-
base named DROIDLEAKS. It consisted in mining 34 popu-
lar open-source Android apps, which resulted in a dataset
having a total of 124,215 code revisions. After filtering and
validating the data, the authors found, on 32 analyzed apps,
292 fixed resource leak bugs, which cover a diverse set of
resource classes. To fully comprehend these bugs, they per-
formed an empirical study, which revealed the characteris-
tics of resource leaks in Android apps and common patterns
of resource management mistakes made by developers [36].

[S11] built a merged code change prediction tool leverag-
ing machine learning techniques, and extracted 34 features
from code changes, which were grouped into 5 dimensions:
code, file history, owner experience, collaboration network,
and text. Experiments were executed on three open source
projects (i.e., Eclipse, LibreOffice, and OpenStack), contain-
ing a total of 166,215 code changes. Across three datasets,
the results show statistically significantly improvements in
detecting merged code changes and in distinguishing impor-
tant features on merged code changes from abandoned ones
[20].

[S12] studied the frequency of updates of 10,713 mobile
apps (the top free 400 apps at the start of 2014 in each of
the 30 categories in the Google Play store). It was found
that only ∼ 1% of the studied apps are updated at a very
frequent rate - more than one update per week and 14% of
the studied apps are updated on a bi-weekly basis (or more
frequently). Results also show that 45% of the frequently-
updated apps do not provide the users with any information
about the rationale for the new updates and updates exhibit
a median growth in size of 6%. The authors conclude that
developers should not shy away from updating their apps
very frequently, however the frequency should vary across
store categories. It was observed that developers do not
need to be too concerned about detailing the content of new
updates as it appears that users are not too concerned about
such information and, that users highly rank frequently-
updated apps instead of being annoyed about the high update
frequency [37].

[S13] studied the use of map data structure implementa-
tions by Android developers and how that relates with saving
CPU, memory, and energy as these are major concerns of
users wanting to increase battery life. The authors initially
performed an observational study of 5713 Android apps in
GitHub and then conducted a survey to assess developers’
perspective on Java and Android map implementations.
Finally, they performed an experimental study comparing

2063Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

HashMap, ArrayMap, and SparseArray variants map imple-
mentations in terms of CPU time, memory usage, and energy
consumption. The conclusions provide guidelines for choos-
ing among the map implementations: HashMap is preferable
over ArrayMap to improve energy efficiency of apps, and
SparseArray variants should be used instead of HashMap
and ArrayMap when keys are primitive types [55].

[S14] detected 29 smells consisting of 13 design smells
and 16 lexical smells in 30 releases of three projects: ANT,
ArgoUML, and Hibernate. Further, the authors analyzed to
what extent classes containing lexical smells have higher
(or lower) odds to change or to be subject to fault fixing
than other classes containing design smells. The results
obtained bring empirical evidence on the fact that lexi-
cal smells can make, in some cases, classes with design
smells more fault-prone. In addition, it was empirically
demonstrated that classes containing design smells only
are more change- and fault-prone than classes with lexical
smells only [24].

[S15] examined the nature of the relationship between
tests and external code quality as well as programmers’ pro-
ductivity in order to verify/refute the results of a previous
study. With the focus on the role of tests, a differentiated and
partial replication of the original study and related analysis
was conducted. The replication involved 30 students, work-
ing in pairs or as individuals, in the context of a graduate
course, and resulted in 16 software artifacts developed. Sig-
nificant correlation was found between the number of tests
and productivity. No significant correlation found between
the number of tests and external code quality. For both cases
we observed no statistically significant interaction caused
by the subject units being individuals or pairs. Results
obtained are consistent with the original study although, as
the authors admit, there were changes in the timing con-
straints for finishing the task and the enforced development
processes [21].

[S16] presented an application of mining three software
repositories: team wiki (used during requirement engineer-
ing), version control system (development and maintenance)
and issue tracking system (corrective and adaptive mainte-
nance) in the context of an undergraduate Software Engi-
neering course. Visualizations, metrics and algorithms to
provide an insight into practices and procedures followed
during various phases of a software development life-cycle
were proposed and these provided a multi-faceted view to
the instructor serving as a feedback tool on development
process and quality by students. Event logs produced by
software repositories were mined and derived insights such
as degree of individual contributions in a team, quality of
commit messages, intensity and consistency of commit
activities, bug fixing process trend and quality, component
and developer entropy, process compliance and verification.
Experimentation revealed that not only product but process

quality varies signicantly between student teams and mining
process aspects can help the instructor in giving directed and
specific feedback. Authors, observed that commit patterns
characterizing equal and un-equal distribution of workload
between team members, patterns indicating consistent activ-
ity in contrast to spike in activity just before the deadline,
varying quality of commit messages, developer and compo-
nent entropy, variation in degree of process compliance and
bug fixing quality [41].

[S17] investigated the impact of the just-in-time dupli-
cate retrieval on the duplicate reports that end up in the ITS
of several open source projects, namelly Mozilla-Firefox,
Mozilla-Core and Eclipse-Platform. The differences between
duplicate reports for open source projects before and after
the activation of this new feature were studied. Findings
showed that duplicate issue reports after the activation of
the just-in-time duplicate retrieval feature are less textually
similar, have a greater identification delay and require more
discussion to be retrieved as duplicate reports than dupli-
cates before the activation of the feature [52].

[S18] exploited a linguistic technique based on speech-
acts for the analysis of online discussions with the ultimate
goal of discovering requirements-relevant information. The
datasets used in the experimental evaluation, which are pub-
licly available, were taken from a widely used open source
software project (161120 textual comments), as well as
from an industrial project in the home energy management
domain. The approach used was able to successfully classify
messages into Feature/Enhancement and Other, with signifi-
cant accuracy. Evidence was found to support the rationale,
that there is an association between types of speech-acts and
categories of issues, and that there is correlation between
some of the speechacts and issue priority, which could open
other streams of research [44].

[S19] studied the relationship between the topics of
a code snippet and the likelihood of a code snippet being
logged (i.e., to contain a logging statement). The intuition
driving this research, was that certain topics in the source
code are more likely to be logged than others. To validate
the assumptions a case study was conducted on six open
source systems. The analysis gathered evidences that i) there
exists a small number of “log-intensive” topics that are more
likely to be logged than other topics; ii) each pair of the
studied systems share 12% to 62% common topics, and the
likelihood of logging such common topics has a statistically
significant correlation of 0.35 to 0.62 among all the studied
systems. In summary, the findings highlight the topics con-
taining valuable information that can help guide and drive
developers’ logging decisions [35].

[S20] revisits a previous work in more depth by study-
ing 4.5 million reviews with 126,686 responses for 2,328
top free-to-download apps in the Google Play Store. One
of the major findings is that the assumption that reviews are

2064	 J. Caldeira et al.

1 3

static is incorrect. In particular, it is found that developers
and users in some cases use this response mechanism as
a rudimentary user support tool, where dialogues emerge
between users and developers through updated reviews and
responses. In addition, four patterns of developers were iden-
tified: 1) developers who primarily respond to only negative
reviews, 2) developers who primarily respond to negative
reviews or to reviews based on their contents, 3) developers
who primarily respond to reviews which are posted shortly
after the latest release of their app, and 4) developers who
primarily respond to reviews which are posted long after the
latest release of their app. To perform a qualitative analysis
of developer responses to understand what drives developers
to respond to a review, the authors analyzed a statistically
representative random sample of 347 reviews with responses
for the top ten apps with the highest number of developer
responses. Seven drivers that make a developer respond to
a review were identified, of which the most important ones
are to thank the users for using the app and to ask the user
for more details about the reported issue. In summary, there
were significant evidences found, that it can be worthwhile
for app owners to respond to reviews, as responding may
lead to an increase in the given rating and that studying the
dialogue between user and developer can provide valuable
insights which may lead to improvements in the app store
and the user support process [26].

[S21] empirically examined the effort that is needed for
manually identifying duplicate reports in four open source
projects, i.e., Firefox, SeaMonkey, Bugzilla and Eclipse-
Platform. Results showed that: (i) More than 50% of the
duplicate reports are identified within half a day. Most of
the duplicate reports are identified without any discussion
and with the involvement of very few people; (ii) A classi-
fication model built using a set of factors that are extracted
from duplicate issue reports classifies duplicates according
to the effort that is needed to identify them with significant
values for precision, recall and ROC area; and (iii) Factors
that capture the developer awareness of the duplicate issues’
peers (i.e., other duplicates of that issue) and textual simi-
larity of a new report to prior reports are the most influen-
tial factors found. The results highlight the need for effort-
aware evaluation of approaches that identify duplicate issue
reports, since the identification of a considerable amount of
duplicate reports (over 50%) appear to be a relatively trivial
task for developers. As a conclusion, the authors highlight
the fact that, to better assist developers, research on identify-
ing duplicate issue reports should put greater emphasis on
assisting developers in identifying effort-consuming dupli-
cate issues [51].

[S22] analyzed URL sharing activities in Stack Overflow.
The approach was to use open coding method to analyze
why users share URLs in Stack Overflow, and develop a set
of quantitative analysis methods to study the structural and

dynamic properties of the emergent knowledge network in
Stack Overflow. The findings show: i) Users share URLs
for diverse categories of purposes. ii) These URL sharing
behaviors create a complex knowledge network with high
modularity, assortative mixing of semantic topics, and a
structure skeleton consisting of highly recognized knowl-
edge units. iii) The structure of the knowledge network with
respect to indegree distribution is scale-free (i.e., stable), in
spite of the ad-hoc and opportunistic nature of URL sharing
activities, while the outdegree distribution of the knowledge
network is not scale-free. iv) The indegree distributions of
the knowledge network converge quickly, with small changes
over time after the convergence to the stable distribution.
The conclusions highlight the fact that the knowledge net-
work is a natural product of URL sharing behavior that
Stack Overflow supports and encourages, and proposed an
explanatory model based on information value and preferen-
tial attachment theories to explain the underlying factors that
drive the formation and evolution of the knowledge network
in Stack Overflow [74].

[S23] questioned if there was really a strong argument
for the Java 9 language designers to change the implementa-
tion of the deprecation warnings feature after they notice no
one was taking seriously those and continued using outdated
features. The goal was to start by identifying the various
ways in which an API consumer can react to deprecation
and then to create a dataset of reaction patterns frequency
consisting of data mined from 50 API consumers totalling
297,254 GitHub based projects and 1,322,612,567 type-
checked method invocations. Findings show that predomi-
nantly consumers do not react to deprecation and a survey on
API consumers was done to try to explain this behavior and
by analyzing if the APIs deprecation policy had an impact
on the consumers’ decision to react. The manual inspection
of usages of deprecated API artifacts lead to the discovery
of six reaction patterns. Only 13% of API consumers update
their API versions and 88% of reactions to deprecation is
doing nothing. However the survey got a different result,
where 69% of respondents say they replace it with the rec-
ommended repalcement. Over 75% of the API barelly affect
consumers with deprecation and 15% of the consumers are
affected only by 2 APIs(hibernate-core and mongo-java-
driver) [57].

[S24] investigated working habits and challenges of
mobile software developers with respect to testing. A key
finding of this exhaustive study, using 1000 Android apps,
demonstrates that mobile apps are still tested in a very ad
hoc way, if tested at all. However, it is shown that, as in
other types of software, testing increases the quality of apps
(demonstrated in user ratings and number of code issues).
Furthermore, there is evidence that tests are essential when
it comes to engaging the community to contribute to mobile
open source software. The authors discuss reasons and

2065Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

potential directions to address the findings. Yet another rel-
evant finding of this study is that Continuous Integration
and Continuous Deployment (CI/CD) pipelines are rare in
the mobile apps world (only 26% of the apps are developed
in projects employing CI/CD) - authors argue that one of the
main reasons is due to the lack of exhaustive and automatic
testing [14].

[S25] tries to understand the reasons for log changes and,
proposes an approach that can provide developers with log
change suggestions as soon as they commit a code change,
which is referred to as “just-in-time” suggestions for log
changes. A set of measures is derived based on manually
examining the reasons for log changes and individual experi-
ences. Those measures were used as explanatory variables
in random forest classifiers to model whether a code commit
requires log changes. These classifiers can provide just-in-
time suggestions for log changes and was evaluated with a
case study on four open source projects: Hadoop, Directory
Server, Commons HttpClient, and Qpid. Findings show that:
i) the reasons for log changes can be grouped along four cat-
egories: block change, log improvement, dependence-driven
change, and logging issue; ii) the random forest classifiers
can effectively suggest whether a log change is needed; iii)
the characteristics of code changes in a particular commit
and the current snapshot of the source code are the most
influential factors for determining the likelihood of a log
change in a commit [34].

[S26] designed and conducted, with the continuous feed-
back of the Xen Project Advisory Board, a detailed analy-
sis focused on finding problems associated with the large
increase over time in the number of messages related to
code review. The increase was being perceived as a potential
signal of problems with their code review process and the
usage of metrics was suggested to track the performance of
it. As a result, it was learned how in fact the Xen Project had
some problems, but at the moment of the analysis those were
already under control. It was found as well how diferent the
Xen and Netdev projects were behaving with respect to code
review performance, despite being so similar from many
points of view. A comprehensive methodology, fully auto-
mated, to study Linux-style code review was proposed [28].

[S27] analyzed the Common Vulnerability Scoring Sys-
tem (CVSS) scores and bounty awarded for 703 vulnerabili-
ties across 24 products. CVSS is the de facto standard for
vulnerability severity measurement today and is crucial in
the analytics driving software fortification. It was found a
weak correlation between CVSS scores and bounties, with
CVSS being more likely to underestimate bounty. Such a
negative result is suggested to be a cause for concern. The
authors, investigated why the measurements were so discord-
ant by i) analyzing the individual questions of CVSS with
respect to bounties and ii) conducting a qualitative study
to find the similarities and diferences between CVSS and

the publicly-available criteria for awarding bounties. It was
found that the bounty criteria were more explicit about code
execution and privilege escalation whereas CVSS makes no
explicit mention of those. Another lesson learnt was that
bounty valuations are evaluated solely by project maintain-
ers, whereas CVSS has little provenance in practice [45].

[S28] through a case study on 1,492 high-rated and low-
rated free apps mined from the Google Play store, inves-
tigated 28 factors along eight dimensions to understand
how high-rated apps are different from low-rated apps. The
search for the most influential factors was also addressed
by applying a random-forest classifier to identify high-rated
apps. The results show that high-rated apps are statistically
significantly different in 17 out of the 28 factors that we con-
sidered. The experiment also presents eveidences for the fact
that the size of an app, the number of promotional images
that the app displays on its web store page, and the target
SDK version of an app are the most influential factors [62].

[S29] conducted a large-scale study on security-related
questions on Stack Overflow. Two heuristics were used to
extract from the dataset the questions that are related to secu-
rity based on the tags of the posts. Later, to cluster different
security-related questions based on their texts, an advanced
topic model, Latent Dirichlet Allocation (LDA) tuned
using Genetic Algorithm (GA) was used. Results show that
security-related questions on Stack Overflow cover a wide
range of topics, which belong to five main categories: web
security, mobile security, cryptography, software security,
and system security. Among them, most questions are about
web security. In addition, it was found that the top four most
popular topics in the security area are “Password”, “Hash”,
“Signature” and “SQL Injection”, and the top eight most
difficulty security-related topics are “JAVA Security”, “Asy-
metric Encryption”, “Bug”, “Browser Security”, “Windows
Authority”, “Signature”, “ASP.NET” and “Password”, sug-
gesting these are the ones in need for more attention [72].

[S30] present an approach to recommend analogical
libraries based on a knowledge base of analogical libraries
mined from tags of millions of Stack Overflow questions.
The approach was implemented in a proof-of-concept web
application and more than 34.8 thousands of users visited
the website from November 2015 to August 2017. Results
show evidences that accurate recommendation of analogical
libraries is not only possible but also a desirable solution.
Authors validated the usefulness of their analogical-library
recommendations by using them to answer analogical-
library questions in Stack Overflow [12].

[S31] explored why and how developers fork what from
whom in GitHub. This approach was supported by collect-
ing a dataset containing 236,344 developers and 1,841,324
forks. It was also validated by a survey in order to analyze
the programming languages and owners of forked reposi-
tories. Among the main findings we have: i) Developers

2066	 J. Caldeira et al.

1 3

fork repositories to submit pull requests, fix bugs, add new
features and keep copies etc. Developers find repositories
to fork from various sources: search engines, external sites
(e.g., Twitter, Reddit), social relationships, etc. More than
42% of developers that were surveyed agree that an auto-
mated recommendation tool is useful to help them pick
repositories to fork, while more than 44.4% of developers
do not value a recommendation tool. Developers care about
repository owners when they fork repositories. ii) A reposi-
tory written in a developers’ preferred programming lan-
guage is more likely to be forked. iii) Developers mostly fork
repositories from creators. In comparison with unattractive
repository owners, attractive repository owners have higher
percentage of organizations, more followers and earlier reg-
istration in GitHub. The results show that forking is mainly
used for making contributions of original repositories, and it
is beneficial for OSS community. In summary, there is evi-
dence of the value of recommendation and provide impor-
tant insights for GitHub to recommend repositories [30].

[S32] designed and executed an empirical study on six
open source Java systems to better understand the life expec-
tancy of clones. A random forest classifier was built with the
aim of determining the life expectancy of a newly-introduced
clone (i.e., whether a clone will be short-lived or longlived)
and it was confimed to have good accuracy on that task.
Results show that a large number of clones (i.e., 30% to
87%) lived in the systems for a short duration. Moreover, it
finds that although short-lived clones were changed more
frequently than long-lived clones throughout their lifetime,
short-lived clones were consistently changed with their
siblings less often than long-lived clones. Findings show
that the churn made to the methods containing a newly-
introduced clone, the complexity and size of the methods
containing the newly- introduced clone are highly influen-
tial in determining whether the newly-introduced clone will
be short-lived. Furthermore, the size of a newly-introduced
clone shares a positive relationship with the likelihood that
the newly introduced clone will be short-lived. Results sug-
gest that, to improve the efficiency of clone management
efforts, such as the planning of the most effective use of
their clone management resources in advance, practitioners
can leverage the presented classifiers and insights in order
to determine the life expectancy of clones [61].

[S33] This paper introduces DDP (Data Driven Plata-
form) platform, a scalable platform to analyze and exploit
performance data. This platform centralizes, analyzes and
visualizes the performance data produced during the soft-
ware development cycle. DDP employs big data and analyt-
ics technology to collect, store and process performance data
in an efficient and integrated way. They have demonstrated
the successful application of DDP for Spectrum Scale, a
software defined storage solution, where they have been
able to implement performance regression data analysis

to validate the performance consistency of new produced
builds [4].

[S34] To help the industry practitioners in these situa-
tions, a analogy-centered model based on differential evolu-
tion exploration process is proposed in this research study.
The proposed model has been assessed on 676 projects from
5 different data sets and the results achieved are significantly
better when compared with other benchmark analogy-based
estimation studies [67].

[S35] The paper attempts to analyze and compare
various methodologies to tune the defect predictors. The
research papers which are analyzed here have used data-set
from the PROMISE repository, open-source [53].

[S36] This paper evaluates empirically and theoretically
heterogeneous Cross-project defect prediction (HCPDP)
modeling, which comprises of three main phases: Feature
ranking and feature selection, metric matching, and finally,
predicting defects in the target application. The research
work has been experimented on 13 benchmarked datasets
of three open source projects. Results show that perfor-
mance of HCPDP is very much comparable to baseline
within project defect prediction [66].

[S37] An anomaly detection system can operate in the
staging environment to compare the current incoming
release with previous ones according to predefined met-
rics. The analysis is conducted before going into produc-
tion to identify anomalies. In this paper, they describe a
prototypical implementation of the aforementioned idea in
the form of a proof-of-concept [10].

[S38] This article reports a controlled experiment that
compares the effort to implement changes, the correctness
and the maintainability of an existing application between
two projects; one that uses qualitative dashboards depict-
ing contextual information, and one that does not [17].

[S39] In this paper conducts an extensive empirical
study to evaluate network embedding algorithms in bug
prediction by utilizing and extending node2defect, a newly
proposed bug prediction model that combines the embed-
ded vectors with traditional software engineering metrics
through concatenation. Experiments are conducted based
on seven network embedding algorithms,two effort-aware
models, and 13 open-source Java systems [50].

[S40] This paper presents a technology for prescrip-
tive software analytics. Their planner offers users a guid-
ance on what action to take in order to improve the qual-
ity of a software project. Our preferred planning tool is
BELLTREE, which performs cross-project planning with
encouraging results.With our BELLTREE planner, we
show that it is possible to reduce several hundred defects
in software projects [33].

[S41] In this paper they investigate whether conclu-
sions in the area of defect prediction, if the claims of the
researchers are stable throughout time. This case study

2067Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

provides evidence that in the field of defect prediction the
context of evaluation (in our case, time) plays an important
role [5].

[S42] In this paper, they propose a two-step approach
to first identify whether a commit describes developer-
related refactoring events, then to classify it according to
the refactoring common quality improvement categories
[2].

General Statistics

See Fig. 9, 10, 11, 12, 13 and Table 12, 13, 14, and 15.

Appendix 3: Studies Appraisal

The following acronyms were used for SLR results inter-
pretation (see Table 16):

1
2
1
1

1
1

1
1

1
1 1
1

1
1

1
1 1

1
1

1
1

1
1

1
1

1 1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

AIOmar et al.
Avila et al.

Bangash et al.
Capizza et al.

Chen et al.
Cruz et al.
Fan et al.

Fucci et al.
Guerrouj et al.

Hassan et al.
Izquierdo-Cortazar et al.

Jha et al.
Jiang et al.

Krishna et al.
Li et al.

Liu et al.
McIlroy et al.

Mittal et al.
Morales-Ramirez et al.

Munaiah et al.
Prana et al.

Qu et al.
R. Wu et al.
Rakha et al.

Rana et al.
Saborido et al.

Salza et al.
Sawant et al.
Sultana et al.

Taba et al.
Thongtanunam et al.

Tian et al.
Vashisht et al.

W. Wu et al.
Wani et al.

Yan et al.
Yang et al.

Ye et al.

2014 2015 2016 2017 2018 2019 2020 2021

Year

A
u
th

o
r

Fig. 9   Number of studies published by each main author over the years

2068	 J. Caldeira et al.

1 3

1

1

1 3 4 6 7 2 1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1 1

Advances in Intelligent
Systems and Computing

Computer Journal

Empirical
Software Engineering

Information
Systems Journal

International
Conference on Software

Maintenance and Evolution

International Conference
on Evaluation and Assessment

in Software Engineering

International Conference
on Program Comprehension

International Conference
on Software Engineering

International Conference on Electronics
Communication and Aerospace Technology

International Journal
of e-Collaboration

International Workshop
on Software Analytics

International Workshop
on Software Engineering Aspects

of Continuous Development
and New Paradigms

of Software Production and Deployment

Journal of
Systems and Software

Journal of Computer
Science and Technology

Software
Quality Journal

2014 2015 2016 2017 2018 2019 2020 2021

Year

P
u

b
li

ca
ti

o
n

Fig. 10   Frequencies of studies per publisher over the years

10

7

6

5 5

4

3 3

2 2 2 2

1 1

0.0

2.5

5.0

7.5

10.0

C
od

eC
lim

at
e

Sla
ck

Spa
rk

A
nd

ro
id

Is
su

e
Tra

ck
er

A
pa

ch
e

O
pe

nO
ff
ic

e
Is

su
e
Tra

ck
in

g
Sys

te
m
A

pa
ch

e

Tom
ca

t A
rc

hi
ve

B
in

Tra
y

B
ug

Zill
a

C
as

sa
nd

ra

C
hr

om
e

R
el

ea
se

s B
lo

g

C
hr

om
iu

m

Is
su

e
Tra

ck
er
D

oc
ke

r

Ecl
is
e

A
PI

Exc
ep

tio
n

R
ep

or
ts

F-D
ro

id

R
ep

os
ito

ry G
er

rit G
it

R
ep

os
ito

rie
s
G

itH
ub

R
ep

os
ito

rie
s
G

oo
gl

e

G
oo

gl
e

For
m

s
G

oo
gl

e

Pla
y

Sto
re

H
ac

ke
rO

ne

B
ug

 B
ou

nt
y

Pla
tfo

rm JA
V

A

JC
en

te
r

Je
nk

in
s

JI
R
A

Lab

C
om

pu
te

rs

M
ai

lin
g

Lis
t
M

av
en

R
ep

os
ito

rie
s

M
er

cu
ria

l

R
ep

os
ito

rie
s

M
on

go
D

B

M
yl

yn

N
et

B
ea

ns

Sou
rc

e
C
od

e
R
ep

os
ito

ry N
od

e

O
nl

in
e

Sur
ve

y

Pro
m

is
e

R
ep

os
ito

rie
s
Pyt

ho
n

SEA
C
R
A

FT

R
ep

os
ito

rie
s

Sec
ur

iB
en

ch

A
rc

hi
ve

SEne
rC

O
N

Fee
db

ac
k

G
at

he
rin

g
Sys

te
m

Sta
ck

O
ve

rf
lo

w
SV

N

R
ep

os
ito

rie
s

Tea
m

W
ik

i (
B
itB

uc
ke

t)

U
nk

no
w

n

V
er

si
on

C
on

tro
l R

ep
os

ito
rie

s

V
ul

ne
ra

bi
lit

y

R
ep

or
ts

Fig. 11   Frequencies of studies for data sources

2069Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

Table 12   List of all contributors Name Freq. % Ref.

Ahmed E. Hassan 10 23.81 [S03], [S08], [S12], [S17], [S19], [S20],
[S21], [S25], [S28], [S32]

David Lo 7 16.67 [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Weiyi Shang 5 11.9 [S03], [S19], [S21], [S25], [S32]
Xin Xia 4 9.52 [S08], [S11], [S29], [S31]
Foutse Khomh 3 7.14 [S04], [S13], [S14]
Giuliano Antoniol 3 7.14 [S04], [S13], [S14]
Yann-Gael Guéhéneuc 3 7.14 [S04], [S13], [S14]
Cor-Paul Bezemer 2 4.76 [S17], [S20]
Heng Li 2 4.76 [S19], [S25]
Mohamed Sami Rakha 2 4.76 [S17], [S21]
Safwat Hassan 2 4.76 [S03], [S20]
Shanping Li 2 4.76 [S08], [S11]
Shing-Chi Cheung 2 4.76 [S07], [S10]
Ying Zou 2 4.76 [S05], [S25]
Zhenchang Xing 2 4.76 [S22], [S30]
Abdul Ali Bangash 1 2.38 [S41]
Abram Hindle 1 2.38 [S41]
Ajay Kumar Jha 1 2.38 [S02]
Alberto Bacchelli 1 2.38 [S23]
Ali Ouni 1 2.38 [S42]
Anand Ashok Sawant 1 2.38 [S23]
Andrea De Lucia 1 2.38 [S09]
Andrew Meneely 1 2.38 [S27]
Anna Perini 1 2.38 [S18]
Antonio Capizzi 1 2.38 [S37]
Arianne Navarro Lepe 1 2.38 [S33]
Ashish Sureka 1 2.38 [S16]
Ayrton Mondragon Mejia 1 2.38 [S33]
Benjamin C. M. Fung 1 2.38 [S14]
Bram Adams 1 2.38 [S04]
Burak Turhan 1 2.38 [S15]
Byron J. Williams 1 2.38 [S01]
Chakkrit Tantithamthavorn 1 2.38 [S20]
Chang Xu 1 2.38 [S10]
Christoph Treude 1 2.38 [S06]
Chunyang Chen 1 2.38 [S30]
Cosmo D’Uva 1 2.38 [S09]
Daniel Izquierdo-Cortazar 1 2.38 [S26]
Dario Di Nucci 1 2.38 [S09]
Davide Fucci 1 2.38 [S15]
Deheng Ye 1 2.38 [S22]
Ejaz ul Haq 1 2.38 [S35]
Eklavya Bhatia 1 2.38 [S35]
Eman Abdullah AlOmar 1 2.38 [S42]
Evgeny Bobrov 1 2.38 [S37]
Fabio Palomba 1 2.38 [S09]
Ferdian Thung 1 2.38 [S06]
Filomena Ferrucci 1 2.38 [S09]
Fitsum Meshesha Kifetew 1 2.38 [S18]
Garvit Rana 1 2.38 [S35]

2070	 J. Caldeira et al.

1 3

Table 12   (continued) Name Freq. % Ref.

Gede Artha Azriadi Prana 1 2.38 [S06]
Hareem Sahar 1 2.38 [S41]
Heng Yin 1 2.38 [S39]
Hongyu Zhang 1 2.38 [S07]
Iman Keivanloo 1 2.38 [S05]
Ismael Solis Moreno 1 2.38 [S33]
Itzel Morales-Ramirez 1 2.38 [S18]
Javaid Iqbal Bhat 1 2.38 [S34]
Jesus M. Gonzalez-Barahona 1 2.38 [S26]
Jiahuan He 1 2.38 [S31]
Jian-Ling Sun 1 2.38 [S29]
Jian Zhang 1 2.38 [S10]
Jing Jiang 1 2.38 [S31]
Jorge Luis Victória Barbosa 1 2.38 [S38]
Jue Wang 1 2.38 [S10]
Jun Yan 1 2.38 [S10]
Kaisar Javeed Giri 1 2.38 [S34]
Karim Ali 1 2.38 [S41]
Kazi Zakia Sultana 1 2.38 [S01]
Kleinner Silva Farias de Oliveira 1 2.38 [S38]
Lars Kurth 1 2.38 [S26]
Latifa Guerrouj 1 2.38 [S14]
Leandro Ferreira D’Avila 1 2.38 [S38]
Li Zhang 1 2.38 [S31]
Lili Wei 1 2.38 [S10]
Luis Cruz 1 2.38 [S24]
Luiz J. P. Araújo 1 2.38 [S37]
Manuel Mazzara 1 2.38 [S37]
Megha Mittal 1 2.38 [S16]
Meiyappan Nagappan 1 2.38 [S28]
Meng Yan 1 2.38 [S08]
MingWen 1 2.38 [S07]
Mohamed Wiem Mkaouer 1 2.38 [S42]
Muhammad Ahmad 1 2.38 [S37]
Nachiket Kapre 1 2.38 [S22]
Nasir Ali 1 2.38 [S12]
Nelson Sekitoleko 1 2.38 [S26]
Nuthan Munaiah 1 2.38 [S27]
Pasquale Salza 1 2.38 [S09]
Patanamon Thongtanunam 1 2.38 [S32]
Patricia Ortegon Cano 1 2.38 [S33]
Pavneet Singh Kochhar 1 2.38 [S31]
Rahul Katarya 1 2.38 [S35]
Rahul Krishna 1 2.38 [S40]
Rodrigo Morales 1 2.38 [S13]
Rohit Vashisht 1 2.38 [S36]
Romain Robbes 1 2.38 [S23]
RongxinWu 1 2.38 [S07]
Rubén Saborido 1 2.38 [S13]
Rui Abreu 1 2.38 [S24]
Salvatore Distefano 1 2.38 [S37]

2071Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

–	 Study Type

ACM—Analyze and Compare Methodologies, CS-
Case Study, CE-Controlled Experiment
ECS—Exploratory Case Study, QE—Quasi-Exper-
iment, S—Survey

–	 SDLC Activities

D—Debugging, I—Implementation, M—Mainte-
nance, O—Operations, T—Testing

–	 Project Stakeholders

D—Developers, E—Educators, EU—End-Users,
T—Testers, PM—Product Managers
PjM—Project Managers, R—Researchers, RE—
Requirements Engineers

–	 Analytics Scope

Des—Descriptive Analytics, Dia—Diagnostics Ana-
lytics
Pred—Predictive Analytics, Pres—Prescriptive
Analytics

The following taxonomy was used to assess the SDLC
contributions:

–	 The benefit is:

Absent (0) Not addressed
Weak (0.25) Implicitly addressed
Moderate (0.5) Explicitly addressed (not
detailed)
Strong (0.75) Explained with details and
implications
Complete (1) Fully explained, validated
and replicable

Table 12   (continued) Name Freq. % Ref.

Seyyed Ehsan Salamati Taba 1 2.38 [S05]
Shaohua Wang 1 2.38 [S05]
Silvana De Gyves Avila 1 2.38 [S33]
Stuart McIlroy 1 2.38 [S12]
Sunghee Lee 1 2.38 [S02]
Syed Afzal Murtaza Rizvi 1 2.38 [S36]
Tanmay Bhowmik 1 2.38 [S01]
Thushari Atapattu 1 2.38 [S06]
Tianyong Wu 1 2.38 [S10]
Tim Menzies 1 2.38 [S40]
Tse-Hsun (Peter) Chen 1 2.38 [S19]
Venera Arnaoudova 1 2.38 [S14]
Wei Wu 1 2.38 [S04]
Woo Jin Lee 1 2.38 [S02]
Xin-Li Yang 1 2.38 [S29]
Yang Liu 1 2.38 [S30]
Yepang Liu 1 2.38 [S10]
Yu QU 1 2.38 [S39]
Yuan Tian 1 2.38 [S28]
Yuanrui Fan 1 2.38 [S11]
Zahid Hussain Wani 1 2.38 [S34]
Zeinab Kermansaravi 1 2.38 [S14]
Zhi-Yuan Wan 1 2.38 [S29]

2072	 J. Caldeira et al.

1 3

Table 13   Statistics per Institution

Institution Freq. % Ref.

Queen’s University 11 26.19 [S03], [S05], [S08], [S12], [S17], [S19],
[S20], [S21], [S25], [S28], [S32]

Singapore Management University 7 16.67 [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Concordia University 4 9.52 [S03], [S19], [S25], [S32]
Zhejiang University 4 9.52 [S08], [S11], [S29], [S31]
École Polytechnique de Montréal 3 7.14 [S04], [S13], [S14]
Monash University 3 7.14 [S08], [S11], [S30]
Rochester Institute of Technology 3 7.14 [S27], [S28], [S42]
Hong Kong University of Science and Technology 2 4.76 [S07], [S10]
Nanyang Technological University 2 4.76 [S22], [S30]
University of Adelaide 2 4.76 [S06], [S20]
University of Zurich 2 4.76 [S09], [S23]
Australian National University 1 2.38 [S30]
Beihang University 1 2.38 [S31]
Bitergia 1 2.38 [S26]
Citrix 1 2.38 [S26]
Columbia University 1 2.38 [S40]
Delft University of Technology 1 2.38 [S23]
Delhi Technological University 1 2.38 [S35]
École de Technologie Supérieure 1 2.38 [S14]
ETS Montreal, University of Quebec 1 2.38 [S42]
Fondazione Bruno Kessler 1 2.38 [S18]
Free University of Bozen-Bolzano 1 2.38 [S23]
IBM 1 2.38 [S33]
Indraprastha Institute of Information Technology 1 2.38 [S16]
INESC ID 1 2.38 [S24]
INFOTEC 1 2.38 [S18]
Innopolis University 1 2.38 [S37]
Islamic University of Science and Technology 1 2.38 [S34]
Jamia Millia Islamia 1 2.38 [S36]
Kyungpook National University 1 2.38 [S02]
McGill University 1 2.38 [S14]
Mississippi State University 1 2.38 [S01]
Nanjing University 1 2.38 [S10]
NC State University 1 2.38 [S40]
Southern University of Science and Technology 1 2.38 [S10]
Universidad Rey Juan Carlos 1 2.38 [S26]
Universitá della Svizzera Italiana 1 2.38 [S09]
University of Alberta 1 2.38 [S41]
University of California 1 2.38 [S39]
University of Chinese Academy of Sciences 1 2.38 [S10]
University of Lisbon 1 2.38 [S24]
University of Melbourne 1 2.38 [S32]
University of Messina 1 2.38 [S37]
University of Newcastle 1 2.38 [S07]
University of Oulu 1 2.38 [S15]
University of Salerno 1 2.38 [S09]
University of Vale do Rio dos Sinos 1 2.38 [S38]
University of Waterloo 1 2.38 [S12]
Vrije Universiteit Brussel 1 2.38 [S09]

2073Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

Table 13   (continued)

Institution Freq. % Ref.

Washington State University 1 2.38 [S14]

Table 14   Statistics per continent and country

Freq. % Ref.

Continent
North America 23 54.76 [S01], [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17], [S18], [S19], [S20], [S21], [S25], [S26], [S27],

[S28], [S32], [S33], [S39], [S40], [S41], [S42]
Asia 17 40.48 [S02], [S06], [S07], [S08], [S10], [S11], [S16], [S22], [S24], [S28], [S29], [S30], [S31], [S34], [S35], [S36],

[S37]
Europe 7 16.67 [S09], [S15], [S18], [S23], [S24], [S26], [S37]
Oceania 7 16.67 [S06], [S07], [S08], [S11], [S20], [S30], [S32]
South America 1 2.38 [S38]
Country
Canada 16 38.1 [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17], [S19], [S20], [S21], [S25], [S28], [S32], [S41], [S42]
Singapore 9 21.43 [S06], [S08], [S11], [S22], [S24], [S28], [S29], [S30], [S31]
USA 8 19.05 [S01], [S14], [S26], [S27], [S28], [S39], [S40], [S42]
Australia 7 16.67 [S06], [S07], [S08], [S11], [S20], [S30], [S32]
China 6 14.29 [S07], [S08], [S10], [S11], [S29], [S31]
India 4 9.52 [S16], [S34], [S35], [S36]
Italy 4 9.52 [S09], [S18], [S23], [S37]
Mexico 2 4.76 [S18], [S33]
Switzerland 2 4.76 [S09], [S23]
Belgium 1 2.38 [S09]
Brazil 1 2.38 [S38]
Finland 1 2.38 [S15]
Portugal 1 2.38 [S24]
Republic of Korea 1 2.38 [S02]
Russian 1 2.38 [S37]
Spain 1 2.38 [S26]
The Netherlands 1 2.38 [S23]

2074	 J. Caldeira et al.

1 3

Table 15   Data sources findings
(frequency > 1)

Data Sources Freq. % Ref.

GitHub Repositories 10 23.81 [S02], [S06], [S09], [S10], [S13], [S23],
[S24], [S31], [S37], [S42]

Google Play Store 7 16.67 [S03], [S05], [S10], [S12], [S20], [S24], [S28]
Git Repositories 6 14.29 [S08], [S14], [S16], [S19], [S26], [S32]
BugZilla 5 11.9 [S07], [S14], [S16], [S17], [S21]
F-Droid Repository 5 11.9 [S02], [S03], [S09], [S10], [S24]
Promise Repositories 4 9.52 [S35], [S39], [S40], [S41]
Online Survey 3 7.14 [S15], [S23], [S24]
StackOverflow 3 7.14 [S22], [S29], [S30]
JAVA 2 4.76 [S35], [S38]
Maven Repositories 2 4.76 [S04], [S09]
SVN Repositories 2 4.76 [S09], [S14]
Unknown 2 4.76 [S34], [S36]
Android Issue Tracker 1 2.38 [S27]
Apache OpenOffice Issue Tracking System 1 2.38 [S18]
Apache Tomcat Archive 1 2.38 [S01]
BinTray 1 2.38 [S09]
Cassandra 1 2.38 [S33]
Chrome Releases Blog 1 2.38 [S27]
Chromium Issue Tracker 1 2.38 [S27]
CodeClimate 1 2.38 [S37]
Docker 1 2.38 [S37]
Eclise API 1 2.38 [S38]
Exception Reports 1 2.38 [S07]
Gerrit 1 2.38 [S11]
Google 1 2.38 [S09]
Google Forms 1 2.38 [S13]
HackerOne Bug Bounty Platform 1 2.38 [S27]
JCenter 1 2.38 [S09]
Jenkins 1 2.38 [S37]
JIRA 1 2.38 [S14]
Lab Computers 1 2.38 [S15]
Mailing List 1 2.38 [S26]
Mercurial Repositories 1 2.38 [S16]
MongoDB 1 2.38 [S33]
Mylyn 1 2.38 [S38]
NetBeans Source Code Repository 1 2.38 [S07]
Node 1 2.38 [S37]
Python 1 2.38 [S33]
SEACRAFT Repositories 1 2.38 [S35]
SecuriBench Archive 1 2.38 [S01]
SEnerCON Feedback Gathering System 1 2.38 [S18]
Slack 1 2.38 [S37]
Spark 1 2.38 [S33]
Team Wiki (BitBucket) 1 2.38 [S16]
Version Control Repositories 1 2.38 [S25]
Vulnerability Reports 1 2.38 [S01]

2075Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

41

23

10
9

8

4 4
3

2 2 2
1 1 1 1 1 1 1

0

10

20

30

40

A
na

ly
si
s

A
ss

oc
ia

tio
n

R
ul

es

C
la

ss
ifi

er

Lea
rn

in
g

C
lu

st
er

A
na

ly
si
s

C
or

re
la

tio
n

A
na

ly
si
s

D
es

cr
ip

tiv
e

Sta
tis

tic
s

Fea
tu

re

Ext
ra

ct
io

n

G
en

er
al

iz
ed

Suf
fix

 T
re

es

G
en

et
ic

A
lg

or
ith

m
s

H
eu

ris
tic

Fea
tu

re
s

H
yp

ot
he

si
s

Tes
tin

g

M
ix

ed
-E

ff
ec

t

M
od

el
s

N
at

ur
al

Lan
gu

ag
e
Pro

ce
ss

in
g

Pat
te

rn

Ext
ra

ct
io

n
Pro

ce
ss

M
in

in
g

R
ed

un
da

nc
y

A
na

ly
si
s

R
eg

re
ss

io
n

M
od

el
s

Top
ic

M
od

el
in

g

Fig. 12   Frequencies of studies for mining methods

10

20

30

40
An

al
yz

e a
nd

 C
om

pa
re

 M
et

ho
do

lo
gi

es

Con
tro

lle
d E

xp
er

im
en

t

Surve
y

Case S
tudy

Quasi-Experiment

Exploratory Case Study

OperationsDebugging

Testing

M
aintenanceIm

plem
entation

Ed
uc

at
or

s

En
d-

Us
er

s

Req
uir

em
en

ts
Eng

ine
ers

Projec
t M

anagersResearchers
Testers

Product Managers

Developers

Prescriptive

Predictive

Diagnostics

D
escriptive

1

1

5

9

13

19

6

7

13
26

38

1

1

1

3

3

8

17

42

1

11
38

42

Study
Types

SDLC
Activities

Project
Stakeholders

Analytics
Scope

Fig. 13   Frequencies of studies combining multiple RQs in the SLR

2076	 J. Caldeira et al.

1 3

Table 16   Systematic literature review results
Study
Type

Data
Sources

Process
Perspective

SDLC
Activities

Project
Stakeholders

Mining
Methods

Analytics
Scope

Contributions
to SDLC

Study T
ec
h
n
ic
al

D
eb
t

T
im

e
M
an
ag
em

en
t

C
o
st
s

C
o
n
tr
o
l

R
is
k
s

A
ss
es
sm

en
t

S
ec
u
ri
ty

A
n
al
y
si
s

S01 CS Vulnerability

Reports,Apache

Tomcat

Archive,SecuriBench

Archive

Post-Mortem I,T D,T Descriptive Statis-

tics,Pattern Extrac-

tion,Correlation Analysis

Des,Dia

S02 CS F-Droid Repos-

itory,GitHub

Repositories

Post-Mortem I D Descriptive Statis-

tics,Pattern Extrac-

tion,Correlation Analysis

Des,Dia

S03 CS F-Droid Reposi-

tory,Google Play

Store

Post-Mortem O D,PM Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S04 ECS Maven Repositories Post-Mortem I D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S05 ECS Google Play Store Post-Mortem O D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S06 QE,S GitHub Repositories Post-Mortem I D,PM Descriptive Statis-

tics,Pattern Extrac-

tion,Classifier Learning

Des,Dia,Pred

S07 QE NetBeans Source

Code Reposi-

tory,BugZilla,Exception

Reports

Post-Mortem I,D,M D Descriptive Statis-

tics,Pattern Extrac-

tion,Heuristic Fea-

tures,Classifier Learning

Des,Dia

S08 CS Git Repositories Post-Mortem I,D,M D Descriptive Statis-

tics,Feature Extrac-

tion,Correlation Anal-

ysis,Redundancy Analy-

sis,Classifier Learning

Des,Dia,Pred

S09 ECS F-Droid Reposi-

tory,SVN Repos-

itories,GitHub

Reposito-

ries,BinTray,JCenter,Maven

Reposito-

ries,Google

Post-Mortem I,D,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S10 ECS F-Droid Reposi-

tory,GitHub Repos-

itories,Google Play

Store

Post-Mortem I,D,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S11 QE Gerrit Post-Mortem I,D,M D Descriptive Statis-

tics,Hyphotesis Test-

ing,Redundancy Anal-

ysis,Feature Extrac-

tion,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

S12 QE Google Play Store Post-Mortem I,D,M D,PM Descriptive Statistics Des,Dia

S13 ECS,QE,S GitHub Repos-

itories,Google

Forms

Post-Mortem I,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S14 QE Git Reposito-

ries,SVN Reposito-

ries,BugZilla,JIRA

Post-Mortem I,M D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S15 QE Online Survey,Lab

Computers

Post-Mortem I D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S16 ECS Team Wiki (Bit-

Bucket),Mercurial

Repositories,Git

Reposito-

ries,BugZilla

Post-Mortem I D Descriptive Statis-

tics,Process Mining

Des,Dia

S17 QE BugZilla Post-Mortem I,M D,R Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S18 QE Apache OpenOffice

Issue Tracking

System,SEnerCON

Feedback Gathering

System

Post-Mortem I,M,O D,PM,RE Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

S19 QE Git Repositories Post-Mortem I D Descriptive Statis-

tics,Correlation Anal-

ysis,Topic Model-

ing,Regression Models

Des,Dia,Pred

S20 ECS Google Play Store Post-Mortem I,M,O D,EU,PM,R Descriptive Statis-

tics,Correlation

Analysis,Mixed-Effect

Models,Cluster Analy-

sis,Regression Models

Des,Dia,Pred

2077Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

Table 16   (continued)

S22 ECS StackOverflow Post-Mortem I,M D Descriptive Statis-

tics,Correlation Analy-

sis,Topic Modeling,Cluster

Analysis

Des,Dia

S23 ECS,S GitHub Reposito-

ries,Online Survey

Post-Mortem I,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S24 QE,S F-Droid Reposi-

tory,GitHub Repos-

itories,Google Play

Store,Online Survey

Post-Mortem I,M,T D,T Descriptive Statis-

tics,Correlation Analysis

Des,Dia

S25 ECS Version Control

Repositories

Post-Mortem I,M D Descriptive Statis-

tics,Correlation Anal-

ysis,Classifier Learn-

ing,Cluster Analysis

Des,Dia,Pred

S26 ECS Mailing List,Git

Repositories

Post-Mortem I,M D,PjM Descriptive Statistics Des,Dia

S27 ECS Android Issue

Tracker,Chrome

Releases

Blog,Chromium

Issue

Tracker,HackerOne

Bug Bounty Plat-

form

Post-Mortem I,M D,PM Descriptive Statis-

tics,Correlation Analysis

Des,Dia

S28 ECS Google Play Store Post-Mortem I,M,O D,PM Descriptive Statis-

tics,Correlation Analysis

Des,Dia

S29 ECS StackOverflow Post-Mortem I,M D,R,PjM,E Descriptive Statistics,Topic

Modeling,Genetic Algo-

rithms

Des,Dia

S30 ECS StackOverflow Post-Mortem I,M,T D Descriptive Statis-

tics,Association

Rules,Natural Language

Processing

Des,Dia,Pres

S31 ECS,S GitHub Repositories Post-Mortem I D Descriptive Statistics Des,Dia

S32 ECS Git Repositories Post-Mortem I D Descriptive Statis-

tics,Generalized Suf-

fix Trees,Correlation

Analysis,Cluster Analy-

sis,Classifier Learning

Des,Dia,Pred

S33 CS MongoDB,Python,

Spark,Cassandra

Post-Mortem I,T D,T,PM Descriptive Statis-

tics,Analysis

Des

S34 QE Unknown Post-Mortem I,M,T D,T,PM Descriptive Statis-

tics,Analysis

Des,Dia

S35 ACM Promise Reposito-

ries,JAVA,SEACRAFT

Repositories

seDsisylanAMP,T,DT,O,M,ImetroM-erP

S36 CS Unknown Post-Mortem I,T D,PM Descriptive Statistics Des,Dia

S37 ECS GitHub Repos-

itories,Jenkins,

CodeClimate,

Docker, Slack,Node

Post-Mortem I,T D,T,PM,PjM Descriptive Statistics Des

S38 CE JAVA,Eclise

API,Mylyn

Post-Mortem M,T D,PM Descriptive Statis-

tics,Analysis

Des,Dia

S39 CS Promise Reposito-

ries

Post-Mortem D,M,T D,PM Descriptive Statis-

tics,Hypothesis Test-

ing,Correlation Analysis

Des,Dia,Pred

S40 ECS Promise Reposito-

ries

Post-Mortem I,M,T D,T,PM Descriptive Statis-

tics,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

S41 CS Promise Reposito-

ries

Post-Mortem I,T D,PM Descriptive Statis-

tics,Correlation Analy-

sis,Classifier Learning

Des,Dia

S42 CS GitHub Repositories Post-Mortem I,T D,T,PM Descriptive Statis-

tics,Correlation Analysis

Des

S21 QE BugZilla Post-Mortem I,M D Descriptive Statis-

tics,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

Acknowledgements  This work was partially funded by the Portu-
guese Foundation for Science and Technology, under ISTAR’s projects
UIDB/04466/2020 and UIDP/04466/2020.

References

	 1.	 Abdellatif M, Capretz F, Ho D (2015) Software Analytics to soft-
ware practice: a systematic literature review. In: 1st International
workshop on big data software engineering, IEEE/ACM, New

York, pp 30–36. https://​doi.​org/​10.​1109/​BIGDSE.​2015.​14. https://​
www.​eng.​uwo.​ca/​Elect​rical/​facul​ty/​capre​tz_l/​docs/​publi​catio​ns/​
Tamer-​BIGDSE-​v2.​pdf

	 2.	 AlOmar EA, Mkaouer MW, Ouni A (2021) Toward the auto-
matic classification of self-affirmed refactoring. J Syst Softw
171:110821. https://​doi.​org/​10.​1016/J.​JSS.​2020.​110821

	 3.	 Anwar H, Pfahl D (2017) Towards greener software engineering
using software analytics: a systematic mapping. In: Proceedings of
43rd Euromicro conference on software engineering and advanced
applications, SEAA 2017. Institute of Electrical and Electronics

https://doi.org/10.1109/BIGDSE.2015.14
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://doi.org/10.1016/J.JSS.2020.110821

2078	 J. Caldeira et al.

1 3

Engineers Inc., pp 157–166. https://​doi.​org/​10.​1109/​SEAA.​2017.​
56

	 4.	 Avila SDG, Cano PO, Mejia AM, Moreno IS, Lepe AN (2020)
A data driven platform for improving performance assessment
of software defined storage solutions. Adv Intell Syst Comput
1071:266–275. https://​doi.​org/​10.​1007/​978-3-​030-​33547-2_​20

	 5.	 Bangash AA, Sahar H, Hindle A, Ali K (2020) On the time-
based conclusion stability of cross-project defect prediction
models. Empir Softw Eng 25:5047–5083. https://​doi.​org/​10.​1007/​
S10664-​020-​09878-9

	 6.	 Buse RPL, Zimmermann T (2010) Analytics for software develop-
ment. Tech. rep., Microsoft Research. https://​www.​micro​soft.​com/​
en-​us/​resea​rch/​wp-​conte​nt/​uploa​ds/​2016/​02/​MSR-​TR-​2010-​111.​
pdf

	 7.	 Buse RP, Zimmermann T (2012) Information needs for software
development analytics. In: Proceedings - International Conference
on Software Engineering, pp 987–996, https://​doi.​org/​10.​1109/​
ICSE.​2012.​62271​22

	 8.	 Cai KY (2002) Optimal software testing and adaptive software
testing in the context of software cybernetics. Inf Softw Technol
44(14):841–855. https://​doi.​org/​10.​1016/​S0950-​5849(02)​00108-8

	 9.	 Cai KY, Chen T, Tse T (2002) Towards research on software
cybernetics. In: 7th IEEE international symposium on high assur-
ance systems engineering, 2002. Proceedings, pp 240–241. https://​
doi.​org/​10.​1109/​HASE.​2002.​11731​29

	10.	 Capizzi A, Distefano S, Araújo LJ, Mazzara M, Ahmad M, Bobrov
E (2020) Anomaly detection in devops toolchain. Lecture notes in
computer science (including subseries Lecture notes in artificial
intelligence and Lecture notes in bioinformatics), vol 12055, pp
37–51. https://​doi.​org/​10.​1007/​978-3-​030-​39306-9_3

	11.	 Chen L, Babar MA (2011) A systematic review of evaluation of
variability management approaches in software product lines. Inf
Softw Technol 53(4):344–362

	12.	 Chen C, Xing Z, Liu Y (2019) What’s Spain’s Paris? Mining
analogical libraries from Q & A discussions. Empir Softw Eng
24(3):1155–1194. https://​doi.​org/​10.​1007/​s10664-​018-​9657-y

	13.	 Cosentino V, Izquierdo JL, Cabot J (2017) A systematic map-
ping study of software development with GitHub. IEEE Access
5:7173–7192. https://​doi.​org/​10.​1109/​ACCESS.​2017.​26823​23

	14.	 Cruz L, Abreu R, Lo D (2019) To the attention of mobile soft-
ware developers: guess what, test your app! Empir Softw Eng
24:2438–2468. https://​doi.​org/​10.​1007/​s10664-​019-​09701-0

	15.	 Dasanayake S, Markkula J, Oivo M (2014) Concerns in software
development: a systematic mapping study. In: Proceedings of
the 18th International conference on evaluation and assessment
in software engineering. Association for Computing Machinery,
pp 1–4. https://​doi.​org/​10.​1145/​26012​48.​26012​90

	16.	 Davenport TH, Harris JG, Morison R (2010) Analytics at work:
smarter decisions, better results. Harvard Business Press. http://​
disco​very.​uoc.​edu/​iii/​encore/​record/​C__​Rb104​9687__​SAnal​
ytics%​20at%​20Wor​k__​Origh​tresu​lt__​U__​X7?​lang=​spi

	17.	 D’Avila LF, Farias K, Barbosa JLV (2020) Effects of contextual
information on maintenance effort: a controlled experiment. J
Syst Softw. https://​doi.​org/​10.​1016/J.​JSS.​2019.​110443

	18.	 Dybå T, Dingsøyr T (2008) Strength of evidence in systematic
reviews in software engineering. In: ESEM’08: proceedings of
the 2008 ACM-IEEE international symposium on empirical
software engineering and measurement, pp 178–187. https://​
doi.​org/​10.​1145/​14140​04.​14140​34

	19.	 Emam KE, Koru AG (2008) A replicated survey of IT software
project failures. IEEE Softw 25(5):84–90. https://​doi.​org/​10.​
1109/​MS.​2008.​107. (ieeexplore.ieee.org/document/4602680/)

	20.	 Fan Y, Xia X, Lo D, Li S (2018) Early prediction of merged
code changes to prioritize reviewing tasks. Empir Softw Eng
23(6):3346–3393. https://​doi.​org/​10.​1007/​s10664-​018-​9602-0

	21.	 Fucci D, Turhan B (2014) On the role of tests in test-
driven development: a differentiated and partial replication.
Empir Softw Eng 19(2):277–302. https://​doi.​org/​10.​1007/​
s10664-​013-​9259-7

	22.	 Garcia CdS, Meincheim A, Faria Junior ER, Dallagassa MR, Sato
DMV, Carvalho DR, Santos EAP, Scalabrin EE (2019) Process
mining techniques and applications—a systematic mapping study.
Expert Syst Appl 133:260–295. https://​doi.​org/​10.​1016/j.​eswa.​
2019.​05.​003

	23.	 Gomes TL, Oliveira TC, Cowan D, Alencar P (2014) Mining reuse
processes. In: CIBSE 2014: proceedings of the 17th Ibero-Ameri-
can conference software engineering. Curran Associates, Pucon,
pp 179–191. https://​dblp.​org/​rec/​bib/​conf/​cibse/​Gomes​OCA14

	24.	 Guerrouj L, Kermansaravi Z, Arnaoudova V, Fung BC, Khomh
F, Antoniol G, Guéhéneuc YG (2017) Investigating the relation
between lexical smells and change- and fault-proneness: an empir-
ical study. Softw Qual J 25(3):641–670. https://​doi.​org/​10.​1007/​
s11219-​016-​9318-6

	25.	 Hassan S, Shang W, Hassan AE (2017) An empirical study of
emergency updates for top android mobile apps. Empir Softw Eng
22(1):505–546. https://​doi.​org/​10.​1007/​s10664-​016-​9435-7

	26.	 Hassan S, Tantithamthavorn C, Bezemer CP, Hassan AE (2018)
Studying the dialogue between users and developers of free apps
in the Google Play Store. Empir Softw Eng 23(3):1275–1312.
https://​doi.​org/​10.​1007/​s10664-​017-​9538-9

	27.	 IEEE Computer Society (2014) SWEBOK V3.0. No. V3.0 in 1.
IEEE Computer Society. https://​doi.​org/​10.​1234/​12345​678, http://​
www4.​ncsu.​edu/​~tjmen​zie/​cs510/​pdf/​SWEBO​Kv3.​pdf

	28.	 Izquierdo-Cortazar D, Sekitoleko N, Gonzalez-Barahona JM,
Kurth L (2017) Using metrics to track code review performance.
In: ACM international conference proceeding series. Association
for Computing Machinery, vol Part F128635, pp 214–223. https://​
doi.​org/​10.​1145/​30842​26.​30842​47

	29.	 Jha AK, Lee S, Lee WJ (2019) An empirical study of configura-
tion changes and adoption in Android apps. J Syst Softw 156:164–
180. https://​doi.​org/​10.​1016/j.​jss.​2019.​06.​095

	30.	 Jiang J, Lo D, He J, Xia X, Kochhar PS, Zhang L (2017) Why and
how developers fork what from whom in GitHub. Empirical Softw
Eng 22(1):547–578. https://​doi.​org/​10.​1007/​s10664-​016-​9436-6

	31.	 Kitchenham B, Brereton P (2013) A systematic review of system-
atic review process research in software engineering. Inf Softw
Technol 55(12):2049–2075. https://​doi.​org/​10.​1016/j.​infsof.​2013.​
07.​010

	32.	 Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey
J, Linkman S (2009) Systematic literature reviews in software
engineering—a systematic literature review. Inf Softw Technol
5:7–15

	33.	 Krishna R, Menzies T (2020) Learning actionable analytics
from multiple software projects. Empir Softw Eng 25:3468–
3500. https://​doi.​org/​10.​1007/​S10664-​020-​09843-6

	34.	 Li H, Shang W, Zou Y, Hassan E, A, (2017) Towards just-in-
time suggestions for log changes. Empir Softw Eng 22(4):1831–
1865. https://​doi.​org/​10.​1007/​s10664-​016-​9467-z

	35.	 Li H, Chen THP, Shang W, Hassan AE (2018) Studying soft-
ware logging using topic models. Empir Softw Eng 23(5):2655–
2694. https://​doi.​org/​10.​1007/​s10664-​018-​9595-8

	36.	 Liu Y, Wang J, Wei L, Xu C, Cheung SC, Wu T, Yan J, Zhang J
(2019) DroidLeaks: a comprehensive database of resource leaks
in Android apps. Empir Softw Eng 24(6):3435–3483. https://​
doi.​org/​10.​1007/​s10664-​019-​09715-8

	37.	 McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an empirical
study of frequently-updated mobile apps in the Google play
store. Empir Softw Eng 21(3):1346–1370. https://​doi.​org/​10.​
1007/​s10664-​015-​9388-2

	38.	 Menzies T, Bird C, Zimmermann T, Schulte W, Kocaganeli E
(2011) The inductive software engineering manifesto: principles

https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1007/978-3-030-33547-2_20
https://doi.org/10.1007/S10664-020-09878-9
https://doi.org/10.1007/S10664-020-09878-9
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://doi.org/10.1109/ICSE.2012.6227122
https://doi.org/10.1109/ICSE.2012.6227122
https://doi.org/10.1016/S0950-5849(02)00108-8
https://doi.org/10.1109/HASE.2002.1173129
https://doi.org/10.1109/HASE.2002.1173129
https://doi.org/10.1007/978-3-030-39306-9_3
https://doi.org/10.1007/s10664-018-9657-y
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1007/s10664-019-09701-0
https://doi.org/10.1145/2601248.2601290
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
https://doi.org/10.1016/J.JSS.2019.110443
https://doi.org/10.1145/1414004.1414034
https://doi.org/10.1145/1414004.1414034
https://doi.org/10.1109/MS.2008.107
https://doi.org/10.1109/MS.2008.107
https://doi.org/10.1007/s10664-018-9602-0
https://doi.org/10.1007/s10664-013-9259-7
https://doi.org/10.1007/s10664-013-9259-7
https://doi.org/10.1016/j.eswa.2019.05.003
https://doi.org/10.1016/j.eswa.2019.05.003
https://dblp.org/rec/bib/conf/cibse/GomesOCA14
https://doi.org/10.1007/s11219-016-9318-6
https://doi.org/10.1007/s11219-016-9318-6
https://doi.org/10.1007/s10664-016-9435-7
https://doi.org/10.1007/s10664-017-9538-9
https://doi.org/10.1234/12345678
http://www4.ncsu.edu/%7etjmenzie/cs510/pdf/SWEBOKv3.pdf
http://www4.ncsu.edu/%7etjmenzie/cs510/pdf/SWEBOKv3.pdf
https://doi.org/10.1145/3084226.3084247
https://doi.org/10.1145/3084226.3084247
https://doi.org/10.1016/j.jss.2019.06.095
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1007/S10664-020-09843-6
https://doi.org/10.1007/s10664-016-9467-z
https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1007/s10664-019-09715-8
https://doi.org/10.1007/s10664-019-09715-8
https://doi.org/10.1007/s10664-015-9388-2
https://doi.org/10.1007/s10664-015-9388-2

2079Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

for industrial data mining. In: Proceedings of the international
workshop on machine learning technologies in software engi-
neering. Association for Computing Machinery, pp 19–26.
http://​bit.​ly/​o02QZJ

	39.	 Menzies T, Minku L, Peters F (2015) The art and science of
analyzing software data; quantitative methods. In: Proceedings
of the international conference on software engineering, vol 2.
IEEE Computer Society, pp 959–960. https://​doi.​org/​10.​1109/​
ICSE.​2015.​306

	40.	 Mittal M, Sureka A (2014a) MIMANSA: process mining soft-
ware repositories from student projects in an undergraduate
software engineering course categories and subject descriptors.
Softw Eng Educ Train ICSE 2014:344–353

	41.	 Mittal M, Sureka A (2014b) Process mining software reposito-
ries from student projects in an undergraduate software engi-
neering course. In: 36th International conference on software
engineering, ICSE Companion 2014—proceedings. Association
for Computing Machinery, pp 344–353. https://​doi.​org/​10.​1145/​
25910​62.​25911​52

	42.	 Mohagheghi P, Conradi R (2007) Quality, productivity and eco-
nomic benefits of software reuse: a review of industrial stud-
ies. Empir Softw Eng 12(5):471–516. https://​doi.​org/​10.​1007/​
s10664-​007-​9040-x

	43.	 Mohagheghi P, Jorgensen M (2017) What contributes to the
success of IT projects? Success factors, challenges and lessons
learned from an empirical study of software projects in the
Norwegian public sector. In: 2017 IEEE/ACM 39th interna-
tional conference on software engineering companion (ICSE-C).
IEEE, pp 371–373. https://​doi.​org/​10.​1109/​ICSE-C.​2017.​146,
http://​ieeex​plore.​ieee.​org/​docum​ent/​79653​62/

	44.	 Morales-Ramirez I, Kifetew FM, Perini A (2018) Speech-acts
based analysis for requirements discovery from online discus-
sions. Inf Syst 86:94–112. https://​doi.​org/​10.​1016/j.​is.​2018.​08.​
003

	45.	 Munaiah N, Meneely A (2016) Vulnerability severity scoring
and bounties: why the disconnect. In: SWAN 2016 - Proceed-
ings of the 2nd international workshop on software analytics,
co-located with FSE 2016. Association for Computing Machin-
ery, pp 8–14. https://​doi.​org/​10.​1145/​29892​38.​29892​39

	46.	 Nakamoto S (2009) Bitcoin: A Peer-to-Peer Electronic Cash
System. Tech. rep., http://​www.​bitco​in.​org, www.​bitco​in.​org

	47.	 Nayebi M, Ruhe G, Mota RC, Mufti M (2016) Analytics for
software project management—wWhere are we and where do
we go? In: Proceedings—2015 30th IEEE/ACM international
conference on automated software engineering workshops,
ASEW 2015. Institute of Electrical and Electronics Engineers,
pp 18–21. https://​doi.​org/​10.​1109/​ASEW.​2015.​28

	48.	 Poncin W, Serebrenik A, Brand MVD (2011) Process mining
software repositories. In: 2011 15th European conference on
software maintenance and reengineering, pp 5–14. https://​doi.​
org/​10.​1109/​CSMR.​2011.5

	49.	 Prana GAA, Treude C, Thung F, Atapattu T, Lo D (2019)
Categorizing the content of GitHub README files. Empir
Softw Eng 24(3):1296–1327. https://​doi.​org/​10.​1007/​
s10664-​018-​9660-3

	50.	 Qu Y, Yin H (2021) Evaluating network embedding techniques’
performances in software bug prediction. Empir Softw Eng.
https://​doi.​org/​10.​1007/​S10664-​021-​09965-5

	51.	 Rakha MS, Shang W, Hassan AE (2016) Studying the needed
effort for identifying duplicate issues. Empir Softw Eng
21(5):1960–1989. https://​doi.​org/​10.​1007/​s10664-​015-​9404-6

	52.	 Rakha MS, Bezemer CP, Hassan AE (2018) Revisiting the per-
formance of automated approaches for the retrieval of duplicate
reports in issue tracking systems that perform just-in-time dupli-
cate retrieval. Empir Softw Eng 23(5):2597–2621. https://​doi.​
org/​10.​1007/​s10664-​017-​9590-5

	53.	 Rana G, Haq EU, Bhatia E, Katarya R (2020) A study of hyper-
parameter tuning in the field of software analytics. In: Proceed-
ings of the 4th international conference on electronics, commu-
nication and aerospace technology, ICECA 2020, pp 455–459.
https://​doi.​org/​10.​1109/​ICECA​49313.​2020.​92976​13

	54.	 Rodriguez D, Herraiz I, Harrison R (2012) On software engineer-
ing repositories and their open problems. In: 2012 1st Interna-
tional workshop on realizing AI synergies in software engineer-
ing, RAISE 2012—pProceedings, pp 52–56. https://​doi.​org/​10.​
1109/​RAISE.​2012.​62279​71

	55.	 Saborido R, Morales R, Khomh F, Guéhéneuc YG, Antoniol G
(2018) Getting the most from map data structures in Android.
Empir Softw Eng 23(5):2829–2864. https://​doi.​org/​10.​1007/​
s10664-​018-​9607-8

	56.	 Salza P, Palomba F, Nucci DD, D’uva C, De Lucia A, Ferrucci F
(2018) Do developers update third-party libraries in mobile apps.
In: Proceedings of the 26th conference on program comprehen-
sion, vol 12. Association for Computing Machinery, pp 255–265

	57.	 Sawant AA, Robbes R, Bacchelli A (2019) To react, or not to
react: patterns of reaction to API deprecation. Empir Softw Eng
24(6):3824–3870. https://​doi.​org/​10.​1007/​s10664-​019-​09713-w

	58.	 Sultana KZ, Williams BJ, Bhowmik T (2019) A study exam-
ining relationships between micro patterns and security vul-
nerabilities. Softw Qual J 27(1):5–41. https://​doi.​org/​10.​1007/​
s11219-​017-​9397-z

	59.	 Taba SES, Keivanloo I, Zou Y, Wang S (2017) An exploratory
study on the usage of common interface elements in android
applications. J Syst Softw 131:491–504. https://​doi.​org/​10.​
1016/j.​jss.​2016.​07.​010

	60.	 Tapscott D, Tapscott A (2016) Blockchain revolution: how the
technology behind bitcoin is changing money, business, and the
world. Portfolio

	61.	 Thongtanunam P, Shang W, Hassan AE (2019) Will this clone be
short-lived? Towards a better understanding of the characteristics
of short-lived clones. Empir Softw Eng 24(2):937–972. https://​
doi.​org/​10.​1007/​s10664-​018-​9645-2

	62.	 Tian Y, Nagappan M, Lo D, Hassan AE (2015) What are the
characteristics of high-rated apps? A case study on free Android
Applications. In: 2015 IEEE 31st International conference on
software maintenance and evolution, ICSME 2015—proceedings.
Institute of Electrical and Electronics Engineers, pp 301–310.
https://​doi.​org/​10.​1109/​ICSM.​2015.​73324​76

	63.	 Tim Menzies LW, Zimmermann T (2016) Perspectives on data
science for software engineering. Elsevier, Amsterdam. https://​
doi.​org/​10.​1016/​C2015-0-​00521-4

	64.	 Van Der Aalst W (2016) Process mining: data science in
action, 2nd edn. Springer, Berlin. https://​doi.​org/​10.​1007/​
978-3-​662-​49851-4

	65.	 Van Der Aalst W, Adriansyah A, De Medeiros AKA, Arcieri F,
Baier T, Blickle T, Bose JC, Van Den Brand P, Brandtjen R, Buijs
J, Burattin A, Carmona J, Castellanos M, Claes J, Cook J, Costan-
tini N, Curbera F, Damiani E, De Leoni M, Delias P, Van Dongen
BF, Dumas M, Dustdar S, Fahland D, Ferreira DR, Gaaloul W,
Van Geffen F, Goel S, Günther C, Guzzo A, Harmon P, Ter Hof-
stede A, Hoogland J, Ingvaldsen JE, Kato K, Kuhn R, Kumar A,
La Rosa M, Maggi F, Malerba D, Mans RS, Manuel A, McCreesh
M, Mello P, Mendling J, Montali M, Motahari-Nezhad HR,
Zur Muehlen M, Munoz-Gama J, Pontieri L, Ribeiro J, Rozinat
A, Seguel Pérez H, Seguel Pérez R, Sepúlveda M, Sinur J, Soffer
P, Song M, Sperduti A, Stilo G, Stoel C, Swenson K, Talamo M,
Tan W, Turner C, Vanthienen J, Varvaressos G, Verbeek E, Ver-
donk M, Vigo R, Wang J, Weber B, Weidlich M, Weijters T, Wen
L, Westergaard M, Wynn M (2012) Process mining manifesto.
Lecture notes in business information processing 99 (LNBIP), pp
169–194. https://​doi.​org/​10.​1007/​978-3-​642-​28108-2_​19

http://bit.ly/o02QZJ
https://doi.org/10.1109/ICSE.2015.306
https://doi.org/10.1109/ICSE.2015.306
https://doi.org/10.1145/2591062.2591152
https://doi.org/10.1145/2591062.2591152
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1109/ICSE-C.2017.146
http://ieeexplore.ieee.org/document/7965362/
https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1145/2989238.2989239
http://www.bitcoin.org
http://www.bitcoin.org
https://doi.org/10.1109/ASEW.2015.28
https://doi.org/10.1109/CSMR.2011.5
https://doi.org/10.1109/CSMR.2011.5
https://doi.org/10.1007/s10664-018-9660-3
https://doi.org/10.1007/s10664-018-9660-3
https://doi.org/10.1007/S10664-021-09965-5
https://doi.org/10.1007/s10664-015-9404-6
https://doi.org/10.1007/s10664-017-9590-5
https://doi.org/10.1007/s10664-017-9590-5
https://doi.org/10.1109/ICECA49313.2020.9297613
https://doi.org/10.1109/RAISE.2012.6227971
https://doi.org/10.1109/RAISE.2012.6227971
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1007/s10664-019-09713-w
https://doi.org/10.1007/s11219-017-9397-z
https://doi.org/10.1007/s11219-017-9397-z
https://doi.org/10.1016/j.jss.2016.07.010
https://doi.org/10.1016/j.jss.2016.07.010
https://doi.org/10.1007/s10664-018-9645-2
https://doi.org/10.1007/s10664-018-9645-2
https://doi.org/10.1109/ICSM.2015.7332476
https://doi.org/10.1016/C2015-0-00521-4
https://doi.org/10.1016/C2015-0-00521-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-28108-2_19

2080	 J. Caldeira et al.

1 3

	66.	 Vashisht R, Rizvi SAM (2021) An empirical study of heterogene-
ous cross-project defect prediction using various statistical tech-
niques. Int J e-Collaboration 17:55–71. https://​doi.​org/​10.​4018/​
IJEC.​20210​40104

	67.	 Wani ZH, Bhat JI, Giri KJ (2021) A generic analogy-centered
software cost estimation based on differential evolution explo-
ration process. Comput J 64:462–472. https://​doi.​org/​10.​1093/​
COMJNL/​BXAA1​99

	68.	 Wohlin C (2014) Guidelines for snowballing in systematic litera-
ture studies and a replication in software engineering. In: Pro-
ceedings of the 18th international conference on evaluation and
assessment in software engineering (EASE ’14), pp 1–10. https://​
doi.​org/​10.​1145/​26012​48.​26012​68

	69.	 Wu R, Wen M, Cheung SC, Zhang H (2018) ChangeLoca-
tor: locate crash-inducing changes based on crash reports.
Empir Softw Eng 23(5):2866–2900. https://​doi.​org/​10.​1007/​
s10664-​017-​9567-4

	70.	 Wu W, Khomh F, Adams B, Guéhéneuc YG, Antoniol G (2016)
An exploratory study of api changes and usages based on apache
and eclipse ecosystems. Empir Softw Eng 21(6):2366–2412.
https://​doi.​org/​10.​1007/​s10664-​015-​9411-7

	71.	 Yan M, Xia X, Lo D, Hassan AE, Li S (2019) Characterizing and
identifying reverted commits. Empir Softw Eng 24(4):2171–2208.
https://​doi.​org/​10.​1007/​s10664-​019-​09688-8

	72.	 Yang XL, Lo D, Xia X, Wan ZY, Sun JL (2016) What security
questions do developers ask? A large-scale study of stack overflow
posts. J Comput Sci Technol 31(5):910–924. https://​doi.​org/​10.​
1007/​s11390-​016-​1672-0. (archive.org/details/stackexchange)

	73.	 Yang H, Chen F, Aliyu S (2017) Modern software cybernetics:
new trends. J Syst Softw 124:169–186. https://​doi.​org/​10.​1016/j.​
jss.​2016.​08.​095

	74.	 Ye D, Xing Z, Kapre N (2017) The structure and dynamics of
knowledge network in domain-specific Q &A sites: a case study
of stack overflow. Empir Softw Eng 22(1):375–406. https://​doi.​
org/​10.​1007/​s10664-​016-​9430-z

	75.	 Zannier C, Melnik G, Maurer F (2006) On the success of empiri-
cal studies in the international conference on software engineer-
ing. In: Proceedings of international conference on software engi-
neering, pp 341–350. https://​doi.​org/​10.​1145/​11342​85.​11343​33

	76.	 Zhang D, Han S, Dang Y, Lou JG, Zhang H, Research Asia M,
Xie T (2013a) Software analytics in practice. IEEE Softw. http://​
chann​el9.​msdn

	77.	 Zhang D, Han S, Dang Y, Lou JG, Zhang H, Xie T (2013b) Soft-
ware analytics in practice. IEEE Softw 30(5):30–37. https://​doi.​
org/​10.​1109/​MS.​2013.​94

	78.	 Zhang L, Tian JH, Jiang J, Liu YJ, Pu MY, Yue T (2018) Empiri-
cal research in software engineering—a literature survey. J
Comput Sci Technol 33(5):876–899. https://​doi.​org/​10.​1007/​
s11390-​018-​1864-x

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.4018/IJEC.2021040104
https://doi.org/10.4018/IJEC.2021040104
https://doi.org/10.1093/COMJNL/BXAA199
https://doi.org/10.1093/COMJNL/BXAA199
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1007/s10664-015-9411-7
https://doi.org/10.1007/s10664-019-09688-8
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1016/j.jss.2016.08.095
https://doi.org/10.1016/j.jss.2016.08.095
https://doi.org/10.1007/s10664-016-9430-z
https://doi.org/10.1007/s10664-016-9430-z
https://doi.org/10.1145/1134285.1134333
http://channel9.msdn
http://channel9.msdn
https://doi.org/10.1109/MS.2013.94
https://doi.org/10.1109/MS.2013.94
https://doi.org/10.1007/s11390-018-1864-x
https://doi.org/10.1007/s11390-018-1864-x

	Software Development Analytics in Practice: A Systematic Literature Review
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Related Work

	3 Research Methodology
	3.1 Planning the Review
	3.1.1 Research Questions
	3.1.2 Search Strategy
	3.1.3 Selection Criteria
	3.1.4 Quality Assessment
	3.1.5 Data Extraction
	3.1.6 Data Synthesis

	3.2 Conducting the Review
	3.2.1 Execute Search
	3.2.2 Apply Quality Assessment Criteria

	4 Document the Review
	4.1 Demographics
	4.2 Analysis and Findings
	4.2.1 RQ1. What Type of Empirical Studies have been Conducted?
	4.2.2 RQ2: What are the Main Data Sources Used for Software Development Related Studies?
	4.2.3 RQ3: What Type of ProcessProject Perspective Analysis was Conducted?
	4.2.4 RQ4: What are the SDLC Activities Mostly Studied?
	4.2.5 RQ5: Who were the Target Stakeholders of These Studies?
	4.2.6 RQ6. What are the main mining methods being used?
	4.2.7 RQ7: Which TypeForm of Analytics was Applied?
	4.2.8 RQ8. What were the relevant contributions to the SDLC?

	4.3 Summary
	4.4 Threats to Validity
	4.4.1 Construct Validity
	4.4.2 Internal Validity
	4.4.3 External Validity
	4.4.4 Conclusion Validity

	5 Conclusions
	5.1 Call for Action

	Appendices
	Appendix 1: Data Extraction
	Selection Process

	Appendix 2: Studies List
	Comments on Studies

	General Statistics
	Appendix 3: Studies Appraisal
	Acknowledgements
	References

