
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2023) 30:2041–2080 
https://doi.org/10.1007/s11831-022-09864-y

REVIEW ARTICLE

Software Development Analytics in Practice: A Systematic Literature 
Review

João Caldeira1   · Fernando Brito e Abreu1   · Jorge Cardoso2,3   · Rachel Simões4   · Toacy Oliveira4   · 
José Pereira dos Reis5 

Received: 26 March 2022 / Accepted: 19 November 2022 / Published online: 10 January 2023 
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023

Abstract
Software development analytics is a research area concerned with providing insights to improve product deliveries and 
processes. Many types of studies, data sources and mining methods have been used for that purpose. This systematic lit-
erature review aims at providing an aggregate view of the relevant studies on Software Development Analytics in the past 
decade, with an emphasis on its application in practical settings. Definition and execution of a search string upon several 
digital libraries, followed by a quality assessment criteria to identify the most relevant papers. On those, we extracted a set 
of characteristics (study type, data source, study perspective, development life-cycle activities covered, stakeholders, mining 
methods, and analytics scope) and classified their impact against a taxonomy. Source code repositories, exploratory case 
studies, and developers are the most common data sources, study types, and stakeholders, respectively. Testers also get mod-
erate attention from researchers. Product managers’ concerns are being addressed frequently and project managers are also 
present but with less prevalence. Mining methods are rapidly evolving, as reflected in their identified long list. Descriptive 
statistics are the most usual method followed by correlation analysis. Being software development an important process in 
every organization, it was unexpected to find that process mining was present in only one study. Most contributions to the 
software development life cycle were given in the quality dimension. Time management and costs control were less preva-
lent. The analysis of security aspects is even more reduced, however, evidences suggest it is an increasing topic of concern. 
Risk management contributions are also scarce. There is a wide improvement margin for software development analytics 
in practice. For instance, mining and analyzing the activities performed by software developers in their actual workbench, 
i.e., in their IDEs. Together with mining developers’ behaviors, based on the evidences and trend, in a short term period we 
expect an increase in the volume of studies related with security and risks management.
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1  Introduction

Defining new processes and allocating the right resources, 
particularly for large organizations, is a challenging 
task for software project managers, primarily because it 
requires acquaintance on existing processes and tools, the 
understanding of different stakeholders, and the coordi-
nation of technical expertise in multiple domains [38]. 
Failing to properly manage these various aspects, namely 
when decisions are based on “gut feeling” (often dubbed 
“personal experience from past projects”) may cause soft-
ware development projects to produce hard to maintain 
technical artifacts, to surpass budget and schedule, and 
deliver defective products [19, 43].

The Software Development Analytics (SDA) research 
field aims at mitigating the aforementioned risks by pro-
viding the stakeholders’ decision-making process with 
structured data-driven pieces of evidence, such as insights 
on software products and processes.

1.1 � Motivation

The term “software analytics” (SA) emerged naturally 
expressing the work of several research groups aiming 
to expand the traditional scope on analyzing software 
artifacts by means of mining software repositories [77]. 
These groups conducted cutting-edge research and tech-
nology innovation in an interdisciplinary area that spans 
across big data, machine learning, systems, and software 
engineering. This approach led software practitioners to 
perform data exploration and analysis in order to obtain 
insightful and actionable information for completing vari-
ous tasks around software systems, software users, and 
software development processes [76].

Software Development Analytics (SDA), the adoption 
of analytics methods with the focus on the management of 
software development projects, was proposed in [6]. It dif-
fers from software cybernetics, which is a subdivision of 
“cybernetics” in the domain of software engineering [73]. 
It references the description of “cybernetics” by Wiener, 
if software is regarded as part of the machine, and can be 
defined simply as communication and control in software. 
However, most researchers in the area believe software 
cybernetics is more diverse in scope. In fact, it is described 
as the interplay between software or software behaviour 
and control [8]. In its simplest form, the field of software 
cybernetics treated software problems and control prob-
lems in an integrated way [9].

In turn, SDA is broader in its scope and based on a 
structured framework to identify adequate resources, ask 
meaningful questions, collect and analyze information 

properly, provide insights to the stakeholders and finally 
to identify the benefits for the software development life-
cycle, either by looking at its past, present or future per-
spectives [6]. Although a few aspects of software cyber-
netics may seem to overlap with SDA, for instance, the 
software development activities, the mining method or 
the type of study, many others are missing, such as the 
stakeholders, the analytics scope and more importantly, 
the potential contributions towards the relevant properties 
of software projects and where those can effectively sup-
port the decisions taken by managers.

Since the time analytics was proposed for the prac-
tice of developing software, a vast amount of literature 
was produced presenting stakeholders with new ways of 
improving the efficiency and effectiveness in developing 
software products, by providing insights on how to stream-
line the processes or to optimize resource allocation [1].

1.2 � Contributions

A decade has elapsed since the first discussions on meth-
odologies, techniques and tools to boost the adoption of 
analytics in the software development practice. However, 
there have been a small number of reports on the practice 
impact or benefits that software development analytics 
results have created on software development [77]. This 
systematic literature review (SLR) identifies, analyzes and 
aggregates the relevant primary studies in this period, fol-
lowing a well defined protocol, aligned with the best prac-
tices [18, 32]. Its main objectives are to:

–	 summarize the main types of empirical studies per-
formed, target software life cycle activities, and cor-
responding data sources;

–	 identify the mining methods and analytics that were 
applied;

–	 evaluate the contributions of the selected primary stud-
ies;

–	 define a taxonomy to classify the impact provided by 
each primary study on software development dimen-
sions such as: quality/technical debt, time, costs, risks 
and security.

This paper is organized as follows: Sect. 2 provides back-
ground related to the research area and emphasizes the 
differences between this and previous systematic reviews 
in the domain. We outline the research methodology and 
systematic review planning in Sect. 3, present the system-
atic review execution, data analysis, results discussion and 
threats to validity in Sect. 4, and the concluding comments 
appear in Sect. 5.
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2 � Background

Mining software repositories is currently a widespread 
method to gather insights from the software develop-
ment process [23, 40, 48]. As these methods evolved, the 
software engineering practice took advantage of lessons 
learned and applied them in real live scenarios [39]. The 
last decade has seen the birth of a multitude of analyt-
ics related companies, solutions and methodologies [39, 
48, 63], often powered by machine learning techniques. 
It was also a period where process mining saw bound-
less adoption in several business domains [22, 64, 65]. 
Both approaches, machine learning and process mining, 
are nowadays being used to reduce the costs of producing 
software products, to improve their quality, reduce time-
to-market, and support the decision making-process.

2.1 � Related Work

Many SLRs have been published in the field of software 
engineering [32]. However, the ones addressing SDA con-
cerns, from a holistic perspective, are scarce and often 
insufficiently detailed, since several aspects we deem 
relevant to advance the current state of the art are lack-
ing or did not have exhaustive scrutiny. Notwithstanding, 
we briefly describe hereinafter all the systematic reviews 
whose scope somehow intersects the usual topics of SDA.

A SLR covering primary studies from 2000 to 2014, 
aiming to identify gaps in knowledge and open research 
areas in SA was presented in [1]. It considered 19 pri-
mary studies out of 135 and the authors concluded that 
the practitioners who benefited most from SA studies were 
developers, testers, project managers (PM), portfolio man-
agers, and higher management, with 47% of the consid-
ered studies supporting only developers. Maintainability 
and reverse engineering, team collaboration and dash-
boards, incident management and defect prediction, the 
SA platform, and software effort estimation were among 
the domains mostly studied, with 47% of them analyzing 
only one artifact. Based on their analysis, since most of the 
research addresses only the low-level analytics of source 
code, the authors recommended researchers to use more 
datasets, to achieve higher confidence level in the results. 
They also suggested to target higher-level business deci-
sion making profiles, like portfolio management, market-
ing strategy, and sales directions.

A survey of the publicly available repositories and 
the classification of the most common ones is presented 
in [54]. Authors also discussed the problems faced by 
researchers when applying machine learning or statistical 
techniques to them. The conclusions highlight the fact that 

some of the problems, such as outliers or noise, have been 
extensively studied in software engineering, whilst others 
need further research. They authors pointed out the need 
of further research work to deal with the imbalance and 
data shifting from the machine learning point of view and 
replication of primary studies.

A mapping study on the investigation of frequently 
applied empirical methods, targeted research purposes, used 
data sources, and applied data processing approaches and 
tools in empirical software engineering (ESE) was reported 
in [78]. The goal was to identify new trends and obtain 
interesting observations of ESE across different sub-fields 
of software engineering on 538 selected articles from Janu-
ary 2013 to November 2017. The authors observed that the 
trend of applying empirical methods in software engineering 
is continuously increasing and the most commonly applied 
methods are experiments, case studies and surveys, with 
open source projects being frequently used as data sources.

A systematic mapping study aiming at identifying the 
quantity, topic, and empirical methods used, targeting the 
analysis of how software development practices are influ-
enced by the use of a distributed social coding platform like 
GitHub, was presented in [13]. The authors assessed 80 
publications from 2009 to 2016, and the results showed that 
most works focus on the interaction around coding-related 
tasks and project communities. They also identified some 
concerns about how reliable were those results based on 
the fact that, overall, papers used small data sets and poor 
sampling techniques, employed a scarce variety of method-
ologies and/or were hard to replicate. As a conclusion, they 
attested the high activity of research work around the field 
of open source collaboration, identified shortcomings and 
proposed actions to mitigate them.

A systematic mapping study providing an overview of 
the concerns addressed in the different phases of the soft-
ware development life cycle (SDLC), was published in [15]. 
Results are reported from different viewpoints and conclu-
sions highlight that there is a considerable variation in the 
use of terminologies and addressing concerns in different 
phases of the SDLC.

Inspired by the increasing usage of data analytics in 
all areas of science and engineering, a systematic map-
ping study, aiming to investigate the usage of different 
types of analytics for software project management was 
presented in [47]. The authors analyzed the accessibility 
of the data, as well as the degree of validation reported in 
the final 115 studies selected for appraisal. Results pro-
vided evidences that the majority of studies were focusing 
on predictive and prescriptive analytics, with almost half 
of the studies being essentially predictive. When compar-
ing information versus insight as the direction of analyt-
ics, the authors found that information oriented analyt-
ics (descriptive and predictive) had a greater number of 
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related studies (60% of papers) than analytics searching 
for insight (diagnostic or prescriptive). As a final remark, 
their systematic mapping findings was compared with the 
results obtained by [7].

A systematic mapping study published in [3] aims at 
providing an overview of the sub-domains, contribution 
types, research types, research methods and identify the 
role of software analytics in the field of “green software 
engineering”. Findings show, that 163 papers out of the 
260 initially found on digital libraries, used software ana-
lytical methods like statistical analysis and static analy-
sis. Furthermore, only 11 out of the 50 papers kept for 
final data extraction, used software analytics techniques 
to foster green software engineering. Results revealed the 
need to develop new/improved automated software ana-
lytics tools for software practitioners, along with metrics 
explaining the correlation between energy usage and other 
quality attributes.

Our SLR aims to expand the existing knowledge about 
SDA, by adapting and extending the data perspectives, 
dimensions, and concerns identified and used by the 
above works. The target properties we deem as most 
important for a primary study to be considered relevant 
in this SLR are the following:

–	 Quality. To assess the delivery of a good product or 
project outcome.

–	 Scope. To evaluate the meeting of requirements and 
objectives.

–	 Time. To track the project delivering on time.
–	 Cost. To manage the delivery within estimated cost 

and effort.
–	 Reusability. The use of existing assets in some form 

within the software product development process.
–	 Maintainability. To asses the degree to which an 

application is understood, repaired, or enhanced.
–	 Evolvability. Used to describe a multifaceted quality 

attribute to evaluate a software system’s ability to eas-
ily accommodate future changes.

–	 Performance. To measure how effective a software 
system is with respect to the allocation of resources 
and correspondent time constraints.

–	 Security. A cross-cutting appraise that takes into 
account mechanisms, such as access control, and 
robust design to prevent software attacks.

–	 Risk. To address the possibility that one or more of 
the above properties are exposed to such levels of 
uncertainty that may lead them to produce undesired 
outcomes.

Based on this set, we propose a taxonomy to classify 
primary studies.

3 � Research Methodology

In contrast to a non-structured review process, a SLR 
reduces bias and follows a precise and rigorous sequence 
of methodological steps to research literature [31, 68]. A 
SLR relies on a well-defined and evaluated review proto-
cols to search, extract, analyze, and document results as 
stages. This section describes the methodology applied 
for those activities.

3.1 � Planning the Review

3.1.1 � Research Questions

This SLR is driven by the following research questions:

RQ1. What type of empirical studies have been conducted 
in SDA?

Justification. The list of the main types of studies 
reported in SDA literature can provide a comprehensive 
view, both for practitioners and researchers, not only to 
identify areas of opportunity, but also to optimize estab-
lished methods.

RQ2. What are the main data sources used for SDA related 
studies?

Justification. Identifying those data sources is help-
ful, to provide soundness to the corresponding studies, to 
facilitate replication, and to stimulate the appearance of 
new datasets to address knowledge gaps in the field.

RQ3. What type of process/project perspective analysis was 
conducted?

Justification. It refers to the ability to identify if the 
studies are being done before (pre-mortem) or after (post-
mortem) a process/project is finished. While the latter is 
more frequent, namely due to the use of existing software 
repositories, a pre-mortem perspective can add additional 
value in the decision making process, as taking corrective 
actions on a timely manner is fundamental to keep projects 
or processes on track.

RQ4. What are the most studied SDLC activities?
Justification. Understanding what SDLC activities 

are targeted the most (and those that are not), will help 
practitioners identify where most concerns and challenges 
are within the software development practice. It can also 
contribute to open new research streams to foster a deeper 
understanding of the complete SDLC.
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RQ5. Who were the target stakeholders of these studies?
Justification. Software projects are risky to conduct and 

continue to be difficult to predict [6]. SDA in practice, holds 
out the promise to provide decision-makers with data-driven 
evidences in order to better manage risk, improve efficiency 
and effectiveness on development projects. Studies should 
address the needs of different stakeholders. Identifying those 
beneficiaries is vital to understand if the right tools, methods 
and insights are reaching the ones that most need support on 
their daily activities.

RQ6. What are the main mining methods being used?
Justification. Assessing the types of mining methods 

utilized helps to comprehend deeper the goals of past and 
current research, the limitations of their methods, benefits 
and conclusions and, highlight opportunities for novel 
approaches in future research.

RQ7. Which type/form of analytics was applied?
Justification. When exploring large volumes of data 

and many types of metrics, one may exploit different lev-
els of analytics; descriptive/diagnostics, predictive and 
prescriptive [16]. Providing stakeholders in the develop-
ment process with deep insights and potentially prescrib-
ing actions to take under certain circumstances is desirable. 
Predicting the future and prescribing actions are advanced 
forms of analytics which researchers and practitioners in the 
software development domain are expected to use.

RQ8. What were the relevant contributions to the SDLC ?
Justification. On every single software development 

study, we should have clear benefits identified, either from 
using a new tool or by improving a process using a specific 
method. Failing to do so, reduces substantially the interest 
we may find in that literature and shortens the applicability 
of those methods in the field. SDA in practice is expected to 
contribute at least (but not limited to) to the following areas 
of concern in a software project: technical debt/quality, 
costs, time, risk and security.

3.1.2 � Search Strategy

Search Terms. Based on the research questions, keywords 
were extracted and used to search the primary study sources. 
The search string included the main terms from the topics 
being researched, including synonyms, related items and 
alternative spelling. It is based on the same strategy used by 
[11] and is presented as follows:

(“software analytics” OR “software development ana-
lytics”) AND (“process mining” OR “data mining” 
OR “big data” OR “data science”) AND (“study” OR 

“empirical” OR “evidence based” OR “experimen-
tal” OR “in vivo”)

Digital Libraries Searched. A significant phase in a SLR 
is the search for relevant literature within the domain under 
study. To search for all the available literature pertinent to 
our research questions, in addition to some articles we added 
manually, the following digital libraries were queried:

–	 ACM Digit​al Libra​ry
–	 IEEE Xplore
–	 Scien​ceDir​ect
–	 Scopus
–	 Sprin​gerLi​nk
–	 Web of Scien​ce
–	 Wiley​ Online
–	 Googl​e Schol​ar

Publications Time Frame. As mentioned earlier, the SDA 
research field emerged approximately a decade ago. Since 
then, as studies have gained a more structured and formal 
approach, it makes sense to only account for publications in 
journals, conferences papers, workshops and book chapters, 
starting from January, 1st of 2010 till the end of 2021.

3.1.3 � Selection Criteria

We selected the above libraries based on the eagerness of 
collecting as many articles/papers as possible, not only 
because they are recognized as the most representative for 
Software Engineering research. Google Scholar was selected 
to account for articles eventually not yet published, but also 
relevant to the software development domain.

Search Stages Overview The outputs of the process fol-
lowed to conduct the search is depicted in Fig. 8 in Appen-
dix 1. It compounds 4 sequential stages, which are described 
as:

Stage 1—Retrieve automatically results from the digital 
libraries The referred libraries were searched using the spe-
cific syntax of each database. The search was configured in 
each repository to select only papers carried out within the 
prescribed period. The automatic search was later comple-
mented by a manual search, according to the guidelines of 
Wohlin [68].

Stage 2—Read titles and abstracts to identify potentially 
relevant studies Identification of potentially relevant studies 
based on the analysis of title and abstract. Studies that are 
clearly irrelevant to the search and duplicates were discarded 
across the digital libraries. If there was any doubt about 

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://www.scopus.com
https://link.springer.com
https://www.webofknowledge.com
https://onlinelibrary.wiley.com
https://scholar.google.com
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whether a study should be included or not, it was included 
for consideration in a later stage.

Stage 3—Apply inclusion and exclusion criteria on read-
ing the introduction, methods and conclusion Selected stud-
ies in previous stages were reviewed, by reading the intro-
duction, methodology section and conclusion. Afterwards, 
exclusion and inclusion criteria were applied as defined in 
Table 1. At this stage, in case of doubt preventing a conclu-
sion, the study was read in its entirety.

Stage 4—Obtain primary studies and assess them - A 
list of primary studies was obtained and later submitted to 
critical examination using the 13 quality assessment criteria 
which is set out in Table 2.

3.1.4 � Quality Assessment

The strategy to evaluate the quality of the studies is based 
on a checklist with thirteen criteria. The criteria were 
based on good practices for conducting empirical research 
[32] and in the Critical Appraisal Skills Programme 
(CASP) used in different types of publications [18].

The criteria developed to assess quality covered four 
main quality issues considered necessary when evaluating 
primary papers:

–	 Reporting. Three criteria (QC1-QC3) assess if the 
rationale, goals and context have been clearly stated.

–	 Rigor. Five criteria (QC4-QC8) evaluate if a meticu-
lous and convenient approach have been applied.

Table 1   Exclusion and inclusion criteria applied at Stage 3

Criterion Description

Exclusion criteria (EC)
 EC1 Studies published before 2010
 EC2 Studies not written in English
 EC3 Studies not related to the software development process
 EC4 Studies not supported by data collected on any well designed experiment or did not use empirical data from a third 

party
 EC5 Studies merely theoretical or based on expert opinion without locating a specific experience, such as: editorials, pref-

aces, summaries of articles, interviews, news, analysis/reviews, readers’ letters, summaries of tutorials, workshops, 
panels, round tables, keynotes and poster sessions

 EC6 Studies aiming only at describing new development tools or works with the goal of simply assessing and/or validating 
new analytical methods without a clear statement to the benefits they may provide for the SDLC

Inclusion criteria (IC)
 IC1 Publications should be “journal” or “conference” or “workshop” or “book”
 IC2 Works that put validated analytical methods into practice with the goal of understanding and/or improving the software 

development process
 IC3 Articles that clearly addressed any of the analytics depth (RQ7) and provided benefits for the SDLC on any dimension 

identified in RQ8

Table 2   Quality criteria Criterion Description

QC1 Is the paper based on research (or merely a “lessons learned” report based on expert opinion)?
QC2 Is there a clear statement of the aims of the research?
QC3 Is there an adequate description of the context in which the research was carried out?
QC4 Was the research design appropriate to address the aims of the research?
QC5 Was the recruitment strategy appropriate to the aims of the research?
QC6 Was there a control group with which to compare treatments?
QC7 Was the data collected in a way that addressed the research issue?
QC8 Was the data analysis sufficiently rigorous?
QC9 Has the relationship between researcher and participants been adequately considered?
QC10 Are the datasets available to the public, thus allowing replication ?
QC11 Is there a clear statement of findings?
QC12 Is the study of value for research or practice?
QC13 Did the study identified any clear benefits for the SDLC according to RQ8?
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–	 Credibility. Two criteria (QC9-QC10) check if the 
findings are well presented and the gathered insights 
are plausible and/or credible.

–	 Relevance. The remain criteria (QC11-QC13) are related 
with the relevancy of the study for the SDLC, stakehold-
ers and the research community.

Selection of primary studies. The quality of each publi-
cation should be assessed by the authors after the selec-
tion process in Stage 3. The checklist presented in Table 2 
was used to assess the credibility and thoroughness of the 
selected publications. The steps that guided the selection of 
primary studies to reach the final results, are presented in 
Fig. 8 in Appendix 1.

Each of the 13 questions was marked as “Yes”, “Par-
tially” or “No”. We considered a question answered as “Par-
tially” in cases where we could derive relevant contents from 
the text, even if the details were not clearly reported. These 
answers were scored as follows: “Yes”=1, “Partially”=0.5, 
and “No”=0. For each selected study, its quality score was 
computed by summing up the scores of the answers to all the 
quality criteria questions, being the minimum value admis-
sible “0” and the maximum “13”, in case all the questions 
were marked with a “1”.

To provide validation and credibility in the quality assess-
ment, and due to the ordinal scale for the quality criteria 
score, we computed using a random sample of the 173 arti-
cles, the intraclass correlation value between the raters. The 
results are presented later in Table 4 in Sect. 3.2.2. When-
ever agreement was not possible, the first author choice was 
taken into consideration.

3.1.5 � Data Extraction

To gather standard information regarding the papers under 
analysis, we created a data collection form as represented in 
Table 10 in Appendix 1. This data collection form helped 
us to identify the date, venue and authors of the publica-
tions and also how each of them addressed the topics of our 
research questions.

3.1.6 � Data Synthesis

The synthesis aimed at grouping findings from the studies in 
order to: identify the answers to the RQs presented earlier 
in Sect. 3.1 and were organized in a spreadsheet form. This 
data extraction process was manually conducted by the main 

author. The spreadsheet was loaded and analyzed using the 
R statistical engine1 and has now been disclosed2.

Obtained results, plots and findings are presented and 
discussed in Sect. 3.2.

3.2 � Conducting the Review

This phase is responsible for executing the actions defined 
in Sect. 3.1.

3.2.1 � Execute Search

We started the review with an automatic search followed 
by a manual search and afterwards applied the inclusion/
exclusion criteria. The search as detailed in Sect. 3.1.2, was 
performed in mid 2019 and updated in the end of the last 
quarter of 2021, with the search string syntax being adapted 
to support the different search engines. Initially we identified 
3154 articles, and upon reading their titles and abstracts, the 
dataset was reduced to 681 articles. Following, we filtered 
them with the inclusion and exclusion criteria. Table 3 and 
Fig. 8 in Appendix 1, present the summary results and work-
flow, respectively, for this research.

3.2.2 � Apply Quality Assessment Criteria

The selection criteria was based on exclusions and inclu-
sions. Table 1, defined, in Sect. 3.1.3 those criteria used to 
assess remaining works in Stage 3. In case of any doubt, the 
study was kept for analysis at a later stage. Stage 3 provided 

Table 3   Digital library initial search and stages

Digital Library Stages

1 2 3 4

Libraries
 (ACM, Scopus, Web of Science, 

Science Direct, IEEE, Wiley 
Online, SpringerLink)

1144

|−− > 3154 681 173 42
 Google Scholar and Manually 

Added
2010

Total (Input for Stage 1) 3154

Table 4   Intraclass correlation (ICC) (95% confidence interval)

Subjects Raters ICC Model Type

30 2 0.801 OneWay Agreement

1  https://​www.r-​proje​ct.​org, https://​rstud​io.​com
2  doi:​10.​17632/​d3wdz​gz88s.2

https://www.r-project.org
https://rstudio.com
http://dx.doi.org/10.17632/d3wdzgz88s.2
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as inputs for Stage 4, 173 articles, which were then assessed 
in their quality dimension. At Stage 4, we applied the quality 
criteria described in Sect. 3.1.4, resulting in 42 articles to 
further extract data and to answer the eight research ques-
tions (Table 4).

We classified the studies quality level by plotting their 
descriptive statistics and analyzing the correspondent 
quartiles:

–	 Min: 6, 1st Q.: 8.5, Median: 9.0, Mean: 9.007, 3rd Q.: 
9.5, Max: 12

As seen above, the third quartile is at score 9.5, there-
fore, we selected only the studies scoring above that 
mark. Based on the high level of quality, 42 studies were 
selected for final data extraction. Figure 1 shows the dis-
tribution of all studies per Year right after the quality 
assessment scoring task.

4 � Document the Review

All selected studies and the details to support the statistics 
we show in Sect. 4.1, are presented in Table 11 in Appen-
dix 2. In Sect. 4.2, we present the main findings, comments 
and answers to each of the research questions.

Fig. 1   Studies score per year at 
Stage 4
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4.1 � Demographics

Figure 2 shows clearly that the majority of the selected stud-
ies were published in journals. An increasing trend in publi-
cations volume is also present.

The remaining articles were published in conferences 
with the exception of one which comes from a workshop. 
As it is possible to observe, only studies published after 
2014 made the final stage of this SLR, and almost 65% of 
them were published in the last 4 years. This provides some 
indication that, not only SDA is a relatively new practice, 
but also, that it is becoming mature only in the very last few 
years of this decade.

Looking in-depth to the publication where the stud-
ies appeared, we easily find that the Empirical Software 
Engineering Journal has a strong dominance among all 
the others. The distribution of studies per Publication over 
the Years is presented in Fig. 10 in Appendix 2. Here we 
can observe that only the Software Quality Journal and the 
Journal of Systems and Software have more than one study 
published within our final set of articles.

North America and Asia are the most active regions 
researching on Software Analytics as plotted previously in 
Fig. 3. The collaboration between institutions from these two 
regions is easily detected in the large number of studies that 
were published in cooperation as can bee seen in Table 12. 

Canada, Singapore, USA, Australia and China are the most 
effective countries in producing work in this domain. The 
most active institutions are also from these countries as we 
can observe on Fig. 4.

Regarding authorship, which we present the details in 
Fig. 9 in Appendix 2, we found that only 4 main authors 
appear with 2 studies in the selected papers, and one of them 
appear with more than one study per year. All the remain-
ing authors are present with only one publication. This may 
resonate the difficulty that is to setup, document and publish 
such type of studies. Figure 4 in Appendix 2, present the fre-
quency of contributions regarding continents, countries and 
institutions involved, either as primary or secondary authors, 
on all studies.

4.2 � Analysis and Findings

It is widely accepted that we lack experimentation in Soft-
ware Engineering in general. This phenomenon is even more 
acute on what concerns experimentation related with analyt-
ics in practice for software development. Even if this work is 
scarce, we should look at it collectively to try to draw some 
picture of the current state-of-the-art. For that purpose, a 
summary table with the complete information extracted to 

Fig. 3   Number of studies per 
continent

North America : 23

(54.76%)

Asia : 17

(40.48%)

Europe : 7

(16.67%)

Oceania : 7

(16.67%)

South America : 1

(2.38%)
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answer all the RQs, is presented in Table 16 in Appendix 3. 
In this section we present each research question and the 
correspondent dimension findings and their frequencies3.

4.2.1 � RQ1. What Type of Empirical Studies have been 
Conducted?

According to the type of empirical studies provided by 
[75], from the total number of publications, more than half, 
53.12%, are Exploratory Case Studies. Quasi-Experiments 
and Exploratory Case Studies combined account for 90.62%. 
This is probably not a surprise, since the remaining study 
types are, quite often, harder to setup due to technical limita-
tions in the data collection process or blocked by data pri-
vacy concerns raised by the entities involved.

One publication, [S13], combines three study types: 
Exploratory Case Study, Quasi-Experiment and a Survey. 
Having two types of empirical studies presented, we find 
[S31] and [S23] which combine a Exploratory Case Study 

Fig. 4   Number of studies per 
country and institution (> 1 
study only)
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3  The sum of frequencies might be bigger than the total number of 
selected studies(n  =  42) because some publications have been clas-
sified with more than one Study Type, Data Source, SDLC Activity, 
Stakeholder, Mining Method and/or Analytics Scope.
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and a Survey. Having a Quasi-Experiment and a Survey we 
have [S6] and [S24]. The remaining publications have only 
one empirical study type given. Study Types found and the 
plot of their distribution per Year is shown on Fig. 5.

No Meta-Analysis, Experience Report or Discussion 
had quality to reach the final stage of this SLR. Particularly 
for the Controlled Experiment studies reduced presence, 
its worth elaborate that a controlled experiment is one in 
which all factors are held constant except for one: the inde-
pendent variable. It is common to compare a control group 
against an experimental group where all factors are identical 
between the two groups except for the factor being tested. 
This approach has the advantage that is easier to eliminate 
uncertainty about the significance of the results, however, 
it also has a considerable drawback—the effort needed to 
design and execute such experiments which may explain 
partially why there is only one study present in our final list 
(Table 5).

We believe that sufficient conditions needed to conduct 
such experiments are not yet being met in software devel-
opment organizations. Experiments where treatments are 
applied to some factors in order to later evaluate the out-
comes are almost non-existent in real live scenarios. This 
may reveal that, due to revenue generation pressure, costs 
control and/or time restrictions, organizations are not will-
ing to spend time and resources to test and experiment novel 
approaches on analytics even when they promise potential 
benefits.

RQ1. Highlights

i) Controlled Experiment studies look neglected by the community.
ii) 88.09% (37/42) of works pertain to only one study type (Table 16).
iii) Evidences suggest an increasing trend in the publications quality.

4.2.2 � RQ2: What are the Main Data Sources Used 
for Software Development Related Studies?

The top four data sources: Github Repositories, Google Play 
Store, Git Repositories and BugZilla combined are the data 
sources for more than 80% of the studies. This was somehow 
expected as they are generally under the public domain and 
contain the code, issue reports and product compilations of 
the most used open source projects, which are, very often 
used in empirical studies. This provides some evidence that 
the community is probably studying the most what is possi-
ble to study, simply because the datasets are under the public 
domain.

Interesting to mention is the high number of publica-
tions using datasets from App Stores such as Google Play 
Store. This might be a relevant indicator that the research-
ers’ focus, the profile of the end-user and the developers’ 
characteristics are quickly and fundamentally changing.

Figure 11, presented in Appendix 2 plots the frequen-
cies of all studies regarding RQ2. It is proper to highlight 
that, from all the data sources used in more than one study, 
4 are related with software configuration management 
systems, 2 with App Stores and each of the remaining 3 
with: Bug/Issue Tracking Systems, a Q &A Service and 
an Online Survey.

RQ2. Highlights

i) Code management and bug/issue tracking systems are used frequently.
ii) App Stores, Q&A services, Wikis and Forums are promising sources.
iii) Repositories containing developers’ project interactions are scarce.

Table 5   Study type findings

Type Freq. % Ref.

Exploratory case study 19 45.24 [S04], [S05], [S09], [S10], [S13], [S16], [S20], [S22], [S23], [S25], [S26], [S27], 
[S28], [S29], [S30], [S31], [S32], [S37], [S40]

Quasi-experiment 13 30.95 [S06], [S07], [S11], [S12], [S13], [S14], [S15], [S17], [S18], [S19], [S21], [S24], [S34]
Case study 9 21.43 [S01], [S02], [S03], [S08], [S33], [S36], [S39], [S41], [S42]
Survey 5 11.9 [S06], [S13], [S23], [S24], [S31]
Analyze and compare meth-

odologies
1 2.38 [S35]

Controlled experiment 1 2.38 [S38]
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4.2.3 � RQ3: What Type of Process/Project Perspective 
Analysis was Conducted?

We found that all the studies were focused on a Post-Mortem 
approach, meaning the study was not designed to help the 
product/project managers take any corrective measures on 
a timely manner to the artifact under study. As such, any 
insights gathered could only impact future developments. A 
Post-Mortem approach provides benefits for the next product 
release or project, but usually, not for the one being studied 
as it brings no added value when proactive corrective actions 
are desired.

RQ3. Highlights

i) Ineffective approach to improve project under study.
ii) Real-time development operational support is missing.
iii) Worthless approach if project actions recommendation is needed.

4.2.4 � RQ4: What are the SDLC Activities Mostly Studied?

According to [27], in Table 6 we summarize which activi-
ties of the SDLC, are being researched the most. Our 
findings show that 90.48% and 61.9% of the studies were 
targeting the Implementation and Maintenance phases, 
respectively. Regarding Testing, we found 13 studies. 
These results, which confirm that some phases are under-
researched, require the attention of practitioners and even-
tually the opening of new streams of investigation on the 
SDLC. Software under operation was the focus of 6 studies 
and those were mainly related with software deployed to 
App Stores. Figure 13 present the statistics about all the 
activities studied. Table 6 details the activities and sum-
marizes their frequencies and identify the studies on each 
of them.

RQ4. Highlights

i) More than 90% of articles focus on the analysis of programming activities.
ii) Analytics for software under operation is almost non existing.
iii) Requirements Engineering and Design activities are not being studied.

Table 6   SDLC activities findings

Activity Freq. % Ref.

Implementation 38 90.48 [S01], [S02], [S04], [S06], [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14], 
[S15], [S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26], 
[S27], [S28], [S29], [S30], [S31], [S32], [S33], [S34], [S35], [S36], [S37], [S40], 
[S41], [S42]

Maintenance 26 61.9 [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14], [S17], [S18], [S20], [S21], 
[S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30], [S34], [S35], [S38], 
[S39], [S40]

Testing 13 30.95 [S01], [S24], [S30], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], [S41], [S42]
Debugging 7 16.67 [S07], [S08], [S09], [S10], [S11], [S12], [S39]
Operations 6 14.29 [S03], [S05], [S18], [S20], [S28], [S35]

Table 7   Stakeholders findings

Stakeholder Freq. % Ref.

Developers 42 100 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12], [S13], [S14], [S15], 
[S16], [S17], [S18], [S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], 
[S30], [S31], [S32], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], [S41], [S42]

Product managers 17 40.48 [S03], [S06], [S12], [S18], [S20], [S27], [S28], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], 
[S41], [S42]

Testers 8 19.05 [S01], [S24], [S33], [S34], [S35], [S37], [S40], [S42]
Project managers 3 7.14 [S26], [S29], [S37]
Researchers 3 7.14 [S17], [S20], [S29]
Educators 1 2.38 [S29]
End-users 1 2.38 [S20]
Requirements engineers 1 2.38 [S18]
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4.2.5 � RQ5: Who were the Target Stakeholders of These 
Studies?

All the studies targeted the Developers, and 7 were 
addressing Product Managers concerns. Only 5 publica-
tions could bring any value to Testers: [S01], [S24], Edu-
cators: [S29], End-Users: [S20] and Requirements Engi-
neers: [S18]. These findings are aligned with the results 
found in previous SLRs mentioned in Sect. 2.1. We are 
predisposed to think that these results are related with the 
data sources also identified previously. When the major-
ity of data sources used are product code related, it is 
somehow plausible that the stakeholder for that study is a 
developer. On summarizing the data about the individu-
als that could benefit from each study, we argue that the 
proper insights are not reaching all those who need support 
on their daily activities, namely Project Managers, Test-
ers and Requirements Engineers. Figure 13 supports our 
comments by plotting the frequencies of all stakeholders 
targeted (Table 7, 8).

RQ5. Highlights

i) Developers keep being the main target stakeholder for SDA.

ii) SDA for Testers are less frequent than expected.

iii) High-Level management needs are not being addressed.

 

4.2.6 � RQ6. What are the main mining methods being used?

All articles, as expected, present descriptive statistics about 
the domain under study. We know that, very often, research 
starts with just exploratory actions. However, understand-
ing “What happened” is a reduced perspective for what 
analytics can do for software development. It is also not 
surprising that the following most frequent methods used 
are approaches which target the extraction of knowledge, 
either by correlating factors or by classifying or grouping 

Table 8   Mining methods findings

Stakeholder Freq. % Ref.

Descriptive statistics 41 97.62 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], 
[S10], [S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18], 
[S19], [S20], [S21], [S22], [S23], [S24], [S25], [S26], [S27], 
[S28], [S29], [S30], [S31], [S32], [S33], [S34], [S36], [S37], 
[S38], [S39], [S40], [S41], [S42]

Correlation analysis 23 54.76 [S01], [S02], [S04], [S05], [S08], [S11], [S14], [S15], [S17], 
[S18], [S19], [S20], [S21], [S22], [S24], [S25], [S27], [S28], 
[S32], [S39], [S40], [S41], [S42]

Classifier learning 10 23.81 [S06], [S07], [S08], [S11], [S18], [S21], [S25], [S32], [S40], [S41]
Pattern extraction 9 21.43 [S01], [S02], [S03], [S06], [S07], [S09], [S10], [S13], [S23]
Hyphotesis testing 8 19.05 [S04], [S05], [S11], [S14], [S15], [S17], [S18], [S39]
Analysis 4 9.52 [S33], [S34], [S35], [S38]
Cluster analysis 4 9.52 [S20], [S22], [S25], [S32]
Topic modeling 3 7.14 [S19], [S22], [S29]
Feature extraction 2 4.76 [S08], [S11]
Redundancy analysis 2 4.76 [S08], [S11]
Regression models 2 4.76 [S19], [S20]
Association rules 1 2.38 [S30]
Generalized suffix trees 1 2.38 [S32]
Genetic algorithms 1 2.38 [S29]
Heuristic features 1 2.38 [S07]
Mixed-effect models 1 2.38 [S20]
Natural language processing 1 2.38 [S30]
Process mining 1 2.38 [S16]
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subjects. Hypothesis testing appears less frequently as one 
would expect. This may be related with the fact that all stud-
ies have, as mentioned earlier, a post-mortem approach and 
any results obtained are not to be used immediately to per-
form any corrections in the studied project. If used properly, 
that is what hypothesis testing may bring in advanced forms 
of analtyics.

Being software development a process, one would expect 
to find Process Mining methods often in the assessed stud-
ies. Looking deep into the data, we can confirm that it does 
not hold true, which may reveal that practitioners are study-
ing processes without the proper plethora of methods and 
tools. Figure 12 provide evidences for the most used mining 
methods.

RQ6. Highlights

i) Few studies try to make any predictions.

ii) Hypothesis Testing appear in only 7(21.88%) of the studies.

iii) Only 1 study (3.12%) used Process Mining methods and tools.

4.2.7 � RQ7: Which Type/Form of Analytics was Applied?

Following the rationale in RQ6, we found all studies used 
Descriptive and Diagnostics Analytics together. It makes 
sense that understanding “hat happened” is complemented 
with “Why it happened”. However, this observation is not 
fully aligned with the results mentioned in previous SLRs, 
namely in [47]. Although 28.12% of the studies had some 
sort of prediction as a goal, that is not reflected in the pre-
scriptive domain, where only 1 study, [S30] aims at suggest-
ing stakeholders actions to improve or correct a development 
activity. Figure 13 presented in Appendix 2 complements the 
analysis to this RQ (Table 9).

RQ7. Highlights

i) Descriptive and Diagnostics Analytics seems to be found together.

ii) An increasing trend exists in predictive studies (Tables 11 & 16).

iii) Management actions recommendation is not a common practice.

4.2.8 � RQ8. What were the relevant contributions 
to the SDLC?

Technical Debt. All the studies had some sort of contri-
bution to the quality dimension of software and no study 
was found to be classified with “Absent” under this realm. 
With “Moderate” contributions we find [S03], [S22], [S23], 
[S26], [S28], [S31], [S35], [S38], [S42]. Having a “Strong” 
impact we identify [S01], [S02], [S04], [S05], [S06], [S07], 
[S08], [S09], [S10], [S11], [S12], [S13], [S14], [S15], [S16], 
[S17], [S18], [S19], [S20], [S24], [S25], [S30], [S32], [S36], 
[S37], [S39], [S40], [S41]. Very few studies have “Weak” 
benefits identified [S21], [S27], [S29], [S33], [S34].

Time Management. The management of project times is 
analyzed in less than half of the studies since 54.76% of the 
studies provide no contribution under this dimension. We 
identify 11 studies, [S15], [S21], [S26], [S34], [S35], [S36], 
[S37], [S38], [S39], [S40], [S41] with “Moderate” contri-
butions to manage the duration of product/project develop-
ment. “Weak” benefits are present in 8 (19.05%) studies 
[S01], [S02], [S08], [S11], [S18], [S19], [S23], [S30].

Costs Control. A similar scenario happens with the 
control of costs as only 4 [S34], [S35], [S36], [S37] and 
9 studies [S01], [S02], [S04], [S08], [S11], [S21], [S38], 
[S39], [S40] have “Moderate” and “Weak” contributions, 
respectively.

Table 9   Analytics scope 
findings

Scope Freq. % Ref.

Descriptive 42 100 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], 
[S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20], 
[S21], [S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30], 
[S31], [S32], [S33], [S34], [S35], [S36], [S37], [S38], [S39], [S40], 
[S41], [S42]

Diagnostics 38 90.48 [S01], [S02], [S03], [S04], [S05], [S06], [S07], [S08], [S09], [S10], 
[S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18], [S19], [S20], 
[S21], [S22], [S23], [S24], [S25], [S26], [S27], [S28], [S29], [S30], 
[S31], [S32], [S34], [S36], [S38], [S39], [S40], [S41]

Predictive 11 26.19 [S06], [S08], [S11], [S18], [S19], [S20], [S21], [S25], [S32], [S39], [S40]
Prescriptive 1 2.38 [S30]
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Risk Assessment. Despite the fact that risk is cross-cut 
to all other dimensions identified in RQ8, we found only 
4 studies, [S01], [S35], [S36], [S37], concerned exactly 
with the risk associated with the security within the soft-
ware development process. The contributions given were 
“Weak” though. This means that 90.48% of the studies did 
not address at all any concerns involving risk management.

Security Analysis. Regarding software security imple-
mentation and operations, we found very few studies where 
their main contributions were related to this domain. We 
found 5 studies, [S01], [S27], [S29], [S30] and [S36], where 
only the first one has a “Strong” classification regarding this 
contribution. Te remaining studies (88.1%) did not mention 
or identified any benefits under this realm.

RQ8. Highlights

i) The software quality dimension consume most research resources.
ii) Time and Costs concerns are not being addressed sufficiently.
iii) Security and Risks matters need extra and aligned effort to evolve.

4.3 � Summary

Most of the works focus on the software quality dimen-
sion and other features are barely touched by practitioners. 
Improving or understanding better a project costs, risks and 
security aspects are contributions rare to find. Only two 

studies, [S1] and [S36], provide contributions across all the 
dimensions we assessed and they are essentially “Moder-
ate” or “Weak” contributions. No study was classified as 
“Complete” on any of the contribution areas identified for 
the SDLC.

Based on the evidences provided by this study, we 
observe that 80.9% (34 out of 42) of the studies were pub-
lished in Journals, being the Empirical Software Engineering 
the one with more publications, 24 (57.1%). North America 
and Asia are the most active regions researching on Soft-
ware Analytics as plotted previously in Fig. 3. The collabo-
ration between institutions from these two regions is easily 
detected in the large number of studies that were published 
in cooperation as can bee seen in Table 12. Canada, Sin-
gapore, USA, Australia and China are the most effective 
countries in producing work in this domain. The most active 
institutions are also from these countries as we can observe 
on Fig. 4.

Figure 13, which supports our answers to RQ1, RQ4, 
RQ5, RQ7, plots the frequencies of studies related with the 
analytics depth, study types, stakeholders and SDLC activi-
ties studied.

Figure 6 renders the evaluation off all studies across the 
five dimensions used to answer RQ8. As it is clear from the 
plots, Technical Debt and Time are the dimensions mostly 
studied. A list of all studies with a short summary, their 
context, methods and results are presented in B. A holistic 
perspective of all the RQs findings is presented in C (Fig. 7).
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4.4 � Threats to Validity

The following types of validity issues were considered when 
interpreting the results from this review.

4.4.1 � Construct Validity

The studies identified from the systematic review were accu-
mulated from multiple literature databases covering relevant 
journals, proceedings and books. One possible threat is bias 
in the selection of publications. This is addressed through 
specifying a research protocol that defines the objectives 
of the study, the research questions, the search strategy and 
search strings used. Inclusion, exclusion criteria and blue-
print for data extraction and quality assessment comple-
ments the approach to mitigate such bias.

Although supported by important literature under the 
software engineering domain, we followed a self-defined 
classification criteria for some RQs, specifically for RQ8. 
This method is somehow subjective as someone else might 
have chosen any other classification categories.

Our dataset contains studies published until mid July, 
2019. There are some evidences pointing to an increas-
ing trend in the publishing of studies in the SDA domain, 
however, articles published in the second-half of 2019 
which might also had good quality, were not included in 
this review. We excluded works where their goal was only 
to propose new algorithms and/or methods to analyze soft-
ware development. Some of these studies had also validation 
experiments, however, their conclusions were related with 

the quality of the methods and not with any benefits poten-
tially provided by them for the software development pro-
cess. Some of those studies had also interesting approaches 
to improve analytics as a practice, however, they are not 
present in this review.

4.4.2 � Internal Validity

One possible threat is the selection bias and we addressed 
it during the selection step of the review, i.e. the studies 
included in this review were identified through a thorough 
selection process which comprises of multiple stages. We 
were aiming to find high quality studies, therefore, a quality 
assessment was introduced and a final selection for stud-
ies ranking above the third quartile was conducted. This 
approach may have excluded studies with very important 
contributions on any of the dimensions we assessed in RQ8 
or other dimensions not covered by this review. We used an 
ordinal/categorical taxonomy to assess the studies regard-
ing RQ8. This classification method is still subjective and 
depends on the authors’ contents interpretation.

4.4.3 � External Validity

There may exist other valid studies on other digital libraries 
which we did not search. However, we tried to reduce this 
limitation by exploiting the most relevant software engineer-
ing literature repositories. Studies written not in English 
were excluded which can also have excluded important work 
which otherwise would have been also mentioned.
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Fig. 7   Classification combining all 5 contribution dimensions to SDLC(RQ8)
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4.4.4 � Conclusion Validity

There may be bias in the data extraction phase, however, 
this was addressed through defining a data extraction form 
to ensure consistent extraction of proper data to answer the 
research questions. We should also refer that, the findings 
and further comments are based on this extracted data. 
Despite the fact that high levels of validation were applied 
in the statistics computation of this study, there is always a 
small chance that any figures might be inaccurate. For this 
reason, we publish our final dataset to enable replication and 
thus allowing for further validation.

5 � Conclusions

We conducted a Systematic Literature Review on SDA in 
practice, covering a time span between 2010 and 2021. From 
an initial population of 3,154 papers, we kept 42 of them for 
appraisal.

It targeted eight specific aspects related with the goals, 
sources, methods used and contributions provided in cer-
tain areas of the SDLC. Our goal was to extract the most 
relevant dimensions associated with software development 
practices and highlight where and what were the potential 
contributions given by those works to the SDLC. From a 
quality assessment perspective, our aim was also to classify 
the benefits provided by those studies to significant software 
development concerns such as: quality/technical debt, time, 
costs, risks and security, therefore, a taxonomy was created 
to evaluate them.

Source code repositories, such as GitHub and Git, and 
App stores like Google Play Store (top 3 > 50% ), explora-
tory case studies ( 45.24% ), and developers ( 100% ) are the 
most common data sources, study types, and stakeholders, 
respectively. Testers ( 19.05% ) also get moderate attention 
from researchers. Product managers’ ( 40.48% ) concerns are 
being addressed frequently and project managers ( 7.14% ) 
are also present but with less prevalence. Mining methods 
are rapidly evolving, as reflected in their identified long list. 
Descriptive statistics ( 97.62% ) are the most usual method 
followed by correlation analysis ( 54.76% ). Being software 
development an important process in every organization, it 
was unexpected to find that process mining was present in 
only one study ( 2.38% ). Most contributions to the software 
development life cycle were given in the quality dimen-
sion ( 100% ). Time management ( 45.2% ) and costs control 
( 30.9% ) were less prevalent. The analysis of security aspects 
appear in ( 11.9% ) of the studies. Although with a small pres-
ence in this analysis, evidences suggest it is an increasing 
topic of concern. Risk management contributions are scarce 
( 9.52%).

Our analysis highlighted a number of limitations and 
shortcomings on the SDA practice and bring the focus to 
open issues that need to be addressed by future research. It is 
our understanding, that our work may provide a baseline for 
conducting future research and the findings presented here 
will lead to higher quality research in this domain.

5.1 � Call for Action

As a final remark and to trigger a call for action in the 
research community, the following issues should be 
addressed:

–	 Repository Diversity. We suggest researchers to explore 
different and non trivial software development related 
repositories, such as the IDE or other archives contain-
ing development events(eg: decisions, fine grain actions 
executed, etc). More and distinct datasets are expected to 
expand the analytics coverage on software development.

–	 Keep working on the needs of different stakeholders. 
We have evidences that the practitioners who benefit 
most from the current SDA studies are the developers 
and many other profiles are left behind. We suggest to 
increase the focus on the real needs of requirements engi-
neers, project, product and portfolio managers and higher 
level executives.

–	 Aim at Software Development Operational Support. 
No studies were found providing clear evidences that the 
outcome of that study could benefit on a timely manner 
the ongoing project or product versions. If organizations 
want to focus effectively on detecting, predicting and 
recommending corrective actions on a timely manner, 
meaning, any insights gathered will have impact on cur-
rent project and not solely on the next project or product 
version, researchers and practitioners should focus on 
designing advanced tools and methods to address soft-
ware development operational support.

–	 Software Development Process Mining. Despite the 
fact that Process Mining is now a mature topic, almost 
no software process related studies uses it. We suggest 
its techniques and tools, to study deeper the interaction 
of software development stakeholders and to comple-
ment the effectiveness of assessing certain software 
development tasks, such as, project effort prediction, 
code maintenance activities and/or bug detection meth-
ods.

–	 Project Time and Costs. We suggest more and deeper 
studies covering the Time and Costs of software projects. 
These are dimensions barely addressed by the studies we 
evaluated. The aforementioned topics are extremely rel-
evant to forecast resource allocation for future projects.

–	 Address Security and Risks holistically. Due to the 
unceasing digital transformation present nowadays in the 
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society, the security of information systems will be even 
more critical to any organization. We now have robust 
methods to assess security vulnerabilities in software 
code. However, very little is known about the developers 
behaviour during the Implementation and Maintenance 
phases, just to name a few. Even if, in the last years, 
security in general became quickly a pertinent topic, the 
security around development processes and the involved 
resources are still not clearly addressed. This is a topic 
with increasing relevance and deserves the rapid and 
focused attention from the practitioners.

–	 Blockchain. One of the most interesting, promising and 
relevant technological contributions to the society, was 
created roughly ten years ago - the birth of bitcoin [46]. 
Although bitcoin is an implementation of electronic 
money, it is supported by something very powerful, 
which can be used for many other use cases, called - 
blockchain [60]. The blockchain is a mechanism which 
is able to keep a book of data records immutable and 
distributed across a multi-node network of servers. It is 
virtually indestructible since it has no central authority 
controlling it and preserves data integrity by potentially 

not allowing rollback on any past transactions. Addition-
ally, if required, it guarantees that only the data owners 
are able to view or change their personal records and yet 
permit third-parties to be granted view only privileges to 
a selected dataset. This technology may be used embed-
ded in SDA to anonymize and grant privacy to organiza-
tions sharing data without spoil the context associated 
with the development process under study.

Appendices

Appendix 1: Data Extraction

Selection Process

See Fig. 8, Table 10.

Appendix 2: Studies List

See Table 11.
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Fig. 8   Study selection process stages
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Comments on Studies

[S01] explores the correlation between software vulnerabil-
ities and code-level constructs called micro patterns. The 
authors analyzed the correlation between vulnerabilities 
and micro patterns from different viewpoints and explored 
whether they are related. The conclusion shows that certain 
micro patterns are frequently present in vulnerable classes 
and that there is a high correlation between certain patterns 
that coexist in a vulnerable class [58].

[S02] presents an empirical study to analyze commit 
histories of Android manifest files of hundreds of apps to 
understand their evolution through configuration changes. 
The results is a contribution to help developers in identifying 
change-proneness attributes, including the reasons behind 
the changes and associated patterns and understanding the 
usage of different attributes introduced in different versions 

of the Android platform. In summary, the results show that 
most of the apps extend core functionalities and improve 
user interface over time. It detected that significant effort is 
wasted in changing configuration and then reverting back the 
change, and that very few apps adopt new attributes intro-
duced by the platform and when they do, they are slow in 
adopting new attributes. Configuration changes are mostly 
influenced by functionalities extension, platform evolution 
and bug reports [29].

[S03] studied updates in the Google Play Store by exam-
ining more than 44,000 updates of over 10,000 mobile apps, 
from where 1,000 were identified as emergency updates. 
After studying the characterirstics of the updates, the authors 
found that the emergency updates often have a long life-
time (i.e., they are rarely followed by another emergency 
update) and that updates preceding emergency updates often 

Table 10   Data collection form

# Item Description

General Information
 1 Publication Id A sequential identifier for each publication
 2 Extraction date Date/Time when the data was extracted
 3 Bibliography reference The references of each publication
 4 Publication date The Date/Time of publishing
 5 Publication type The type publication (e.g. Journal, Conference, etc)
 6 Publisher name The name of the publisher
 7 Publication Author(s) The author(s) of the publication

Addressing RQs
 8 Study Type(s) Extracting the type of empirical study as defined in [42, 75]
 9 Data source(s) The different types of data sources used in the publications. Admissible values are open
 10 Process perspective The timing of when the study was conducted (e.g. Pre-Mortem, if study was executed before 

project/product was finished, Post-Mortem, if it was conducted after)
 11 SDLC Activity(ies) We followed the SWEBOK to build our list of admissible values [27]. Implementation - refers 

to the activity of constructing artifacts for a new product based on new defined requirements 
and design. Maintenance - refers to the task of maintaining, by changing or evolving an 
existing software under operation according to early defined specifications. Testing - refers 
to the automated or manual task of finding bugs and/or errors. Debugging - is the effort of 
fixing those known bugs. Operations - is related with the phase where the software is under 
exploration by the end-users. Our approach extends the taxonomy used by [15]

 12 Study Stakeholder(s) The publication outcomes should be targeted to specific individuals in the software develop-
ment process. We identify them here

 13 Mining Method(s) The identification of the methods used for data mining/analysis
 14 Analytics Scope(s) Identifies what type of analytics was performed. We used the valid options(Descriptive Ana-

lytics, Diagnostics Analytics, Predictive Analytics and Prescriptive Analytics) identified 
in [16]

 15 Contribution(s) to SDLC We framed the admissible options to the following assessment dimensions of software: Techni-
cal Debt/Quality, Time, Costs, Risk and Security. Our approach adapt and extends some of 
the dimensions and concerns identified earlier in Sect. 2.1

Findings
 16 Findings and conclusions What were the interpretation of the results obtained
 17 Validity Identifying the threats to the validity of the publication
 18 Relevance What other relevant outcomes could be inferred from the publication other then the ones in 

item 15
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Table 11   Systematic literature review studies

# Score Year Author Title Publication

S01 12 2019 Sultana et al. A study examining relationships between micro 
patterns and security vulnerabilities

Software Quality Journal

S02 10.5 2019 Jha et al. An empirical study of configuration changes 
and adoption in Android apps

Journal of Systems and Software

S03 10 2017 Hassan et al. An empirical study of emergency updates for 
top android mobile apps

Empirical Software Engineering

S04 10 2016 W. Wu et al. An exploratory study of api changes and usages 
based on apache and eclipse ecosystems

Empirical Software Engineering

S05 10.5 2017 Taba et al. An exploratory study on the usage of common 
interface elements in android applications

Journal of Systems and Software

S06 10 2019 Prana et al. Categorizing the Content of GitHub README 
Files

Empirical Software Engineering

S07 10 2018 R. Wu et al. ChangeLocator: locate crash-inducing changes 
based on crash reports

Empirical Software Engineering

S08 10.5 2019 Yan et al. Characterizing and identifying reverted com-
mits

Empirical Software Engineering

S09 10 2018 Salza et al. Do developers update third-party libraries in 
mobile apps?

International Conference on Program Compre-
hension

S10 10 2019 Liu et al. DroidLeaks: a comprehensive database of 
resource leaks in Android apps

Empirical Software Engineering

S11 11 2018 Fan et al. Early prediction of merged code changes to 
prioritize reviewing tasks

Empirical Software Engineering

S12 10 2016 McIlroy et al. Fresh apps: an empirical study of frequently-
updated mobile apps in the Google play store

Empirical Software Engineering

S13 11 2018 Saborido et al. Getting the most from map data structures in 
Android

Empirical Software Engineering

S14 10 2017 Guerrouj et al. Investigating the relation between lexical 
smells and change- and fault-proneness: an 
empirical study

Software Quality Journal

S15 10 2014 Fucci et al. On the role of tests in test-driven development: 
a differentiated and partial replication

Empirical Software Engineering

S16 10 2014 Mittal et al. Process mining software repositories from 
student projects in an undergraduate software 
engineering course

International Conference on Software Engineer-
ing

S17 10.5 2018 Rakha et al. Revisiting the performance of automated 
approaches for the retrieval of duplicate 
reports in issue tracking systems that perform 
just-in-time duplicate retrieval

Empirical Software Engineering

S18 10 2018 Morales-Ramirez et al. Speech-acts based analysis for requirements 
discovery from online discussions

Information Systems Journal

S19 10.5 2018 Li et al. Studying software logging using topic models Empirical Software Engineering
S20 11 2018 Hassan et al. Studying the dialogue between users and devel-

opers of free apps in the Google Play Store
Empirical Software Engineering

S21 10 2016 Rakha et al. Studying the needed effort for identifying 
duplicate issues

Empirical Software Engineering

S22 10.5 2017 Ye et al. The structure and dynamics of knowledge net-
work in domain-specific Q &A sites: a case 
study of stack overflow

Empirical Software Engineering

S23 10.5 2019 Sawant et al. To react, or not to react: Patterns of reaction to 
API deprecation

Empirical Software Engineering

S24 10 2019 Cruz et al. To the attention of mobile software developers: 
guess what, test your app!

Empirical Software Engineering

S25 10 2017 Li et al. Towards just-in-time suggestions for log 
changes

Empirical Software Engineering

S26 10 2017 Izquierdo-Cortazar et al. Using Metrics to track code review perfor-
mance

International Conference on Evaluation and 
Assessment in Software Engineering



2061Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

receive a higher ratio of negative reviews than the emer-
gency updates [25].

[S04] analyzed and classified API changes and usages 
together in 22 framework releases from the Apache and 
Eclipse ecosystems and their client programs. The authors 
conclude that missing classes and methods happen more 
often in frameworks and affect client programs more often 
than the other API change types do, and that missing inter-
faces occur rarely in frameworks but affect client programs 
often. In summary, framework APIs are used on average 
in 35% of client classes and interfaces and most of such 
usages could be encapsulated locally and reduced in number. 
Around 11% of APIs usages could cause ripple effects in 
client programs when these APIs change. Some suggestions 
for developers and researchers were made to mitigate the 

impact of API evolution through language mechanisms and 
design strategies [70].

[S05] extracted commonly used UI elements, denoted 
as Common Element Sets (CESs), from user interfaces of 
applications. The highlight the characteristics of CESs that 
can result in a high user-perceived quality by proposing vari-
ous metrics. From an empirical study on 1292 mobile appli-
cations, the authors observed that CESs of mobile applica-
tions widely occur among and across different categories, 
whilst certain characteristics of CESs can provide a high 
user-perceived quality. A recommendation is made, aiming 
to improve the quality of mobile applications, consisting on 
the adoption of reusable UI templates that are extracted and 
summarized from CESs for developers [59].

Table 11   (continued)

# Score Year Author Title Publication

S27 10 2016 Munaiah et al. Vulnerability severity scoring and bounties: 
Why the disconnect?

International Workshop on Software Analytics

S28 10 2015 Tian et al. What are the characteristics of high-rated apps? 
A case study on free Android Applications

International Conference on Software Mainte-
nance and Evolution

S29 11 2016 Yang et al. What security questions do developers ask? a 
large-scale study of stack overflow posts

Journal of Computer Science and Technology

S30 10.5 2019 Chen et al. What’s Spain’s Paris ? Mining analogical 
libraries from Q &A discussions

Empirical Software Engineering

S31 10 2017 Jiang et al. Why and how developers fork what from 
whom in GitHub

Empirical Software Engineering

S32 10.5 2019 Thongtanunam et al. Will this clone be short-lived? Towards a better 
understanding of the characteristics of short-
lived clones

Empirical Software Engineering

S33 11 2020 Avila et al. A Data Driven Platform for Improving Per-
formance Assessment of Software Defined 
Storage Solutions

Advances in Intelligent Systems and Computing

S34 12 2021 Wani et al. A Generic Analogy-Centered Software Cost 
Estimation Based on Differential Evolution 
Exploration Process

Computer Journal

S35 12 2020 Rana et al. A Study of Hyper-Parameter Tuning in the 
Field of Software Analytics

International Conference on Electronics, Com-
munication and Aerospace Technology

S36 12 2021 Vashisht et al. An empirical study of heterogeneous cross-pro-
ject defect prediction using various statistical 
techniques

International Journal of e-Collaboration

S37 10.5 2020 Capizza et al. Anomaly Detection in DevOps Toolchain International Workshop on Software Engineer-
ing Aspects of Continuous Development and 
New Paradigms of Software Production and 
Deployment

S38 11 2020 Avila et al. Effects of contextual information on mainte-
nance effort: A controlled experiment

Journal of Systems and Software

S39 12 2021 Qu et al. Evaluating network embedding techniques 
performances in software bug prediction

Empirical Software Engineering

S40 11 2020 Krishna et al. Learning actionable analytics from multiple 
software projects

Empirical Software Engineering

S41 10 2020 Bangash et al. On the time-based conclusion stability of cross-
project defect prediction models

Empirical Software Engineering

S42 10 2021 AIOmar et al. Toward the automatic classification of Self-
Affirmed Refactoring

Journal of Systems and Software
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[S06] performed a qualitative study involving the manual 
annotation of 4,226 README file sections from 393 ran-
domly sampled GitHub repositories and design and evaluate 
a classifier and a set of features that can categorize these 
sections automatically. The findings show that information 
discussing the ’What’ and ’How’ of a repository hapens very 
often, while at the same time, many README files lack 
information regarding the purpose and status of a repository. 
A classifier was built to predict multiple categories and the 
F1 score obtained encourages its usage by software reposi-
tories owners. The approach presented is said to improve 
the quality of software repositories documentation and it 
has the potential to make it easier for the software develop-
ment community to discover relevant information in GitHub 
README files [49].

[S07] conducted an empirical study on characterizing the 
bug inducing changes for crashing bugs (denoted as crash-
inducing changes). ChangeLocator was also proposed as a 
method to automatically locate crash-inducing changes for 
a given bucket of crash reports. The study approach is based 
on a learning model that uses features originated from the 
empirical study itself and a model was trained using the 
data from the historical fixed crashes. ChangeLocator was 
evaluated with six release versions of the Netbeans project. 
The analysis and results show that it can locate the crash-
inducing changes for 44.7%, 68.5%, and 74.5% of the bugs 
by examining only top 1, 5 and 10 changes in the recom-
mended list, respectively, which is said to outperform other 
approaches [69].

[S08] explored if one can characterize and identify which 
commits will be reverted. The authors characterized com-
mits using 27 commit features and build an identification 
model to identify commits that will be reverted. Reverted 
commits were identified by analyzing commit messages and 
comparing the changed content, and extracted 27 commit 
features that were divided into three dimensions: change, 
developer and message. An identification model (e.g., ran-
dom forest) was built and evaluated on an empirical study 
on ten open source projects including a total of 125,241 
commits. The findings show that the ’developer’ is the most 
discriminative dimension among the three dimensions of 
features for the identification of reverted commits. However, 
using all the three dimensions of commit features leads to 
better performance of the created models [71].

[S09] conducted an empirical study on the evolution 
history of almost three hundred mobile apps, by investigat-
ing whether mobile developers actually update third-party 
libraries, checking which are the categories of libraries 
with respect to the developers’ proneness to update their 
apps, looking for what are the common patterns followed by 
developers when updating a software library, and whether 
high- and low-rated apps present any particular update pat-
terns. Results showed that mobile developers rarely update 

their apps with respect to the used libraries, and when they 
do, they mainly tend to update the libraries related to the 
Graphical User Interface, with the aim of keeping the mobile 
apps updated with the latest design trends. In some cases 
developers ignore updates because of a poor awareness of 
the benefits, or a too high cost/benefit ratio [56].

[S10] extracted real resource leak bugs from a bug data-
base named DROIDLEAKS. It consisted in mining 34 popu-
lar open-source Android apps, which resulted in a dataset 
having a total of 124,215 code revisions. After filtering and 
validating the data, the authors found, on 32 analyzed apps, 
292 fixed resource leak bugs, which cover a diverse set of 
resource classes. To fully comprehend these bugs, they per-
formed an empirical study, which revealed the characteris-
tics of resource leaks in Android apps and common patterns 
of resource management mistakes made by developers [36].

[S11] built a merged code change prediction tool leverag-
ing machine learning techniques, and extracted 34 features 
from code changes, which were grouped into 5 dimensions: 
code, file history, owner experience, collaboration network, 
and text. Experiments were executed on three open source 
projects (i.e., Eclipse, LibreOffice, and OpenStack), contain-
ing a total of 166,215 code changes. Across three datasets, 
the results show statistically significantly improvements in 
detecting merged code changes and in distinguishing impor-
tant features on merged code changes from abandoned ones 
[20].

[S12] studied the frequency of updates of 10,713 mobile 
apps (the top free 400 apps at the start of 2014 in each of 
the 30 categories in the Google Play store). It was found 
that only ∼ 1% of the studied apps are updated at a very 
frequent rate - more than one update per week and 14% of 
the studied apps are updated on a bi-weekly basis (or more 
frequently). Results also show that 45% of the frequently-
updated apps do not provide the users with any information 
about the rationale for the new updates and updates exhibit 
a median growth in size of 6%. The authors conclude that 
developers should not shy away from updating their apps 
very frequently, however the frequency should vary across 
store categories. It was observed that developers do not 
need to be too concerned about detailing the content of new 
updates as it appears that users are not too concerned about 
such information and, that users highly rank frequently-
updated apps instead of being annoyed about the high update 
frequency [37].

[S13] studied the use of map data structure implementa-
tions by Android developers and how that relates with saving 
CPU, memory, and energy as these are major concerns of 
users wanting to increase battery life. The authors initially 
performed an observational study of 5713 Android apps in 
GitHub and then conducted a survey to assess developers’ 
perspective on Java and Android map implementations. 
Finally, they performed an experimental study comparing 
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HashMap, ArrayMap, and SparseArray variants map imple-
mentations in terms of CPU time, memory usage, and energy 
consumption. The conclusions provide guidelines for choos-
ing among the map implementations: HashMap is preferable 
over ArrayMap to improve energy efficiency of apps, and 
SparseArray variants should be used instead of HashMap 
and ArrayMap when keys are primitive types [55].

[S14] detected 29 smells consisting of 13 design smells 
and 16 lexical smells in 30 releases of three projects: ANT, 
ArgoUML, and Hibernate. Further, the authors analyzed to 
what extent classes containing lexical smells have higher 
(or lower) odds to change or to be subject to fault fixing 
than other classes containing design smells. The results 
obtained bring empirical evidence on the fact that lexi-
cal smells can make, in some cases, classes with design 
smells more fault-prone. In addition, it was empirically 
demonstrated that classes containing design smells only 
are more change- and fault-prone than classes with lexical 
smells only [24].

[S15] examined the nature of the relationship between 
tests and external code quality as well as programmers’ pro-
ductivity in order to verify/refute the results of a previous 
study. With the focus on the role of tests, a differentiated and 
partial replication of the original study and related analysis 
was conducted. The replication involved 30 students, work-
ing in pairs or as individuals, in the context of a graduate 
course, and resulted in 16 software artifacts developed. Sig-
nificant correlation was found between the number of tests 
and productivity. No significant correlation found between 
the number of tests and external code quality. For both cases 
we observed no statistically significant interaction caused 
by the subject units being individuals or pairs. Results 
obtained are consistent with the original study although, as 
the authors admit, there were changes in the timing con-
straints for finishing the task and the enforced development 
processes [21].

[S16] presented an application of mining three software 
repositories: team wiki (used during requirement engineer-
ing), version control system (development and maintenance) 
and issue tracking system (corrective and adaptive mainte-
nance) in the context of an undergraduate Software Engi-
neering course. Visualizations, metrics and algorithms to 
provide an insight into practices and procedures followed 
during various phases of a software development life-cycle 
were proposed and these provided a multi-faceted view to 
the instructor serving as a feedback tool on development 
process and quality by students. Event logs produced by 
software repositories were mined and derived insights such 
as degree of individual contributions in a team, quality of 
commit messages, intensity and consistency of commit 
activities, bug fixing process trend and quality, component 
and developer entropy, process compliance and verification. 
Experimentation revealed that not only product but process 

quality varies signicantly between student teams and mining 
process aspects can help the instructor in giving directed and 
specific feedback. Authors, observed that commit patterns 
characterizing equal and un-equal distribution of workload 
between team members, patterns indicating consistent activ-
ity in contrast to spike in activity just before the deadline, 
varying quality of commit messages, developer and compo-
nent entropy, variation in degree of process compliance and 
bug fixing quality [41].

[S17] investigated the impact of the just-in-time dupli-
cate retrieval on the duplicate reports that end up in the ITS 
of several open source projects, namelly Mozilla-Firefox, 
Mozilla-Core and Eclipse-Platform. The differences between 
duplicate reports for open source projects before and after 
the activation of this new feature were studied. Findings 
showed that duplicate issue reports after the activation of 
the just-in-time duplicate retrieval feature are less textually 
similar, have a greater identification delay and require more 
discussion to be retrieved as duplicate reports than dupli-
cates before the activation of the feature [52].

[S18] exploited a linguistic technique based on speech-
acts for the analysis of online discussions with the ultimate 
goal of discovering requirements-relevant information. The 
datasets used in the experimental evaluation, which are pub-
licly available, were taken from a widely used open source 
software project (161120 textual comments), as well as 
from an industrial project in the home energy management 
domain. The approach used was able to successfully classify 
messages into Feature/Enhancement and Other, with signifi-
cant accuracy. Evidence was found to support the rationale, 
that there is an association between types of speech-acts and 
categories of issues, and that there is correlation between 
some of the speechacts and issue priority, which could open 
other streams of research [44].

[S19] studied the relationship between the topics of 
a code snippet and the likelihood of a code snippet being 
logged (i.e., to contain a logging statement). The intuition 
driving this research, was that certain topics in the source 
code are more likely to be logged than others. To validate 
the assumptions a case study was conducted on six open 
source systems. The analysis gathered evidences that i) there 
exists a small number of “log-intensive” topics that are more 
likely to be logged than other topics; ii) each pair of the 
studied systems share 12% to 62% common topics, and the 
likelihood of logging such common topics has a statistically 
significant correlation of 0.35 to 0.62 among all the studied 
systems. In summary, the findings highlight the topics con-
taining valuable information that can help guide and drive 
developers’ logging decisions [35].

[S20] revisits a previous work in more depth by study-
ing 4.5 million reviews with 126,686 responses for 2,328 
top free-to-download apps in the Google Play Store. One 
of the major findings is that the assumption that reviews are 
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static is incorrect. In particular, it is found that developers 
and users in some cases use this response mechanism as 
a rudimentary user support tool, where dialogues emerge 
between users and developers through updated reviews and 
responses. In addition, four patterns of developers were iden-
tified: 1) developers who primarily respond to only negative 
reviews, 2) developers who primarily respond to negative 
reviews or to reviews based on their contents, 3) developers 
who primarily respond to reviews which are posted shortly 
after the latest release of their app, and 4) developers who 
primarily respond to reviews which are posted long after the 
latest release of their app. To perform a qualitative analysis 
of developer responses to understand what drives developers 
to respond to a review, the authors analyzed a statistically 
representative random sample of 347 reviews with responses 
for the top ten apps with the highest number of developer 
responses. Seven drivers that make a developer respond to 
a review were identified, of which the most important ones 
are to thank the users for using the app and to ask the user 
for more details about the reported issue. In summary, there 
were significant evidences found, that it can be worthwhile 
for app owners to respond to reviews, as responding may 
lead to an increase in the given rating and that studying the 
dialogue between user and developer can provide valuable 
insights which may lead to improvements in the app store 
and the user support process [26].

[S21] empirically examined the effort that is needed for 
manually identifying duplicate reports in four open source 
projects, i.e., Firefox, SeaMonkey, Bugzilla and Eclipse-
Platform. Results showed that: (i) More than 50% of the 
duplicate reports are identified within half a day. Most of 
the duplicate reports are identified without any discussion 
and with the involvement of very few people; (ii) A classi-
fication model built using a set of factors that are extracted 
from duplicate issue reports classifies duplicates according 
to the effort that is needed to identify them with significant 
values for precision, recall and ROC area; and (iii) Factors 
that capture the developer awareness of the duplicate issues’ 
peers (i.e., other duplicates of that issue) and textual simi-
larity of a new report to prior reports are the most influen-
tial factors found. The results highlight the need for effort-
aware evaluation of approaches that identify duplicate issue 
reports, since the identification of a considerable amount of 
duplicate reports (over 50%) appear to be a relatively trivial 
task for developers. As a conclusion, the authors highlight 
the fact that, to better assist developers, research on identify-
ing duplicate issue reports should put greater emphasis on 
assisting developers in identifying effort-consuming dupli-
cate issues [51].

[S22] analyzed URL sharing activities in Stack Overflow. 
The approach was to use open coding method to analyze 
why users share URLs in Stack Overflow, and develop a set 
of quantitative analysis methods to study the structural and 

dynamic properties of the emergent knowledge network in 
Stack Overflow. The findings show: i) Users share URLs 
for diverse categories of purposes. ii) These URL sharing 
behaviors create a complex knowledge network with high 
modularity, assortative mixing of semantic topics, and a 
structure skeleton consisting of highly recognized knowl-
edge units. iii) The structure of the knowledge network with 
respect to indegree distribution is scale-free (i.e., stable), in 
spite of the ad-hoc and opportunistic nature of URL sharing 
activities, while the outdegree distribution of the knowledge 
network is not scale-free. iv) The indegree distributions of 
the knowledge network converge quickly, with small changes 
over time after the convergence to the stable distribution. 
The conclusions highlight the fact that the knowledge net-
work is a natural product of URL sharing behavior that 
Stack Overflow supports and encourages, and proposed an 
explanatory model based on information value and preferen-
tial attachment theories to explain the underlying factors that 
drive the formation and evolution of the knowledge network 
in Stack Overflow [74].

[S23] questioned if there was really a strong argument 
for the Java 9 language designers to change the implementa-
tion of the deprecation warnings feature after they notice no 
one was taking seriously those and continued using outdated 
features. The goal was to start by identifying the various 
ways in which an API consumer can react to deprecation 
and then to create a dataset of reaction patterns frequency 
consisting of data mined from 50 API consumers totalling 
297,254 GitHub based projects and 1,322,612,567 type-
checked method invocations. Findings show that predomi-
nantly consumers do not react to deprecation and a survey on 
API consumers was done to try to explain this behavior and 
by analyzing if the APIs deprecation policy had an impact 
on the consumers’ decision to react. The manual inspection 
of usages of deprecated API artifacts lead to the discovery 
of six reaction patterns. Only 13% of API consumers update 
their API versions and 88% of reactions to deprecation is 
doing nothing. However the survey got a different result, 
where 69% of respondents say they replace it with the rec-
ommended repalcement. Over 75% of the API barelly affect 
consumers with deprecation and 15% of the consumers are 
affected only by 2 APIs(hibernate-core and mongo-java-
driver) [57].

[S24] investigated working habits and challenges of 
mobile software developers with respect to testing. A key 
finding of this exhaustive study, using 1000 Android apps, 
demonstrates that mobile apps are still tested in a very ad 
hoc way, if tested at all. However, it is shown that, as in 
other types of software, testing increases the quality of apps 
(demonstrated in user ratings and number of code issues). 
Furthermore, there is evidence that tests are essential when 
it comes to engaging the community to contribute to mobile 
open source software. The authors discuss reasons and 



2065Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

potential directions to address the findings. Yet another rel-
evant finding of this study is that Continuous Integration 
and Continuous Deployment (CI/CD) pipelines are rare in 
the mobile apps world (only 26% of the apps are developed 
in projects employing CI/CD) - authors argue that one of the 
main reasons is due to the lack of exhaustive and automatic 
testing [14].

[S25] tries to understand the reasons for log changes and, 
proposes an approach that can provide developers with log 
change suggestions as soon as they commit a code change, 
which is referred to as “just-in-time” suggestions for log 
changes. A set of measures is derived based on manually 
examining the reasons for log changes and individual experi-
ences. Those measures were used as explanatory variables 
in random forest classifiers to model whether a code commit 
requires log changes. These classifiers can provide just-in-
time suggestions for log changes and was evaluated with a 
case study on four open source projects: Hadoop, Directory 
Server, Commons HttpClient, and Qpid. Findings show that: 
i) the reasons for log changes can be grouped along four cat-
egories: block change, log improvement, dependence-driven 
change, and logging issue; ii) the random forest classifiers 
can effectively suggest whether a log change is needed; iii) 
the characteristics of code changes in a particular commit 
and the current snapshot of the source code are the most 
influential factors for determining the likelihood of a log 
change in a commit [34].

[S26] designed and conducted, with the continuous feed-
back of the Xen Project Advisory Board, a detailed analy-
sis focused on finding problems associated with the large 
increase over time in the number of messages related to 
code review. The increase was being perceived as a potential 
signal of problems with their code review process and the 
usage of metrics was suggested to track the performance of 
it. As a result, it was learned how in fact the Xen Project had 
some problems, but at the moment of the analysis those were 
already under control. It was found as well how diferent the 
Xen and Netdev projects were behaving with respect to code 
review performance, despite being so similar from many 
points of view. A comprehensive methodology, fully auto-
mated, to study Linux-style code review was proposed [28].

[S27] analyzed the Common Vulnerability Scoring Sys-
tem (CVSS) scores and bounty awarded for 703 vulnerabili-
ties across 24 products. CVSS is the de facto standard for 
vulnerability severity measurement today and is crucial in 
the analytics driving software fortification. It was found a 
weak correlation between CVSS scores and bounties, with 
CVSS being more likely to underestimate bounty. Such a 
negative result is suggested to be a cause for concern. The 
authors, investigated why the measurements were so discord-
ant by i) analyzing the individual questions of CVSS with 
respect to bounties and ii) conducting a qualitative study 
to find the similarities and diferences between CVSS and 

the publicly-available criteria for awarding bounties. It was 
found that the bounty criteria were more explicit about code 
execution and privilege escalation whereas CVSS makes no 
explicit mention of those. Another lesson learnt was that 
bounty valuations are evaluated solely by project maintain-
ers, whereas CVSS has little provenance in practice [45].

[S28] through a case study on 1,492 high-rated and low-
rated free apps mined from the Google Play store, inves-
tigated 28 factors along eight dimensions to understand 
how high-rated apps are different from low-rated apps. The 
search for the most influential factors was also addressed 
by applying a random-forest classifier to identify high-rated 
apps. The results show that high-rated apps are statistically 
significantly different in 17 out of the 28 factors that we con-
sidered. The experiment also presents eveidences for the fact 
that the size of an app, the number of promotional images 
that the app displays on its web store page, and the target 
SDK version of an app are the most influential factors [62].

[S29] conducted a large-scale study on security-related 
questions on Stack Overflow. Two heuristics were used to 
extract from the dataset the questions that are related to secu-
rity based on the tags of the posts. Later, to cluster different 
security-related questions based on their texts, an advanced 
topic model, Latent Dirichlet Allocation (LDA) tuned 
using Genetic Algorithm (GA) was used. Results show that 
security-related questions on Stack Overflow cover a wide 
range of topics, which belong to five main categories: web 
security, mobile security, cryptography, software security, 
and system security. Among them, most questions are about 
web security. In addition, it was found that the top four most 
popular topics in the security area are “Password”, “Hash”, 
“Signature” and “SQL Injection”, and the top eight most 
difficulty security-related topics are “JAVA Security”, “Asy-
metric Encryption”, “Bug”, “Browser Security”, “Windows 
Authority”, “Signature”, “ASP.NET” and “Password”, sug-
gesting these are the ones in need for more attention [72].

[S30] present an approach to recommend analogical 
libraries based on a knowledge base of analogical libraries 
mined from tags of millions of Stack Overflow questions. 
The approach was implemented in a proof-of-concept web 
application and more than 34.8 thousands of users visited 
the website from November 2015 to August 2017. Results 
show evidences that accurate recommendation of analogical 
libraries is not only possible but also a desirable solution. 
Authors validated the usefulness of their analogical-library 
recommendations by using them to answer analogical-
library questions in Stack Overflow [12].

[S31] explored why and how developers fork what from 
whom in GitHub. This approach was supported by collect-
ing a dataset containing 236,344 developers and 1,841,324 
forks. It was also validated by a survey in order to analyze 
the programming languages and owners of forked reposi-
tories. Among the main findings we have: i) Developers 
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fork repositories to submit pull requests, fix bugs, add new 
features and keep copies etc. Developers find repositories 
to fork from various sources: search engines, external sites 
(e.g., Twitter, Reddit), social relationships, etc. More than 
42% of developers that were surveyed agree that an auto-
mated recommendation tool is useful to help them pick 
repositories to fork, while more than 44.4% of developers 
do not value a recommendation tool. Developers care about 
repository owners when they fork repositories. ii) A reposi-
tory written in a developers’ preferred programming lan-
guage is more likely to be forked. iii) Developers mostly fork 
repositories from creators. In comparison with unattractive 
repository owners, attractive repository owners have higher 
percentage of organizations, more followers and earlier reg-
istration in GitHub. The results show that forking is mainly 
used for making contributions of original repositories, and it 
is beneficial for OSS community. In summary, there is evi-
dence of the value of recommendation and provide impor-
tant insights for GitHub to recommend repositories [30].

[S32] designed and executed an empirical study on six 
open source Java systems to better understand the life expec-
tancy of clones. A random forest classifier was built with the 
aim of determining the life expectancy of a newly-introduced 
clone (i.e., whether a clone will be short-lived or longlived) 
and it was confimed to have good accuracy on that task. 
Results show that a large number of clones (i.e., 30% to 
87%) lived in the systems for a short duration. Moreover, it 
finds that although short-lived clones were changed more 
frequently than long-lived clones throughout their lifetime, 
short-lived clones were consistently changed with their 
siblings less often than long-lived clones. Findings show 
that the churn made to the methods containing a newly-
introduced clone, the complexity and size of the methods 
containing the newly- introduced clone are highly influen-
tial in determining whether the newly-introduced clone will 
be short-lived. Furthermore, the size of a newly-introduced 
clone shares a positive relationship with the likelihood that 
the newly introduced clone will be short-lived. Results sug-
gest that, to improve the efficiency of clone management 
efforts, such as the planning of the most effective use of 
their clone management resources in advance, practitioners 
can leverage the presented classifiers and insights in order 
to determine the life expectancy of clones [61].

[S33] This paper introduces DDP (Data Driven Plata-
form) platform, a scalable platform to analyze and exploit 
performance data. This platform centralizes, analyzes and 
visualizes the performance data produced during the soft-
ware development cycle. DDP employs big data and analyt-
ics technology to collect, store and process performance data 
in an efficient and integrated way. They have demonstrated 
the successful application of DDP for Spectrum Scale, a 
software defined storage solution, where they have been 
able to implement performance regression data analysis 

to validate the performance consistency of new produced 
builds [4].

[S34] To help the industry practitioners in these situa-
tions, a analogy-centered model based on differential evolu-
tion exploration process is proposed in this research study. 
The proposed model has been assessed on 676 projects from 
5 different data sets and the results achieved are significantly 
better when compared with other benchmark analogy-based 
estimation studies [67].

[S35] The paper attempts to analyze and compare 
various methodologies to tune the defect predictors. The 
research papers which are analyzed here have used data-set 
from the PROMISE repository, open-source [53].

[S36] This paper evaluates empirically and theoretically 
heterogeneous Cross-project defect prediction (HCPDP) 
modeling, which comprises of three main phases: Feature 
ranking and feature selection, metric matching, and finally, 
predicting defects in the target application. The research 
work has been experimented on 13 benchmarked datasets 
of three open source projects. Results show that perfor-
mance of HCPDP is very much comparable to baseline 
within project defect prediction [66].

[S37] An anomaly detection system can operate in the 
staging environment to compare the current incoming 
release with previous ones according to predefined met-
rics. The analysis is conducted before going into produc-
tion to identify anomalies. In this paper, they describe a 
prototypical implementation of the aforementioned idea in 
the form of a proof-of-concept [10].

[S38] This article reports a controlled experiment that 
compares the effort to implement changes, the correctness 
and the maintainability of an existing application between 
two projects; one that uses qualitative dashboards depict-
ing contextual information, and one that does not [17].

[S39] In this paper conducts an extensive empirical 
study to evaluate network embedding algorithms in bug 
prediction by utilizing and extending node2defect, a newly 
proposed bug prediction model that combines the embed-
ded vectors with traditional software engineering metrics 
through concatenation. Experiments are conducted based 
on seven network embedding algorithms,two effort-aware 
models, and 13 open-source Java systems [50].

[S40] This paper presents a technology for prescrip-
tive software analytics. Their planner offers users a guid-
ance on what action to take in order to improve the qual-
ity of a software project. Our preferred planning tool is 
BELLTREE, which performs cross-project planning with 
encouraging results.With our BELLTREE planner, we 
show that it is possible to reduce several hundred defects 
in software projects [33].

[S41] In this paper they investigate whether conclu-
sions in the area of defect prediction, if the claims of the 
researchers are stable throughout time. This case study 
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provides evidence that in the field of defect prediction the 
context of evaluation (in our case, time) plays an important 
role [5].

[S42] In this paper, they propose a two-step approach 
to first identify whether a commit describes developer-
related refactoring events, then to classify it according to 
the refactoring common quality improvement categories 
[2].

General Statistics

See Fig. 9, 10, 11, 12, 13 and Table 12, 13, 14, and 15.

Appendix 3: Studies Appraisal

The following acronyms were used for SLR results inter-
pretation (see Table 16):
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Table 12   List of all contributors Name Freq. % Ref.

Ahmed E. Hassan 10 23.81 [S03], [S08], [S12], [S17], [S19], [S20], 
[S21], [S25], [S28], [S32]

David Lo 7 16.67 [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Weiyi Shang 5 11.9 [S03], [S19], [S21], [S25], [S32]
Xin Xia 4 9.52 [S08], [S11], [S29], [S31]
Foutse Khomh 3 7.14 [S04], [S13], [S14]
Giuliano Antoniol 3 7.14 [S04], [S13], [S14]
Yann-Gael Guéhéneuc 3 7.14 [S04], [S13], [S14]
Cor-Paul Bezemer 2 4.76 [S17], [S20]
Heng Li 2 4.76 [S19], [S25]
Mohamed Sami Rakha 2 4.76 [S17], [S21]
Safwat Hassan 2 4.76 [S03], [S20]
Shanping Li 2 4.76 [S08], [S11]
Shing-Chi Cheung 2 4.76 [S07], [S10]
Ying Zou 2 4.76 [S05], [S25]
Zhenchang Xing 2 4.76 [S22], [S30]
Abdul Ali Bangash 1 2.38 [S41]
Abram Hindle 1 2.38 [S41]
Ajay Kumar Jha 1 2.38 [S02]
Alberto Bacchelli 1 2.38 [S23]
Ali Ouni 1 2.38 [S42]
Anand Ashok Sawant 1 2.38 [S23]
Andrea De Lucia 1 2.38 [S09]
Andrew Meneely 1 2.38 [S27]
Anna Perini 1 2.38 [S18]
Antonio Capizzi 1 2.38 [S37]
Arianne Navarro Lepe 1 2.38 [S33]
Ashish Sureka 1 2.38 [S16]
Ayrton Mondragon Mejia 1 2.38 [S33]
Benjamin C. M. Fung 1 2.38 [S14]
Bram Adams 1 2.38 [S04]
Burak Turhan 1 2.38 [S15]
Byron J. Williams 1 2.38 [S01]
Chakkrit Tantithamthavorn 1 2.38 [S20]
Chang Xu 1 2.38 [S10]
Christoph Treude 1 2.38 [S06]
Chunyang Chen 1 2.38 [S30]
Cosmo D’Uva 1 2.38 [S09]
Daniel Izquierdo-Cortazar 1 2.38 [S26]
Dario Di Nucci 1 2.38 [S09]
Davide Fucci 1 2.38 [S15]
Deheng Ye 1 2.38 [S22]
Ejaz ul Haq 1 2.38 [S35]
Eklavya Bhatia 1 2.38 [S35]
Eman Abdullah AlOmar 1 2.38 [S42]
Evgeny Bobrov 1 2.38 [S37]
Fabio Palomba 1 2.38 [S09]
Ferdian Thung 1 2.38 [S06]
Filomena Ferrucci 1 2.38 [S09]
Fitsum Meshesha Kifetew 1 2.38 [S18]
Garvit Rana 1 2.38 [S35]
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Table 12   (continued) Name Freq. % Ref.

Gede Artha Azriadi Prana 1 2.38 [S06]
Hareem Sahar 1 2.38 [S41]
Heng Yin 1 2.38 [S39]
Hongyu Zhang 1 2.38 [S07]
Iman Keivanloo 1 2.38 [S05]
Ismael Solis Moreno 1 2.38 [S33]
Itzel Morales-Ramirez 1 2.38 [S18]
Javaid Iqbal Bhat 1 2.38 [S34]
Jesus M. Gonzalez-Barahona 1 2.38 [S26]
Jiahuan He 1 2.38 [S31]
Jian-Ling Sun 1 2.38 [S29]
Jian Zhang 1 2.38 [S10]
Jing Jiang 1 2.38 [S31]
Jorge Luis Victória Barbosa 1 2.38 [S38]
Jue Wang 1 2.38 [S10]
Jun Yan 1 2.38 [S10]
Kaisar Javeed Giri 1 2.38 [S34]
Karim Ali 1 2.38 [S41]
Kazi Zakia Sultana 1 2.38 [S01]
Kleinner Silva Farias de Oliveira 1 2.38 [S38]
Lars Kurth 1 2.38 [S26]
Latifa Guerrouj 1 2.38 [S14]
Leandro Ferreira D’Avila 1 2.38 [S38]
Li Zhang 1 2.38 [S31]
Lili Wei 1 2.38 [S10]
Luis Cruz 1 2.38 [S24]
Luiz J. P. Araújo 1 2.38 [S37]
Manuel Mazzara 1 2.38 [S37]
Megha Mittal 1 2.38 [S16]
Meiyappan Nagappan 1 2.38 [S28]
Meng Yan 1 2.38 [S08]
MingWen 1 2.38 [S07]
Mohamed Wiem Mkaouer 1 2.38 [S42]
Muhammad Ahmad 1 2.38 [S37]
Nachiket Kapre 1 2.38 [S22]
Nasir Ali 1 2.38 [S12]
Nelson Sekitoleko 1 2.38 [S26]
Nuthan Munaiah 1 2.38 [S27]
Pasquale Salza 1 2.38 [S09]
Patanamon Thongtanunam 1 2.38 [S32]
Patricia Ortegon Cano 1 2.38 [S33]
Pavneet Singh Kochhar 1 2.38 [S31]
Rahul Katarya 1 2.38 [S35]
Rahul Krishna 1 2.38 [S40]
Rodrigo Morales 1 2.38 [S13]
Rohit Vashisht 1 2.38 [S36]
Romain Robbes 1 2.38 [S23]
RongxinWu 1 2.38 [S07]
Rubén Saborido 1 2.38 [S13]
Rui Abreu 1 2.38 [S24]
Salvatore Distefano 1 2.38 [S37]
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–	 Study Type

ACM—Analyze and Compare Methodologies, CS-
Case Study, CE-Controlled Experiment
ECS—Exploratory Case Study, QE—Quasi-Exper-
iment, S—Survey

–	 SDLC Activities

D—Debugging, I—Implementation, M—Mainte-
nance, O—Operations, T—Testing

–	 Project Stakeholders

D—Developers, E—Educators, EU—End-Users, 
T—Testers, PM—Product Managers
PjM—Project Managers, R—Researchers, RE—
Requirements Engineers

–	 Analytics Scope

Des—Descriptive Analytics, Dia—Diagnostics Ana-
lytics
Pred—Predictive Analytics, Pres—Prescriptive 
Analytics

The following taxonomy was used to assess the SDLC 
contributions:

–	 The benefit is:

Absent (0)              Not addressed
Weak (0.25)              Implicitly addressed
Moderate (0.5)              Explicitly addressed (not 
detailed)
Strong (0.75)              Explained with details and 
implications
Complete (1)              Fully explained, validated 
and replicable

Table 12   (continued) Name Freq. % Ref.

Seyyed Ehsan Salamati Taba 1 2.38 [S05]
Shaohua Wang 1 2.38 [S05]
Silvana De Gyves Avila 1 2.38 [S33]
Stuart McIlroy 1 2.38 [S12]
Sunghee Lee 1 2.38 [S02]
Syed Afzal Murtaza Rizvi 1 2.38 [S36]
Tanmay Bhowmik 1 2.38 [S01]
Thushari Atapattu 1 2.38 [S06]
Tianyong Wu 1 2.38 [S10]
Tim Menzies 1 2.38 [S40]
Tse-Hsun (Peter) Chen 1 2.38 [S19]
Venera Arnaoudova 1 2.38 [S14]
Wei Wu 1 2.38 [S04]
Woo Jin Lee 1 2.38 [S02]
Xin-Li Yang 1 2.38 [S29]
Yang Liu 1 2.38 [S30]
Yepang Liu 1 2.38 [S10]
Yu QU 1 2.38 [S39]
Yuan Tian 1 2.38 [S28]
Yuanrui Fan 1 2.38 [S11]
Zahid Hussain Wani 1 2.38 [S34]
Zeinab Kermansaravi 1 2.38 [S14]
Zhi-Yuan Wan 1 2.38 [S29]
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Table 13   Statistics per Institution

Institution Freq. % Ref.

Queen’s University 11 26.19 [S03], [S05], [S08], [S12], [S17], [S19], 
[S20], [S21], [S25], [S28], [S32]

Singapore Management University 7 16.67 [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Concordia University 4 9.52 [S03], [S19], [S25], [S32]
Zhejiang University 4 9.52 [S08], [S11], [S29], [S31]
École Polytechnique de Montréal 3 7.14 [S04], [S13], [S14]
Monash University 3 7.14 [S08], [S11], [S30]
Rochester Institute of Technology 3 7.14 [S27], [S28], [S42]
Hong Kong University of Science and Technology 2 4.76 [S07], [S10]
Nanyang Technological University 2 4.76 [S22], [S30]
University of Adelaide 2 4.76 [S06], [S20]
University of Zurich 2 4.76 [S09], [S23]
Australian National University 1 2.38 [S30]
Beihang University 1 2.38 [S31]
Bitergia 1 2.38 [S26]
Citrix 1 2.38 [S26]
Columbia University 1 2.38 [S40]
Delft University of Technology 1 2.38 [S23]
Delhi Technological University 1 2.38 [S35]
École de Technologie Supérieure 1 2.38 [S14]
ETS Montreal, University of Quebec 1 2.38 [S42]
Fondazione Bruno Kessler 1 2.38 [S18]
Free University of Bozen-Bolzano 1 2.38 [S23]
IBM 1 2.38 [S33]
Indraprastha Institute of Information Technology 1 2.38 [S16]
INESC ID 1 2.38 [S24]
INFOTEC 1 2.38 [S18]
Innopolis University 1 2.38 [S37]
Islamic University of Science and Technology 1 2.38 [S34]
Jamia Millia Islamia 1 2.38 [S36]
Kyungpook National University 1 2.38 [S02]
McGill University 1 2.38 [S14]
Mississippi State University 1 2.38 [S01]
Nanjing University 1 2.38 [S10]
NC State University 1 2.38 [S40]
Southern University of Science and Technology 1 2.38 [S10]
Universidad Rey Juan Carlos 1 2.38 [S26]
Universitá della Svizzera Italiana 1 2.38 [S09]
University of Alberta 1 2.38 [S41]
University of California 1 2.38 [S39]
University of Chinese Academy of Sciences 1 2.38 [S10]
University of Lisbon 1 2.38 [S24]
University of Melbourne 1 2.38 [S32]
University of Messina 1 2.38 [S37]
University of Newcastle 1 2.38 [S07]
University of Oulu 1 2.38 [S15]
University of Salerno 1 2.38 [S09]
University of Vale do Rio dos Sinos 1 2.38 [S38]
University of Waterloo 1 2.38 [S12]
Vrije Universiteit Brussel 1 2.38 [S09]
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Table 13   (continued)

Institution Freq. % Ref.

Washington State University 1 2.38 [S14]

Table 14   Statistics per continent and country

Freq. % Ref.

Continent
North America 23 54.76 [S01], [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17], [S18], [S19], [S20], [S21], [S25], [S26], [S27], 

[S28], [S32], [S33], [S39], [S40], [S41], [S42]
Asia 17 40.48 [S02], [S06], [S07], [S08], [S10], [S11], [S16], [S22], [S24], [S28], [S29], [S30], [S31], [S34], [S35], [S36], 

[S37]
Europe 7 16.67 [S09], [S15], [S18], [S23], [S24], [S26], [S37]
Oceania 7 16.67 [S06], [S07], [S08], [S11], [S20], [S30], [S32]
South America 1 2.38 [S38]
Country
Canada 16 38.1 [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17], [S19], [S20], [S21], [S25], [S28], [S32], [S41], [S42]
Singapore 9 21.43 [S06], [S08], [S11], [S22], [S24], [S28], [S29], [S30], [S31]
USA 8 19.05 [S01], [S14], [S26], [S27], [S28], [S39], [S40], [S42]
Australia 7 16.67 [S06], [S07], [S08], [S11], [S20], [S30], [S32]
China 6 14.29 [S07], [S08], [S10], [S11], [S29], [S31]
India 4 9.52 [S16], [S34], [S35], [S36]
Italy 4 9.52 [S09], [S18], [S23], [S37]
Mexico 2 4.76 [S18], [S33]
Switzerland 2 4.76 [S09], [S23]
Belgium 1 2.38 [S09]
Brazil 1 2.38 [S38]
Finland 1 2.38 [S15]
Portugal 1 2.38 [S24]
Republic of Korea 1 2.38 [S02]
Russian 1 2.38 [S37]
Spain 1 2.38 [S26]
The Netherlands 1 2.38 [S23]



2074	 J. Caldeira et al.

1 3

Table 15   Data sources findings 
(frequency > 1)

Data Sources Freq. % Ref.

GitHub Repositories 10 23.81 [S02], [S06], [S09], [S10], [S13], [S23], 
[S24], [S31], [S37], [S42]

Google Play Store 7 16.67 [S03], [S05], [S10], [S12], [S20], [S24], [S28]
Git Repositories 6 14.29 [S08], [S14], [S16], [S19], [S26], [S32]
BugZilla 5 11.9 [S07], [S14], [S16], [S17], [S21]
F-Droid Repository 5 11.9 [S02], [S03], [S09], [S10], [S24]
Promise Repositories 4 9.52 [S35], [S39], [S40], [S41]
Online Survey 3 7.14 [S15], [S23], [S24]
StackOverflow 3 7.14 [S22], [S29], [S30]
JAVA 2 4.76 [S35], [S38]
Maven Repositories 2 4.76 [S04], [S09]
SVN Repositories 2 4.76 [S09], [S14]
Unknown 2 4.76 [S34], [S36]
Android Issue Tracker 1 2.38 [S27]
Apache OpenOffice Issue Tracking System 1 2.38 [S18]
Apache Tomcat Archive 1 2.38 [S01]
BinTray 1 2.38 [S09]
Cassandra 1 2.38 [S33]
Chrome Releases Blog 1 2.38 [S27]
Chromium Issue Tracker 1 2.38 [S27]
CodeClimate 1 2.38 [S37]
Docker 1 2.38 [S37]
Eclise API 1 2.38 [S38]
Exception Reports 1 2.38 [S07]
Gerrit 1 2.38 [S11]
Google 1 2.38 [S09]
Google Forms 1 2.38 [S13]
HackerOne Bug Bounty Platform 1 2.38 [S27]
JCenter 1 2.38 [S09]
Jenkins 1 2.38 [S37]
JIRA 1 2.38 [S14]
Lab Computers 1 2.38 [S15]
Mailing List 1 2.38 [S26]
Mercurial Repositories 1 2.38 [S16]
MongoDB 1 2.38 [S33]
Mylyn 1 2.38 [S38]
NetBeans Source Code Repository 1 2.38 [S07]
Node 1 2.38 [S37]
Python 1 2.38 [S33]
SEACRAFT Repositories 1 2.38 [S35]
SecuriBench Archive 1 2.38 [S01]
SEnerCON Feedback Gathering System 1 2.38 [S18]
Slack 1 2.38 [S37]
Spark 1 2.38 [S33]
Team Wiki (BitBucket) 1 2.38 [S16]
Version Control Repositories 1 2.38 [S25]
Vulnerability Reports 1 2.38 [S01]
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Table 16   Systematic literature review results
Study
Type

Data
Sources

Process
Perspective

SDLC
Activities

Project
Stakeholders

Mining
Methods

Analytics
Scope

Contributions
to SDLC

Study T
ec
h
n
ic
al

D
eb
t

T
im

e
M
an
ag
em

en
t

C
o
st
s

C
o
n
tr
o
l

R
is
k
s

A
ss
es
sm

en
t

S
ec
u
ri
ty

A
n
al
y
si
s

S01 CS Vulnerability

Reports,Apache

Tomcat

Archive,SecuriBench

Archive

Post-Mortem I,T D,T Descriptive Statis-

tics,Pattern Extrac-

tion,Correlation Analysis

Des,Dia

S02 CS F-Droid Repos-

itory,GitHub

Repositories

Post-Mortem I D Descriptive Statis-

tics,Pattern Extrac-

tion,Correlation Analysis

Des,Dia

S03 CS F-Droid Reposi-

tory,Google Play

Store

Post-Mortem O D,PM Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S04 ECS Maven Repositories Post-Mortem I D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S05 ECS Google Play Store Post-Mortem O D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S06 QE,S GitHub Repositories Post-Mortem I D,PM Descriptive Statis-

tics,Pattern Extrac-

tion,Classifier Learning

Des,Dia,Pred

S07 QE NetBeans Source

Code Reposi-

tory,BugZilla,Exception

Reports

Post-Mortem I,D,M D Descriptive Statis-

tics,Pattern Extrac-

tion,Heuristic Fea-

tures,Classifier Learning

Des,Dia

S08 CS Git Repositories Post-Mortem I,D,M D Descriptive Statis-

tics,Feature Extrac-

tion,Correlation Anal-

ysis,Redundancy Analy-

sis,Classifier Learning

Des,Dia,Pred

S09 ECS F-Droid Reposi-

tory,SVN Repos-

itories,GitHub

Reposito-

ries,BinTray,JCenter,Maven

Reposito-

ries,Google

Post-Mortem I,D,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S10 ECS F-Droid Reposi-

tory,GitHub Repos-

itories,Google Play

Store

Post-Mortem I,D,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S11 QE Gerrit Post-Mortem I,D,M D Descriptive Statis-

tics,Hyphotesis Test-

ing,Redundancy Anal-

ysis,Feature Extrac-

tion,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

S12 QE Google Play Store Post-Mortem I,D,M D,PM Descriptive Statistics Des,Dia

S13 ECS,QE,S GitHub Repos-

itories,Google

Forms

Post-Mortem I,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S14 QE Git Reposito-

ries,SVN Reposito-

ries,BugZilla,JIRA

Post-Mortem I,M D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S15 QE Online Survey,Lab

Computers

Post-Mortem I D Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S16 ECS Team Wiki (Bit-

Bucket),Mercurial

Repositories,Git

Reposito-

ries,BugZilla

Post-Mortem I D Descriptive Statis-

tics,Process Mining

Des,Dia

S17 QE BugZilla Post-Mortem I,M D,R Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analysis

Des,Dia

S18 QE Apache OpenOffice

Issue Tracking

System,SEnerCON

Feedback Gathering

System

Post-Mortem I,M,O D,PM,RE Descriptive Statis-

tics,Hyphotesis Test-

ing,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

S19 QE Git Repositories Post-Mortem I D Descriptive Statis-

tics,Correlation Anal-

ysis,Topic Model-

ing,Regression Models

Des,Dia,Pred

S20 ECS Google Play Store Post-Mortem I,M,O D,EU,PM,R Descriptive Statis-

tics,Correlation

Analysis,Mixed-Effect

Models,Cluster Analy-

sis,Regression Models

Des,Dia,Pred
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Table 16   (continued)

S22 ECS StackOverflow Post-Mortem I,M D Descriptive Statis-

tics,Correlation Analy-

sis,Topic Modeling,Cluster

Analysis

Des,Dia

S23 ECS,S GitHub Reposito-

ries,Online Survey

Post-Mortem I,M D Descriptive Statis-

tics,Pattern Extraction

Des,Dia

S24 QE,S F-Droid Reposi-

tory,GitHub Repos-

itories,Google Play

Store,Online Survey

Post-Mortem I,M,T D,T Descriptive Statis-

tics,Correlation Analysis

Des,Dia

S25 ECS Version Control

Repositories

Post-Mortem I,M D Descriptive Statis-

tics,Correlation Anal-

ysis,Classifier Learn-

ing,Cluster Analysis

Des,Dia,Pred

S26 ECS Mailing List,Git

Repositories

Post-Mortem I,M D,PjM Descriptive Statistics Des,Dia

S27 ECS Android Issue

Tracker,Chrome

Releases

Blog,Chromium

Issue

Tracker,HackerOne

Bug Bounty Plat-

form

Post-Mortem I,M D,PM Descriptive Statis-

tics,Correlation Analysis

Des,Dia

S28 ECS Google Play Store Post-Mortem I,M,O D,PM Descriptive Statis-

tics,Correlation Analysis

Des,Dia

S29 ECS StackOverflow Post-Mortem I,M D,R,PjM,E Descriptive Statistics,Topic

Modeling,Genetic Algo-

rithms

Des,Dia

S30 ECS StackOverflow Post-Mortem I,M,T D Descriptive Statis-

tics,Association

Rules,Natural Language

Processing

Des,Dia,Pres

S31 ECS,S GitHub Repositories Post-Mortem I D Descriptive Statistics Des,Dia

S32 ECS Git Repositories Post-Mortem I D Descriptive Statis-

tics,Generalized Suf-

fix Trees,Correlation

Analysis,Cluster Analy-

sis,Classifier Learning

Des,Dia,Pred

S33 CS MongoDB,Python,

Spark,Cassandra

Post-Mortem I,T D,T,PM Descriptive Statis-

tics,Analysis

Des

S34 QE Unknown Post-Mortem I,M,T D,T,PM Descriptive Statis-

tics,Analysis

Des,Dia

S35 ACM Promise Reposito-

ries,JAVA,SEACRAFT

Repositories

seDsisylanAMP,T,DT,O,M,ImetroM-erP

S36 CS Unknown Post-Mortem I,T D,PM Descriptive Statistics Des,Dia

S37 ECS GitHub Repos-

itories,Jenkins,

CodeClimate,

Docker, Slack,Node

Post-Mortem I,T D,T,PM,PjM Descriptive Statistics Des

S38 CE JAVA,Eclise

API,Mylyn

Post-Mortem M,T D,PM Descriptive Statis-

tics,Analysis

Des,Dia

S39 CS Promise Reposito-

ries

Post-Mortem D,M,T D,PM Descriptive Statis-

tics,Hypothesis Test-

ing,Correlation Analysis

Des,Dia,Pred

S40 ECS Promise Reposito-

ries

Post-Mortem I,M,T D,T,PM Descriptive Statis-

tics,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

S41 CS Promise Reposito-

ries

Post-Mortem I,T D,PM Descriptive Statis-

tics,Correlation Analy-

sis,Classifier Learning

Des,Dia

S42 CS GitHub Repositories Post-Mortem I,T D,T,PM Descriptive Statis-

tics,Correlation Analysis

Des

S21 QE BugZilla Post-Mortem I,M D Descriptive Statis-

tics,Correlation Analy-

sis,Classifier Learning

Des,Dia,Pred

Acknowledgements  This work was partially funded by the Portu-
guese Foundation for Science and Technology, under ISTAR’s projects 
UIDB/04466/2020 and UIDP/04466/2020.

References

	 1.	 Abdellatif M, Capretz F, Ho D (2015) Software Analytics to soft-
ware practice: a systematic literature review. In: 1st International 
workshop on big data software engineering, IEEE/ACM, New 

York, pp 30–36. https://​doi.​org/​10.​1109/​BIGDSE.​2015.​14. https://​
www.​eng.​uwo.​ca/​Elect​rical/​facul​ty/​capre​tz_l/​docs/​publi​catio​ns/​
Tamer-​BIGDSE-​v2.​pdf

	 2.	 AlOmar EA, Mkaouer MW, Ouni A (2021) Toward the auto-
matic classification of self-affirmed refactoring. J Syst Softw 
171:110821. https://​doi.​org/​10.​1016/J.​JSS.​2020.​110821

	 3.	 Anwar H, Pfahl D (2017) Towards greener software engineering 
using software analytics: a systematic mapping. In: Proceedings of  
43rd Euromicro conference on software engineering and advanced 
applications, SEAA 2017. Institute of Electrical and Electronics 

https://doi.org/10.1109/BIGDSE.2015.14
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://www.eng.uwo.ca/Electrical/faculty/capretz_l/docs/publications/Tamer-BIGDSE-v2.pdf
https://doi.org/10.1016/J.JSS.2020.110821


2078	 J. Caldeira et al.

1 3

Engineers Inc., pp 157–166. https://​doi.​org/​10.​1109/​SEAA.​2017.​
56

	 4.	 Avila SDG, Cano PO, Mejia AM, Moreno IS, Lepe AN (2020) 
A data driven platform for improving performance assessment 
of software defined storage solutions. Adv Intell Syst Comput 
1071:266–275. https://​doi.​org/​10.​1007/​978-3-​030-​33547-2_​20

	 5.	 Bangash AA, Sahar H, Hindle A, Ali K (2020) On the time-
based conclusion stability of cross-project defect prediction 
models. Empir Softw Eng 25:5047–5083. https://​doi.​org/​10.​1007/​
S10664-​020-​09878-9

	 6.	 Buse RPL, Zimmermann T (2010) Analytics for software develop-
ment. Tech. rep., Microsoft Research. https://​www.​micro​soft.​com/​
en-​us/​resea​rch/​wp-​conte​nt/​uploa​ds/​2016/​02/​MSR-​TR-​2010-​111.​
pdf

	 7.	 Buse RP, Zimmermann T (2012) Information needs for software 
development analytics. In: Proceedings - International Conference 
on Software Engineering, pp 987–996, https://​doi.​org/​10.​1109/​
ICSE.​2012.​62271​22

	 8.	 Cai KY (2002) Optimal software testing and adaptive software 
testing in the context of software cybernetics. Inf Softw Technol 
44(14):841–855. https://​doi.​org/​10.​1016/​S0950-​5849(02)​00108-8

	 9.	 Cai KY, Chen T, Tse T (2002) Towards research on software 
cybernetics. In: 7th IEEE international symposium on high assur-
ance systems engineering, 2002. Proceedings, pp 240–241. https://​
doi.​org/​10.​1109/​HASE.​2002.​11731​29

	10.	 Capizzi A, Distefano S, Araújo LJ, Mazzara M, Ahmad M, Bobrov 
E (2020) Anomaly detection in devops toolchain. Lecture notes in 
computer science (including subseries Lecture notes in artificial 
intelligence and Lecture notes in bioinformatics), vol 12055, pp 
37–51. https://​doi.​org/​10.​1007/​978-3-​030-​39306-9_3

	11.	 Chen L, Babar MA (2011) A systematic review of evaluation of 
variability management approaches in software product lines. Inf 
Softw Technol 53(4):344–362

	12.	 Chen C, Xing Z, Liu Y (2019) What’s Spain’s Paris? Mining 
analogical libraries from Q & A discussions. Empir Softw Eng 
24(3):1155–1194. https://​doi.​org/​10.​1007/​s10664-​018-​9657-y

	13.	 Cosentino V, Izquierdo JL, Cabot J (2017) A systematic map-
ping study of software development with GitHub. IEEE Access 
5:7173–7192. https://​doi.​org/​10.​1109/​ACCESS.​2017.​26823​23

	14.	 Cruz L, Abreu R, Lo D (2019) To the attention of mobile soft-
ware developers: guess what, test your app! Empir Softw Eng  
24:2438–2468. https://​doi.​org/​10.​1007/​s10664-​019-​09701-0

	15.	 Dasanayake S, Markkula J, Oivo M (2014) Concerns in software 
development: a systematic mapping study. In: Proceedings of 
the 18th International conference on evaluation and assessment 
in software engineering. Association for Computing Machinery, 
pp 1–4. https://​doi.​org/​10.​1145/​26012​48.​26012​90

	16.	 Davenport TH, Harris JG, Morison R (2010) Analytics at work: 
smarter decisions, better results. Harvard Business Press. http://​
disco​very.​uoc.​edu/​iii/​encore/​record/​C__​Rb104​9687__​SAnal​
ytics%​20at%​20Wor​k__​Origh​tresu​lt__​U__​X7?​lang=​spi

	17.	 D’Avila LF, Farias K, Barbosa JLV (2020) Effects of contextual 
information on maintenance effort: a controlled experiment. J 
Syst Softw. https://​doi.​org/​10.​1016/J.​JSS.​2019.​110443

	18.	 Dybå T, Dingsøyr T (2008) Strength of evidence in systematic 
reviews in software engineering. In: ESEM’08: proceedings of 
the 2008 ACM-IEEE international symposium on empirical 
software engineering and measurement, pp 178–187. https://​
doi.​org/​10.​1145/​14140​04.​14140​34

	19.	 Emam KE, Koru AG (2008) A replicated survey of IT software 
project failures. IEEE Softw 25(5):84–90. https://​doi.​org/​10.​
1109/​MS.​2008.​107. (ieeexplore.ieee.org/document/4602680/)

	20.	 Fan Y, Xia X, Lo D, Li S (2018) Early prediction of merged 
code changes to prioritize reviewing tasks. Empir Softw Eng 
23(6):3346–3393. https://​doi.​org/​10.​1007/​s10664-​018-​9602-0

	21.	 Fucci D, Turhan B (2014) On the role of tests in test-
driven development: a differentiated and partial replication. 
Empir Softw Eng 19(2):277–302. https://​doi.​org/​10.​1007/​
s10664-​013-​9259-7

	22.	 Garcia CdS, Meincheim A, Faria Junior ER, Dallagassa MR, Sato 
DMV, Carvalho DR, Santos EAP, Scalabrin EE (2019) Process 
mining techniques and applications—a systematic mapping study. 
Expert Syst Appl 133:260–295. https://​doi.​org/​10.​1016/j.​eswa.​
2019.​05.​003

	23.	 Gomes TL, Oliveira TC, Cowan D, Alencar P (2014) Mining reuse 
processes. In: CIBSE 2014: proceedings of the 17th Ibero-Ameri-
can conference software engineering. Curran Associates, Pucon, 
pp 179–191. https://​dblp.​org/​rec/​bib/​conf/​cibse/​Gomes​OCA14

	24.	 Guerrouj L, Kermansaravi Z, Arnaoudova V, Fung BC, Khomh 
F, Antoniol G, Guéhéneuc YG (2017) Investigating the relation 
between lexical smells and change- and fault-proneness: an empir-
ical study. Softw Qual J 25(3):641–670. https://​doi.​org/​10.​1007/​
s11219-​016-​9318-6

	25.	 Hassan S, Shang W, Hassan AE (2017) An empirical study of 
emergency updates for top android mobile apps. Empir Softw Eng 
22(1):505–546. https://​doi.​org/​10.​1007/​s10664-​016-​9435-7

	26.	 Hassan S, Tantithamthavorn C, Bezemer CP, Hassan AE (2018) 
Studying the dialogue between users and developers of free apps 
in the Google Play Store. Empir Softw Eng 23(3):1275–1312. 
https://​doi.​org/​10.​1007/​s10664-​017-​9538-9

	27.	 IEEE Computer Society (2014) SWEBOK V3.0. No. V3.0 in 1. 
IEEE Computer Society. https://​doi.​org/​10.​1234/​12345​678, http://​
www4.​ncsu.​edu/​~tjmen​zie/​cs510/​pdf/​SWEBO​Kv3.​pdf

	28.	 Izquierdo-Cortazar D, Sekitoleko N, Gonzalez-Barahona JM, 
Kurth L (2017) Using metrics to track code review performance. 
In: ACM international conference proceeding series. Association 
for Computing Machinery, vol Part F128635, pp 214–223. https://​
doi.​org/​10.​1145/​30842​26.​30842​47

	29.	 Jha AK, Lee S, Lee WJ (2019) An empirical study of configura-
tion changes and adoption in Android apps. J Syst Softw 156:164–
180. https://​doi.​org/​10.​1016/j.​jss.​2019.​06.​095

	30.	 Jiang J, Lo D, He J, Xia X, Kochhar PS, Zhang L (2017) Why and 
how developers fork what from whom in GitHub. Empirical Softw 
Eng 22(1):547–578. https://​doi.​org/​10.​1007/​s10664-​016-​9436-6

	31.	 Kitchenham B, Brereton P (2013) A systematic review of system-
atic review process research in software engineering. Inf Softw 
Technol 55(12):2049–2075. https://​doi.​org/​10.​1016/j.​infsof.​2013.​
07.​010

	32.	 Kitchenham B, Pearl Brereton O, Budgen D, Turner M, Bailey 
J, Linkman S (2009) Systematic literature reviews in software 
engineering—a systematic literature review. Inf Softw Technol 
5:7–15

	33.	 Krishna R, Menzies T (2020) Learning actionable analytics 
from multiple software projects. Empir Softw Eng 25:3468–
3500. https://​doi.​org/​10.​1007/​S10664-​020-​09843-6

	34.	 Li H, Shang W, Zou Y, Hassan E, A, (2017) Towards just-in-
time suggestions for log changes. Empir Softw Eng 22(4):1831–
1865. https://​doi.​org/​10.​1007/​s10664-​016-​9467-z

	35.	 Li H, Chen THP, Shang W, Hassan AE (2018) Studying soft-
ware logging using topic models. Empir Softw Eng 23(5):2655–
2694. https://​doi.​org/​10.​1007/​s10664-​018-​9595-8

	36.	 Liu Y, Wang J, Wei L, Xu C, Cheung SC, Wu T, Yan J, Zhang J 
(2019) DroidLeaks: a comprehensive database of resource leaks 
in Android apps. Empir Softw Eng 24(6):3435–3483. https://​
doi.​org/​10.​1007/​s10664-​019-​09715-8

	37.	 McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an empirical 
study of frequently-updated mobile apps in the Google play 
store. Empir Softw Eng 21(3):1346–1370. https://​doi.​org/​10.​
1007/​s10664-​015-​9388-2

	38.	 Menzies T, Bird C, Zimmermann T, Schulte W, Kocaganeli E 
(2011) The inductive software engineering manifesto: principles 

https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1109/SEAA.2017.56
https://doi.org/10.1007/978-3-030-33547-2_20
https://doi.org/10.1007/S10664-020-09878-9
https://doi.org/10.1007/S10664-020-09878-9
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-111.pdf
https://doi.org/10.1109/ICSE.2012.6227122
https://doi.org/10.1109/ICSE.2012.6227122
https://doi.org/10.1016/S0950-5849(02)00108-8
https://doi.org/10.1109/HASE.2002.1173129
https://doi.org/10.1109/HASE.2002.1173129
https://doi.org/10.1007/978-3-030-39306-9_3
https://doi.org/10.1007/s10664-018-9657-y
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1007/s10664-019-09701-0
https://doi.org/10.1145/2601248.2601290
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
http://discovery.uoc.edu/iii/encore/record/C__Rb1049687__SAnalytics%20at%20Work__Orightresult__U__X7?lang=spi
https://doi.org/10.1016/J.JSS.2019.110443
https://doi.org/10.1145/1414004.1414034
https://doi.org/10.1145/1414004.1414034
https://doi.org/10.1109/MS.2008.107
https://doi.org/10.1109/MS.2008.107
https://doi.org/10.1007/s10664-018-9602-0
https://doi.org/10.1007/s10664-013-9259-7
https://doi.org/10.1007/s10664-013-9259-7
https://doi.org/10.1016/j.eswa.2019.05.003
https://doi.org/10.1016/j.eswa.2019.05.003
https://dblp.org/rec/bib/conf/cibse/GomesOCA14
https://doi.org/10.1007/s11219-016-9318-6
https://doi.org/10.1007/s11219-016-9318-6
https://doi.org/10.1007/s10664-016-9435-7
https://doi.org/10.1007/s10664-017-9538-9
https://doi.org/10.1234/12345678
http://www4.ncsu.edu/%7etjmenzie/cs510/pdf/SWEBOKv3.pdf
http://www4.ncsu.edu/%7etjmenzie/cs510/pdf/SWEBOKv3.pdf
https://doi.org/10.1145/3084226.3084247
https://doi.org/10.1145/3084226.3084247
https://doi.org/10.1016/j.jss.2019.06.095
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1007/S10664-020-09843-6
https://doi.org/10.1007/s10664-016-9467-z
https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1007/s10664-019-09715-8
https://doi.org/10.1007/s10664-019-09715-8
https://doi.org/10.1007/s10664-015-9388-2
https://doi.org/10.1007/s10664-015-9388-2


2079Software Development Analytics in Practice: A Systematic Literature Review﻿	

1 3

for industrial data mining. In: Proceedings of the international 
workshop on machine learning technologies in software engi-
neering. Association for Computing Machinery, pp 19–26. 
http://​bit.​ly/​o02QZJ

	39.	 Menzies T, Minku L, Peters F (2015) The art and science of 
analyzing software data; quantitative methods. In: Proceedings 
of the  international conference on software engineering, vol 2. 
IEEE Computer Society, pp 959–960. https://​doi.​org/​10.​1109/​
ICSE.​2015.​306

	40.	 Mittal M, Sureka A (2014a) MIMANSA: process mining soft-
ware repositories from student projects in an undergraduate 
software engineering course categories and subject descriptors. 
Softw Eng Educ Train ICSE 2014:344–353

	41.	 Mittal M, Sureka A (2014b) Process mining software reposito-
ries from student projects in an undergraduate software engi-
neering course. In: 36th International conference on software 
engineering, ICSE Companion 2014—proceedings. Association 
for Computing Machinery, pp 344–353. https://​doi.​org/​10.​1145/​
25910​62.​25911​52

	42.	 Mohagheghi P, Conradi R (2007) Quality, productivity and eco-
nomic benefits of software reuse: a review of industrial stud-
ies. Empir Softw Eng 12(5):471–516. https://​doi.​org/​10.​1007/​
s10664-​007-​9040-x

	43.	 Mohagheghi P, Jorgensen M (2017) What contributes to the 
success of IT projects? Success factors, challenges and lessons 
learned from an empirical study of software projects in the 
Norwegian public sector. In: 2017 IEEE/ACM 39th interna-
tional conference on software engineering companion (ICSE-C). 
IEEE, pp 371–373. https://​doi.​org/​10.​1109/​ICSE-C.​2017.​146, 
http://​ieeex​plore.​ieee.​org/​docum​ent/​79653​62/

	44.	 Morales-Ramirez I, Kifetew FM, Perini A (2018) Speech-acts 
based analysis for requirements discovery from online discus-
sions. Inf Syst 86:94–112. https://​doi.​org/​10.​1016/j.​is.​2018.​08.​
003

	45.	 Munaiah N, Meneely A (2016) Vulnerability severity scoring 
and bounties: why the disconnect. In: SWAN 2016 - Proceed-
ings of the 2nd international workshop on software analytics, 
co-located with FSE 2016. Association for Computing Machin-
ery, pp 8–14. https://​doi.​org/​10.​1145/​29892​38.​29892​39

	46.	 Nakamoto S (2009) Bitcoin: A Peer-to-Peer Electronic Cash 
System. Tech. rep., http://​www.​bitco​in.​org, www.​bitco​in.​org

	47.	 Nayebi M, Ruhe G, Mota RC, Mufti M (2016) Analytics for 
software project management—wWhere are we and where do 
we go? In: Proceedings—2015 30th IEEE/ACM international 
conference on automated software engineering workshops, 
ASEW 2015. Institute of Electrical and Electronics Engineers, 
pp 18–21. https://​doi.​org/​10.​1109/​ASEW.​2015.​28

	48.	 Poncin W, Serebrenik A, Brand MVD (2011) Process mining 
software repositories. In: 2011 15th European conference on 
software maintenance and reengineering, pp 5–14. https://​doi.​
org/​10.​1109/​CSMR.​2011.5

	49.	 Prana GAA, Treude C, Thung F, Atapattu T, Lo D (2019) 
Categorizing the content of GitHub README files. Empir 
Softw Eng 24(3):1296–1327. https://​doi.​org/​10.​1007/​
s10664-​018-​9660-3

	50.	 Qu Y, Yin H (2021) Evaluating network embedding techniques’ 
performances in software bug prediction. Empir Softw Eng. 
https://​doi.​org/​10.​1007/​S10664-​021-​09965-5

	51.	 Rakha MS, Shang W, Hassan AE (2016) Studying the needed 
effort for identifying duplicate issues. Empir Softw Eng 
21(5):1960–1989. https://​doi.​org/​10.​1007/​s10664-​015-​9404-6

	52.	 Rakha MS, Bezemer CP, Hassan AE (2018) Revisiting the per-
formance of automated approaches for the retrieval of duplicate 
reports in issue tracking systems that perform just-in-time dupli-
cate retrieval. Empir Softw Eng 23(5):2597–2621. https://​doi.​
org/​10.​1007/​s10664-​017-​9590-5

	53.	 Rana G, Haq EU, Bhatia E, Katarya R (2020) A study of hyper-
parameter tuning in the field of software analytics. In: Proceed-
ings of the 4th international conference on electronics, commu-
nication and aerospace technology, ICECA 2020, pp 455–459. 
https://​doi.​org/​10.​1109/​ICECA​49313.​2020.​92976​13

	54.	 Rodriguez D, Herraiz I, Harrison R (2012) On software engineer-
ing repositories and their open problems. In: 2012 1st Interna-
tional workshop on realizing AI synergies in software engineer-
ing, RAISE 2012—pProceedings, pp 52–56. https://​doi.​org/​10.​
1109/​RAISE.​2012.​62279​71

	55.	 Saborido R, Morales R, Khomh F, Guéhéneuc YG, Antoniol G 
(2018) Getting the most from map data structures in Android. 
Empir Softw Eng 23(5):2829–2864. https://​doi.​org/​10.​1007/​
s10664-​018-​9607-8

	56.	 Salza P, Palomba F, Nucci DD, D’uva C, De Lucia A, Ferrucci F 
(2018) Do developers update third-party libraries in mobile apps. 
In: Proceedings of the 26th conference on program comprehen-
sion, vol 12. Association for Computing Machinery, pp 255–265

	57.	 Sawant AA, Robbes R, Bacchelli A (2019) To react, or not to 
react: patterns of reaction to API deprecation. Empir Softw Eng 
24(6):3824–3870. https://​doi.​org/​10.​1007/​s10664-​019-​09713-w

	58.	 Sultana KZ, Williams BJ, Bhowmik T (2019) A study exam-
ining relationships between micro patterns and security vul-
nerabilities. Softw Qual J 27(1):5–41. https://​doi.​org/​10.​1007/​
s11219-​017-​9397-z

	59.	 Taba SES, Keivanloo I, Zou Y, Wang S (2017) An exploratory 
study on the usage of common interface elements in android 
applications. J Syst Softw 131:491–504. https://​doi.​org/​10.​
1016/j.​jss.​2016.​07.​010

	60.	 Tapscott D, Tapscott A (2016) Blockchain revolution: how the 
technology behind bitcoin is changing money, business, and the 
world. Portfolio

	61.	 Thongtanunam P, Shang W, Hassan AE (2019) Will this clone be 
short-lived? Towards a better understanding of the characteristics 
of short-lived clones. Empir Softw Eng 24(2):937–972. https://​
doi.​org/​10.​1007/​s10664-​018-​9645-2

	62.	 Tian Y, Nagappan M, Lo D, Hassan AE (2015) What are the 
characteristics of high-rated apps? A case study on free Android 
Applications. In: 2015 IEEE 31st International conference on 
software maintenance and evolution, ICSME 2015—proceedings. 
Institute of Electrical and Electronics Engineers, pp 301–310. 
https://​doi.​org/​10.​1109/​ICSM.​2015.​73324​76

	63.	 Tim Menzies LW, Zimmermann T (2016) Perspectives on data 
science for software engineering. Elsevier, Amsterdam. https://​
doi.​org/​10.​1016/​C2015-0-​00521-4

	64.	 Van Der  Aalst W (2016) Process mining: data science in 
action, 2nd edn. Springer, Berlin. https://​doi.​org/​10.​1007/​
978-3-​662-​49851-4

	65.	 Van Der Aalst W, Adriansyah A, De Medeiros AKA, Arcieri F, 
Baier T, Blickle T, Bose JC, Van Den Brand P, Brandtjen R, Buijs 
J, Burattin A, Carmona J, Castellanos M, Claes J, Cook J, Costan-
tini N, Curbera F, Damiani E, De Leoni M, Delias P, Van Dongen 
BF, Dumas M, Dustdar S, Fahland D, Ferreira DR, Gaaloul W, 
Van Geffen F, Goel S, Günther C, Guzzo A, Harmon P, Ter Hof-
stede A, Hoogland J, Ingvaldsen JE, Kato K, Kuhn R, Kumar A, 
La Rosa M, Maggi F, Malerba D, Mans RS, Manuel A, McCreesh 
M, Mello P, Mendling J, Montali M, Motahari-Nezhad HR, 
Zur Muehlen M, Munoz-Gama J, Pontieri L, Ribeiro J, Rozinat 
A, Seguel Pérez H, Seguel Pérez R, Sepúlveda M, Sinur J, Soffer 
P, Song M, Sperduti A, Stilo G, Stoel C, Swenson K, Talamo M, 
Tan W, Turner C, Vanthienen J, Varvaressos G, Verbeek E, Ver-
donk M, Vigo R, Wang J, Weber B, Weidlich M, Weijters T, Wen 
L, Westergaard M, Wynn M (2012) Process mining manifesto. 
Lecture notes in business information processing 99 (LNBIP), pp 
169–194. https://​doi.​org/​10.​1007/​978-3-​642-​28108-2_​19

http://bit.ly/o02QZJ
https://doi.org/10.1109/ICSE.2015.306
https://doi.org/10.1109/ICSE.2015.306
https://doi.org/10.1145/2591062.2591152
https://doi.org/10.1145/2591062.2591152
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1109/ICSE-C.2017.146
http://ieeexplore.ieee.org/document/7965362/
https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1016/j.is.2018.08.003
https://doi.org/10.1145/2989238.2989239
http://www.bitcoin.org
http://www.bitcoin.org
https://doi.org/10.1109/ASEW.2015.28
https://doi.org/10.1109/CSMR.2011.5
https://doi.org/10.1109/CSMR.2011.5
https://doi.org/10.1007/s10664-018-9660-3
https://doi.org/10.1007/s10664-018-9660-3
https://doi.org/10.1007/S10664-021-09965-5
https://doi.org/10.1007/s10664-015-9404-6
https://doi.org/10.1007/s10664-017-9590-5
https://doi.org/10.1007/s10664-017-9590-5
https://doi.org/10.1109/ICECA49313.2020.9297613
https://doi.org/10.1109/RAISE.2012.6227971
https://doi.org/10.1109/RAISE.2012.6227971
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1007/s10664-018-9607-8
https://doi.org/10.1007/s10664-019-09713-w
https://doi.org/10.1007/s11219-017-9397-z
https://doi.org/10.1007/s11219-017-9397-z
https://doi.org/10.1016/j.jss.2016.07.010
https://doi.org/10.1016/j.jss.2016.07.010
https://doi.org/10.1007/s10664-018-9645-2
https://doi.org/10.1007/s10664-018-9645-2
https://doi.org/10.1109/ICSM.2015.7332476
https://doi.org/10.1016/C2015-0-00521-4
https://doi.org/10.1016/C2015-0-00521-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-28108-2_19


2080	 J. Caldeira et al.

1 3

	66.	 Vashisht R, Rizvi SAM (2021) An empirical study of heterogene-
ous cross-project defect prediction using various statistical tech-
niques. Int J e-Collaboration 17:55–71. https://​doi.​org/​10.​4018/​
IJEC.​20210​40104

	67.	 Wani ZH, Bhat JI, Giri KJ (2021) A generic analogy-centered 
software cost estimation based on differential evolution explo-
ration process. Comput J 64:462–472. https://​doi.​org/​10.​1093/​
COMJNL/​BXAA1​99

	68.	 Wohlin C (2014) Guidelines for snowballing in systematic litera-
ture studies and a replication in software engineering. In: Pro-
ceedings of the 18th international conference on evaluation and 
assessment in software engineering (EASE ’14), pp 1–10. https://​
doi.​org/​10.​1145/​26012​48.​26012​68

	69.	 Wu R, Wen M, Cheung SC, Zhang H (2018) ChangeLoca-
tor: locate crash-inducing changes based on crash reports. 
Empir Softw Eng 23(5):2866–2900. https://​doi.​org/​10.​1007/​
s10664-​017-​9567-4

	70.	 Wu W, Khomh F, Adams B, Guéhéneuc YG, Antoniol G (2016) 
An exploratory study of api changes and usages based on apache 
and eclipse ecosystems. Empir Softw Eng 21(6):2366–2412. 
https://​doi.​org/​10.​1007/​s10664-​015-​9411-7

	71.	 Yan M, Xia X, Lo D, Hassan AE, Li S (2019) Characterizing and 
identifying reverted commits. Empir Softw Eng 24(4):2171–2208. 
https://​doi.​org/​10.​1007/​s10664-​019-​09688-8

	72.	 Yang XL, Lo D, Xia X, Wan ZY, Sun JL (2016) What security 
questions do developers ask? A large-scale study of stack overflow 
posts. J Comput Sci Technol 31(5):910–924. https://​doi.​org/​10.​
1007/​s11390-​016-​1672-0. (archive.org/details/stackexchange)

	73.	 Yang H, Chen F, Aliyu S (2017) Modern software cybernetics: 
new trends. J Syst Softw 124:169–186. https://​doi.​org/​10.​1016/j.​
jss.​2016.​08.​095

	74.	 Ye D, Xing Z, Kapre N (2017) The structure and dynamics of 
knowledge network in domain-specific Q &A sites: a case study 
of stack overflow. Empir Softw Eng 22(1):375–406. https://​doi.​
org/​10.​1007/​s10664-​016-​9430-z

	75.	 Zannier C, Melnik G, Maurer F (2006) On the success of empiri-
cal studies in the international conference on software engineer-
ing. In: Proceedings of international conference on software engi-
neering, pp 341–350. https://​doi.​org/​10.​1145/​11342​85.​11343​33

	76.	 Zhang D, Han S, Dang Y, Lou JG, Zhang H, Research Asia M, 
Xie T (2013a) Software analytics in practice. IEEE Softw. http://​
chann​el9.​msdn

	77.	 Zhang D, Han S, Dang Y, Lou JG, Zhang H, Xie T (2013b) Soft-
ware analytics in practice. IEEE Softw 30(5):30–37. https://​doi.​
org/​10.​1109/​MS.​2013.​94

	78.	 Zhang L, Tian JH, Jiang J, Liu YJ, Pu MY, Yue T (2018) Empiri-
cal research in software engineering—a literature survey. J 
Comput Sci Technol 33(5):876–899. https://​doi.​org/​10.​1007/​
s11390-​018-​1864-x

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.4018/IJEC.2021040104
https://doi.org/10.4018/IJEC.2021040104
https://doi.org/10.1093/COMJNL/BXAA199
https://doi.org/10.1093/COMJNL/BXAA199
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1007/s10664-015-9411-7
https://doi.org/10.1007/s10664-019-09688-8
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1016/j.jss.2016.08.095
https://doi.org/10.1016/j.jss.2016.08.095
https://doi.org/10.1007/s10664-016-9430-z
https://doi.org/10.1007/s10664-016-9430-z
https://doi.org/10.1145/1134285.1134333
http://channel9.msdn
http://channel9.msdn
https://doi.org/10.1109/MS.2013.94
https://doi.org/10.1109/MS.2013.94
https://doi.org/10.1007/s11390-018-1864-x
https://doi.org/10.1007/s11390-018-1864-x

	Software Development Analytics in Practice: A Systematic Literature Review
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Related Work

	3 Research Methodology
	3.1 Planning the Review
	3.1.1 Research Questions
	3.1.2 Search Strategy
	3.1.3 Selection Criteria
	3.1.4 Quality Assessment
	3.1.5 Data Extraction
	3.1.6 Data Synthesis

	3.2 Conducting the Review
	3.2.1 Execute Search
	3.2.2 Apply Quality Assessment Criteria


	4 Document the Review
	4.1 Demographics
	4.2 Analysis and Findings
	4.2.1 RQ1. What Type of Empirical Studies have been Conducted?
	4.2.2 RQ2: What are the Main Data Sources Used for Software Development Related Studies?
	4.2.3 RQ3: What Type of ProcessProject Perspective Analysis was Conducted?
	4.2.4 RQ4: What are the SDLC Activities Mostly Studied?
	4.2.5 RQ5: Who were the Target Stakeholders of These Studies?
	4.2.6 RQ6. What are the main mining methods being used?
	4.2.7 RQ7: Which TypeForm of Analytics was Applied?
	4.2.8 RQ8. What were the relevant contributions to the SDLC?

	4.3 Summary
	4.4 Threats to Validity
	4.4.1 Construct Validity
	4.4.2 Internal Validity
	4.4.3 External Validity
	4.4.4 Conclusion Validity


	5 Conclusions
	5.1 Call for Action

	Appendices
	Appendix 1: Data Extraction
	Selection Process


	Appendix 2: Studies List
	Comments on Studies

	General Statistics
	Appendix 3: Studies Appraisal
	Acknowledgements 
	References




