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MATRIX REALIZATION OF A PAIR OF TABLEAUX WITH
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ABSTRACT: Given a pair of tableaux (7,/C(c)), where 7 is a skew-tableau in the
alphabet [t] and IC(o) is the key associated with o € S;, with the same evaluation
as 7, we consider the problem of a matrix realization for (7,/X(c)) over a local
principal ideal domain [1, 2, 3, 4, 5, 6]. It has been shown that the pair (7, K(0))
has a matrix realization only if the word of 7 is in the plactic class of (o) [5].
This condition has also been proved sufficient when o is the identity [1, 2, 4], the
reverse permutation in S; [2, 3], or any permutation in S [6]. In each of these cases,
the plactic class of (o) may be described by shuffling together their columns. For
t > 4 this is no longer true for an arbitrary permutation, but shuffling together the
columns of a key always leads to a congruent word. In [17] A. Lascoux and M. P.
Schiitzenberger have introduced the notions of frank word and key. It is a simple
derivation on Greene'’s theorem [11] that words congruent with a key, and frank
words are dual of each other as biwords. In this paper, we exhibit, for any o € &,
a matrix realization for the pair (7,/(0)), when the word of 7 is a shuffle of the
columns of (o). This construction is based on a biword defined by the columns of
the key and the places of their letters in the skew-tableau 7. The places of these
letters are row words which are shuffle components of a frank word.
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1. Introduction

Given o € &, let K(0) be an associated key [8, 16, 17]. That is, (o) is a
tableau with columns pairwise comparable for the inclusion order, obtained
by taking a sequence of left reordered factors of o, considered as a word,
by decreasing order of length. Given the pair of tableaux (7, /(0)), where
7 is a skew-tableau over the alphabet [t] and (o) is the key associated
with o with the same evaluation as 7, we consider the problem of a matrix
realization, over a local principal ideal domain, for the pair (7, (o)) [Section
3, Definition 3.1].

When o is the identity [1, 2, 4], the reverse permutation in S; [3], or any
permutation in Ss [6], it has been shown that (7,/K(c)) has a matrix re-
alization if and only if the word of 7 is an element of the plactic class of
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(o). (Note that in the first two cases, this means that 7 is a Littlewood-
Richardson and a dual Littlewood-Richardson tableau, respectively). For
these permutations, the elements of the plactic class of K(o) are shuffles of
the columns of (o) and this property has been used to exhibit a matrix
realization for (7,K(0)). For t > 4, this shuffle property is no longer true
for an arbitrary permutation in &;. For instance, the word 431421 is in the
plactic class of the key 432141, but it is not a shuffle of the columns 4321
and 41. Nevertheless, as we shall see, in subsection 2.2, the plactic class of a
key K(o) contains the set of all possible shuffles of their columns. (In [5], a
different has been used to prove this result).

In [5], the only if condition of the previous results has been generalized for
any o € Sy, t > 1. In this paper, we give an explicit construction of a matrix
realization for (7, /XC(0)), when the word of 7 is a shuffle of the columns of
K(o). Keys and frank words are dual in the sense that they are different
representations of the same word by biwords. Our construction is based on a
biword defined by the columns of the key and the places of their letters in the
skew-tableau 7. The places of these letters are row words which are shuffle
components of a frank word. Henceforth, for those permutations o € S; for
which the plactic class of an associated key is described by shuffling together
their columns [5], there exists a matrix realization for the pair (T, K (o)) if
and only if the word of 7 is in the plactic class of K(0o).

The paper is organized as follows. The next section is divided into three
subsections. In subsection 2.1 we introduce some combinatorics of the monoid
of tableaux [9, 13]. We define biword as the representation of a word with
respect to some skew-tableau. Some properties of these biwords are ana-
lyzed. In subsection 2.2, following [17], some combinatorics of keys and frank
words is discussed. The main results are the representation of words congru-
ent with a key, and frank words by biwords. Using these biwords we show
how to generate frank words by shuffling rows. These frank words are in
correspondence with those words which are shuffles of the columns of a key
and it is shown that they are congruent with that key. Finally, in subsection
2.3, based on these biwords we give a graphical interpretation of the words
which are shuffles of the columns of a key. In section 3, we introduce the
concept of a matrix realization of a pair of tableaux (7', K(0)), with the same
evaluation. Our main theorem 3.3 gives an explicit construction of a matrix
realization for (7, /(0)), when the word of 7 is a shuffle of the columns of
K (o). The proofs of the results of section 3 are given in the last section.
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2. Keys, frank words and shuffles

2.1. Young tableaux, words and biwords. Let S; be the symmetric
group of degree t > 1, and let N be the set of positive integers with the usual
order 7 < 7. Given k,t € N, k < t, [k,t] denotes the set {k,...,t} in N.
When k = 1, we put [t] := [1,¢]. We denote by [t]* the free monoid in the
alphabet [t].

A partition is a sequence of nonnegative integers a = (ay, as, .. .), all but a
finite number of which are nonzero, such that a; > as > --- The maximum
value of i for which a; > 0 is called the length of a, denoted by l(a). If the
length of a is zero, we have the null partition a = (0,0,...). If a; = 0, for
i >k, we write a = (aq,...,a) as well. Sometimes it is convenient to use
the notation

a=(a", a5, ...,a;"),

my;

where a; > as > ... > a; and qa;°, with m; > 0, means that a; ap-
pears m; times as a part of a. Thus, every partition can be written as
a = (t%,...,22 1) for some positive integer t. The conjugate partition
of a is, therefore, defined as the partition (Zzzl Liy...yli1 + I, ;). On
the other hand, if o € & and my; = Z};:l I, © = 1,...,t, we have
(th, ..., 2k 1) =S (17mem),

Given a word w = x7-- -z, over the alphabet [¢], we denote by |w|; the
multiplicity of the letter j € [t] in w. Here k is the length of w, denoted

by |w|. The sequence (|w|y,...,|wl|:) is called the evaluation of w. We have

lw| = |w|; + -+ + |w|;. The length and evaluation of the empty word are

zero. The word w, with k > 1, is said a row if 1 < --- < x, and a column if

xr1 > -+ > xp. If wis a column, w has planar representation according to its

name: the letters are displayed in a column by decreasing order from top to
5

bottom. For example, 2 is the planar representation of 521. Let V; denote
1

the set of all columns in [¢t]*. Every word in [t]* has a unique factorization

as a product of a minimal number of columns w = vivy - - - v,, with v; € V,.
We shall call it the column factorization of w and denote it occasionally by
v1 - Vg - ... v.. The shape of w is the sequence (|vq],...,|v,|) of the lengths
of the column factors v; of w. For instance, w = 43 - 32 - 21 is the column
factorization of w, but w = wujusuguy, with u; = 43,us = 3,u3 = 2, and
uy = 21 18 not.
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The underlying set of a column defines a bijection v — {v} between the set
V; and the family 2 of subsets of [t]. According to this bijection we often
identify a column with its underlying set. This bijection allows to extend to
Vi the order < on o] by letting v < v if and only if there is an increasing
injection i : {u} — {v} such that a < i(a), for all @ € {u}. For instance,
52 < 542 < 6432. In particular, if {u} C {v} we have u < v. We define
another order > on 2/, and extend it to V;, putting {u} > {v} if and only
if there is an increasing injection i : {v} — {u} such that i(b) < b, for all
b € {v} [17]. For instance, 5431 1> 542 > 3.

Awordw=uv;-v9-... v, v; €V, is called a tableau if its columns satisfy
v > vg > -+ > v,.. The shape of a tableau is, therefore, a partition. For
instance,

5

5321 >41p> 421> 4 = 3
2 4 4
1124

is a tableau of shape (4,2,2,1) = (41,3 22, 1!). The conjugate partition
(4,3,1,1) defines the length of the rows of the tableau. A tableau 7 =
V1V ... € [|T]* is said standard if there is no repetition of letters.
Knuth’s congruence = [12] on words over the alphabet [t] is the congruence
in [t]* generated by the so-called elementary transformations, where x,y and
z are letters in [t]:
xzy =zxy, v <y<z, (1)
yzr = yrz, r<y< 2. (2)
These relations (1),(2), also called plactic, are the algebraic version of the
plactic congruence in [t]* [14, 9, 12, 13] obtained by means of Schensted’s
construction [20], whose main result is summarized in the following theorem.

Theorem 2.1. (a) Fach plactic class contains a unique tableau P.
(b) The words in the plactic class of the tableau P are in bijection with the
set of standard tableaux of the same shape as P.

The set of all tableaux in the alphabet [t] is thus a section of the plactic
monoid [t]*/ =. We denote by P(w) the unique tableau in the plactic class
of w € [t]*, which may be obtained using the Schensted’s insertion algorithm
on w [20], or by applying jeu de taquin to any skew-tableau with word w [9].

Given a word w € [t]*, let [(w, k) be the maximum of the sum of k disjoint
decreasing subwords of w, and let I'(w, k) be the maximum of the sum of
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k disjoint nondecreasing subwords of w. These numbers, called Greene’s
invariants, have their name justified by the following theorem. Denote by
(a1,...,as) the shape of P(w), and by (a},...,a;) its conjugate partition.

r

Theorem 2.2. (Greene’s theorem [11]) For k = 1,...,s, ax = l(w, k) —
(w,k—1), and fork=1,...,r, ap =U'(w, k) = '(w,k —1).

Greene’s theorem gives an interpretation for the shape of a tableau in terms
of the decreasing and nondecreasing subwords of any congruent word.

A skew-tableau T in [t]* [15] is a tableau on the alphabet [t] U {@}, where
the extra letter @ is such that

g<o<l<2<-- <t

The word w(7) of the skew-tableau 7 is the word in [t]* obtained by elimi-
nating from 7 the extra letter &, and the evaluation of 7 is the evaluation
of w(7).

Let a be the partition defined by the number of letters @ in each column
of 7. Then, if ¢ is the shape of 7, ¢/a, called the skew-shape of T, denotes
the number of letters of w(7) in each column of 7. In particular, a tableau
in [t]* is a skew-tableau with a = 0. For example, 7 = 4302 302 22 21 is
a skew-tableau of skew-shape (4,3,2,2)/(2,2,1) = (2,1,1,2), and its planar
representation is

4

3 3

oo 22 3)
g o o 1

We have w(7) = 433221 and the evaluation of 7 is (1,2,2,1). Notice that
any word w = vy - ... v, in [t]* may be seen as the word of a skew-tableau
in [t]* with skew-shape (f1, ..., f,) such that 3% fi <S°F jui|, 1 <k <r
and |w| = > | f;. For instance, the word 13254 is the word of the skew-
tableaux

QQ =
R o w
B~ Ot
4
A~
Q QX
R o w
= O
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Given a word w € [t]*, let 7 be a skew-tableau with word w, skew-shape
(f1,..., fn) and evaluation (mq,--- ,m;). Let

fi .. pfn
E:(m 7Tk)2<11 n > (4)
xl o o o xk w]_ o« o . wn

be the biword where the bottom word is w = x1--- 2 = wy - - - w,, with w;
columns of length f; if f; > 0, and the top word is mymy - - - 7, = 15122 ... pfn,
where 7; is the column index, counting from left to right, of the letter z; in

7,1 < j < k. The billeter ( Zj ) means that the letter x; is placed in the
j

column 7; of 7. For each ¢ in [t], let J; = ¢y} > --- >y, € [n]* defined

by the indices of the columns of the m; letters ¢ in 7. The columns words

J1, ..., Jy are said the indexing sets of 7 and, as we have just seen, each J;

indicates the indices of the columns where the m; letters ¢ of w are placed,

in the planar representation of 7.

The biword ¥ (4) is by nonincreasing rearrangement for the antilexico-
graphic order with priority on the first row. (By this we mean that m; < 7,
or m; = mj and x; > x;.)

Sorting the billeters in ¥ (4), by nonincreasing rearrangement for the lexi-
cographic order with priority on the second row, we obtain another biword

P SR PR DR |1
Z_<tmt ce. M2 1m1>’ (5)

where < Zif ) is the biword with bottom word " and top word the column

Ji = yiyin

A skew-tableau determines a unique set of billeters, but not a unique bi-
word. We look at ¥ and ¥/ as distinguished biwords representing the word
w with respect to the skew-tableau 7", which are obtained by sorting one of
them using the lexicographic order with priority on the second row, or the
antilexicographic order with priority on the first row.

Given a sequence of nonegative integers (myq, - -+ ,my), its reverse sequence
is defined by (mq, -+ ,my)"" = (my, -+ ,mq).

Theorem 2.3. (a) The transformation ¥ < 3 establishes a bijective corre-
spondence between the nondecreasing subwords of J; - - - J1 and the decreasing
subwords of w.
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(b) The shapes of P(w) and P(J;---J1) are conjugate, and (|J¢, ..., |J1|)""
is the evaluation of w.

Proof: (a) In fact, if v is a nondecreasing subword of J; - - - Ji, it is formed by
a single letter of each J;. The correspondent subword ¢’ in the second row
of ¥’ is necessarily a column, and it is also a subword of w. Reciprocally, a
subword in the first row of X, corresponding to a decreasing subword of w,
is necessarily nondecreasing, and when passing to ¥/, it remains a subword
in Jt s Jl.

(b) It is clear that the evaluation of w is the reverse sequence of (|.J;,. ..,
|J1]). The result follows from (a) and Greene’s theorem, theorem 2.2. O

For example, the biwords ¥ and ¥/ of the tableau (3) are, respectively,

112344 d 121434 (6)
433221 ) 433221 )
while the biwords ¥ and Y’ of the tableau 7 = 50@@@ 54312 53213211,
are, respectively,

( 122223333444 5 ) ( 321 2 432 43 5432 )
and )

55431 5321 321 1 555 4 333 22 1111 (7)

The billeters of the biwords ¥ and Y’ with respect to a skew-tableau 7,
with word w in [t]*, may be represented in a lattice of points of N? according
to the bijection (Y) — (y,4) € N? such that y € J;, 1 <4 < t. In drawing
such a lattice of points, we shall adopt the convention, as with matrices,
that the first coordinate, the row index, increases as one goes downwards,
and the second coordinate, the column index, increases as one goes from
left to right. The points (y,4), in the lattice N?  are said the wvertices of
the biwords ¥ and ¥/, or the vertices of w with respect to 7. (When there
is no danger of confusion, we omit the reference to the skew-tableau.) For
example, the vertices of the biwords (6), or of 433221 with respect to (3),
above, are represented in the following grid:

L2 3 4

;ii . (8)
:

=~ Qo N =
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A partition @ and the biword ¥’ (5) parameterize completely a skew-
tableau, since partition a gives the places for the letters @, and the set
J; the places for the letters ¢ in 7, fori =1,...,t.

Given J C [t], we define the characteristic function of J by (x”); = 1, if
i € J,and (x”/); = 0 otherwise. Given a skew-tableau 7, with skew-shape c/a
and biword ¥’ (5), we may associate the sequence of partitions (a°, a?, ..., a’)

by setting @’ := a and a’ := a;_1 + x”, i = 1,...,t, with a’ = ¢. Clearly,

each a' = (al,...,a') is a partition and satisfy

ap, < a;t <aj+1, (9)
fori =0,1,...,t —1,and k= 1,...,l(c). Conversely, any sequence of parti-
tions (a,a', ..., a') satisfying (9) gives rise to a skew-tableau 7" with biword

> defined by the sets J; = {k : al = al, ' +1},i=1,...,t. For instance, the
skew-tableau (3) is defined by the sequence of partitions 7 = (d°,...,a?),
where a° = (2,2,1,0),a' = (2,2,1,1),a® = (2,2,2,2),a> = (3,3,2,2) and
at = (4,3,2,2).

2.2. Keys, frank words and shuffles. Consider again w = x7 - - -z, € [t]*,
and let I be a subset of [k]. We denote by w|I the word z;, - - - x;,, if I = {i; <
ig < --- < q;}. Such a word w|I is called a subword of w. Now, let ¢ words
Uy, ..., uq € [t]* of lengths ki, ..., kg, respectively. Put k =k +--- + k, and
let [k] = U?:J ;, where (I1,...,1,) is a g-tuple of pairwise disjoint subsets of
k] with |I;| = kj, j = 1,...,¢. Then the word w|({1,...,I,) is defined by
w|l; = wuj, for j =1,...,¢, [10, 19], and is called a shuffle of uy, ..., u,. The
words ug, ..., u, are said the shuffle components of w|(Iy,...,1,). We may
have w|(Iy,...,1;) = w|(J1,...,J,) with (Ji,...,J,) in the conditions above.
That is, a word may have different shuffle decompositions with respect to
given words. For instance, w = 543321 € [5]* is a shuffle of w|{1,3,6} =
wl{1,4,6} = 531 and w|{2,4,5} = w|{2,3,5} = 432, and thus we have
w =w|({1,3,6},{2,4,5}) = w|({1,4,6},{2,3,5}).

The set of all words obtained by shuffling together the ¢ words uy, ..., uy,
is

Sh(ul, cee ,uq) =
= {w[(ly, ..., 1) Ui Iy = [K], | ;] = kj, w]lj = uy, 1< j < q},
where (I1,---,1,) is a g-tuple of pairwise disjoint subsets of [k].

Given a set A = {uy, ..., u,} C [t]*, we put Sh(A) = Sh(uy,...,uy). I C
is another finite set, we have Sh(AU C) = Sh[Sh(A), Sh(C)].
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A tableau whose columns are pairwise comparable for the inclusion order
is called a key [17]. That is, a tableau u, - ... u; is a key if {u,} 2D --- D
{us} 2O {w1}. By Greene’s theorem, a key is the tableau whose shape is
the conjugate of the evaluation, by nonincreasing order. Equivalently, the
key with evaluation (mq,...,m;) is the tableau with this evaluation whose
shape is the conjugate of the partition (mg(1), -+ ,me()), for some o €
S;. Thus given a sequence (my, ..., m;) of nonnegative integers, the tableau
with this evaluation and shape S_'_ (1™) is the tableau (0, (1™), (1™) +
(17m2),..., 3" (1™)). This tableau is the key with evaluation (my, ..., m;).
For instance,

T =532151515 = (10)

— DN W Ot

5)
1 5
is a key. 7 is the only key with evaluation (3,1,1,0,4), that is, it is the
tableau (0, (1%), (13) + (1), (1%) + (1) + (1), (13) 4+ (1) + (1) + (1%)). The shape
(4,2,2,1) of T is the conjugate of (4,3,1,1,0) = (4!,3!,2° 12).

For each pair consisting of a permutation o € §;, written as a word o =
aj - --a; € [t]*, and a sequence of nonnegative integers (I, .. ., [1), Ehresmann
8] associated a key, here denoted by K(a, (It,...,11)), putting

IC(U7 (lt7 ey ll)) = (TU,t)lt (TJ,t—l)lt_l v (rml)lla

where 7, is the column with underlined set {ai,...,a;z}, 1 < k < t. This
key is the tableau with shape (t,...,2% 1) and evaluation (m,...,ny)
such that mg;) = Z};:Z I, 1 <1 < t. On the other hand, the key with
evaluation (myq, ..., m;) may be written in the form K(ao, (I, ...,[1)), for some
permutation o € §; and sequence of nonnegative integers (I, ..., l1), such
that (t*,...,2%,1%) is the conjugate of the partition (Meo(1)s - - - s M)

For example, the key (10) is the key associated with the permutation o =
51324 € S5 and the sequence (0,1,0,2,1),

K(0,(0,1,0,2,1)) = (54321)°(5321)*(531)°(51)*5' = 53215151 5.

Notice that the shape of the key is (4,2,2,1) = (41,3°,22,11), the conjugate
of the partition obtained by permuting by o the entries of the evaluation
(3,1,1,0,4).

When there is no danger of confusion, we will drop the ” (I, ..., l;)” in the
notation (o, (It,...,1l1)).

—_ = Ot

~~
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In what follows, given the sequence (I, ...,[;) of nonnegative integers, we
set Lyyq := 0, and Ly := Ly1+1lg, for k=1,...,t. Then, m := (Ly,..., L) is
the conjugate partition of (#*,...,2% 1), The action of the symmetric group
S; on a partition m with length < ¢, is defined by putting om = (mq, ..., my),
where my;y = Li, 1 =1,... 1.

A word w € [t]* is said frank [17] if its shape is a permutation of the shape
of P(w). The following theorem, proved by Lascoux and Schiitzenberger in
[17], shows that the frank words, in a plactic class, are in bijection with the
set of permutations of the shape of the tableau in that class.

Theorem 2.4. Let T be a tableau with shape m. For each permutation
o € 8;, there exists one and only one word w =7 with shape om.

Thus, frank words in a plactic class are uniquely determined by their
shapes. Using the transformation ¥ <> X', next theorem shows the du-
ality between frank words and keys. We can think on them as different
representations of the same word by biwords.

Theorem 2.5. Let 0 € S;. The word Jy---J1 € [n|* (J; € V) in X is frank
with shape (om)"™ if and only if the word w := wyws - - - w, € [t]*, (w; € V})
in Y is congruent with the tableau of shape (t', ..., 22 1) and evaluation om
such that m = (3, _. ly)1<i<t, that is, w is congruent with K (o, (I;, ..., 1)).

Proof: It follows from theorem 2.3 that (om)" is the shape of J; - - - J; if and
only if om is the evaluation of w and that (¢,...,1%) is the shape of P(w)
if and only if m = (3, _, lx)1<i< is the shape of P(J;---.J;). O

In the conditions of this theorem, given X, we say that the first row of the
biword ¥’ is an associated frank word of w. Notice that the frank word in ¥’
depends on the biword X. Given the word w, ¥ depends on the skew tableau
that we attach to w. That is, it depends on the way how we decompose the
word w into columns.

Given rows vy, ...,v; € [n]*, and columns u,,...,u; € [t]* such that |v;| =
lu;|, 1 <i <r, consider the biword

H _ Vp -+ Uy Uy (11)
Up =+ U2 U )
such that if (Y) and (?) are billeters of II, then z # .

Sorting the billeters of II by nonincreasing rearrangement, respectively,
for the lexicographic order with priority on the second row, and for the
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antilexicographic order with priority on the first row, we get the biwords

A PR S (11 - neeem
> = < fme ... 9ma2 1m and X = wy o wn , (12)
where each J; € [n]*, 1 < i < t, and w; € [t]*,; 1 < j < n, are columns.
On the other hand, ¥’ is also obtained from II by shuffling appropriately

the biwords Ui. . Thus the top word of ¥’ is in Sh(v,,...,v1), while the

7

bottom word of ¥ is in Sh(u,,...,u;). Similarly, ¥ is also obtained from

IT by shuffling appropriately the biwords ZZ . Thus, the top and bottom
(3

words of ¥ are in Sh(v,,...,v1) and Sh(u,,...,u1), respectively. Moreover,

the evaluation of J; - - J; is the sequence (|wy],. .., |w]).

As we shall see the biword II may be used to construct frank words as a
shuffle of rows. For this we consider the special biword II where the second
row is a key. Let v,,...,v; be rows in [n]* with t = |v,| > -+ > |11 > 1,
such that the columns u; satisfy:

Lot -2} = {u} 2+ 2 {us} 2 {wr}:

2. if (Y) and (Y) are billeters of II, then z # z.

From now on, we shall consider only biwords II on these conditions.

Theorem 2.6. (a) The top word Ji---JoJv of X' is a frank word in the set
Sh(vy,...,v1), whose shape is a permutation of the conjugate of (v, ...,
[v1]).

(b) The bottom word wy - - - w, of X is in Sh(u,,...,u1), and in the plactic
class of the key u, - - - uy.

Proof: We already now that J; - - - JoJ; € Sh(v,,...,v1). Moreover, by condi-
tions 1 and 2, it is simple to check that J;-...-J; is the column factorization
of J;--- Ji, and its shape is a permutation of the conjugate of (|v,|, ..., |vi|).

Let w = wy---w, be the word in the second row of ¥. Since {u;} D
{u;—1} and w € Sh(u,,...,u;), we must have l(w, k) = |v.| + -+ + |vg|, for
k= 1,...,r. By Greene’s theorem, theorem 2.2, we find that the shape
of P(w) is the partition (|v.|,...,|vi|). Thus, by theorem 2.3, the shape of
P(J;- -+ JoJy) is the conjugate of (|v.|,...,|v1|). This means that J;---J; is
a frank word and, by theorem 2.5, w must be in the plactic class of the key
Uy + -+ U ]
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Remark 2.1. Not all frank words can be written in this way. For instance,
v = 21-1-2-21 has shape (2,1,1,2), and is congruent with the tableau
P(v) = 21-21-1-2, whose shape is (2,2,1,1). Then, the conjugate of the
shape of P(v) is (4,2), but it is not possible to write v as a shuffle of two
rows in [2]* of lengths 4 and 2, respectively.

Let 0 € §. For v = 1,...,t, let Rf” be the set of all simultaneous

shuffles of /; columns r,;. For instance, with o = 2413 € Sy, we have
R?r,? = {4242,4422} and R§’3 = {421421,424121,424211, 442121, 442211},

IfwesS h(Rf;’t, ce ,Rlo_l’l) it is always possible to form a biword II satisfying

condition 1 and 2.

Corollary 2.7. The set Sh(Rf,t’t, -
the key K(o, (I, ..., 1)).

Proof: If w € Sh(Rf;,t, el Rlail), define a biword ¥ as in (4), and fix a shuffle
decomposition of w = w|(X}, - J XL ,X{l, oo, XD, where (XU,
XYoo, XB o X1 is a Li-tuple of pairwise disjoint subsets of [| 20, ili|],
with w\X; =154, 1 <7<t 1<17<I;. Denote by v the first row of ¥ and

let o] X} =1;,1<j <t 1<i<l

x ,Rf;’l) 15 a subset of the plactic class of

Since Y is a shuffle of the biwords ( f ) , 1< <t,1<i<1, we

Toi
consider the biword

e L. L. b 1

I — ( I h I I ) ’ (13)
'r‘o_’t DY ’r‘o_vt .« . TO’,]_ PR ’r'o_’t

satisfying the conditions 1 and 2 above. Therefore, by the preceding theorem,

w=K(o,(l,...,1h)). O

Corollary 2.8. Let w = K(o, (ly,...,l1)) and J; - - - J; be an associated frank
word. Then, w € Sh(R"Y,,- - ,Ri{l) if and only if J,---J, € Sh(I},... I,

ot
LI IR, where I} are rows with \];] =g, forj=1,...t, i=1,...,1,
for which it is possible to form a biword 11 satisfying conditions 1 and 2.

Proof: 1t follows from theorem 2.6 and corollary 2.7. L
Example 2.1. (1) Given the rows 1123, 12, 3, we may construct the biword

- 1123 23 2
-\ 4321 433 )
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Then, sorting the billeters of II, respectively, by nonincreasing rearrangement
for the lexicographic order with priority of the second row, and by nonin-
creasing rearrangement for the antilexicographic order with priority of the
first row, we get the biwords

(11222 33 , (2132123
Z_<4343231> and2—<4433321>.

By the theorem above, the bottom word w = 43432 31 of X is in the plactic
class of the key 4321 43 3, and may be written as w|({1,2,5,7},{3,6},{4}) €
Sh(4321,43,3), while the top word v = 21321 23 of ¥ is frank and is written
as v =0|({2,5,6,7},{1,3},{4}) € Sh(1123,23,2). Thus, we may write

. ( ul{1,2,5,7} ul{3,6} ul{4} ) _ <v|{2,5,6,7} v[{1,3} ul{4} )
w|{1,2,5,7} w|{3,6} w|{4} cl{2,5,6,7} c[{1,3} c|{4} )~

where u is the top row of ¥ and c¢ is the bottom row of 3.
(2) In general, the set S h(R?J, “e 7Rlal,1) is not the whole plactic class of
K(o,(ly,...,11)). Consider the word w = 431421 = K(0,(1,0,1,0)), with
o = 1423. The correspondent frank word is v = 211221 which, as we have
seen in remark 2.1, cannot be written as a shuffle of two rows of lengths 4

and 2. Thus, w is not in the set Sh(ry4,752).

The frank words with shape (mq,...,m;) satisfying my; > --- > my, or
my < --- < my, or for t = 3, have been characterized as shuffles of rows
4, 3, 6].

Corollary 2.9. [6] Let o be the identity or the reverse permutation in S,
t > 1, or any permutation in Ss. Then, the plactic class of K(o, (lt, ..., 1))
is Sh(RL,, -+ R\).

The following result, proved in [5], allows us to check whether the plactic
class of a key is, or not, described by the shuffles of its columns.

Theorem 2.10. The plactic class of K(o, (lt,...,1l1)), I; >0, 1 <i <t is
Sh(RY,, -, Ri},l) if and only if for every left factor of the word of o, by

ot
decreasing order, the difference of any two consecutive elements is at most 2.
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2.3. Graphical representation of words in Sh(Rf,t’t, R ,Rf;)l). Let w €
S h(RZt, e ,R(l;l), and consider a biword 3, as in (4). Fix a shuffle decom-
position for w, and consider the correspondent biword

H:<f§ )...(ﬁt )( I )( Iy )( I )( Iy )

Tot ot T's,2 Ts,2 T'o1 o1 ,
(14)

where each IJZ: is a row with \];\ =yj,forj=1,...t,and7=1,...,1;, such that

if (;’3) and (Z) are billeters of II, then x # z. In general, there is more than one

biword IT associated with w, with bottom word the key (r, ;) - - - (r,.1)", each
corresponding to a different shuffle decompositions of w in Sh(R",, ..., Rf},l).

ot -

7

Attaching II to a skew-tableau 7, the top word of each factor < 1 ) gives

TUJ
the indices of the column of 7 where the letters of r,; are placed. Linking, by
i

a straight line, the vertices of consecutive billeters of each factor . J ], we
0,
get a graphical representation of each shuffle component of w. We identify

each factor with the corresponding shuffle component, and the biword II
with the shuffle decomposition of w. This means that (14) is graphically

represented by L; = I; + - -+ + [; polygonal lines of nonnegative slope, each
(3

I . :
corresponding to a shuffle component ( ), 1< <t, 1<i<];.
0.j
For example, the word in the second row of the biword ¥ in (6) is a shuffle

of 4321 and 32. We may sort the billeters of (6) in several ways, in order to
obtain a biword II. Take, for instance, the biword

1144 23
H:(4321 32)' (15)

Linking, respectively, the vertices of the consecutive billeters of ( ié;% )

and 33 by a polygonal line, we get the following graphical representa-

tion of 433221 € Sh(4321,32) (the underlined letters indicate the shuffle



MATRIX REALIZATION OF A PAIR OF TABLEAUX 15

component 32):

! SN

(16)

=~ QO DD =

?

If, instead, we sort the billeters of (6) in order to get the biword II' =
1234 14
4321 32

Sh(4321,32):

, we have the following graphical representation of 433221 €

(17)

=~ Qo DN =

For the rest of this paper, we fix a biword II, and consider the graphical
representation of II with the consecutive vertices of each shuffle component
(3
< le . ) linked by a straight line. This means, in particular, that we fix a
0.j
shuffle decomposition of w &€ Sh(Rf;’t, cee Rfil). Thus, each shuffle compo-
nent r,; of w is identified with a polygonal line, reading it from right to
left. Recalling that the shuffle components of w are columns, the rightmost
letter of a shuffle component corresponds, in the graphical representation, to
the leftmost vertex of its polygonal line. We oftener identify the vertices (g)
of a polygonal line with the corresponding letter z. For instance, in (17),
the leftmost vertex (4,1) of the polygonal line of 4321 corresponds to the
rightmost letter 1 of this column.

Remark 2.2. (a) We stress that since the columns of a key are pairwise com-
parable for the inclusion order, if a is a letter of the column w, but not of the
column v, then {v} C {u}.

(b) The polygonal lines do not have common vertices since the billeters of
IT are all distinct, and the straight lines connecting consecutive vertices of a
polygonal line have nonnegative slope.
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Given two shuffle components u and v having the letter k, we say that
u is above [respectively, below] v in column k if the vertices (a, k) € u and
(x,k) € v satisfy a < x [respectively, a > z].

Two vertices (a,b), (z,y) are linked if they are consecutive vertices of a
polygonal line. In this case, if b < y, (a,b) is said positively-linked to (z,y)
(recall that a > x), and (z,y) is said negatively-linked to (a,b). Clearly, if
(a,b) is not the rightmost vertex of a polygonal line, there is always a vertex
to which (a,b) is positively-linked to. In this case, (a,b) is said positively-
linked.

For instance, in the graphical representation (17) of the biword 123414

432132 )
the vertex (4, 1) is positively-linked to (3, 2), since 1 < 2 and (le) and (g) are
1234

4321
thus negatively-linked to (4, 1), and it is also positively-linked to (2, 3), since
2 < 3 and (;’), (g) are consecutive billeters of the same shuffle component.

consecutive billeters of the shuffle component . The vertex (3,2) is

Definition 2.1. Consider the biword II (14). For each vertex (a,b) of II,
consider the map

0,0] — |q]
n t— Sna7b)

defined as follows:
(I) If there is no vertex of Il in row a to the left of column b, then let
S?a,b) = a.
(11) Otherwise, let (a,bt'), ' < b, be the rightmost vertex of II, in row a, to
the left of (a,b).

(a) If Y/ < n, put s

(b) If b’ > n and (
put s?a’b) =57

(x,y)°
(c) Else, put sf, ) = s{, 4)-

b) = a.

=

,b') is positively-linked to a vertex (z,y) of II, z < a,

S

In particular, if the top row of II (14) has no repeated letters, that is, if
the indexing sets of w are pairwise disjoint, the polygonal lines do not have
vertices in the same row and we are always in situation (/). Otherwise, the

number s?a by with n < b, indicates, according to a certain path, a row x < a
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with a vertex (z,y), n <y < b, such that there are no vertices in the interval
n,y[. Next we exemplify the computation of Slad)"

Example 2.2. Consider the graphical representation (16). Since there are
no vertices in row 3 to the left of (3,2), we have S =3, 0 <n <2 By
the same reasoning, 5?173) =1,0<n < 3. To compute 37(7’4’2), 0<n< 2,
notice that (4 1) is the rightmost vertex, in row 4, to the left of (4,2). Then,
by (I1)(c), 5(4 %) = 3(4 jy =4, since 1 > 0 and (4, 1) is positively-linked with

(4,2); by (11)(a), s{y5 =4, for n =1,2. Similarly, s{, , =1, for 0 <n < 4.

Example 2.3. Consider the graphical representation (17). To compute S(1.2)>
0 < n < 2, notice that (4, 1) is positively-linked to (3,2). Thus, by (II)( ),
we put 3?4’2) = 5?372) = 3, since there are no vertices in row 3 to the left of
(3,2); by (I1)(a), S(p) =4 for n = 1,2. Similarly, we find that Sty = 1, for
0<n<4.

22233 1344 345 2

54321 5321 531 1
from the biwords (7), whose graphical representation is

1 2 3 4 5

To compute s35, 0 < n < 5, note that the vertex (3,3) is the rightmost
vertex in row 3 to the left of column 5, and is positively-linked with (1,5).
Thus, by (I1)(a), s(35 = 3 for n = 3,4,5, and by (I1)(b), s{3 ) s =1

forn =0,1, 2. Slmllarly, we find that s( =4 for n = 3,2, s( 3) %3 3) =

Siag) = 2o and ;5 = sy 5 = Shyg) = Spyy) = 2

Example 2.4. Consider the biword Il = < ), obtained

Ol WO+

4,3)

Definition 2.2. For each vertex (a,b) € II and each integer n € [0,0], we
define, recursively, the sequence of vertices S&’b), called the s-path of s’(la’b),
as follows:

(1) If (a, b) satisfies conditions (I) or (11)(a) of definition 2.1, then S¢, ; =
(a,b).
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(2) Otherwise, let (a,b’) € II, b’ < b, be the rightmost vertex, in row a, to
the left of (a,b). If (a,b) is positively-linked to a vertex (z,y), with = < a,
then S("a’b) = ((a,b), (a,b), S(Tlx7y)). Else, we put S&’b) = <(a, b), S&b/))

For instance, in the graphical representation of the biword given in (17),
the s-path of 5?3 g =3 1s (3,2), and the s-path of 5?4 g =3 1s

((4, 2), (4,1), (3, 2)) , (19)

while ((4,3), (4,2),(3,3),(3,2),(2,3), (2, 1)) is the s-path of 5?4,3) = 2, in

the graphical representation (18).

Lemma 2.11. Let (x,y) be the leftmost vertex of a polygonal line of I1. Then,

s(()x’y) is computed either using rules (I) or (IT)(b).

Proof: If there are no vertices in row x to the left of column y, we use rule

(I) to obtain s(()x ,) = @ Otherwise, let (z,y'), ¥’ <y, be the vertex in row z

nearest to (z,y). Then (z,y’) is a vertex of a shuffle component which also
contains the letter y, and we must use rule (I7)(b) to obtain
0  _ 0
ey) T )
where (x1,11) is the vertex negatively-linked to (z,y’), which satisfy =7 < x
and y; < y. If there are no vertices in row 7 to the left of (z1,41), by (1) we

have s = = s(() = x1. Otherwise, we use the same reasoning to obtain

(l‘,y) Z1,Y1 )

0

0 o 0
S( - S(xlayl) - S(if27y2)’

,y)
where (2, y7) is a vertex of a shuffle component which also contains the letter
y, and satisty o < x; and yo < y;. Repeating this process, we eventually

obtain
0 0
S(z,y) = S(zyr)

where (x,,y,) belong to a shuffle component that also contains the letter v,
satisfy x, < x,_; and y, < --- < 91 <y, and such that there are no vertices
in row z, to the left of (x,,y,). O

= Ty,

From the proof of the lemma above we find that if (x, y), (a1,b1),. .., (a,b,)
is the s-path of 3(()1- 9) # x, with (z,y) the leftmost vertex of a shuffle com-

ponent of w, then each vertex (a;,b;) belongs to a shuffle component that
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contains the letter y and satisfy b; <y, 1 = 1,...r. Moreover, the integer r is
even, and if 7 is odd, the vertices (a;, b;), (a;41, bi+1) are linked, and a; = a;_1,
with ag := z. The s-path (19) of 5?4 5) obtained from (17), illustrates this,
with r = 2.

Lemma 2.12. Assume that w has length n. Let F = {(a;,b;) € Il|i =
L,..., L1} be the collection of leftmost vertices of the polygonal lines of w.
Then, the map s° : F — [n] sending (a;,b;) into S(() by 18 an injection.

a;,0;
Proof: This is obvious if the vertices are in pairwise disjoint rows. Otherwise,

let (z,y) be the leftmost vertex of a polygonal line of w. By lemma 2.11,

S?I ,) 1s computed using only rules (1) and (I1)(b). Thus, if we go trough the

s-path ((z,y), (z1,11),..., (2, y,)) of S?x ,) backwards, starting in the final
vertex (x,,,), we obtain the initial vertex (x,y). Therefore, if the vertices
(x,y), (a, b) correspond to the leftmost vertices of two distinct polygonal lines,

we must have s?%y) + s?a’b). O]
=4

For instance, in example (17), we have ' = {(4,1), (4,2)} with 3?4,1)
and 3?4,2) = 3, and in example (18), F' = {(a,1) : a = 2,3,4,5} with 3(()@,1) =a
for a = 2,3,4,5.

In a biword II there are some vertices that play an important role in the
proof of our main theorem 3.3. Those vertices, called critical, are character-
ized in the following definitions.

Definition 2.3. Let u, v be two shuffle components of w such that {v} C {u}.
Let (a1,b1) € v, either negatively-linked to a vertex (a,b) with b < by — 1,
or the leftmost vertex of v. The vertex (a1, by) is said a left critical vertex of
(u,v) if there are shuffle components v; and pairs of linked vertices (a;, by —
1), (aj11,01) € v;, for i =1,... k, such that u = v and ap41 < -+ < a1 < a.

The shuffle components vy, ..., v;_1 are called the critical components of
the critical vertex (aq, by).

Schematically, with k£ = 2, we either have

b1—10y
Do as - -

: : —u ’U..'

ag... 2... a,2..._ :!'..
U1 v

a2... U... or al"’_ SN

a/l"' e a}...ﬂé SR
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where a;.1 < a; — 1,7 =1,2,3, with ayp = a, b < b; — 2, and columns vy, vo,
in the right grid, must contain the letter b, since b € {v} C {v}, {v2}.

For instance, consider once more (17). The vertex (4,2) is a left critical
vertex of (4321,32), since it corresponds to the leftmost vertex of 32, and
there is a pair of linked vertices (4, 1), (3,2) € 4321. It is the only left critical
vertex present in this shuffle decomposition. Notice that if we consider a
different biword, the vertex (4,2) may no longer be a left critical vertex. In
fact, the biword Il represented in (16) has no left critical vertices.

Consider now the graphical representation (18). The vertex (4,3) is a
left critical vertex of (54321,531) with critical component 5321, since it is
negatively-linked to (5,1), 3 — 1 > 1, and there are pairs of linked vertices
(4,2),(3,3) € 5321, and (3,2),(2,3) € 54321. Clearly, (4,3) is also a left
critical vertex of (5321,531). In this biword, there is no other left critical
vertex.

Definition 2.4. Let vy,...,v;, £ > 2, be shuffle components of w, and let
(ak,b1) € vp and (a;, b1), (a}, b)) € v;, i = 1,...,k — 1, be pairs of linked
vertices such that b; < b, and 5?é47b4) = a4, fori =1,...)k—1. If b) =
by — 1, the vertex (ap,by) is called lalm'ght critical vertex of type I of (v, vy).
Otherwise, (a1,b;) is called a right critical vertex of type II of (vg,v1).

The shuffle components v, ..., vp_1 are called the critical components of

the critical vertex (ay, by).

Remark 2.3. (a) Notice that in the conditions of the definition above, (a1, b1)
is also a right critical vertex of type I or II of (vj,v1), for j =2,... k.

(b) According to the definition, the vertex (a;,b1) is a right critical vertex
of type I or IT of (vy,vq), fori=1,... k— 1.

The following diagrams are schematic representations of right critical ver-
tices of types I and II, respectively, with k£ = 3:

by U, b,
by bi+1b) o
: ,03 . a/3. .. L ...

.,02
ag... %... a/2... . ..
U1
a2... ... e ..
al"' . e a/l"’ . e

V17
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Notice that a;41 < a; — 1, i = 1,2; in the left grid, v; must have letter b},
and in the right grid, v and v, must have the letter b; and b/, respectively.
Note also that (as, b1) is a right critical vertex of type I or II of (v3, v9).

For example, in (17), the vertex (2,3) € 4321 is a right critical vertex of
type I of (4321, 32), with no critical components, since it is positively-linked
to (1,4), satisfy 3‘2’1’4) = 1, and there is a vertex (1,3) € 32. This is the only
right critical vertex of this shuffle decomposition.

Consider now example (18). Notice that (4,3) is a right critical vertex of
type II of (5321, 531), since it is positively-linked to (3,5), with 3 # 5 — 1,
satisfy 3?375> = 3, and there is a vertex (3,3) € 5321. This example shows that
a vertex may be simultaneously a left and a right critical vertex. The vertex
(5,1) is a right critical vertex of type II of (1,531), since it is positively-linked
to (4,3), with 1 # 3 — 1, satisfy 3%4’3) = 2, and there is a vertex (2,1) € 1.
Finally, the vertex (4,2) is a right critical vertex of type I of (54321, 5321),
since it is positively-linked to (3,3), with 2 = 3 — 1, satisfy 3%3,3) = 3, and
there is a vertex (3,2) € 54321.

Given a word w in Sh(Rf;,t, o Rlal,l), we have seen that, in general, it
admits several shuffle decompositions. But as we shall see in the next section,
example 3.4, not all shuffles decompositions allow us to obtain a matrix
realization for (7,/K(o0)). In what follows, given a shuffle decomposition
of w, we will adjust the links between the vertices of the biword II, and,
therefore, the shuffle decomposition itself, forming a new biword II' in order
to achieve the matrix realization.

So, consider the graphical representation of the biword II, that we have
associated with w, and suppose there is a pair of shuffle components u, v for
which there are integers k < &’ and a vertex (a, k) satisfying:

() [k, K] < {u} N {v};

(77) (a, k) is a left critical vertex or a right critical vertex of type I of (u,v),
with no critical components;

(791) v is above [respectively, below] u in column k" if (a, k) € v [respectively,
(a,k) € ul.

In this case, it is easy to check that we may re-link the vertices of u, v,
between columns k and &', in such a way that the vertex (a, k) is no longer a

critical vertex, forming a new biword II'. For instance, consider the graphical
114455 22234 13 )

representation of < 654321 65432 42
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=

1 2 3 4

(20)

Uk W DN —

et

Notice that (7) both polygonal lines u = (ééigg‘;’) and v = (é;ig;) have the
integers 2, 3,...,6; (i7) (5,2) € u is a right critical vertex of type I of (u,v)
with no critical components, and (7ii) u is above v in column 5. We may
re-link the vertices of u and v between columns 2 and 6, obtaining another

biword with the following graphical representation:

1 2 3 4 5 6

(21)

Ol WD —

T

The application of this procedure to a graphical representation of the bi-
word II implies, for the new biword, that whenever a vertex (a,k) € v [re-
spectively, (a, k) € u] is a left critical vertex or a right critical vertex of type
I of (u,v), with no critical components, and the letters k, ..., k 4 r are both
in v and v, then the vertices of the shuffle component v must be below [re-
spectively, above] the vertices of u in columns k, ...,k + r. For instance, in
(21), (4,4) € v is a right critical vertex of type I of (u,v) and v is below u in
columns 5 and 6.

For the rest of this paper, we fix a biword II, previously adjusted by the
procedure described above. The graphical representation of this shuffle de-
composition has, therefore, the following easily deduced property.

Proposition 2.13. Let u,v be two shuffle components of w with [k, k+1r] C
{u} N {v}, for some k,k+r € [t], with r > 1, and let (a,k) be either a
left critical vertez, or a right critical vertex of type I of (u,v), with critical
components w; satisfying [k, k+r] C {w}, forl=1,...q. Then, if (a,k) € v
[respectively, (a,k) € u], the vertices of v are below [respectively, above] the
vertices of u in columns k,k+1,.... k+r.
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Proof: We consider the case (a,k) € v, the other case is similar. The proof
is by induction on the number ¢ > 0 of critical components of (a, k). When
there are no critical components, there is nothing to prove since we have
assumed that the procedure described above have been applied. So, let
(a,k) € v be a left or right critical vertex of type I of (u,v) with ¢ > 0
critical components, u1, ..., u,, and assume the result for ¢ — 1 critical com-
ponents.

By definition, (a, k) is also a left or right critical vertex of type I of (v, u,),
with critical components uy,...,u,—1. By induction, the vertices of v are
below the vertices of u, in columns k,k + 1,...,k 4+ r. Finally, recalling
remark 2.3, there is a right critical vertex (a’,k) € u, of type I of (u,uy).
Therefore, the vertices of u, must be below the vertices of u in columns

kk+1,...  k4r. 0

3. An algorithm and statement of results

Let R, be a local principal ideal domain with maximal ideal (p). In this
paper, all matrices are n xn and nonsingular with entries over R ; AT denotes
the transpose of matrix A. Let U,, be the group of n x n unimodular matrices
over R,. Given n x n matrices A and B, we say that B is left equivalent to
A (written B ~p A) if B = UA for some U € U,; B is right equivalent to
A (written B ~p A) if B = AV for some V' € U,,; and B is equivalent to A
(written B ~ A) if B = UAV for some U,V € U,. The relations ~p, ~p
and ~ are equivalence relations in the set of all n X n nonsingular matrices
over R,,.

Let A be a n X n nonsingular matrix. By the Smith normal form theorem
[7, 18], there exist nonnegative integers ay, ..., a,, with a; > ... > a,, > 0 such
that A is equivalent to

diag(p™,...,p™).
The sequence a = (ay, ..., a,), of the exponents of the p-powers in the Smith
normal form of A, is a partition of length < n, uniquely determined by the
matrix A. We call a the invariant partition of A. More generally, if we are
given a sequence of nonnegative integers eq, ..., e,, the following notation for
p-powered diagonal matrices will be used:

diagy(e1, ..., en) = diag(p”, ...,p).

Given a subset J C [n], put D := diag,(x’). If 0 € S,,, we denote by P, the
permutation matrix having 6;,(;) in position (¢, j). Then, if m = (m4,...,my)
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is a sequence of nonnegative integers, we have om = P,[my---m]T. It is a
simple exercise to prove that

P,diag,(a) = diag,(ca)P,, Pldiag,(a)P, = diag,(c1a),
and PO-DJ = DO’(J)PO"

We denote by E;; the n x n matrix having 1 in position (¢,7) and 0's
elsewhere, and define the elementary unimodular matrices 7T;;(x) as follows:

Tij(x) =1+ xE;;, where ¢ # j and x € Ry;
Tii(v) =1+ (v—1)E;, where v isa unit of R,.

It is obvious that E;;E,s = 0;E;s. Therefore, if ¢ # 7 and r # s, we find
that T5;(x)1s(y) = [ + 2 Eij + yE,s + vydj, Eis. In the lemma below we state
some basic properties of the these elementary matrices 7;;(x), which will be
used in the sequel.

Lemma 3.1. Let i,5,7,s,m € [n], and z,y,v € R, such that v is a unit.

Then,

(2) Tij(2)Ts(y) = Tos(y)Tij(x), whenever i # s and j # .
(i) T (@) T30(5) = Tou(0) T2 (), if i 7 5.
(131) Ty (v)Trs(x) = Trs(u ) i(v), for some unit u.

(1 Tii(zp) = T;; (ulxp)TZ-i(uz)Tjj(U3)7}i(u4y), for some units u;, i =

(v) Tyj(x) Dyy = Dy Ti(2), if 1,5 > m.
(vi) Tyj(x) Dy = DppyTij(xp), if i >m = j = 1.
(vii) Tyj(xp) Dypmy = D[m]Ti'( z), ifj>m>i>1.

(viid) Ty (=1)T;;(1) = Tj;(=1)T;;(1) Py jy.-

Proof: Straightforward. O
Let 0 € 8, t > 1, and (I3, ...,l;) a sequence of nonnegative integers with
l; > 0. Consider the sequence (my,...,m;), where m,;) = L;; 1 < i < t.

In what follows, 7" will denote a skew-tableau of evaluation (my, ..., m;) and
skew-shape ¢/a, with I(c) < n. Following [2, 4, 6], we introduce the definition
of a matrix realization of a pair of tableaux (7,F), with F a tableau of
evaluation (my, ..., m;) and shape 0'.

Let Ay be a matrix with invariant partition a°, and for r = 1,...,¢, let
B, be a matrix with invariant partition (1", 0"~ mr). If " is the 1nvariant
partition of AgB;---B,, 1 < r < t, then it is clear that (a",al,...,a') is
a skew-tableau with weight (my,...,m;). Similarly, if " is the invariant
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partition of By--- B,, 1 < r < t, then (b},...,b") is a tableau with weight
(mq,...,my) as well (see [6]).

Definition 3.1. Let 7 = (a° dl,...,a') be a skew-tableau and let F =
(0,b%,...,0") be a tableau, both of evaluation (my,...,m;). We say that a
sequence of n X n nonsingular matrices Ay, By, ..., By is a matrix realization
of the pair (7, F) (or realizes (7,F)) if:
I. For each r € {1,...,t}, the matrix B, has invariant partition (1",
On—mr).
II. For each r € {0,1,...,t}, the matrix A, := AgB;...B, has invariant
partition a”.
III. For each r € {1, ...,t}, the matrix Bj...B, has invariant partition 0.

(7,F) is called an admissible pair of tableaux.

Actually, I and II say that Ay, By,...,B; realizes 7, and III says that
B ... B; realizes F.

Recall that the key K(o,(l;, ..., 1)) is the only tableau of evaluation
(ma, ..., m;) and shape S°_ (1™). Actually,
2 t
(o, (b 1)) = (0,(1™), D (1™, Y (1™).
i=1 i=1

Thus, when F = K(o, (It,...,11)), in order to verify property III, it is suffi-
cient to show that Bj--- B; has invariant partition (1) + .-+ (1"). For
the purpose of this paper, we shall consider only pairs (7, (o, (It, ..., 1))
such that the word of 7 is an element of S h(Riﬁ’t, e R?@)-

It has been shown that (7,K(o, (l;,...,l1)) is an admissible pair only if
the word of 7 is an element of the plactic class of (o, (It,..., 1)) [5]. Thus,
the following problem arises: given a pair (T ,K (o, (lt,...,11))), such that the
word of T is a shuffle of all columns of the key K(o,(ly,...,l1)), do there
exist a matriz realization for (T ,K (o, (ls,...,11))?

The following algorithm and theorem 3.3 give an answer to this problem.
For this, we need the following definition.

Definition 3.2. Given 0 € §,, and x > y in [n], we define the n x n matrix
S(x,y,0) = [s45], with

_J 1 Jifo(i)=zando(j) =y #=z
%= 0 , otherwise.
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Clearly, I + S(x,y,0) = Ty(1), with o(u) = 2 and o(v) = y. When z =y,
S(z,x,0) is the null matrix.

Lemma 3.2. Given 0 € S, and x > y in [n], we have
diagy(a)Py(I + S(z,y,0))I — S(z,y,0)") ~1, diagy(a)Py ). (22)
for any partition a of length < n.

Proof: Let u,v € [n] such that o(u) = x and o(v) = y. Then, I+ S(z,y,0) =
Tw(1) and I — S(z,y,0)T = T,,(—1). By lemma 3.1 (viii), the left member
of (22) is

diagy(a) Py Ty, (1) T (—1) = diagy(a) PoTy(—1)Tpu(—1) Puwy.  (23)
Since x > y, we have

(23) ~p diagy(asny, - -, Gon)) Pluw) ~1 diagy(a) Py P,y = diag,(a) P y)0-
U]

Algorithm 1. Let 0 € S; and (I3,...,1;) a sequence of nonnegative in-
tegers. Suppose we are given a skew-tableau 7 with evaluation om and
skew-shape ¢/a, with I(c) < n, such that w(7) is in Sh(Rfjj, . Ri,l’l). Fix
a biword II of 7 satisfying proposition 2.13. Our algorithm is presented as
a three-step definition:

Step 1. Foreach k = 1,...,t, let X;, C N? be the set of the leftmost vertices
of the [}, shuffle components 7, of w(7), and define

$(Xe) = {8+ (@,5) € Xi} = {5, 11 <+ <L) C ).

Let 01 € S, such that o1(i) = s?, for i € [Ly].

Step 2. Fork =1,...,t—1,let J, :={x € J; : (z, k) is positively-linked } =
{ah < ... < C[J];k} C Jyand vff :==id € S,. For each k = 1,...,t — 1 and
j=1,...,q, let (yf, k;) be the vertex negatively-linked to (a:f, k), and define
inductively

k+1 . k _k k k.__ k _k k
Sxfyf = S(xj,s(y;?’kj),ijlO'k), and Vj = (ij S( kL ))V

Define 01 := v} | 041 := Op10k, and Spyq = [0, (1 + ST = ST
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Step 3. Let Ay := diag,(a). Put By := SpDy,,), for k = 1,...,t, with
S1 := F;,, and define inductively

Ak = Ak—lBk~

Remark 3.1. (a) Lemma 2.12 asserts that the permutation o7 € S;, given in
step 1 of algorithm 1, is well defined.
(b) The matrix S;f,f ;,?, defined in step 2 of algorithm 1, is the null ma-

k
(y?,kj)
Aoy, B1, ..., B, obtained through the application of algorithm 1 may be sim-

plified if we use a biword II of 7, whose graphical representation has a

reduced number of links between vertices involving distinct rows.

(c) If u= lel(vf_l)_l(x?), and v = a,;l(u]]?_l)_l(s?y?7kj)), then I + Sﬁﬁf —
Tuw(1).

(d) Fori:=1,...,¢, ‘JZ| =m; = La(i) > 0.

(€) o1([Lgs1+1, L1 +1k]) = s(Xg), for 1 < k < t. In particular, s(X;) =0
iff [, = 0.

(f) Opp1 = Opg1 -+ - 00

trix whenever s = x?, that is, if a:;C = yf Therefore, the sequence

Main Theorem 3.3. Let 0 € S; and (I, ..., l1) a sequence of nonnegative
integers. Let T be a skew-tableau of evaluation om and skew-shape c/a, with
[(c) < n, whose word is a shuffle of all columns of the key K(a, (It,...,11)).
Then, the sequence Ag, B, ..., B, given by algorithm 1, is a matriz realiza-
tion for the pair (T, K(o, (s, ..., 11)).

As already pointed out, it has been proved that (7,K(c)) is admissible
only if the word of 7 is in the plactic class of K(o) [5]. Thus, when the
plactic class of K(o) is the set of all shuffles of their columns together, we
obtain the following characterization for the admissibility of pairs (7, (o))
with the same evaluation.

Theorem 3.4. Let 0 € S; and (I, ... ,l1) a sequence of nonnegative integers
such that the plactic class of the key K(o, (li,...,1l1)) coincides with the set
Sh(Rlofyt, .., R')). Let T be a skew-tableau of evaluation om. Then, the

pair (T,K(o, (lt: ..., 1)) is admissible if and only if the word of T is in the
plactic class of K(o, (I, ..., 11)).

Before giving the proof of theorem 3.3, we will compute some examples.
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: . 1144 23 :
Example 3.1. Consider the biword I = 1391 32> associated to the
skew-tableau 7  (3). The word 433221 is in Sh(R, 4, R) 3, R}, Ry ), with

o = 2341. The biword II is represented in the lattice below and satisfy
proposition 2.13, since its representation has neither left nor right critical
vertices.

(24)

=~ Qo DN =

?

7 has indexing sets J; = {4}, Jo = {3,4}, J3 = {1,2}, J, = {1}, and
evaluation (1,2,2,1) where (L1, Lo, L3, Ly) = (2,2,1,1).

The leftmost vertices of the shuffle components 7,4 and 7,5 are (4,1) and
(3,2), respectively. So, recalling example 2.2, we have s = 3?4’1) = 4 and
59 = 3?3’2) = 3, and thus s(X4) = {4} and s(X2) = {3}. Then, by algorithm
1, step 1, we must consider o1 € Sy satisfying 01(1) = 4 and 01(2) = 3. Take,
for instance, o1 = (14)(23). Next, define

I+S57, =1+S4.4,00)=1, and 0y := (44)0; = 01;
I+53, =1+5(3,2,09) :=T3(1),
I+53, =1+54,1,(32)02) :=Twu(1), and o3:= (41)(32)0;
I+St, =I1+S(1,1,03):=1, and o4:=(11)03 = 03.
Finally, define the matrices Ay := diag,(a), By := F, Dy, By := Dy, B3 :=
T23(1)T32(_1) T14(1)T41(—1)D[2], and B4 = D[l]

Clearly, A; = AyBy ~ diagy(a + ") and Ay = AyB1 By ~ diagy(a + Y+
x”2). Since a3([2]) = J3, by lemma 3.2, we find that

Az ~p diagy(a+ x" + x"?)P,,Bs ~p diag,(a + x" + XJQ)PagD[Q]
~r diagy(a+ x" + x4+ x").

Since Ay ~ diagy(a + x + -+ + x”), the sequence Ag, By, ..., By satisfy
conditions I and II of definition 3.1. It remains to shows that this sequence



MATRIX REALIZATION OF A PAIR OF TABLEAUX 29

also satisfy III. So, bearing in mind lemma 3.1, we may write

BiByBsBy = Py Dy DiyTos(1)T14(1)Tso(—1)Th1 (—1) Dy Dy
= P, To3(p)T14(p*) Dy Doy To(—1) T (—1) Dy Dy
~1 DDy T32(—1)T41(—1) Dy Dy
~r DpDp DDy

Therefore, the sequence Ay, Bi, By, B3, B4 is a matrix realization of the pair

(T, k(o).

22233 1344 345 2
54321 5321 531 1
skew-tableau 7 considered in example 2.4, and represented below. The word

Example 3.2. Let II = ( ) be the biword associated to

is in Sh(RL 5, Ry 4 Ry 3. Roo, RS ), with o = 13524.
1 2 3 4 5
EEeas
% i/gﬁt : (25)
;

The evaluation of 7 is (4,2, 3, 1, 3) and its indexing sets are J; = {5,4, 3,2},
JQ = {4,3}, J3 = {4,3, 2}, J4 = {2}, and J5 = {3,2, 1}, with (Ll, .. .,L5) =
(4,3,3,2,1).

By step 1 of algorithm 1, we must consider o1 = (135)(24) € S;, since the

leftmost vertices of the shuffle components of w(T) satisfy sj = s{ ;) = 2,

sy = 5?371) =3, 8 = (()4 ) =4, and s9 = 3(5 1y = 5, respectively. By step 2 of

algorithm 1, define the matrices

[+855:=1+5,=1, I+85,:=1

I+ 82, :=1+45(5,2,00) =Ts(1), I+8S3;:=1+5(3,1 03 =T,

I+ 83, :=1+5(3,2,09) =T13(1), I+ Sj3:=1+S5(4,3,(31)03)=Tss,
I+ 88, :=1+5(4,3,(32)02) =Tg, I+855,:=1,

and the permutations o9 := (5 2)oy, 03 := (4 3)(3 2)og and 05 = 04 =
(4 3)(3 1)0’3. Put Ao = diagp(a), Bl = Png[4], BQ = T34(1)T43( 1)D[2
By := T13(1)T51(—1)To3(1)T32(—1) Dy3), Ba := To5(1)T50(—1)T35(1)T53(—1) Dy
and B5 = D[g].
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Using lemma 3.2, it is now a simple exercise to prove that AgBy---B; ~
diagy,(a + x4+ -+ + x”), for i = 1,...,5. Finally, using lemma 3.1 (i) and
(vii), we find that By BsB3ByBs is left equivalent to

Dy Tu3(—=1) Dy T31(=1) T (= 1)T32(=1) D3y T52(—1)T32(—1)T53(—1) Dy Dy,

(26)
and by (vi), (26) ~r DD D3 DyjDpz). This proves that the sequence
Ay, B, By, B3, By, Bs is a matrix realization of (7, K(0)).

otr s Rfj’l), there
are, in general, several shuffle decompositions for the word of 7', each cor-
responding to a biword II. Some of them satisfy proposition 2.13, others do
not. For those shuffle decompositions satisfying proposition 2.13, the appli-
cation of algorithm 1 produces a matrix realization for (7, K(c)). In the next
examples, we use the skew-tableau 7, described in example 3.1, to show that
different shuffle decompositions may give different matrix realizations. More-
over, if we consider a shuffle decomposition that does not satisfy proposition
2.13, then theorem 3.3 is not, necessarily, true.

Given a tableau 7 whose word is an element of S h(th

Example 3.3. Consider the shuffle decomposition of the word of the skew-
tableau (3) represented in the following lattice. Note that it satisfies propo-
sition 2.13 but it is different from the one consider in example 3.1.

12 3 4

/?ﬁ . 27)

Note that s = 5(()471) =4 and s = 5(()472) = 3. Thus, following algorithm 1, we
may define o1 = (14)(23) € Sy, the matrices
I+S7; =1+45(4,3,01) :=Ta(1),
I+53, =145(3,1,(43)01) := Tua(1),
I+53, =T1+45(4,2,(31)(43)01) :=Ths(1),
]+Sil =14+5(1,1,(42)(31)(43)0y) :=1,

=~ Qo N =
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and the permutations o9 = (43)0y, and o4 = 03 = (42)(31)0y. Finally,
define Ao = diagp(a), Bl = PUID[”, BQ = Tlg(l)Tgl(—l)D[Q], Bg =
T14(1)T41(—1) T23(1)T32(—1)D[2], and B4 = D[l]

Applying the same arguments used in example 3.1, we may show that the
sequence Ay, By, By, Bg, By is a matrix realization for (7,/K(c0)), and it is
clearly different from the one obtained in example 3.1.

Example 3.4. Consider again the tableau (3) presented in example 3.1, but
now consider the shuffie decomposition of the word of 7" displayed in (17):

1 2 3 4

(28)

=~ Qo DN =

Clearly, this representation does not satisfy proposition 2.13, since (4, 2) € 32
is a left critical vertex of (4321, 32), and 32 is above 4321 in column 3. We
will show that, in this case, the sequence of matrices obtained by algorithm
1 is not a matrix realization of (7, K(c)). Following step 1 of algorithm 1,
we may define o1 = (14)(23), since 5] = s{, |, = 4 and 535, 5, = 3. By step

2, we define the matrices

I+S73 =145(4,3,01):=T(l),

I+853, =145(3,2,(43)01) := T13(1),

I+53, =145(4,1,(32)(43)01) == Tou(1),
]+S21 =14+5(2,1,(41)(32)(43)071) := T12(1),

and the permutations oy := (4 3)01, 03 := (4 1)(3 2)og and o4 := (2 1)03.
Finally, we define the matrices Ay := diag,(a), By := P, Dy, By := T1a(1)
Tzl(—l)D[Q}, Bg = T13(1)T31(—1)T24(1)T42(—1)D[2}, and B4 = Tm(l)Tgl(—l)
D[l].

As in example 3.1, using lemma 3.2, we find that Ay, By, By, B3, B, satisfy
conditions I and II of definition 3.1. Let us now compute the invariant
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partition of ByByBsBy. Using lemma 3.1 (i7), (v) and (vii), we may write
B1ByB3By ~p,
~1 Dy Ton (1) Dy oy T (1) Tha(—1) Dy oy T12(1) Toa (—1) Dyyy
= Dy Tor(—1)Th2(1) Dyy 9y T1 (= 1) T2 (—1) Tyo(—1) Dy 9y Ton (—1) Dyyy (29)

and by 3.1 (Ui), we find that (29) ~R D{l}Tgl(—1)T12(1)D{1,2}D{172}D{1}.
Since by 3.1 (viii), T1(—1)T12(1) = Tha(—1)T12(1)F1 9), we obtain

B1ByBsBy  ~  DyyToy(—1)T12(1) P9y D12y Dy oy Dy
~1 DpyPag Doy DDy
~r Dy Dpay Doy Digy-
Thus, the tableau realized by the sequence By, By, B3, By is

TR
237&IC(0):23
1 2

1 2

and, therefore, Ay, By, Bo, B3, By is not a matrix realization for the pair
(T,K(0)).
4. Proof of the main theorem

The proof of main theorem 3.3 needs some additional lemmas. In what
follows, assume that we have applied algorithm 1 to a biword II of 7.

Lemma 4.1. Let k € [t] and let (z,k) and (y,k +¢), € > 1, be two linked
vertices of w(7T). Then, Opyc---Opi1(z) = y.

y,k+e
positions (y,j), k < j < k + . Thus, we may write

Proof: Case 1. Assume s’(€ ) =Y This means that there are no vertices in

Opye- - Ok = p2(37 y)Pl;

for some permutations py, p2 € Sy, such that pi(z) = x.

We claim that ps(y) = y. In fact, for this equality to be false, we should
have a vertex (y, 7), with j > k 4 ¢, negatively-linked to a vertex (a, i), with
i € [k,k+¢e—1] and a > y. Denote by u and v the shuffle components
containing the vertices (y,k + €) and (y, j), respectively. Since the letter
k+ ¢ is in w but not in v, we find that v must be a subcolumn of u. Thus, we
must have i = k, and (y, k + €) has to be positively-linked. This means that
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s](“y i) 7 v and henceforth, p, has no transposition (ay). Therefore, pa2(y) =y

and the result follows.

Case 2. Assume now that s (rh+e) # y, and let (y,k +¢)(a1,b1) - (a, b)
be the s-path of s( kte)
each odd integer ¢ € [r], the vertices (a;,b;) and (a;y1,b;11) are linked, with
a;_1 = a; and ag = y.

Let i1 € [r] satisfy a;, < a; and b;, < bj, for j € [r]. Then, 4; is odd and
the s-path of s(%ﬂ by = a, is (aj,+1,bi,41) - - (ar, by).

Now, if 41 # 1, let i3 € [iy — 1] satisfy a;, < a; and b;, < b;, for j € [i1 — 1].
Again, we find that iy is odd, and the s-path of e = a;,—1 = @, 1s

(a12+17b12+1) 1
(az2+1, bi2+1)7 ceey (ail—h bil—l)-
Continuing this process, we obtain a sequence of integers i1 > 19 > ... >
ts = 1, such that for ¢ = 1,...,s, the integer z'q is odd, satisty a;, < a; and
bi, < by, for j € [i,_1 — 1], and the s-path of s(%+1 by )

(@i,+1,bi,41), -+, (@i,_,—1,b;,_,—1). Thus, we may write

. Clearly, s ( ko) = Oy the integer r is even, and for

= aiq_l_l = aiq—1 1S

Okye - Opp1 = ps(ais ais—l)ﬁsq T PQ(% ail)pl(ail ar)Po(x ar)Pf)a

for some p;, pj € Sy, where pj(z) = x. Moreover, from the equality s?az biat)
= a;,~1, and using an argument similar to the one used in case 1, we find
that py(a;,) = a;,, for ¢ =1,...,s, po(a,) = a,, and the result follows. O

For instance, in example 3.2, we have 6y = (52), 63 = (43)(32), 0, =
(43)(31) and 05 = id. The vertices (5,1),(4,3) and (3,3), (1,5) are linked,
and satisfy 03602(5) = 4 and 6504(3) =1

Lemma 4.2. Let k € {1,...,t}, and let (x,j) be the leftmost vertex of a
shuffle component r, . Then,

(a) o(07 \(s,,)) = .

(b) ajlm;] = Jj.
Proof: (a) Note that aj(al_l(sgw))) s +j))- 1f there are no vertices
in row = to the left of column j, then s? ) =T 0 0x(x) = z, and thus

O-] (0-1 1(8(()337]))) = Z.
Suppose there is a vertex in row x to the left of column j. Extend the

biword II to a biword 11y by adding extra billeters ( " Br “ > for all u € [L4],
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such that <x> and <n+1
J 0

graphical representation of Ilj, the leftmost vertex of each shuffle component
is linked to a distinct vertex (n + u,0). In particular, the vertices (x, j) and
(n+1,0) are linked. Put 6, := I/(n—l—ls? )), where v is defined as in step 2 of

T,
algorithm 1. By lemma 4.1, 0; - - - 626,(n+1) = z, that is, 6, - - -Hg(s?w.)) =z,

are consecutive vertices in Ilj, and in the

and the result follows.

(b) Recall that [Jj| = mj = L,1(;) = Zzza,l(j) l. Thus, [Lpy + 1, Lg] C
[m;] for k € {t,...,071(j)}. We use induction on j to prove that if z € .J;
is such that (z,j) is a vertex of a shuffle component r,; of w(7), with
ke{t,...,o ()}, there exists i, € [Lgy1 + 1, Ly] such that o;(i,) = x.

When j = 1, each letter in J; corresponds to the leftmost vertex of each
shuffle component 7,y of w(7), for k = ¢,..., e, where € := o~ !(1). There-
fore, we may write

{(l’, 1) X € Jl} = Ui:txk.
By the definition of o1, we have o1([Lyy1 + 1, Li]) = s(X}). Since s(Xj) =
{z:(x,1) € Xi}, for k =1t,..., ¢, the result follows.

Fix now j in {2,...,t}, and let y € J; be the row index of a letter j
belonging to a shuffle component r,; of w(7). Clearly, we must have k €
{t,...,07Y(y)}. Tf (y,7) is the leftmost vertex of 7, then, by (a), we have
Jj(al_l(s?w))) =y, with afl(s?w.)) € [Lyy1 + 1, Lyl

Assume now that (y,7) is negatively-linked to a vertex (z,7 — ¢) with
x >y, and € > 1. By induction, there exists i, € [Lry1 + 1, Lj]| such that
0j_:(iy) = x, and by lemma 4.1 we find that 6, ---0;_.11(x) = y. Thus,

O'j(l'a;) = (9j s 9]-_5“0]-_5(2'3;) = 1.

By induction, our claim is proved. Thus, for each x € J; there is i, € [m;]
such that o;(i,;) = . Since |J;| = m;, we must have o;([m,]) = J;. O

Corollary 4.3. If (z,7) is a vertex of a shuffle component r,j with leftmost
vertex (y,j —¢€), € > 0, then

o; ' (z) = 07 .(y) = 07 (8,5 0) € [Lrsr + 1, La).

Proof: Follows from the proof of the previous lemma. [l
Proposition 4.4. For each k € {0,1,...,t}, the matriz Ag, given by algo-

rithm 1, is left equivalent to diagy(a + x” + x7 - -+ + x*)B,,, where og :=
id € S, and Jy = 0.
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Proof: The proof is by induction on k. For k = 0, P,y = I and A := diagy(a),
and in this case there is nothing to prove. So let k be in {1,...,t}. By
induction, Ay_1 is left equivalent to diag,(a+x”t - - -+ x”1)P,,_,. Therefore,
by definition of By, Ay is left equivalent to

diag,(a + X‘]l cee XJ’“ )Py, Sk Diy)- (30)

Recall that Sy, = [[¥,(I + Sf,_@yk)(l — kayk) . Therefore, by lemma 3.2 and
(30), Ay is left equivalent to

diag,(a+x" - -+X‘]’“‘1)PJ,€D[mk] = diag,(a-+x" - -+XJ’“‘1)DUk[mk]ng. (31)
By lemma 4.2 (b), we have oi[my| = Ji, and the result follows. O

Remark 4.1. In the proof of proposition 4.4 there are no restrictions on
the shuffle decomposition that we have considered. Therefore, if w(7) €
Sh(Rf;t, c Rl;’l), the sequence of matrices Ay, By, ..., By given by algorithm
1 satlsfy always conditions I and II of definition 3.1 for any biword II of 7.
To prove I1I, we need restrictions on the biword II, as we have seen in exam-
ple 3.4. Otherwise, algorithm 1 produces a pair (7, F), where F is a tableau
with the same evaluation as 7', but not necessarily the key (o).

Lemma 4.5. Let (z,k) and (y,k +¢€), € > 1, be two linked vertices of a
shuffle component r,,, with leftmost vertex (u,k’). Then, the permutation v
and the matrix

SkH S(x, sfy ki) VOE)
defined in step 2 of algorithm 1 satisfy:

(a) v(z) = x.

(b) V_l( (v +e) ) ¢ J.={aeJ: (a, k) is a positively-linked vertex}.

(0) 1+ SE5 = Ty(1), with i = 07 (2) = 07 (50, 10) € (L1 +1, Ly] € [,
and j ¢ HJ'H
Proof: (a) and (b) are obvious.

To prove (c), recall that by the definition of the matrix I + S k“ = (si5), we
have s;; # 0 only if voy(i) = « and vog(j) = s(
4.3, we obtain

i =03 (2) = 07 (s(up) € [Lowt + 1, Ly C [my].

Now, by (b), we find that o3(j) = v~ 1(s* Styre) & Ji- 1 0(j) & Ji, by lemma
4.2 (b), we must have j ¢ [my]. Assume now that ox(j) € Ji \ J;. Then, we

Jhie)- Using (a) and corollary
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must have o(j) = a, where (a, k) is a not positively-linked vertex of a shuffle
component 7, ,, with ¢ > ¢'. Thus j = o, (a) € [Ly11+1, Ly] € [mu]\[|J4]].
L]

Corollary 4.6. Each matriz I—I—Sﬁzl = T,;(1), defined in step 2 of algorithm
1, is upper triangular with i € [my] and j > i. Moreover, j € [my] if and
only if there is a vertex (a,k), not positively-linked, belonging to a shuffle
component v, and such that (x,k) is a right critical vertex of type I or II of
(u,v), where u is the shuffle component containing (x, k).

1112223 2211 1
7654321 7542 4

1 2 3 4 5 6 7

.m%%‘.# -

Applying algorithm 1, we must set o; = (13), since s! = 3?371) = 3,8 =

5?372) = 2 and s = 3(()14> = 1, and thus o, = (32)0y, for i = 2,3,4
and 05 = (32)(21)oy. Consider the matrices S5, = S(3, 5(22 02), S5, =
S(2, 3?1, 50 04), and S§’2 S(2, s( 5); ,(21)0y4), produced in step 2 of algorithm

1. Since 3(2 2 = = 2, s( 5 = = 1 and 3?2’5) = 2, we get
I+ 55, ="T(1), I+, =T3(1), and I + S5, ="Th(1).  (33)

Each matrix in (33) is upper triangular and satisfy lemma 4.5. Notice that
in the last two matrices the column index 3 € [3] = [my]. This is consistent
with the previous remark, since the vertex (1,4) is not positively-linked, and
(2,4) and (3,4) are right critical vertices of type I of (7654321,4) and of
(7542,4), respectively.

Example 4.1. Let II = < ) and consider its graphical rep-

resentation:

W

In the next lemmas, we analyze the relationship between the critical ver-
tices of the fixed biword II and the matrices defined in step 2 of algorithm 1.
This analysis is important in order to prove that By, ..., B; realizes K(0).

Lemma 4.7. For g = 1,2, let (v, k), (yy, k +¢4), be a pair of linked vertices
belonging to the shuffle component u,, with x1 < 2, and consider the matrices
I+ S(xq, (oktes)’ Vo) = T, (1). Then, ji = ja if and only if (x2,k) is a
right critical vertex of type I or II of (u1,us).
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Proof: The if part.
Without loss of generality assume that (x, k) is a right critical vertex of
type L or IT of (ug, us), without critical components. Then, x; = S’(€ and

we may write

y25k+€2)

_ k
vooy = 01y S(yl,k+€1))]/10k?

where 0 € S, satisfy 0(z1) = z1. Since vy0y(j1) = 0(z1), the result follows.

The only if part.
Without loss of generality, assume that in the product By, there are no
matrices Tj;, (1) between T; ;, (1) and 75,5 (1). Then, we may write

k
ooy = 0(x; s(yhkﬁl))ylak,

for some permutation 6 € S, satisfying 6(x1) = x;. By definition, we must

have 0y (j1) = s’(“y2 kie,)- On the other hand,

VZUk(jl) = 9(1’1 Sl(ﬂyl,k+gl))V10'k(].1) = I

Therefore, we find that z; = s’ny Ftes) and this equality means that (zo, k)
is a right critical vertex of type I or IT of (uq,usg). O

This lemma may be illustrated with example 4.1, where the matrices I +
S5, =Ti3(1) and I + 53, = Th3(1) have the same column index, and (3,4) is
a right critical vertex of type I of (7654321, 7542).

The following corollary is a straightforward application of lemmas 3.1 and
4.7.

Corollary 4.8. For each k = 1,...,t — 1, consider the matrix Sy,1 =
(T (DT, (—1)) defined in step 2 of algorithm 1. Then, we may write

Sk+1 = (Hsz >Ck+1Dk+1 H juin(—1),

=1

where Cyyq1 [respectively, Dyy1] is a product of upper [respectively, lower]
triangular elementary matrices T;;(1), with i,7 € {i1,...,ig}, 1 # J.

Moreover, T;;(1) is a factor of Cyy1Dyy1 only if there are shuffle com-
ponents w;, with vertices (a;, k) satisfying al;il(al) =1, forl = i,j, such
that (a;, k) is a right critical vertex of type I or Il of (wi,uj), with critical
components us,, whose rightmost letter vl satisfy oy (ul) < maz{i,j}, for
[=1,.
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Lemma 4.9. Suppose my, < myy1, and let (z,k),(y,k + 1) be a pair of
linked vertices of w(7T), belonging to the shuffle component u. Then, I +
S(x,y,voy) = T;;(1) with my < j < myqy if and only if there is a vertex
(a,k + 1), belonging to a shuffle component v, which is a left critical vertex
of (u,v), with o}, (a) = j.

Proof: The if part.

Without loss of generality, assume (z, k+1) is a left critical vertex of (u,v),
with no critical components. Since oj1([mgs1]) = Jkt1, there is j € [myiq]
such that oj41(j) = x. Consider the matrix S(z,y,voy). Clearly, we may
write

ore1 = 0(x y)voy,
where § € S, satisfy 0(x) = x. Therefore, voy(j) = (xy)0 Lor,1(j) = y, and
thus I + S(x,y,vor) = T;;(1), for some integer ¢ € [my]. Finally, note that
since the shuffle component v has no letter k, all vertices in column & must
be positively-linked. Thus, by lemma 4.5 we find m; < j.

The only if part.
Assume now that I+S5(x,y,voy) = T;;(1), for some integer my < j < my1.
Again, it is clear that we must have

Opt1 = p(Tr 1) -+ (2 1) (21 2) (2 Y) VO,

for some integers x, > --- > x; > x > y and a permutation p € &, such
that p(x,) = x,. Thus, 0x11(j) = x, € Ji11, since j € [my41]. Denote by v
the shuffle component containing the vertex (z,,k + 1), and note that since
p(x,) = x,, v cannot have the letter k. Thus, (x,,k 4+ 1) is a left critical
vertex of (u,v). l

Confront this result with example 4.1, where the column index of I +
S3o = Ti2(1) satisfy 1 = m; < 2 = my, and (3,2) is a left critical vertex of
(7654321, 7652).

We are now ready to start the proof of our main theorem.

Proof of theorem 3.3.

It was shown in proposition 4.4 that Ag, By, ..., B; satisfy conditions I and
IT of definition 3.1. So it remains to show that B;--- B; is equivalent to
the diagonal matrix Dy, )« -+ Dy, that is, By, ..., By realizes the key with
weight (mq, ..., my).
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For k =2,...,t, use corollary 4.8 to write

gk

Bk: - (H Tiljl(l))Dk(H sziz(_l)>D[mk}’
=1

=1

where we are assuming that Cy = [[}X, ,, Ti,;,(1) for some integer s > g,

and ig,j; € {i1,... g}, for I = gz +1,..., s, We will refer to 7;,;,(1) as

original matrices of By, if [ =1,..., g, and as secondary matrices otherwise.
For k=2,...,t, and for each [ =1, ..., s, do the following operations:

(1) use lemma 3.1 to eliminate by left equivalence the upper triangular
matrix 7T;,;(1). Note that this operation will produce some elementary
matrices Ty, () to the left of Dy, .

(2) Starting from left to right, use again lemma 3.1 to eliminate by left
equivalence all new upper triangular elementary matrices. Again new
elementary matrices may appear. Repeat the process until there are
no upper triangular elementary matrices between Dy, ) and Dy, 1.

Notice that by lemma 3.1 there is always an elementary matrix E satistying
T5i(7)Tw(7") = Tap(7) T5(T) E, (34)

except when 7 and 7’ are units, a = 7 and b = j. Thus, to ensure that steps
1. and 2. are feasible, we must show that this situation does not occur.

With this propose in mind, we start by noticing that if 7;;(1), ¢ < 7, is an
original matrix of Bj.1, with my < j, we have

Dy Tij(1) = T35(p) Dy

and, therefore, T;;(p) will not lead to a situation similar to (34). The only
case where T;;(1) stays invariant while passing through Dy, is when j <
my. By lemma 4.5, this occurs if and only if there is a vertex (a, k) € u;,
not positively-linked, and right critical vertex (z,k) € wu; of type I or II of
(ui, u;), where u; and u; are shuffle components satisfying oy *(u}) = i and
oy 1(u]l) = j, being u} and u; the right most letters of u; and u;, respectively.
By lemma 4.7 and corollary 4.8, we find that the same situation happens
when 7;;(1) is a secondary matrix of Bj1. In this case, corollary 4.8 implies
that for each critical component v;, oy '(v}) < max{i,j}, where v} is the

right most letter of v;.
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Therefore, any unimodular matrix 7;;(7), other than the original ones,
obtained while applying steps 1. and 2. arise from one (or more) right crit-
ical vertex of type I or II of two shuffle components (u;,u;), whose critical
components vy, if any, satisfy oy ' (u}) < max{i, j}.

We start by analyzing a particular situation. Assume that 7j;(—1), i < 7,
is an original or secondary matrix of Bj.q, and that 7 < mgq1,..., mgy,,
for some r > 1. By lemmas 4.7 and 4.9, this implies the existence of a left
critical vertex or right critical vertex of u; of type I of (u;,u;), where v, is
the shuffle component whose right most letter u} satisfy oy (u}) =1, 1 = i, j.
The existence of T;;(7) on the right of Dy, ; implies the existence of a right
critical vertex of u; of type I or II of (u;,u;). In particular, this means that
the vertex in column k47 of u; is above the correspondent vertex of u;. Then,
proposition 2.13 implies the existence of an integer q € [k+ 1, k+r — 1] such
that ¢ € {w;} but ¢ ¢ {u;}. Therefore, T;;(7) is transformed into 7;;(7p)
while passing through Dy, j, and situation (34) will not occur.

The general case is treated similarly, for if 7};(7), i < j, is placed between
the diagonal matrices Dy, and D with j < myg.q, there must be a
sequence of matrices

mk+1]

Eoﬁ (TO)7 712‘12‘2 (7_1)7 s 7T’isis+1 (TS)7 (35)

s > 1, giving rise to Tj;(7) by the application of steps 1 and 2. As we
have already seen, the matrices in (35) are coming from critical vertices: the
leftmost either from a left critical vertex or a right critical vertex of type I, the
rightmost one from a right critical vertex of type I or II, and the remaining
from right critical vertices of type I. Thus, if u; is the shuffle component
whose right most letter ui satisfy oy *(ul) = [, | = i,j, by lemma 3.1 and
proposition 2.13, there is &’ > k such that the vertex of u; in column &' must
be below the correspondent vertex of wu;.

Similarly, the existence of T;;(7') on the right of Dy, j, 7> 1, with j <
Mk, - . ., Mitr, implies that w; is below u; in column k", for some k" > k' 4 1r.
By proposition 2.13, there must be an integer g € [k’ + 1,k” — 1] such that
q € {u;} but ¢ ¢ {u;}. Therefore, T;;(7') is transformed into 7T;¢(7'p) while
passing through Dy, ;. We may then conclude that a situation like the one
described in equation (34) cannot occur, and thus the procedure described
above allows us to write

By -+ By ~p Dy T2 Dpyy) - - - T Dipy,), (36)
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where T}, is a product of diagonal and lower triangular elementary matrices,
for k = 2,...,t. Finally, use lemma 3.1 to eliminate by right equivalence
all diagonal and lower triangular elementary matrices on the right member
of (36), starting from right to left. Thus, we find that (36) is equivalent to
D[ml] 'D[mt] D

Remark 4.2. Analyzing the proof above, we find that the sequence Ay, By,
Bsy, B3, By, obtained through the application of algorithm 1 to the shuffle
decomposition (28), in example 3.4, is not a matrix realization of (7, (o)),
since it has produced a situation similar to (34) when computing the invari-
ant partition of B1ByB3B,. This is a consequence of the no satisfaction of
proposition 2.13 by the shuffle decomposition.
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