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ABSTRACT: In the recent years, there has been a considerable amount of work in
the development of numerical methods for derivative free optimization problems.
Some of this work relies on the management of the geometry of sets of sampling
points for function evaluation and model building.

In this paper, we continue the work developed in [7] for complete or determined
interpolation models (when the number of interpolation points equals the number
of basis elements), considering now the cases where the number of points is higher
(regression models) and lower (underdetermined models) than the number of basis
components.

We show how the notion of A—poisedness introduced in [7] to quantify the quality
of the sample sets can be extended to the nondetermined cases, by extending first
the underlying notion of bases of Lagrange polynomials. We also show that A-
poisedness is equivalent to a bound on the condition number of the matrix arising
from the sampling conditions. We derive bounds for the errors between the function
and the (regression and underdetermined) models and between their derivatives.

KEYWORDS: Multivariate polynomial interpolation, polynomial regression and un-
derdetermined interpolation, error estimates, poisedness, derivative free optimiza-
tion.
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1. Introduction

A class of nonlinear optimization methods called derivative free optimiza-
tion methods has been extensively developed in the past decade. Some of
these methods do not rely on derivative information of the objective function
or constraints, but rather approximate these functions using sample models.
Some of the popular approaches (see [7] for a more extensive list of references)
use polynomial interpolation to build the surrogate model of the objective
function (or constraints). In addition, there is both interest and advantages
in considering the use of regression models for derivative free optimization.
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To be able to employ the well developed convergence theory of derivative
based methods, the models used in derivative free methods that use trust
region or line search frameworks have to satisfy Taylor-like error bounds.
Essentially, this requirement is in order to guarantee that when the steps are
forced to become small the approximate models are forced to become good.

In [7] we studied the error bounds for the case of polynomial interpola-
tion. These bounds depend on the geometry of the interpolation set. It is
important to characterize this geometry and to be able to measure it. Let
Y denote the interpolation set. In [7] we discussed two constants that can
be used to characterize the geometry, or the so-called well-poisedness, of the
interpolation set Y. One of these constants is a condition number of a matrix
M(¢,Y) whose entries are determined by evaluating elements of a polyno-
mial basis ¢ at the points in Y. This constant is usually considered to be
a bad measure of poisedness, since its value depends on the polynomial ba-
sis ¢ that is chosen and since it can be arbitrarily large if Y is scaled by a
sufficiently small factor. On the other hand, this measure is convenient to
use from an algorithmic perspective, since one can maintain a factorization
of M(¢,Y) to control its condition number.

To fix the drawbacks of this measure, we did the following in [7]: we con-
sidered the condition number of the matrix associated with the natural poly-
nomial basis ¢ (the basis of monomials) and we scaled the set Y to fit exactly
into a unit ball. The basis of monomials arises naturally in the algorithmic
framework. By using the scaled set Y we ensure that the measure of poised-
ness is independent of the original scaling. Thus, we have an algorithmically
desirable measure of poisedness of Y. To make it theoretically useful, we
connected it to the measure of geometry, which appears in most existing
Taylor-like bounds for polynomial interpolation.

This measure of geometry is essentially an upper bound on the absolute
value of the Lagrange polynomials associated with Y (see [4]). We give the
definition of Lagrange polynomials later in the paper. Such a constant is dif-
ficult to use in an algorithmic framework for which one wants to prove global
convergence. Powell [9] uses the values of Lagrange polynomials to control
the poisedness of the interpolation set. However, he does not prove that
his method will provide sets with uniformly bounded absolute values of the
Lagrange polynomials. In [6], the authors did manage to prove global con-
vergence of their methods based on a similar measure of poisedness but some
rather unnatural conditions had to be imposed on the algorithmic framework.
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In [7], we also showed that the two measures of poisedness, the Lagrange
polynomial bound and the condition number of M(4,Y), suitably scaled,
are interchangeable in some sense. Firstly, we introduced a definition of
“A—poisedness”, where A is a well-poisedness constant for Y, which is ge-
ometrically intuitive, and it is “equivalent” to the bound on the Lagrange
polynomials. Using this definition, we were able to connect this bound with
the condition number of the matrix M (#,Y) . Our result showed that these
two measures of well-poisedness differ only by a constant factor. We then
introduced two algorithms based on the condition number measure of poised-
ness that were guaranteed to generate a well-poised set. These algorithms are
very important in the context of derivative free optimization methods, since
to ensure global convergence one needs to maintain a uniformly bounded
poisedness constant throughout the algorithm.

In this paper, we extend the results of [7] to the cases of polynomial least
squares regression and incomplete or underdetermined polynomial interpola-
tion. We will start by introducing the concept of Lagrange polynomials for
least squares regression. As far as we are aware, this generalized definition of
Lagrange polynomials does not appear elsewhere in the literature. We will
show that the Lagrange polynomials for regression enjoy many properties
of the Lagrange polynomials for interpolation. We will extend the geomet-
ric definition of A-poisedness, which in this case is also equivalent to the
bound on Lagrange polynomials for regression. Following results in [7], we
will then show the connection between A and the condition number of the
matrix M(¢,Y). We will conclude the first part of the paper by extending
the Taylor-like bounds for linear and quadratic least squares regressions.

In the second part of the paper, we will address the case of incomplete or
underdetermined polynomial interpolation. This case is more complicated
than complete interpolation, since the choice of the interpolating polynomial
is not unique. We will extend the results from interpolation to incomplete
interpolation, whenever they are applicable. We will also show the bounds
that can be guaranteed for underdetermined interpolation.

A number of the ideas explored in this paper have already been tried in
the practical context of derivative free optimization, stressing the need for a
more comprehensive theoretical study:

e The DFO code developed in [1] uses minimum norm underdetermined
interpolation models in a trust region like method, at early iterations
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of the method when not enough points are available for complete in-
terpolation. Colson and Toint [5] use a similar strategy in the context
of exploiting partial separability in derivative free optimization.

e The approach in [10] intentionally uses incomplete or underdetermined
interpolation throughout the course of the optimization algorithm.
The degrees of freedom in the underdetermined interpolation systems
are used to construct models that minimize the Frobenius norm of the
change of the second derivative of the quadratic models.

e The implicit filtering method [2, 3] is a line search quasi-Newton
method based on the negative simplex gradient. Note that the simplex
gradient coincides with the gradient of the corresponding interpolation
model. Similarly, the Hessian of an interpolation model can be called
a simplex Hessian. The most recent implementation of implicit filter-
ing makes use of regression simplex gradients and diagonal simplex
Hessians.

e Finally, several types of simplex derivatives (including regression and
underdetermined) have been used in the context of direct/pattern
search methods to enhance their numerical performance [8]. This
requires the identification of A—poised sets of sampling points where
the function under consideration has been previously evaluated.

The paper is organized as follows. In Section 2, we present the building
blocks for regression interpolation, introducing Lagrange polynomials and
A—poisedness and showing all the corresponding algebraic and geometrical
properties, analogous to the case of complete interpolation. The error bounds
for regression interpolation are stated in Section 3. A few issues about the
usefulness of regression interpolation models and their relation to interpola-
tion models are addressed in Section 4. Section 5 covers the underdetermined
case.

1.1. Basic facts and notation. Here we introduce some notation and also
state some facts from linear algebra that will be used in the paper.

By || - ||z, with & > 1, we denote the standard ¢; vector norm or the
corresponding matrix norm. By || - || (without the subscript) we denote the
¢y norm. We use B(A) = {z € R™ : ||z|| < A} to denote the closed ball
in IR™ of radius A > 0 centered at the origin (where m is inferred from the
particular context). We use several properties of norms. In particular, given



GEOMETRY OF SAMPLE SETS IN DERIVATIVE FREE OPTIMIZATION (PART II) 5
a m X n matrix A, we use the facts
1
[All2 < m2|[Alleo,  [[All2 = [|AT[|2.

We will use the standard “big-O” notation written as O(-) to say, for
instance, that if for two scalar or vector functions B(z) and a(z) one has
B(z) = O(a(z)) then there exists a constant C' > 0 such that ||B(z)] <
C||a(z)|| for all z in its domain.

By the natural basis of the space of polynomials of degree at most d in IR",
we will mean the following basis of normalized monomial functions

{1,21,29,..., %0, 22/2, 5120, ..., 2 e, /(d — 1), 2% /d}, (1)

Given a matrix M € R, such that £ > k, we will use M = USVT to
denote the reduced singular value decomposition, where X is a diagonal &k X k
matrix formed by the (nonnegative) singular values. The columns of the
matrix U € R™* are orthonormal and form the left singular vectors of M.
The matrix V € R*** is orthogonal and its columns are the right singular
vectors of M. If M has full column rank then ¥ is invertible. Analogously,
if k& > ¢ then the reduced singular value decomposition M = UXVT is such
that X is a diagonal £ X £ matrix, U is an £ X ¢ and orthogonal matrix, and
V is a k x £ matrix with orthonormal columns.

We present here a lemma that will be useful later in the paper.

Lemma 1.1. Consider a set Z = {z',...,2™} C R", with m > n. Let
I'c{1,...,m} be a subset of indices with |I| = n. It is possible to choose I
so that for any x € R" such that

=1

for some A > 0, we can write

T = Z%zi, v < (m—n+ 1)A.

1€l

Proof: Consider an n X n matrix A whose columns are the vectors z¢, i € I.
Among all possible sets I, choose the one that corresponds to the matrix A
with the largest absolute value of the determinant. We will show that this 7
satisfies the statement of the lemma.
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Let I = {1,...,m}\I and let Z7 be the subset of Z containing points whose
indices are in I. First, we will show that for any 27, j € I,

d=) o, o]l <1 (2)
i€l

By Kramer’s rule, (2) holds with a{ = det(A,;;)/ det(A), where A,;; equals
matrix A whose i-th column is replaced by vector 'zj . Since by the selection
of I, |det(A)| > |det(A,i;)| for any j € I, then |o]| < 1.

Now consider any x such that

T = Z)\izi, Al < A
i=1

We have
T = Z/\izi-l—Z/\j(Zagzi) = Z%zi, vl < (m—n+1)A, iel.
i€l jel i€l i€l

2. Polynomial least squares regression and poisedness

Let us consider P, the space of polynomials of degree < d in IR". Let
¢1 = g+ 1 be the dimension of this space (e.g., for d =1, ¢y =n + 1 and for
d=2,q1=(n+1)(n+2)/2) and let ¢ = {¢po(z), p1(z), ..., d,(z)} be a basis
for P. This means that ¢ is a set of ¢; polynomials of degree < d that span P.
Assume we are given a set Y = {y°, y',...,4*} C IR" of p; = p + 1 sample
points. Let m(z) denote the polynomial of degree < d that approximates
a given function f(z) at the points in Y via least squares regression. We
assume that the number of points satisfies p; > ¢ (in other words that
p > q). Since ¢ is a basis in P, then m(z) = > {_, ax¢r(z), where ay’s are
the unknown coefficients. By determining the coefficients o = [av, ..., ay]"
we determine the interpolation polynomial m(z). The coefficients a can be
determined from the least squares regression conditions

q
m(y') = Y ad(y’) E fy), i=0,...,p.
k=0

This problem is a linear least squares problem in terms of a. The above
system has a unique solution in the least squares sense if the matrix of the
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system

do(y°) d1(¥°) - d(¥°)

M(g,y) = | P WD ) ®)

Go(y?) d1(y?) -+ dq(¥P)

has full column rank.

It is easy to see that if M(¢,Y) is square and nonsingular, then the above
problem becomes an interpolation problem. In that case, the set Y is said
to be poised (or d-unisolvent [4]). Just as in the case of interpolation, more
generally if M(¢,Y") has full column rank for some choice of ¢ then this is
so for any basis of P. Hence, we will call a set Y poised with respect to
the polynomial least squares regression if the appropriate M(¢,Y") has full
column rank for some choice of the basis ¢.

Let us show now that in the full column rank case the least squares regres-
sion polynomial does not depend on the choice of the basis ¢. Consider a
different basis ¢(z) related to ¢(x) by ¢(z) = Py(z), where P is ¢; X ¢; and
nonsingular. Then M(¢,Y) = M(¢),Y)PT. Let a® (resp. a?) be the vector
of coefficients of the least squares regression polynomial for the basis ¢(z)
(resp. %(z)). To show that the least squares regression polynomial is the
same for both bases, it is sufficient to show that a¥ = PTa®. Let fy denote
a vector whose elements are f(y%), i =0,...,p. Since a? is the least squares
solution to the system M (¢, Y)af = fy then

o’ = [M(¢,Y) M(4,Y)] ' M(¢,Y)" fy
= [PM(4,Y) M(y,Y)PT]"'\PM(4,Y)" fy
= P T IM@,Y) M, V) 'M@,Y) fy = P~ Ta?.

The last equality follows from the fact that a¥ is the least squares solution
to the system M (1, Y)a;p = fy. We have shown that if Y is poised, then the
least squares regression polynomial is unique and independent of the choice
of ¢.

The condition of poisedness and the existence of the regression polynomial
is not sufficient in practical algorithms or in the derivation of error bounds.
One needs a condition of “sufficient” poisedness, which we will refer to as
“well-poisedness”, characterized by a constant. This constant should be an
indicator of how well the regression polynomial approximates the function.
In [7], we considered such constants for the case of polynomial interpolation.
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In this paper, we will extend the concepts and the results to the case of least
squares regression (and to underdetermined interpolation).

Since the column linear independence of M (¢,Y") reflects the poisedness of
the set Y, it is natural to consider some condition number related to M (¢, Y)
as a constant characterizing the well-poisedness of Y. However, the singular
values of M(¢,Y) depend on the choice of ¢ and, moreover, for any given
poised interpolation set Y, one can choose the basis ¢ so that the ratio of
the largest over the smallest singular values of M(¢,Y") can equal anything
between 1 and oc.

The most commonly used measure of poisedness in the multivariate poly-
nomial interpolation literature is based on the basis of Lagrange polynomials.
We will briefly describe the concept and its use in polynomial interpolation.
Then we will turn to the extension of this concept to the case of least squares
regression.

Definition 2.1. Given a set of interpolation points Y = {0,y, ..., 4P}, with
p=q, a basis of p1 = p+ 1 polynomials L;j(z), § =0,...,p, of degree < d,
18 called a basis of Lagrange polynomaials if
; 1 of 1=
Ay = 8. — 3
[’J(y) Wy {0 if 147
For any poised set Y there exists a unique basis of Lagrange polynomials.
A measure of poisedness of Y is given by an upper bound on the absolute

value of the Lagrange polynomials in a region of interest. In [4, Theorem 1],
it is shown that for any x in the convex hull of Y

m m 1 ~ 1 ym
D" m(z) — D" f(z)| < WGZ;Hy — || "MD" Li(2)|,  (4)

where D™ denotes the m-th derivative of a function and G is an upper bound
on D! f(z). This inequality is a Taylor bound for multivariate polynomial
interpolation. Let now

Ay = max max |L;(z)],
i .'EGBy(A)

where ¢ varies in {0, ..., p} and z in the convex hull of Y. The Taylor bound
for function value approximation can be simplified as (m = 0):

im(z) — f(z)] <

1
(d+ 1)!‘11GAYAd+1’ (5)
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where A is the diameter of the convex hull of Y. See [9] for a simple derivation
of this bound. For further discussion see also [7].

One of the most notable properties of the Lagrange polynomials in the
case of interpolation is that the interpolating polynomial m(z) has a simple
representation in terms of Lagrange polynomials.

m(z) = > F)Li(),

where f(y') are the values that are interpolated. We will see that the same
is true in the regression case.

Our goal in this paper is to extend the concept of well-poisedness to poly-
nomial least squares regression (and to polynomial underdetermined inter-
polation). Once we obtain a constant Ay that characterizes well-poisedness
of the regression sampling set, we will use it to derive a Taylor bound on the
error of the polynomial least squares regression. We will start by extending
the notion of Lagrange polynomials.

2.1. Lagrange polynomials for regression. Let Y = {3 4!,... ¢*}
be the interpolation set, and ¢ = {¢o(z), $1(z),...,d,(x)} be the basis of
polynomials of a given degree. We are considering the case where p > ¢ (i.e.,
more points than basis polynomials).

Definition 2.2. Given a set of sample points Y = {y°,y,... 4P}, with
p > q, a set of pr = p+ 1 polynomials L;j(z), 7 =0,...,p, of degree < d, is
called a set of Lagrange regression polynomaals if

i Ls. 1 f 1=7,
Lily) = 0 = {0 z}[ 275;

This set of polynomials is an extension of the traditional Lagrange polyno-
mials to the case when p > ¢g. Clearly these polynomials are no longer linearly
independent, since there are too many of them. However, as we show below,
many other properties of Lagrange interpolation polynomials are preserved.

Assume that the set Y is poised. We can write the j-th Lagrange polyno-

mial as
q

Li(z) = > (o)idi(w),
i=0
where (o;); is the i-th element of the vector a;.
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Then the Lagrange interpolation conditions (in the least squares sense) can
be written as

l.s. .
M(¢’ Y)a.] = €j+1, J = 07"'7p7

where ;41 is the j + 1-th column of the identity matrix. In matrix notation,
we have that

M($,Y)a =1,

where o is the matrix whose columns are 5, j =0, ..., p.

The set of Lagrange regression polynomials exists and is unique if the
matrix M(¢,Y") has full column rank. As we have shown above for any least
squares regression polynomial, the polynomials £;(z), j = 0,...,p, do not
depend on the choice of ¢.

Let M(¢,Y) = UyX4V,' be the reduced singular value decomposition
(meaning that Uy is a p; X ¢ matrix with orthonormal columns, 3, is a
¢1 X g1 matrix of nonzero singular values, and V} is a ¢; X ¢; orthonormal ma-
trix). We omit the dependence on Y, since we keep Y fixed in the discussion
below. Thus a = V¢E;1U¢T or a; = V¢E;1U¢Tej+1, for 7 =0,...,p.

We will now show that the regression polynomial m(z) can also be written
as a linear combination of the Lagrange polynomials.

Lemma 2.1. Let Y = {3° 4%, ..., 4P} be the set of sample points for the
function f(z) and let m(z) be a polynomial of degree < d that approzimates
f(z) via least squares regression at the points inY. Let {L;(z), 7 =0,...,p}
be the set of Lagrange regression polynomials of degree < d given by Defini-
tion 2.2. Then

m(z) = ) fy)Li)

Proof: Tt is true that m(z) can always be expressed as

Since £ has more elements than a basis, the solution v is not unique. But
all we need to show is that v; = f(y'), i =0,...,p, is one such solution. We
know that o; = V¢Z¢_51U¢Tej+1, where «o; is the vector of coefficients that

expresses L£;(z) in terms of the basis ¢. We also know that V¢E;1U¢T fv is
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the vector of coefficients that expresses m(z) in terms of the basis ¢. Thus,

Vel 'Us ' fy = Y o f( V2, 'Us ejn
= ?:0 f(yj)aj
= OéfY,
and, hence, m(z) = >_%_ f(v/)L;(). |

Remark 2.1. It is interesting to note that the extension of Lagrange poly-
nomials to the case of regression seems to apply only to the case of the least
squares regression. We will demonstrate what happens in the case of £1-norm
regression. The case of Ly -norm regression is similar. The reason why the
properties of the Lagrange polynomials extend to the case of least squares re-
gression 1s because any least squares regression polynomaial is a linear function
of the right hand side fy. This situation is no longer the case when other
regressions are considered.

Let us try to extend the definition of Lagrange polynomzials to the case of
{1-norm regression.

Attempted Definition 2.1. Given a set of sample points Y = {y°, 4, ..., y"},
a set of p1 polynomials L;i(z), j = 0,...,p, of degree < d, is called a set of
Lagrange regression polynomials if

A 1 f 1=7,
Ej(y):5ij:{o 527&;

Under this definition all the attractive properties of Lagrange polynomials
fail. For example, one can show that the set of L; is not necessarily unique,
and that the expression m(z) = Y1, f(y")Li(z) may fail to hold for any
choice of Li(z) i=0,...,p.

We demonstrate this by an example: let us consider the space of linear
polynomials in IR? and the following sample set:

SnIEEI=Ib]E

The i-th Lagrange polynomaial given by Definition 2.1 can be written as a; +
bizy + bizy, where [a;, b}, b2]" minimizes the {1-norm of the residual of the



12 A. R. CONN, K. SCHEINBERG AND L. N. VICENTE

following system

1 1 1]
1 1 =1 [aq
1 -1 1 b | = eit1. (6)
1 -1 -1 b?
1 0 0]
Such solutions are not unique, even though the matriz of the system has a
full column rank. For instance, for i = 0, [ag, b}, b3]" = [0,0.5,0.5]" and
[ag, b}, b3]T = [0,0,0]" are both solutions which achieve the minimum value

of the ¢1-norm of the residual (clearly there is an infinite number of optimal
solutions in this case).

It can be shown that any solution to the above system in the least ¢1-norm
sense, fori=20,...,4, has a component a; equal to zero. So, all Lagrange {;
linear regression polynomaials associated with the chosen setY have a constant
term equal to zero. If we now consider the polynomial m(z) = 1, whose
constant term 1s equal to 1, it is clear that it cannot be expressed as a linear
combination of the polynomaials given by Definition 2.1.

2.2. Geometric interpretations of Lagrange regression polynomials.
Gi- ven a polynomial basis @, let ¢(z) = [¢po(z), $1(z), ..., ¢,(z)]" be a vector
in R® whose entries are the values of the elements of the polynomial basis
at x (one can view ¢(z) as a mapping from R" to IR"). Given a poised set
Y ={y%y!,...,9*} € B(1) C R", with p > q and = € B(1), we can express
the vector ¢(z) in terms of the vectors ¢(y'), i =0,...,p, as

ZAi(w)qb(yi) = ¢(z), (7)

or, equivalently,
M(,Y) A(z) = ¢(z), where A(z) = [Ao(2), ..., Ap(2)] .

This system is a simple extension of a similar system introduced in [7] for
the case of polynomial interpolation. Unlike the system in [7], this new sys-
tem is underdetermined, hence it has multiple solutions. In order to establish
uniqueness, we will consider the minimum #s-norm solution.

Lemma 2.2. Given a poised set'Y, the functions \i(z), 1 =0,...,p, defined
as the minimum {y-norm solution of (7), form the set of Lagrange regression
polynomials for Y given by Definition 2.2.
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Proof: We want to show that £;(z) = X\i(z), where A(z) is the minimum
¢9-norm solution to (7). We know that A\(z) satisfies

M($,Y) Nz) = ¢(z),

where M (¢,Y) is defined by (3), and, in particular, that A(z) is the minimum
{>-norm solution to this system. Hence, given the reduced singular value
decomposition of M(4,Y)" = Vu3,U/, we have

Az) = U,V é(x).

Now it is clear that Aj(z) is a polynomial in z of the appropriate degree
and that its coefficients, expressed through the basis ¢, are given by the j-th
row of U¢Z;1V¢T. Hence, these coefficients are given by the j-th column of
V¢Z;1U J , as is the case of the j-th Lagrange regression polynomial. We have
shown that \;(z) = £;(z) independently of the choice of ¢. u

A simple corollary of this result is that A(z) = [Ao(z),..., A\, (z)]" does
not depend on the choice of ¢. In [7], the well-poisedness condition for
interpolation was introduced via a bound on A(z) and was referred to as
A—poisedness.

Definition 2.3. Let A > 0 be given. Let ¢ = {po(z), p1(z), ..., ¢p(z)} be a
basis in P.

AsetY ={y° y' ... yP}, withp = q, is said to be A—poised in B(1) (in an
interpolation sense) if and only if for any © € B(1) there exists a A\(z) € IR™
such that

Ni(2)o(y') = ¢(z) with [IM(z)]| < A

p
1=0

Clearly this definition is equivalent to having all Lagrange polynomials
bounded by A in B(1) in the f3-norm. We now introduce the analogous
definition for a well-poised regression set.

Definition 2.4. Let A > 0 be given. Let ¢ = {po(x), p1(z), ..., ¢s(z)} be a
basis in P.

AsetY = {4yl ... 4P}, with p > q, is said to be A—poised in B(1) in
a regression sense if and only if for any x € B(1) there exists a A(z) € R
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such that
AN(@)o(y) = d(z) with [A@)] < A,

p
1=0

Note that the difference between the two definitions is that in the regression
case A(z) may not be unique for every z. In fact, we are interested in the
minimum norm solution for A(z) and the bound on its norm. It is sufficient
to say that |A(z)|| < A for some solution A(z), because then, clearly, the
same is true for the minimum norm solution.

Intuitively, A is a measure of (the inverse of) the distance to singularity of
the set of vectors {¢(y°), ..., d(y")}. See [7] for more discussion.

Notice also that, by definition, A is an upper bound on poisedness; that is,
if Y is A—poised, then it is also A—poised, for all A > A, in other words, Y is
at least A-poised.

2.3. A-poisedness and the condition number of M(¢,Y). For the
remainder of the paper we will assume that the smallest enclosing ball con-
taining Y is centered at the origin. This assumption can be made without
loss of generality, since it can always be satisfied by a shift of coordinates.
Furthermore, for most of this section we make an additional assumption that
the radius of this smallest enclosing ball around the origin is one, and we
will denote this ball B(1). We will relax this assumption at the end of the
section.

We will now show how A—poisedness in the regression sense relates to the
condition number of the following matrix

0O g R
g = |V v 3)” e 71 (Wn-1)"" v a(v) ®)
Tk ) vy e ()T g(h)! ]

which is the same as M = M(¢,Y), where
¢ = {1,21,22, ..., 20, 71/2, 2122, ..., 2012,/ (d — 1), 28 /d} € R™  (9)

is the natural basis of monomials. Substituting ¢ in the definition of A-
poisedness we can write

MTA(@) = §(z) with [A2)] < A. (10)
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Also, since z € B(1) and since at least one of the y*’s has norm 1 (recall
that B(1) is the smallest enclosing ball centered at the origin), then the norm
of this matrix is always bounded by

1 < [|M] < piPqs. (11)

Let us consider the reduced SVD of M = UXV', and let oy (resp. o)
denote the absolute value of the largest (resp. smallest) singular value of
M. We omit the dependence of U, ¥, and V on Y for simplicity of the
presentation. Then ||M|| = ||X|| = o1 and |7} = 1/0,. The condition
number of M is denoted by x(M) = 01/0,,. To bound k(M) in terms of A it
is, then, sufficient to bound ||X~!||. Conversely, to bound A is terms of x(M)
it is sufficient to bound it in terms of |27

In [7] we showed that the well-poisedness constant A from the Definition
2.3 and the condition number of M (which is a square matrix in the case of

interpolation) differ by a constant factor. The following theorem is an analog
of Theorem 3.3 in [7].

Theorem 2.1. If ¥ is nonsingular and ||X71| < A, then the set Y is /g1 A~
poised (according to Definition 2.4) in the unit ball B(1) centered at 0. Con-
versely, if the set Y is A—poised, according to Definition 2.4, in the unit ball
B(1) centered at 0, then ¥ is nonsingular and satisfies

=7 < 6, (12)
where 8 > 0 is dependent on n and d but independent of Y and A.

Proof: The proof is very similar to the proof in [7, Theorem 3.3], but there
are a few extra steps. We include the proof for the sake of completeness.

If 3 is nonsingular and ||X£7!|] < A then the minimum norm solution sat-
isfies

@I < U Vle@) < g5 d() e < afh,

(we used the facts that ||¢(z)|| < \/q1]|¢(7)||c0 and max,epn) [|@(2)]|0 < 1).

Proving the other relation is more complicated. First let us show that
the matrix Y is nonsingular. Let us assume it is singular. By definition of
A-poisedness, for any € B(1), ¢(z) lies in the range space of M T. This
means that there exists a vector v # 0 in the null space of M such that for
any = € B(1) we get ¢(z)Tv = 0. Hence, ¢(x) v is a polynomial in = which
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is identically zero on a unit ball, which implies that all coefficients of this
polynomial are zero, i.e., v = 0. We arrived to a contradiction.

Now we want to show that there exists a constant 8 > 0, independent of
Y and of A, such that ||[X71|| < #A. From the definition of the matrix norm,
and from the fact that V' has orthonormal columns

=7 = IV = a2V T, (13)

and we can consider a vector v at which the maximum is attained
=7V = ="V, 9] = 1. (14)

Let us assume first that there exists an x € B(1) such that ¢(z) = v. Then
from the fact that Y is A—poised we have that

=7V = IUSTVIg(@)]| < A,

and from (13 and 14) the statement of the theorem holds with 6 = 1.

Notice that # does not necessarily belong to the image of ¢(z), which
means that there might be no z € B(1) such that ¢(z) = v, and hence we
have that |7V 77| # |71V T¢(z)||. However, we will show that there
exists a constant § > 0 such that for any o which satisfies (14) there exists
an ¢ € B(1), such that

—17/T =
=l o, )
[E-1VTo(z)|

Once we have shown that such constant 6 exists the result of the lemma
follows from the definition of v.

To show that (15) holds, we first show that there exists v > 0 such that
for any ¥ with ||t|| = 1, there exists an € B(1) such that [v7¢(z)| > 7.
Consider

$(v) = max o §(a)].

z€B(1)
It is easy to show that ¢ (v) is a norm in the space of vectors v. Since the
ratio of any two norms in finite dimensional spaces can be uniformly bounded
by a constant, there exists a (maximal) v > 0 such that ¢(v) > 7||7|| = ~.
Hence, there exists an z € B(1) such that |v7¢(z)| > v.

Let o1 be the orthogonal projection of ¢(Z) onto the subspace orthogonal
to v. Now, notice that from the definition (14) of v it follows that v is the
right singular vector corresponding to the largest singular value of X1V,
i.e., ¥ is equal to one of the columns of V. Then X7V T4 and ¥~V vt are
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orthogonal vectors (since 71V "% is a multiple of a column of an identity
matrix and 271V ot is a Vector orthogonal to that column of the identity).
Since ||7]] = 1, ¢(Z) = vt + (v74(z))v. Also, from the orthogonality of
LW ot and 7 To

IZ=VT@)| = 27V o] + |57 ¢(@)]I=7V 9.

Hence |27V Té(z)|| > |07¢(Z)| |71V T9||. It follows from |[o7¢(Z)] > v
that

[=7VTe@)] > v[=7V ],
Assigning 8 = 1/~ shows (15), concluding the proof of the bound on the
norm of X1, ]

The constant 8 can be estimated for specific values of d. For d = 1 we need
to find v > 0 such that for any v € R"*!, with ||v|| = 1, there exists an z €
B(1) C R" such that ¢(z)"v > v, where ¢(x) = [1,z1,...,7,]". It is easy to
see that the choice x = [vg, ..., vpq1]" ifv; > 0and z = [—wvy, ..., —vyqq] " if
v1 < 0 guarantees that v = 1. Hence §# = 1 for d = 1. For d = 2 the following
lemma holds.

Lemma 2.3. Let 9" ¢(z) be a quadratic polynomial with ¢(z) defined by (9)
and ||9||oc = 1, and let B(1) be a (closed) ball of radius 1 centered at the
origin. Then

N |

T 7 >
Joax [0 ¢(z)] =

For the proof of the lemma and further discussion see [7, Lemma 3.4].
We can replace the constant 6 of Theorem 2.1 by an upper bound, which
is easily derived for the quadratic case. Recall that § = 1/, where

-
= min max v @
7 = min max [07¢(z)]
Given any @ such that ||v|| = 1, we can scale © by at most /g1 to ¥ = av,
0 < o < /g1, such that ||9|| = 1. Then
1 1
v = min max 7" $(z)| > —5 min max [0 d(z)| > -
loll=1 z€B(1) q1% [lleo=12€B() 215

The last inequality is due to Lemma 2.3 applied to the polynomials of the
form ©" @(z). Hence we have

ol

0 < 2¢q7. (16)
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Specifying the bound on 6 for polynomials of higher degree is also possible,
but is beyond the scope of this paper.

We will now relax the assumption that the enclosing ball has a unit ra-
dius. The attractive property of Lagrange polynomials is that they remain
invariant under the scaling of the set Y. A simple proof can be derived
from our interpretation of Lagrange polynomials given in the definition of
A—poisedness.

Lemma 2.4. Let Y = {3°4',..., 4P} be an interpolation set and {\;(z),
i = 0,...,p} be the set of Lagrange polynomials associated with Y. Then
{Ai(Az),i=0,...,p} is the set of Lagrange polynomials associated with Y,
where

YV ={Ay° Ayl ... AyP 1} for any A > 0.

Proof: From Lemma 2.2 we know that \;(z), i =0,...,p, satisfy

p —

> oy = ¢(x),

1=0
where ¢ is the basis of monomials. If we scale each ' and = by A, this
corresponds to scaling the above equations by different scalars (1, A, A2,
etc.). Clearly, A(A z) satisfies the scaled system of equations. That implies,
again due to Lemma 2.2, that A\;(Az), i = 0,...,p, is the set of Lagrange
polynomials associated with the scaled set. u

On the contrary, the norm of the inverse of M and therefore the condition
number o(M) depend on the scaling of the interpolation set. When we
multiply the set Y by A, the columns of M get multiplied by different scalars
(1, A, A2 etc.). So, the scaled matrix, say M, is such that || MY, s(M) —
00 When A — 0. To eliminate the scaling effect we will scale a given set
Y C B(A) by 1/A to obtain Y C B(1). The condition number of the
corresponding matrix M is then suitable as a measure of well-poisedness
of Y, since it is within a constant factor of the well-poisedness constant A
(which is scaling independent), as we have shown in Theorem 2.1.

In the next section, we present the Taylor-like error bounds on linear and
quadra- tic least squares regressions. The derivation of these bounds can be
found in [7] and is done first in terms of the singular values (X71) of the
scaled M~!, from which one can then plug in either the condition number
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k(M) or the bound A on the norm of the Lagrange polynomials given in the
A—poisedness definition. In this paper, we choose to present these bounds
expressed in terms of A.

3. Error bounds for least squares regression

In this section we present Taylor-like bounds for linear and quadratic least
squares regression in terms of the poisedness constant A. These bounds are
extensions of the bounds on polynomial interpolation in [7]. We will present
the bounds here without proofs, since they are straightforward extensions of
the proofs in [7].

As in [7], we will make an additional assumption, for the remainder of the
section, that y° = 0 — that is, one of the interpolation points is at the center
of the region of interest, which, by an earlier assumption, is a ball of radius
A around the origin. This assumption is very natural in a DFO setting,
since the center of the region of interest is typically the current best iterate,
which is usually an interpolation point. (Note that if this assumption is not
satisfied, it can always be made so by shifting the coordinates so that y" = 0.
Since all the points of Y are in B(A), then, after the shift, the points of the
shifted interpolation set are all in B(2A).)

We will also assume that A has the smallest possible value that satisfies
Y C B(A) and y° = 0. Under the assumption 3 = 0, the matrix M can be
written now as

10 -0 0 0 - 0 0

) 1wl oo gl L2 glyl ... Lyl )d=l,1 1(,1)d

M = : y:1 yn 2(3/:1) y1:y2 d_1(yn—1) Yn d(yn) . (17)
1oy ey D) b - )T L(yR)e

We first consider regression of a function f(z) by a linear polynomial m(z):
m(z) = c+g'z = c—i—ngxk. (18)

The sample set satisfies Y = {0,¢!,...,97} C B(A), where B(A) is a ball of
radius A centered at the origin.

Theorem 3.1. Let Y = {0,4,...,y?} be a A—poised set of p > n regression
points contained in a (closed) ball B(A) centered at 0. Assume that f is
continuously differentiable in an open domain ) containing B(A) and that
V f is Lipschitz continuous in 2 with constant vz, > 0.
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Then, for all points z in B(A), we have that

e the error between the gradient of the linear regression model and the
gradient of the function satisfies

1
le?(z)|| < (5piveA/2) A, (19)
e the error between the fully linear interpolation model and the function
satisfies
e/ (@) < (5piveA/2 +71/2) A
In the quadratic case we assume that we have a poised set Y = {0,¢%,. .., y?}

of py > (n+ 1)(n+ 2)/2 sample points (p; = p+ 1) in a ball B(A) of radius
A centered at the origin. In addition we will assume that f is twice contin-
uously differentiable in an open domain €2 containing this ball and that V2f
is Lipschitz continuous in {2 with constant g > 0.

It is possible to build the quadratic regression model

m(z) = c+g'z+ %:L‘THZE = c+ Z LTk —I—% Z hrezrze,  (20)
1<k<n 1<k l<n
where H is a symmetric matrix of order n.

As one might expect, the error estimates in the quadratic case are linear
in A for the second derivatives, quadratic in A for the first derivatives, and
cubic in A for the function values, where A is the radius of the smallest ball
containing Y.

Theorem 3.2. Let Y = {0,y',..., 9"}, with p1 > (n+ 1)(n + 2)/2 and
p1=p+ 1, be a A—poised set of interpolation points contained in a (closed)
ball B(A) centered at 0. Assume that f is twice continuously differentiable
in an open domain 0 containing B(A) and that V2f is Lipschitz continuous
in Q with constant yg > 0.

Then, for all points z in B(A), we have that

e the error between the Hessian of the quadratic regression model and
the Hessian of the function satisfies

B (@)]] < (agvPigireh) A,
e the error between the gradient of the quadratic regression model and
the gradient of the function satisfies

le?(2)]] < (afv/PraveA) A2



GEOMETRY OF SAMPLE SETS IN DERIVATIVE FREE OPTIMIZATION (PART II) 21

e the error between the quadratic regression model and the function sat-
1sfies

e ()] < (abrovmaA + Bhrg) A%,
H 9 _f

where g, g, X, and ﬁé are small positive constants dependent on d = 2
and independent of n and Y :
3v/2 3(1++/2)

g _ I _
5 aQ_—7 CVQ—

6 4+ 9+/2
2 )

1
ozg = 5 ﬁé; =5

The above error bounds can be extended to the case of polynomials of
higher degrees. However, in the context of derivative free methods, on which
we are focusing, the linear and the quadratic cases are sufficient. These
error bounds can be used to show global convergence of various optimization
methods based on least squares regression models as long as the sample sets
for regression remain A-poised, with A uniformly bounded, throughout the
progress of the algorithm.

In [7] two examples of algorithms that guarantee A-poisedness interpolation
sets are proposed. Each algorithm either verifies that the current interpo-
lation set is A-poised for some given value of A, or if it is not, replaces the
“bad” points with new points to maintain a A-poised interpolation set. It is
shown that as long as A is reasonably large, this procedure will always be
successful. The same algorithms can be applied to the regression case, since
as we will point out in the next section, A-poisedness of a set Y of ¢; points
implies A-poisedness, in the regression sense, of any larger superset of Y.

It would be interesting to investigate any algorithms that target the main-
tenance of the regression set directly as it is done in [7], rather than main-
taining a good subset that is well-poised in the interpolation sense. Using
the algorithms in [7] we aim to select a square submatrix of matrix M with
the best condition number. Instead it would be better to select the set of
points that will increase the smallest singular value of the whole matrix M.
However, it is not clear at this point how to design such an algorithm in the
nonlinear case.

Given the tools described above one can create a globally convergent algo-
rithm by taking virtually any globally convergent method based on Taylor
models. It suffices to replace the Taylor models by least squares polynomial
regression models and to maintain well-poised regression sets by any method
that guarantees A—poisedness.
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4. Regression vs. interpolation

One can relate A—poisedness in the regression sense to A—poisedness in the
interpolation sense, as it is shown in the next theorem.

Theorem 4.1. Given a set Y = {y° y,...,yP}, which is A—poised in the
regression sense, there is a subset of g1 = q+ 1 points in Y which is (p —q+
1)/qiA-poised in the interpolation sense.

Conversely, if any subset of q1 points in'Y 1s A—poised in the interpolation
sense, then the set Y = {3°, 4!, ... 4P}, is A—poised in the regression sense.

Proof: The first implication follows from the Definitions 2.3 and 2.4 for A—
poisedness in the interpolation and regression senses and from Lemma 1.1,
with m = p; and n = ¢;. The second implication is immediate from the same
definitions. m

Given p; > g1 sample points, where g; is the number of points required for
unique interpolation, one can select the “best” subset of ¢; sample points and
use those points to interpolate the given function f. One natural question
arises: will such interpolation provide consistently worse or better models
than the models based on regression using all the p; points? Based on our
theory, the answer to this question seems to be “neither”. On the one hand, it
is clear that the poisedness constant A, as defined by Definition 2.4, reduces
(or remains the same) as the number of sample points increases. On the
other hand, the error bounds depend on p;, hence when p; increases, so does
its contribution to the error bounds.

To better understand the quality of both models, we conducted the exper-
iments described below for the following functions:

fi(z,y) = 107sin(4z)> + 10123 + y% + dzy + = + v,

falz,y) = (102°)/((8-021+y)°) +¢*,
fa(z,y) = 107z + 1012® + 9> + = + y + 5zy.

We only report results for the first function, since the results for the others
seem to follow the same pattern as for the first.

We generated a set of p random points, (z;,%;) € R? i = 1,...,p, in the
unit radius square centered at the origin ({z € R? : ||z||oo < 1}). Together
with the origin (0, 0), we have p; = p + 1 points in R”.

In the linear case (¢ = 2), we considered all possible pairs of points
(zi,vi), (zj,vj), 3,5 = 1,...,p, © # j, and selected the pair with the best
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condition number of the matrix M. (In practice, we worked with the p x ¢
submatrix of M obtained by removing its first row and column.) Then, we
built a linear interpolation model of the function for this sample set. We call
this model the best subset model.

In the quadratic case (¢ = 5), we considered all possible sets of 5 points
and selected the set with the best condition number of the matrix M. (We
again worked with the p X ¢ submatrix of M obtained by removing its first
row and column.) We, then, built a quadratic interpolation model of the
function for this sample set (called also best subset model).

For each case (linear and quadratic), we compared the least squares regres-
sion (LSR) model to the best subset (BS) model. The error between each
model and the function was evaluated on a 0.1 step lattice of the unit radius
square. We considered two types of error: (E1) maximum absolute error for
all points in the lattice; (E2) error summed for all lattice points in the f5
sense. We repeated the experiment 200 times and counted the number of
times when each model was significantly better (> 0.001) than the other in
both errors. When one of the errors was < 0.001 no win was declared.

We report the results corresponding to the quadratic case in Figure 1 for
m=17,911,13,15,17,19,21, 23, 25, 31 randomly generated points. We only
report the error summed for all lattice points in the /5 sense. The error is
reported in a cumulative way for all 200 runs.

For both models (LSR and BS), the error decreased (the approximation
improved) as the number of points increased. The BS model becomes pro-
gressively worse compared with the LSR model — although this effect seemed
to tail off once we had enough points. In any case, no model was consistently
better than the other. For example, when using 21 points, of the 200 runs,
the BS model was worse 138 times and LSR model was worse 28 times. (Note
that the cumulative sum of the errors is as high as it is because the region
is relatively large given the irregularities of the function. For example, again
with 21 points, the error summed for all lattice points in the /5 sense, over
the 200 runs, was 0.1011 when the radius of the square was scaled to 0.01.)

One possible advantage of using least squares regression models is when
there is noise in the evaluation of the true function f(z). It is easy to show
that if the noise is random and independently and identically distributed
with mean zero, then the least squares regression of the noisy function and
the least squares regression of the true function (based on the same sequence
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#points | BS error | LSR error | BS worse | LSR worse
7 852770 794550 101 79
9 478160 392980 118 60
11 305470 236630 121 48
13 310080 209930 136 34
15 271000 193760 135 31
17 271890 189620 143 17
19 233790 174270 138 24
21 213590 160570 138 28
23 226930 158040 149 22
25 209190 156920 135 20
31 197770 149400 141 18

FIGURE 1. Results comparing the errors between the function
f1 and the corresponding best subset (BS) and least squares re-
gression (LSR) models, over 200 random runs.

of sample sets) converge to each other (pointwise) as the number of sample
points tends to infinity.

Another possible advantage of using regression is when the function is not
very smooth and occasional spikes make the interpolation unstable. In this
case, when there are enough sample points available, it might be beneficial to
use all of them to smooth out the effect of the spikes, although this statement
has not been verified experimentally.

5. Underdetermined interpolation

We will now consider the case when p < ¢, that is the number of interpo-
lation points in Y is smaller than the number of elements in the polynomial
basis ¢. Then the matrix
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has more columns than rows. The interpolation polynomials defined by
q
m(y') = Zak@c(yz) = f(y"), i=0,...,p. (22)
k=0

are no longer unique, even if M has full row rank.

The simplest approach to restrict the system so that it has a unique solution
is to remove the last ¢ — p columns of M (¢,Y") from the system. This causes
the last ¢ — p elements of the solution a to be zero. Such an approach
approximates some elements of «, while it sets others to zero solely based on
the order of the elements in the basis ¢. Clearly this approach is not very
desirable, without any knowledge of, for instance, the sparsity structure of the
gradient and the Hessian of the function f. There is also a more fundamental
drawback: the first p; columns of M(¢,Y) may be linearly dependent. A
natural conclusion would be that our sample points are not poised (in some
sense) and we have to change them. However, if we had selected a different
subset of p columns of M (¢, Y'), it might have been well poised. From now on,
we will use a notion of sub-basis of the basis ¢ to mean a subset of p; elements
of the basis ¢. Selecting p; columns of M(¢,Y), therefore, corresponds to
selecting the appropriate sub-basis qg Let us consider the following example.

Example 5.1. ¢ = {1,z1,29, 523, 2122,523}, ¥V = {3°, 91,4243}, o0 =
0,0]", ' =[0,1]T, 4> =[0,-1]T, ¥*> = [1,0]". The matrix M = M(¢,Y) is
given by

10 0 00O
10 1 00
10 -1 00
11 0050 0

If we select the first four columns of M then the system is still not well
defined, since the matrix is singular. Hence the set Y is not poised with
respect to the sub-basis ¢ = {1, z1, 2, 123}, and a new set of sample points
is needed. Notice now that if another sub-basis was selected, for instance,
¢ =11, z1, x9, %x%}, then the set Y is well poised and the matrix consisting of
the first, the second, the third and the sixth columns of M is well conditioned
and a unique solution exists. If the Hessian of f happens to look like

0 0
0 Tz

M =

ot O O

0.
0.
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then the reduced system actually produces the full quadratic model of f.

If the sparsity structure of the derivatives of f is known in advance then
the advantage can be taken trivially by deleting appropriate columns from
the system (22). If it is not known, then there is no reason to select one set
of columns over another except for geometry considerations. Hence it makes
sense to select those columns that produce the best geometry. The following
definition of well-poisedness is consistent with this approach.

Definition 5.1. Let A > 0 be given.

AsetY = {y%y',..., 4P} C B(1), with p < q, is said to be A—poised in
B(1) (in the sub-basis sense) if and only if there exists a sub-basis ¢(x) of p;
elements such that for any x € B(1) the solution A(z) of

> A@d) = $x) 23
satisfies | A(z)]| < A.

It is easy to show (as it is done for the complete interpolation case in
[7]) that the functions \;(x) are, in fact, the Lagrange polynomials £;(z) =
(7)) T¢(z) for the sub-basis ¢(z), satisfying

Lz(yj):@y, 27]207719

The approach to select a unique solution to (22) should then be the follow-
ing. Given the sample set Y, select the sub-basis ¢(z) so that the poisedness
constant A is minimized. Then consider the system with the appropriate
columns of M(¢,Y) and find the unique solution to the system. The follow-
ing example shows the possible disadvantages of this approach.

Example 5.2. Let us consider the purely linear case in IR® for simplicity.
An example for a quadratic case can be constructed in a similar manner.
Consider ¢ = {1,21, 79,23} and Y = {3°, ¢!, y?}, where, as always, y° =
[0,0,0]", and where y* = [1,0,0]" and ?> = [0,1,1 — ¢]T. Assume fy =
0, b1,b5]T. The system (22) then becomes

100 O 0
110 0 o = bl
1 01 1—c¢ bg
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The best sub-basis for Y is then q~5 = {1, 1, z2}. If we select the appropriate
columns of M(¢,Y’) and solve the reduced system, we obtain the following
solution for the coefficients of m(x)

0
by
by
0

Now, if we consider y2 = [0, 1—¢, 1], then the best sub-basis is ¢ = {1, 2y, z3}
and the solution that we will find with this approach is

0

by

0

bo/(1 —€)
Notice that the two possible solutions are very different from each other, yet
as € goes to zero the two sets of points converge pointwise to each other.
Hence, we see that the sub-basis approach suffers from lack of robustness
with respect to small perturbation in the sample set. We also notice that in
the first (second) case the fourth (third) element of the coefficient vector is
set to zero and the third (fourth) element is set to by (ba/(1+¢)). Hence, each
solution is biased towards one of the basis components (z9 or z3) without
using any actual information about the structure of f. A more suitable
approach would be to treat all such components equally in some sense. This
can be achieved by the minimum norm solution of (22).
For this example, the minimum norm solution in the first case is

o = M(,Y) (M(,V)M($,Y) ) fy = |

and in the second case is
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These two solutions converge to [0,by,b2/2,b2/2]" as € converges to zero.
Hence, not only the minimum norm solution is robust with respect to small
perturbation of the data, but also it “evens out” the elements of the gradient
over the x5 and x3 basis components.

For the reasons described above we are interested in looking at the min-
imum norm solution of the system (22). The minimum norm solution is
expressed as

M($,Y) [M(4,Y)M(,Y)']™ fr.

It is well know that a minimum norm solution of an underdetermined system
of linear equation is not invariant under linear transformation. In our case,
this fact means that the minimum norm solution depends on the choice of ¢.
It is easy to show that the resulting interpolation polynomial also depends
on the choice of ¢ in the system (22). Consider the following example:

Example 5.3. Y = {y’,y",4°}, 4* = [0,0]", y' = [L,0]", y* = [0,1]", and
f =22+ 2. Let us consider two bases:

1 1
¢ = {173717372) iwixlx% 537%}

and
1 2 1 2
Y = Lz + a1 — 29, 5(5151 + 22)%, 2122, 5(331 —x2)" .
Note that fy = [0,1,1]". The systems under consideration are
M(,Y)oy = fv
and
M(w,Y)O% = fy.

The minimum norm solution of the first system is ay = [0, %, %, %, 0, %]T and
the resulting polynomial

(z) P
me(z) = —x1+ —x9 + —2] + —T5.
v 570 5T 5T 52
The minimum norm solution of the second system is a, = [0, %, 0, %, 0, %]T

and the resulting polynomial

Lo 1,
my(z) = §x1—|—§az2+§x1—|—§az2.
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%‘/i ~ 1.33 and the maximum of

The maximum of |mg(z)| over B(1) is
|my(x)| over B(1) is 1%—\/5 ~ 1.28. Furthermore,

4 4 4

f(x) —my(z) = TEULT T + gw% + ga:%
The maximum of |f(z) — my(z)| over B(1) is attained at the point z =
[—1/v/2,-1/v/2]" and equals £(v2+ 1) ~ 1.93. Also,
2 2 2 2
f(z) —my(z) = —3%1 — 3% + ga:% + ga:%

The maximum of |f(z) — my(z)| over B(1) is attained at the point z =

(
[—1/v/2,—1/+/2]" and equals 2(v/2 + 1) ~ 1.61.

This example implies that depending on the choice of ¢ we can obtain a
better or a worse approximation of f by computing the minimum norm inter-
polating polynomials. Ideally, we would like, for each set Y, to identify the
“best” basis ¢, which would generate the “best” minimum norm interpolat-
ing polynomial. It is a nontrivial task to define such a basis. First of all, one
should define the best interpolating polynomial. The natural choice is the
polynomial that has the smallest approximation error w.r.t. the function f.
However, the definition of the best basis (and hence of the best polynomial)
should only depend on Y.

In the next subsection, we will consider the minimum norm underdeter-
mined interpolation for the specific choice of the natural basis ¢. We will
argue at the end of the next subsection that ¢ is a reasonable choice of the
basis.

5.1. Lagrange polynomials and A-poisedness for underdetermined
interpolation. We will consider the natural basis ¢ defined by (9) and the
corresponding matrix M = M(¢,Y) defined by (21). We omit the depen-
dence on Y, since we keep Y fixed in the discussion below.

We will start by introducing the definition of the set of Lagrange polyno-
mials for underdetermined interpolation.

Definition 5.2. Given a set of interpolation points Y = {y_o, yl, ..., yP}, with

p < g, a set of p = p+ 1 polynomials L;j(z) = > 7 (oy)idi(z), 1 =0,...,p,
18 called a set of Lagrange minimum norm polynomials for the basis ¢ if it is
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a minimum norm solution of

i\ m.n. 1 3 Z':‘a
L) = & = {0 z;: 27&;

The Lagrange minimum norm polynomials are thus given by the minimum
norm solution of

MOZJ' = €i+1, jZO,...,p,

This set of polynomials is an extension of the traditional Lagrange polyno-
mials to the case when p < g. Clearly these polynomials no longer compose a
basis, since there are not enough of them. However, as in the regression case,
many other properties of Lagrange interpolation polynomials are preserved.

The set of minimum norm Lagrange polynomials exists and is unique if the
matrix M has full row rank. In this case, we will say that Y is poised. We
again note that in this case the Lagrange polynomials generally depend on
the choice of the basis ¢, but it is easy to see that the poisedness of Y does
not.

Just as in the case of standard Lagrange polynomials, the minimum norm
interpolating polynomial m(z) in the underdetermined case has a simple
representation in terms of the minimum norm Lagrange polynomials.

Lemma 5.1. Let Y = {3°y',... 4P} be the set of sample points for the
function f(z) and let m(z) be the minimum norm interpolating polynomial
(in terms of the basis ¢) of f(x) at the points inY. Let {L;(z),i=0,...,p}
be the set of the minimum norm Lagrange polynomzials given in Definition 5. 2.
Then

P
m@) = 3 F)Liw)
i=0
Proof: We know that a; = M"(MM") 'e;,1, where o; is the vector of
coefficients that express £;(z) in terms of the basis ¢. We also know that
y=M"(MM")fy

is the vector of coefficients that express m(z) in terms of the basis ¢. It is
simple to see that v = > %_ja;f(y’), and hence, m(x) = > _7_, L;(z)f(y’).
|
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Let M = ULV T be a reduced singular value decomposition of M (meaning
that U is a p; X p; orthonormal matrix, Y is a p; X p; matrix of nonzero singular
values, and V is a ¢; X p; matrix with orthonormal columns).

We will now show that, as in the case of polynomial interpolation [7] and re-
gression, the geometric interpretations of Lagrange polynomial can be easily
derived. Thus, we will also have an analogous definition of A—poisedness.

Given a poised set Y = {¢°,y%,...,y*} € B(1) C R" and z € B(1) we
attempt to express vector ¢(z) in terms of the vectors ¢(y’), i = 0,...,p.
Since the dimension of vector ¢(z) is g1 > p1, it may no longer be possible to
express it in terms of p; vectors ¢(y%), i = 0, ..., p. Hence, we will be looking
for the least squares solution to the following system

D i(@)dly') = (). (24)

This system is an extension of the similar systems introduced in [7] and
of system (7) in Section 2.2. Unlike system (7), where the minimum /5-
norm solution A(z) to the system corresponded to the least squares regression
Lagrange polynomials, in this case the least squares solution A\(x) corresponds
to the minimum /¢y-norm Lagrange polynomials.

Lemma 5.2. Given a poised set' Y, the functions \j(z), i =0,...,p, defined
by the least squares solution of (24), form the set of minimum norm Lagrange
polynomaals for Y giwen in Definition 5.2.
Proof : The minimum norm solution «; can be expressed as

a; = VEU e

Hence, the vector of the coefficients of the j-th Lagrange polynomial, when
expressed through the basis ¢(z), is just the j + 1-th column of VI IUT.
Now consider the expression for Aj(z). We know that A(z) satisfies

MT\(z) < ¢(z).
Hence, given the reduced singular value decomposition of M T = VIUT,
Mz) = U™V T¢(z).

Now it is clear that A;(x) is a polynomial in z of the appropriate degree and
it is expressed through the basis ¢ with a vector of coefficients equal to the
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§ 4 1-th row of UX"'V'T, which is the same as j 4+ 1-th column of VXU,
We have shown that A\;j(z) = £;(z), 5=0,...,p. u

The following definition of well-poisedness is analogous to Definitions 2.3
and 2.4.

Definition 5.3. Let A > 0 be given. Let ¢ be the natural basis of monomials.

AsetY ={y° yl,... ,yP}, with p < q, is said to be A—poised in B(1) (in
the minimum norm sense) if and only if for any x € B(1) there exists an
unique A(z) € IR”' such that

> N@)dy) 2 d(a), with  [A@)] < A.
1=0

This definition is equivalent to having all Lagrange polynomials bounded
by A in B(1).

The following theorem states that if a set is well-poised in the minimum
norm sense then it is well-poised in the sub-basis sense and vice versa.

Theorem 5.1. There exists a constant 8 independent of A and Y such that
if a setY 1s A-poised in the sub-basis sense, then it 1s \/p1q10A—poised in the
sense of Definition 5.5.

Conversely, if a set Y = {3°y',...,y?} C B(1) is A—poised by Defini-
tion 5.3, then the set is (¢ — p + 1),/p1g10A—poised in the sub-basis sense.

Proof: Assume that Y is A—poised in the sub-basis sense, and that ¢ is the
sub-basis. Let Li(z) = (v))T¢(z), i =0, ...,p, be the Lagrange polynomials
for the sub-basis ¢ (see Definition 5.1 and the paragraph following). Then
max; MaXgep(1) Li(z) < A. As it is shown in the proof of Theorem 2.1, there

exists a constant o, independent of Y and A, such that max,cp) (fy’)qu(:r) >
o||v!|| for each i. Hence, A > ||+!||, for each i and § = 1/0.

Now let us consider the minimum norm Lagrange polynomials for Y, given
by Li(z) = (a!)Té(z), i = 0,...,p. The vector o is the minimum norm
solution of

Mai = €j+1-
Hence, [|of|| < [|4!]|. Since ¢;j(z) < 1, for all j =0,...,q and all z € B(1),
then
max (o) '¢(z) < |lo'[i < valle'|l < vall'll < abA.

x€B(1)



GEOMETRY OF SAMPLE SETS IN DERIVATIVE FREE OPTIMIZATION (PART II) 33

We have shown that Y is \/p1q10A—poised in the minimum norm sense.

Now assume that Y is A—poised in the minimum norm sense. We can apply
Lemma 1.1 with m = ¢; and n = p; to the columns of M and conclude that
we can select a subset of p; columns such that the corresponding submatrix
M), is nonsingular and

Mplfyi = €i+1, |’sz| S (q_p+1)|a§|, ]:O,,p

The selected columns determine a sub-basis ¢ and the vector of coefficients
v* determines the i-th Lagrange polynomial £;(z) = (v')Té(z). As before,
we know that there exists a constant o, independent of Y and A, such that
max,cp)(a') ¢(z) > o|/a’|| for each i. Hence, OA > ||a’|, for each ¢ and
6 = 1/0. On the other hand,

max,ep)(7) o(z) < |V < valyll < (@—p+1)/ald|
< (¢g—p+1)/q10A.

We have established that Y is (¢ — p + 1),/p1g16A—poised in the sub-basis
sense. (The values of 8 for the specific cases of linear and quadratic interpo-
lations are discussed after the proof of Theorem 2.1.)

|

Remark 5.1. It is easy to see that the results of this subsection hold for any
given basis ¢, as long as it remains fizved throughout the discussion. (Note that
the constants in Theorem 5.1 vary with the choice of ¢.) Hence, the minimum
norm Lagrange polynomaials can be defined for any basis. The definition of A—
poisedness also can be introduced for any basis. However, for any given setY
one can create different bases, which, when used in Definition 5.3, will result
in different constants for A—poisedness of Y. Moreover, by varying the basis
@, one can make the constant A as large or as close to 1 as desired. Clearly for
the definition of A—poisedness to make sense, the A constant should be related
to the quality of the geometry Y and the resulting interpolation. Hence, we
consider only one basis (the basis ¢).

We choose ¢ as the basis because: (i) it appears naturally in Taylor bounds
and their derivations; (i) it is the obvious choice in algorithmic implementa-
tions; (i11) it is well scaled; (iv) A-poisedness of a setY in terms of ¢ implies
O(A)-poisedness of Y in terms of any other basis v, such that ¢ = P and
|P||||P7Y| = O(1) (the last statement is easy to show from the definition of
A-poisedness and from Theorem 5.2 of the next section).
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In the next section, we will use the properties of ¢ to show the relation
between the poisedness constant A and the condition number of M.

Remark 5.2. As we pointed out in the introduction of this paper, minimum
norm models for underdetermined interpolation have been developed in [10],
by minimaizing the Frobenius norm of the change of the second derivative of
the models from one iteration of the optimization algorithm to the next.

Related to the need of updating such models, the author in [10] also proposed
a definition of Lagrange polynomials for underdetermined interpolation. In
the notation of our paper, the definition in [10] can be described as a mod-
ified Definition 5.2 where the norm being minimized is applied only to the
components of the second order terms of the Lagrange polynomials.

To ensure the existence and uniqueness of the Lagrange polynomials, the
definition in [10] requires not only that M has full row rank but also that Y
contains a subset of n + 1 points that are poised in the linear interpolation
sense.

5.2. A—poisedness and the condition number of M (¢, M). We make
again the assumption that the radius of the smallest ball around the origin
enclosing Y is one, and we will denote this ball by B(1). We will again relax
this assumption at the end of the section.

Recall that under this assumption 1 < ||[M| < pi/ ¢1. Hence to bound

the condition number of M in terms of A (and vice versa) all we need to
do is to bound ||[M~!|| in terms of A (and vice versa). We will now present
the analogue of Theorem 2.1 of this paper and Theorem 3.3 of [7] for the
underdetermined case. Recall the reduced singular value decomposition of
M=UZV".
Theorem 5.2. If ¥ is nonsingular and ||| < A, then the set Y is /g1 A-
poised (according to Definition 5.3) in the unit ball B(1) centered at 0. Con-
versely, if the set Y 1s A—poised, according to Definition 5.3, in the unit ball
B(1) centered at 0, then ¥ is nonsingular and

[=7H < oA, (25)
where 8 > 0 is dependent on n and d but independent of Y and A.

Proof: As in the proof of Theorem 2.1, it is trivial to show that if ¥ is
nonsingular and ||X 71| < A then the least squares solution

@) < IU=TVIg@)] < a2 57 1)l < @174,
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since max,ep() || #(2)||oo < 1.

To prove the other relation we note, first, that the matrix ¥ is nonsingular
by the definition of A—poisedness. To prove that there exists a constant
6 > 0, independent of Y and of A, such that [|[X7|] < #A, we would proceed
exactly as in the proof of Theorem 2.1. |

For obtaining the specific values of # in linear and quadratic cases we can
apply the results presented after Theorem 2.1. In particular,  can be equal
to one in linear interpolation and it satisfies (16) for quadratic interpolation.
To relax the assumption that the radius of the ball enclosing Y is 1, we can
use the same arguments as in the end of Subsection 2.3.

5.3. Error bounds for underdetermined interpolation. We start by
studying the quality of the quadratic minimum norm interpolation model
in the general case. Recall that ¢ = ¢+ 1 = (n+ 1)(n + 2)/2. We will
again assume that A has the smallest possible value that satisfies Y C B(A)
and y° = 0. The derivation of the general error bound follows strictly the
derivation in [7] for complete quadratic polynomial interpolation. We need
to consider the submatrix M,y, of M obtained by removing its first row and
its first column. Consider the reduced SVD of the scaled version of Mpxq

Dy 0
0 Dx

~

Mp><q - Mpxc][ — UPXPZPXPVT

gxp’

where Da is a diagonal matrix of dimension n with A in the diagonal en-
tries and Dp» is a diagonal matrix of dimension ¢ — n with A? in the di-
agonal entries. The scaled matrix corresponds to a scaled interpolation set
{0,4'/A, ..,47/A}.

We will make use of the following notation: given a symmetric matrix H,
svec(H) is a vector in R +1)/2 storing the upper triangular part of H row
by row, consecutively. The following theorem exhibits the error bound on
the underdetermined quadratic interpolation model.

Theorem 5.3. Let Y = {0,y',...,9*}, with p1 < (n+ 1)(n + 2)/2 and
p1 = p+1, be a A—poised set of points (in the minimum norm sense) contained
in a (closed) ball B(A) centered at 0. Assume that f is twice continuously
differentiable in an open domain Q containing B(A) and that V2 f is Lipschitz
continuous in 2 with constant vg > 0.
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Then, for all points x in B(A), we have that the error between the gradient
of the quadratic minimum norm model and the gradient of the function

ed)(z) = Vm(z) — Vf(z)

and the error between the Hesstan of the quadratic minimum mnorm model
and the Hessian of the function

Ef(z) = V’m(z) — V2f(x)
satisfy
VqTxp[ DZZQA;SI?;)E)] < (3(par)*yQh) A%,

where t(z) = e4(z) — E¥(z)z and ef(z) = svec( B (z)).

Proof: We apply the same algebraic manipulations and Taylor expansions to
the interpolating conditions (22) as we did in [7]. We leave them out of this
proof for the sake of brevity. As in [7], we obtain the following system

— Dgl 0 DAt(.’L') . 3

Mpxq [ 0 DZ% ] [DAzeH(SC) - O(A ) (26)
The right-hand-side of this system is bounded in norm by 3\/]37QA3 /2. Thus,
since || Z4,]| < |7 < A < 2,/g7A, we get from the A—poisedness assump-
tion

VT

qxp

Dat(z
[DNeHa)c ]H “phalSH A < 3(man)tah A%

In the derivative free optimization context, one is particularly interested
in the error of the gradient and Hessian approximation at the center of the
trust region. Hence, if we set x = 0, which means that we are evaluating the
error at * = y° = 0, we obtain

[ Dalg- ,
‘ Voxp [ Dz [svec(H V2 ] H 3(p1a1) VQAA
where m(z) =c+g'z + 33" Hz, Vm(a:) = Hz + g, and V?m(z) = H.

The presence of Vqlp in the general error bound tells us that we can only
measure the orthogonal projection of the error onto the p dimensional linear

subspace spanned by the rows of the matrix Mpxq
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It is easy to see that if p = ¢, then V|, is orthonormal and hence can be
removed. In this case, one recovers the bound on full quadratic interpolation
(see [7]).

It is also possible to show that if V f and V2 f have specific sparsity struc-
ture that corresponds to a certain sub-basis for which Y is A—poised, then a
similar error bound can be established for the quadratic interpolation based
on the sub-basis. We do not include the result and the proof here, because it
is nothing more than the repetition of the corresponding error bound result

in [7].

Let us investigate the quality of a minimum norm interpolation model when
the interpolation set Y is A—poised in the minimum norm sense and contains
a subset of n 4+ 1 points that are A;—poised for linear interpolation. We will
show that the minimum norm model is at least as good, in order of accuracy,
as the linear interpolation model based on these n + 1 points.

Let us assume that ¥ is A-poised in minimum norm sense. We can write
the scaled version of the first n rows of M, as

Mg = [ Mln ypoe ],

nxn nxr

where Mlin

L2 1s an m X nm matrix corresponding to the linear terms in ¢, and

MZ is the matrix consisting of the other 7 = g—n columns (both referring to
the first n+ 1 points). Let us assume (w.l.o.g.) that the subset {0, %!,..., 4"}
is Ar—poised for linear interpolation. From Theorem 2.1 (restricted to the
case p = ¢ = n), this fact implies that ||(M¥7 )~!|| < Az (§ =1 in the linear
case). First, we show the following lemma.

Lemma 5.3. Let Y = {0,y!,..., 4"}, withp; < (n+1)(n+2)/2 and p; =
p+1, be a A—poised set of points (in the minimum norm sense) contained in
a (closed) ball B(A) centered at 0. Let us assume also that {0,y",...,y"} is
A —poised for linear interpolation.

Assume that [ is twice continuously differentiable in an open domain 2
containing B(A) and that V*f is Lipschitz continuous in Q with constant
vo > 0. Let B¢ and By be upper bounds on the norm of fy and on the norm
of the Hessian of f in B(A).

Then, the error between the Hessian of the minimum norm model and the
Hesstan of the function is bounded by

lef (2)| < 2¢2B8;A+ By
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Proof: We know that

le¥ ()] < [lsvec(H)| + [lsvec(V*f(2))]| <

ol || e

Since the Hz + g and svec(H) are the components of the minimum norm
solution, we have that

le @) < [[VaxpZppUpp fr || + IV2F ()]

pxp" pxp
From Theorem 5.2 and (16), we obtain

le @) < IS5 llIA N+ VA (@) < 248 ABy + Brr.

Finally, we show the following result.

Theorem 5.4. Let Y = {0,y,...,y*}, with p1 < (n+ 1)(n + 2)/2 and
p1 = p+1, be a A—poised set of points (in the minimum norm sense) contained
in a (closed) ball B(A) centered at 0. Let us assume also that {0,y',... y"}
18 A —poised for linear interpolation.

Assume that [ 1s twice continuously differentiable in an open domain 2
containing B(A) and that V2f is Lipschitz continuous in Q) with constant
Yo > 0. Let B¢ and By be upper bounds on the norm of fy and on the norm
of the Hessian of f in B(A).

Then, the error between the gradient of the minimum norm model and the
gradient of the function satisfies

s 3 1
le?@)ll < nerArlle” (z)| A+ SniagAL A+ V2]l (2)]|A,

where
le @)l < 24 BsA + B
Proof: We can write the first n rows of (26) as
Mlin DAt(ZE) + ngi‘;DAzeH(a:) = O(A3),

nxn

where the right-hand-side is bounded in norm by 3y/nygA3/2. With the
purpose of bounding #(z), we write

) N Dy (@) + (Nrlz,) T O(a%)

Dat(z) = — (Ml

nxmn
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and point out that

1
axrll < Apner.

-1
rlin rqua
H (wim,) 01

with » = ¢ — n. Thus,
1 3 1
|Dat(a)| < mivAslle”(2)]| A2 + Snivghs A3

or, equivalently,

1 3 1
[t(z)] < W?‘AL||€H($)||A+§W“YQAL A2,

We can now use the bound on ||ef(z)|| in Lemma 5.3 to conclude the proof
of the theorem. ]

We remark that the poisedness constant in this bound appears “squared”
(AAL) and, as a result, the bound for the gradient of the minimum norm
model is worse than the bound for linear interpolation. However, as we will
argue in a moment, in practice the situation is usually the opposite.

5.4. Numerical results for the underdetermined case. As for the
overdetermined case, we generated the same set of simple two-dimensional
numerical examples. We report here the results for the function fi(z,y) =
107 sin(4z)® + 10123 4 4 + bzy + = + y.

We considered, for the quadratic case, the underdetermined situations
where the number of points is p; = 5,4, 3 (including the origin). We built
the minimum norm (MN) model for each case.

Then we considered all possible sub-bases of cardinality p; of the basis ¢
for the quadratic case, which has cardinality 6, and selected the resulting
p1 X p; sub-matrix of M with the best condition number. We, then, built
an interpolation model of the function for this sub-basis. We call this model
the best basis (BB) model. (Here we also worked with the p X ¢ submatrix
of M obtained by removing its first row and column.)

We compared the minimum norm (MN) model to the best basis (BB)
model. The error between each model and the function was evaluated on a
0.1 step lattice of the unit radius square. We considered two types of error
(E1 and E2) as in the overdetermined numerical tests. We repeated the
experiment 200 times and counted the number of times when each model was
significantly better (> 0.001) than the other in both errors. When one of the
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#points | BB error | MN error | BB Worse | MN Worse
5 81950 653000 133 28
4 594320 323480 175 9
3 594750 368640 163 16
FIGURE 2. Results comparing the errors between the function

f1 and the corresponding best basis (BB) and minimum norm

(MN) models, over 200 random runs.

#points | BB error | MN error | BB worse | MN worse
5 19.7096 0.4839 58 0
4 324.4571 0.9466 193 0
3 88.7755 2.1193 118 0

FIGURE 3. Results comparing the errors between the function
f1 and the corresponding best basis (BB) and minimum norm
(MN) models, over 200 random runs, in the case where the square
has a radius of 0.01.

errors was < 0.001 no win was declared. The errors reported are cumulative
for the 200 runs and computed using E2. The BB model was worse than
the MN model, and moreover one should recall the lack of continuity in this
solution, illustrated at the beginning of this section.

The results for the unit square in Figure 2 are followed by the results for
a scaled square (scaled to have a radius of 0.01) in Figure 3. Again, as for
the overdetermined case, the sum of the residuals is high in the unit square
because the region is relatively large given the irregularities of the function.

In the scaled square, the MN model behaved even better when compared to
the BB model.
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