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Abstract: Based on the ideas of Marsden-Ratiu, a reduction method for Lie al-
gebroids is developed in such a way that the canonical projection onto the reduced
Lie algebroid is a homomorphism of Lie algebroids. A relation between Poisson
reduction and Lie algebroid reduction is established. Reduction of Lie algebroids
with symmetry is also studied using this method.
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1. Introduction

Lie algebroids structures are very common in geometry, and are receiving an
increasing interest in mathematics during the last years. The Lie algebroids
were introduced by Pradines [24] as infinitesimal objects for differentiable
groupoids and one can find similar notions proposed by several authors in
increasing number of papers (which proves their importance and natural-
ness). For basic properties and the literature on the subject we refer to the
survey paper and the book by Mackenzie [18, 19]. Weinstein [29] was the
first pointing out the possibility of developing a Lagrangian mechanics in
Lie algebroids (see also [17]) and then Mart́ınez [21] developed a formalism
for Lagrangian mechanics on Lie algebroids using the generalization of the
fundamental ingredients of geometric Lagrangian mechanics. Afterwards se-
veral papers on related subjects are developed, see [16] and references therein.
Roughly speaking, a Lie algebroid is a generalization of both a Lie algebra
and of a tangent bundle, these being the simplest examples of Lie algebroids.
A Lie algebroid is endowed with a differential operator playing a rôle very
similar to the de Rham exterior differential. Furthermore, its dual has a
natural Poisson structure. For these reasons Lie algebroids appear in many
areas of mathematics, they have applications in mechanics and turn out to
be a very import tool in the geometric foundations of physics. One of the
most important examples of Lie algebroids with equal importance to physics
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is the gauge algebroid TP/G associated to a principal bundle P (M,G) [19];
remember that in classical field theory M is the space-time manifold and G is
the gauge group, while matter fields are the sections of an associated bundle
and the gauge fields describing matter interaction are connection 1-forms in
P (M,G).

The study of related structures in manifolds is very important because al-
lows us to obtain at least a partial information on a system from properties
of a related one, the theory of reduction being a particular example of this.
In this way one can obtain, for instance, properties of the integral curves of a
vector field from those of a related one, or of a presymplectic structure from
the reduced symplectic one in the reduced space. The theory of reduction
has many applications (see [20] and references therein) and has been shown
to be extremely useful for a deep understanding of many physical theories
including, among others, systems with symmetry, Poisson structures, stabi-
lity theory, and integrable systems. The importance of reduction theory and
the recent interest on Lie algebroids as a tool to work in many mechanical
systems, suggests that it may be worthwhile to study Lie algebroid reduc-
tion. One of our initial motivations to study Lie algebroid reduction was the
work of Meucci [22, 23] in which the periodic Toda system is obtained from a
Poisson structure on a manifold M with a specific reduction of a set of com-
patible Lie algebroid structures on a fibre bundle A→M . The main purpose
of this paper is to develop a general theory of reduction of Lie algebroids. We
hope this reduction method could be adapted to other integrable systems of
Toda and Calogero type. The reduction theory for Lie algebroids we develop
here has been inspired by the techniques of Poisson reduction of Marsden
and Ratiu [20] due to the strong connection between Poisson manifolds and
Lie algebroids.

This paper is divided into five sections. In the section 2 we recall some well
known facts about Lie algebroids, paying a special attention to the notion
of homomorphism of Lie algebroids. Section 3 is devoted to the Lie alge-
broid reduction theory. Some examples are given and we also establish the
conditions for the reduction of a Lie algebroid structure, and we prove that
in these conditions the quotient bundle of a Lie algebroid is endowed with
a differential operator that is a homological vector field of degree one; this
operator defines on the quotient bundle a Lie algebroid structure which is the
reduced structure of Lie algebroid. In section 4 we study the relation with
Poisson reduction in the sense of Marsden-Ratiu, and we prove that the Lie
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algebroid reduction implies the Poisson reduction of its dual bundle in the
sense of Marsden-Ratiu. Finally, in section 5, we study the representations
of Lie groups in Lie algebroids and we show that the contragredient represen-
tation defines a Poisson action on the dual bundle. The theory is illustrated
with some examples. Finally, in the last section we study the reduction of Lie
algebroids with symmetry, in particular the gauge algebroid as an example
of reduced Lie algebroid.

2. Basic concepts on Lie algebroids

A Lie algebroid is a vector bundle p : A→M over a manifold M together
with a vector bundle morphism ρ : A → TM over the identity map on M
(called anchor) and a Lie bracket [·, ·]A on the linear space Γ(A) of sections
for p satisfying

[v, fw]A = f [v, w]A + (ρ(v)f)w

for every pair of sections v and w and any smooth function f on M . We
denote the Lie algebroid by (A, ρ, [·, ·]A) or simply by A whenever it is clear
which Lie algebroid we refer to. Note that Γ(A) is a C∞(M)-module and the
anchor is a C∞(M)-linear map from the space Γ(A) into the space X(M) of
vector fields on M , and one can easily prove, using the above condition and
the Jacobi identity of the Lie bracket [·, ·]A, that the anchor is a Lie algebra
homomorphism [13]. For a detailed lecture on the subject see e.g. [1, 19].

Two simple examples of Lie algebroids are the tangent bundle τM : TM →
M , with the identity as anchor map and the usual bracket of vector fields on
M , and the Lie algebra g when considered as a vector bundle over a point,
p : g → {·}, with the anchor being the zero map; the sections of such bundle
are but the elements of g and the bracket of sections is the bracket of the Lie
algebra. Two other examples to be used in this paper are the Lie algebroid
associated with a Poisson manifold and the Lie algebroid provided by the
action of a Lie group on a manifold, defined as follows (see e.g. [5]).

Example 2.1 (Poisson manifold). Let (M,Λ) be a Poisson manifold, that
is, M is a manifold endowed with a bivector field Λ such that [Λ,Λ]S = 0,
where [·, ·]S is the Schouten-Nijenhuis bracket [14]. This bivector field allows
us to introduce a Poisson bracket in the set C∞(M) by {f, g} := Λ(df, dg)
for all f, g ∈ C∞(M). The contraction with the bivector field Λ induces a
vector bundle morphism Λ♯ over the identity map on M , Λ♯ : T ∗M → TM ,
and therefore between the spaces of sections of both bundles, to be denoted by
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the same symbol Λ♯ : Ω1(M) → X(M),
〈
β,Λ♯(α)

〉
= Λ(α, β) for all α, β ∈

Ω1(M). The cotangent bundle T ∗M can be endowed with a Lie algebroid
structure whose anchor map is Λ♯ and the Lie bracket of 1-forms on M is
given by [α, β]T ∗M = £Λ♯(α)β − £Λ♯(β)α − d(Λ(α, β)). Note that for exact
1-forms the bracket reduces to [df, dg]T ∗M = d{f, g} for all f, g ∈ C∞(M).
We call this Lie algebroid the Lie algebroid of the Poisson manifold.

Example 2.2 (Group action). Let φ : M × G → M be a right action of a
Lie group G on the manifold M and for each element X of the Lie algebra
g of G, let XM denote the corresponding fundamental vector field defined by
XM(m) = d

dt φ(m, exp(tX))|t=0 for all m ∈M . The set Γ(M × g) of sections
of the trivial bundle M × g → M can be identified with the space C∞(M, g)
of smooth functions on M with values in g: each section Y ∈ Γ(M × g) is

of the form Y (x) = (x, Ỹ (x)) with Ỹ ∈ C∞(M, g), for all x ∈M . Then, the
trivial bundle M ×g →M can be endowed with a Lie algebroid structure: we
define a bracket on the space Γ(M × g) ∼= C∞(M, g) by setting

[Y1, Y2]M×g(x) =
(
x, [Ỹ1(x), Ỹ2(x)]g + (Ỹ1(x))M Ỹ2(x) − (Ỹ2(x))M Ỹ1(x)

)
,

for all x ∈ M and Y1, Y2 ∈ Γ(M × g), which is a Lie bracket, and we define
ρ : M × g → TM , ρ(x, Y ) = YM(x), as anchor map [21].

Given a Lie algebroid (A, ρ, [·, ·]A), there exists a derivation dρ of degree
one of the graded exterior algebra of forms of A, Ω•(A), to be called A-forms,
which is nilpotent of order two, i.e. d2

ρ = 0. It is called the exterior derivative
of the Lie algebroid. In the particular cases of the tangent bundle TM and
that of a Lie algebra g, dρ reduces to the de Rham operator on the manifold
M and the Chevalley differential, respectively [6].

On the other hand, the dual bundle τ : A∗ → M of a Lie algebroid
(A, ρ, [·, ·]A) overM is endowed with a natural linear Poisson structure {·, ·}A∗

given by the fundamental brackets [7]:

{f ◦ τ, g ◦ τ}A∗ = 0, {χ(v), f ◦ τ}A∗ = ρ(v)f ◦ τ, {χ(v), χ(w)}A∗ = χ([v, w]A),

for all f, g ∈ C∞(M) and v, w ∈ Γ(A), where χ maps each section v of A
to the linear function χ(v) given by χ(v)(α) = 〈α, v〉 for all α ∈ Γ(A∗); here
〈·, ·〉 denotes duality pairing between Γ(A∗) and Γ(A). The bivector field
associated to such a Poisson bracket {·, ·}A∗ will be denoted ΛA∗. We call Lie
co-algebroid to the dual bundle of a Lie algebroid endowed with such linear
Poisson structure. In particular, the dual g∗ of a Lie algebra g has a natural
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Poisson structure, usually called the Lie-Poisson structure, while the Poisson
structure on the cotangent bundle T ∗M to a manifold M as dual bundle of
the Lie algebroid TM turns out to be the canonical symplectic structure.

2.1. Homomorphism of Lie algebroids. Let (Φ, φ) : (A, p,M) →
(A′, p′,M ′) be a morphism of vector bundles. If φ = idM or if φ is a diffeomor-
phism, it induces a linear map between the spaces of sections: v ∈ Γ(A) maps
into v′ = Φ ◦ v ∈ Γ(A′) when φ = idM and maps into v′ = Φ ◦ v ◦φ−1 ∈ Γ(A′)
when φ is an arbitrary diffeomorphism. In the general case, however, we
cannot define such morphism between the space of sections. Nevertheless,
there is a vector bundle morphism Φ : A → φ!A′ over the identity in M ,
where φ!A′ denotes the pull-back bundle [28], given by

Φ x : vx ∈ Ax → (x,Φx(vx)) ∈ (φ!A′)x

for all x ∈ M . Recall that a section of A′ along the map φ : M → M ′ is a
map V : M → A′ such that p′ ◦ V = φ and that the space Γφ(A

′) of sections
of A′ along the map φ : M →M ′ is a C∞(M)-module isomorphic to Γ(φ!A′).
In particular, if v ∈ Γ(A) then Φ ◦ v ∈ Γφ(A

′) and when v′ ∈ Γ(A′) then
v′ ◦φ ∈ Γφ(A

′). The C∞(M)-module of sections Γφ(A
′) is (locally) generated

by the set of sections of the form v′ ◦ φ , with v′ ∈ Γ(A′), and then for any
section v ∈ Γ(A) we can write

Φ ◦ v =
∑

i

fi(v
′
i ◦ φ), (1)

which is called a Φ-decomposition of v.
The section v ∈ Γ(A) is said to be Φ-related with v′ ∈ Γ(A′), and we write

v ∼ v′, when Φ ◦ v = v′ ◦ φ and v ∈ Γ(A) is called Φ-projectable when there
exists a Φ-related section v′ ∈ Γ(A′). The set of such Φ-projectable sections
is denoted by ΓΦ(A). Higgins and Mackenzie established in [10] the following
definition of homomorphism of Lie algebroids:

Definition 2.1. A vector bundle morphism (Φ, φ) : (A, p,M) → (A′, p′,M ′)
is a homomorphism of the Lie algebroid (A, ρ, [·, ·]A) over M in the Lie alge-
broid (A′, ρ′, [·, ·]A′) overM ′ when Tφ◦ρ = ρ′◦Φ and, for any pair v, w ∈ Γ(A)
with Φ-decompositions Φ ◦ v =

∑
i fi (v

′
i ◦ φ) and Φ ◦w =

∑
j gj (w′

j ◦ φ), the
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following condition is satisfied:

Φ◦[v, w]A =
∑

i,j

fi gj ([v′i, w
′
j]A′◦φ)+

∑

j

(ρ(v)gj) (w′
j◦φ)−

∑

i

(ρ(w)fi) (v′i◦φ).

(2)

Obviously, every homomorphism of Lie algebras is a homomorphism of
Lie algebroids when the Lie algebras are considered as Lie algebroids, and
the tangent map Tφ : TM → TM ′ of a smooth map φ : M → M ′ is a
homomorphism of Lie algebroids over φ (see [10]).

The condition (2) does not depend on the choice of the Φ-decompositions
of the sections v and w (see [10]) and if v and w are projectable sections, i.e.
Φ ◦ v = v′ ◦φ and Φ ◦w = w′ ◦φ for some v′, w′ ∈ Γ(A′), then the condition
(2) is given simply by Φ ◦ [v, w]A = [v′, w′]A′ ◦ φ.

In general not every section is projectable, but there exist homomorphisms
(Φ, φ) for which all sections are projectable, for example when the bases of
the fiber bundles are equal and φ = idM . In this last case, a homomorphism
of Lie algebroids can also be defined in the following way:

Definition 2.2. A vector bundle morphism Φ : A → A′ over the identity
map on M is a M -homomorphism of the Lie algebroid (A, ρ, [·, ·]A) in the
Lie algebroid (A′, ρ′, [·, ·]A′) if ρ = ρ′ ◦ Φ and Φ([v, w]A) = [Φ(v),Φ(w)]A′ for
all v, w ∈ Γ(A). If A = A′ then we say that Φ is a M -endomorphism of Lie
algebroids.

The concept of homomorphism of Lie algebroids was defined by Vaintrob
[27] in a different but equivalent way by using the notion of homological
vector field in a simple graduated manifold [8, 15]. If dρ and dρ′ are the
exterior derivatives of the two Lie algebroids (A, ρ, [·, ·]A) and (A′, ρ′, [·, ·]A′),
then Vaintrob proved that: A morphism of vector bundles Φ : A → A′ is a
homomorphism of Lie algebroids if and only if dρ ◦ Φ∗ = Φ∗ ◦ dρ′, i.e. Φ∗

intertwines both differential operators.

3. Reduction of Lie algebroids

Definition 3.1. Let (Π, π) : (A, p,M) → (Â, p̂, M̂) be a surjective morphism

of vector bundles, where A and Â are endowed with Lie algebroid structures
(ρ, [·, ·]A) and (ρ̂, [·, ·]Â) with exterior derivatives dρ and dρ̂, respectively. The

Lie algebroid Â is said to be a reduction of the Lie algebroid A if Π is a
homomorphism of Lie algebroids, i.e. if dρ ◦ Π∗ = Π∗ ◦ dρ̂.
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Recall that a section of (Π, π) is a vector bundle morphism (S, s) :

(Â, p̂, M̂) → (A, p,M) such that Π ◦ S = idÂ and π ◦ s = id
M̂

. In the
following definition we generalize this concept:

Definition 3.2. We call section of the morphism (Π, π) : (A, p,M) →

(Â, p̂, M̂) to a set of linear maps between pairs of fibres S = {Sx′

x : Âx′ →

Ax | x′ = π(x) for all x ∈M} such that Πx ◦ S
x′

x = idÂx′
for all x′ ∈ M̂ .

Note that, in general, the set S does not define a morphism of vector
bundles.

It was shown in [10] that given a surjective morphism of vector bundles

Π : A → Â over π : M → M̂ , all the sections of A are linear combinations
of Π-projectable sections modulo Γ(Ker Π), i.e. given v ∈ Γ(A) there exist
a finite set of sections vi ∈ ΓΠ(A) and a section z ∈ Γ(Ker Π) such that
v =

∑
i fivi + z, with fi ∈ C∞(M). Moreover, it was also shown that, if

Tπ◦ρ = ρ̂◦Π and, furthermore, if v ∼ v′ and w ∼ w′ imply [v, w]A ∼ [v′, w′]Â
for all v, w ∈ ΓΠ(A), then, Π is a homomorphism of Lie algebroids.

Proposition 3.3. If (Π, π) : (A, p,M) → (Â, p̂, M̂) is a homomorphism of
Lie algebroids, then the following conditions are satisfied:

(a) ρ(Ker Π) ⊂ KerTπ;
(b) Γ(Ker Π) is a Lie subalgebra of (Γ(A), [·, ·]A).

Proof : Let (Π, π) be a homomorphism of Lie algebroids. If v ∈ Ker Π, then,
by the homomorphism condition Tπ ◦ ρ = ρ̂ ◦Π we have Tπ ◦ ρ(v) = 0, that
is, v ∈ Ker (Tπ ◦ ρ) and therefore ρ(Ker Π) ⊂ Ker (Tπ). Consider v, w ∈
Γ(Ker Π), then the homomorphism condition (2) implies that Π◦ [v, w]A = 0,
that is, [v, w]A ∈ Γ(Ker Π).

Let (A, ρ, [·, ·]A) be a Lie algebroid over M and (Π, π) : (A, p,M) →

(Â, p̂, M̂) a surjective submersion of vector bundles. We can establish con-

ditions in order for the quotient bundle (Â = A/Ker Π, p̂, M̂) to be endowed

with a Lie algebroid structure (ρ̂, [·, ·]Â) over M̂ , in such a way that Â is a
reduced Lie algebroid.

Let us assume that the following conditions are satisfied:

(C1) There exists a surjective submersion of vector bundles (Π̃, π) :

(A∗, τ,M) → ((Â)∗, τ ′, M̂) such that the set

S =
{
Sx′

x = (Π̃x)
∗ : Âx′ → Ax | π(x) = x′, x ∈M

}
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is a section of Π, i.e. Π ◦ S = idÂ;

(C2) If Σ : Γ(Â) → Γ(A) is the map between the spaces of sections defined

by Π̃ as follows,

Σ(v′)(x) := (Π̃x)
∗(v′π(x)) = Sπ(x)

x (v′π(x))

for all x ∈ M , then, ImΣ is a Lie subalgebra of the Lie algebra
(Γ(A), [·, ·]A);

(C3) dρ satisfies the following relation: dρ ◦ Π∗ ◦ Π̃ = Π∗ ◦ Π̃ ◦ dρ.

With these conditions, we can define a Lie bracket on the space of sections
of the vector bundle Â and a nilpotent derivation d̂ of degree one on the
exterior algebra Ω•(Â) which endow Â with a Lie algebroid structure. The

reduction condition (C3) ensures that the Lie algebroid Â is a reduced Lie

algebroid of A, i.e. dρ ◦ Π∗ = Π∗ ◦ d̂.

3.1. Reduced Lie algebroid structure. The exterior derivative of the Lie
algebroid A can be used to define an operator d̂ in the exterior algebra Ω•(Â)

of Â-forms:
d̂ := Π̃ ◦ dρ ◦ Π∗. (3)

Here Π̃ represents the extension of the morphism Π̃ : A∗ → (Â)∗ to the

algebra of A-forms: given α ∈ Ωk(A) and v′1, ..., v
′
k ∈ Γ(Â) then, for each

x ∈M ,

Π̃x(αx)(v
′
1 π(x), . . . , v

′
k π(x)) = αx

(
(Π̃x)

∗(v′1 π(x)), ..., (Π̃x)
∗(v′k π(x))

)

= α (Σ(v′1), . . . ,Σ(v′k)) (x).

We can show that d̂ is a nilpotent (of order two) derivation of degree one

of Ω•(Â).

Lemma 3.4. d̂ is a derivation of degree one of the exterior algebra Ω•(Â),

i.e. it satisfies the condition d̂(θ′ ∧ ω′) = d̂θ′ ∧ ω′ + (−1)rθ′ ∧ d̂ω′ for all

θ′ ∈ Ωr(Â) and ω′ ∈ Ω•(Â). Furthermore, d̂ is nilpotent of order two, i.e. it

satisfies d̂ 2 = 0.

Proof : To prove that d̂ is a derivation of degree one it suffices to use definition
(3) and the fact that dρ is a derivation of degree one. The operator d̂ is a

derivation of degree one of Ω•(Â), so it defines in a unique way a vector

bundle map ρ̂ : Â→ TM̂ and a bracket [·, ·]Â on the space Γ(Â):
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(i) ρ̂(v′)f = d̂f(v′);

(ii) η
(
[v′1, v

′
2]Â

)
= ρ̂(v′1) η(v

′
2) − ρ̂(v′2) η(v

′
1) − d̂η(v′1, v

′
2);

for all v′, v′1, v
′
2 ∈ Γ(Â), f ∈ C∞(M̂) and η ∈ Ω1(Â). We will show later

that the bundle map is given by ρ̂ = π∗ ◦ ρ ◦Σ and the bracket is defined by
[·, ·]Â ◦ π = Π ◦ [Σ(·),Σ(·)]A; by conditions (C1) and (C2) we also prove that
the bracket satisfy Σ([·, ·]Â) = [Σ(·),Σ(·)]A. Then the following condition is
satisfied

d̂ ◦ Π̃ = Π̃ ◦ dρ (4)

even if (C3) is false. In fact, given α ∈ Ωr(A) and v′1, ..., v
′
r+1 ∈ Γ(Â) we have

d̂ ◦ Π̃(α)(v′1, ..., v
′
r+1) ◦ π =

∑

i

(−1)i+1[ρ̂(v′i) ◦ π]Π̃(α)(..., v̂i, ...)

+
∑

i<j

(−1)i+jΠ̃(α)([v′i, v
′
j]Â, ..., v̂

′
i, ...v̂

′
j, ...) ◦ π

=
∑

i

(−1)i+1[π∗ ◦ ρ ◦ Σ(v′i)]Π̃(α)(..., v̂i, ...)

+
∑

i<j

(−1)i+jα(Σ([v′i, v
′
j]Â), ..., Σ̂(v′i), ...Σ̂(v′j), ...)

=
∑

i

(−1)i+1[ρ ◦ Σ(v′i)][α(..., Σ̂(vi), ...)]

+
∑

i<j

(−1)i+jα([Σ(v′i),Σ(v′j)]A, ..., Σ̂(v′i), ...Σ̂(v′j), ...)

= dρα(Σ(v′1), ...,Σ(v′r+1)) = Π̃ ◦ dρα(v′1, ..., v
′
r+1) ◦ π;

the symbol ·̂ represents element omission. So, for each α′ ∈ Ω•(Â) we have,

by definition of d̂, that

d̂(d̂α′) = d̂(Π̃ ◦ dρ ◦ Π∗(α′)).

Using d̂ ◦ Π̃ = Π̃ ◦ dρ and that dρ is nilpotent, we obtain d̂ 2 = 0.

The previous result can also be stated as follows:

Theorem 3.5. The operator d̂ is a homological vector field of degree one of

the graded manifold M̂ = (M̂,Ω•(Â)).
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According to Vaintrob [27], the homological vector field d̂ defines a Lie

algebroid structure in the vector bundle Â, for which d̂ is the exterior de-
rivative of the Lie algebroid; the anchor is the above defined bundle map ρ̂
and the Lie bracket on sections is given by [·, ·]Â. From the relation (4) and
the reduction condition (C3) we can conclude that

Π∗ ◦ d̂ = dρ ◦ Π∗.

Therefore, Â is a reduced Lie algebroid of A. A Lie algebroid A satisfying
the above conditions of reduction, is called reducible Lie algebroid.

Proposition 3.6. The anchor of the Lie algebroid Â is given by ρ̂ = Tπ◦ρ◦S.

Proof : Let f ′ ∈ C∞(M̂) and v′ ∈ Γ(Â). For all x ∈M , we have

d̂f ′(v′) ◦ π(x) := Π̃x( dρ(f
′ ◦ π)(x) )(v′π(x))

= dρ(f
′ ◦ π)(Σ(v′))(x)

= df ′(π(x))(Tπ ◦ ρ ◦ Σ(v′)(x)).

On the other hand,

d̂f ′(v′) ◦ π(x) = df ′(ρ̂(v′)) ◦ π(x),

and, since f ′ is arbitrary, we can conclude that

ρ̂(v′) ◦ π(x) = Tπ ◦ ρ ◦ Σ(v′)(x)

for all x ∈ M , that is, ρ ◦ Σ(v′) is a vector field Tπ-projectable onto ρ̂(v′).

Then, for every v′ ∈ Γ(Â) and x ∈M , we have

ρ̂(v′)◦π(x) = Tπ◦ρ(Σ(v′)(x)) = Txπ◦ρx◦(Π̃x)
∗(v′π(x)) = Txπ◦ρx◦S

π(x)
x (v′π(x))

that is,

ρ̂π(x) = Txπ ◦ ρx ◦ S
π(x)
x .

Therefore, the anchor is given by ρ̂ = Tπ ◦ ρ ◦ S.

From now on the operator d̂ will be denoted by dρ̂. We can check that ρ̂ is

a morphism of vector bundles over the identity map on M̂ ,

Â

p̂
��

S
// A

p

��

ρ
// TM

τM

��

τM

}}{{
{
{
{
{
{
{
{

Tπ
//
TM̂

τ
M̂

��

M̂
///o/o/o M

idM
// M

π
//
M̂
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which furnishes a morphism between the spaces of sections, that we represent

by the same symbol: ρ̂ = π∗ ◦ ρ ◦ Σ, where π∗ : ΓTπ(TM) ⊂ X(M) → X(M̂)
is a morphism applying each Tπ-projectable vector field X ∈ X(M) in the

Tπ-related vector field X ′ ∈ X(M̂), i.e. if Tπ ◦X = X ′ ◦ π then π∗X = X ′.

Proposition 3.7. The Lie bracket on the space of sections of the vector
bundle Â is given by [·, ·]Â ◦ π := Π ◦ [Σ(·),Σ(·)]A and satisfy the condition:

Σ([v′, w′]Â) = [Σ(v′),Σ(w′)]A (5)

for all v′, w′ ∈ Γ(Â).

Proof : By the above proposition and by (ii) given in lemma 3.4, we show that

the Lie bracket is given by [·, ·]Â ◦ π := Π ◦ [Σ(·),Σ(·)]A. For v′, w′ ∈ Γ(Â)
and x ∈M , we have

Σ([v′, w′]Â)(x) = Sπ(x)
x ([v′, w′]Â(π(x))) = Sπ(x)

x (Π ◦ [Σ(v′),Σ(w′)]A(x));

by (C2) there exists u′ ∈ Γ(Â) such that [Σ(v′),Σ(w′)]A(x) = Σ(u′)(x). So
by (C1) we have

Σ([v′, w′]Â)(x) = Sπ(x)
x (u′(π(x))) = Σ(u′)(x) = [Σ(v′),Σ(w′)]A(x).

3.2. Third reduction condition of a Lie algebroid. In this section, we
will show that, if the reduction conditions (C1) and (C2) are satisfied, the
reduction condition (C3) is equivalent to the three following conditions:

(1) ρ(Ker Π) ⊂ KerTπ;
(2) [ImΣ,Γ(Ker Π)]A ⊂ Γ(Ker Π);
(3) Γ(Ker Π) is a Lie subalgebra of (Γ(A), [·, ·]A).

Proposition 3.8. Let us suppose that (Π, π) : (A, p,M) → (Â, p̂, M̂) is a
homomorphism of Lie algebroids. Then, if (C1) holds the conditions (1), (2)
and (3) are satisfied.

Proof : We know, from proposition 3.3, that if (Π, π) is a homomorphism of
Lie algebroids, the conditions (1) and (3) are satisfied and so we only need

to check condition (2). For every section v′ ∈ Γ(Â) and x ∈M , we have

Π ◦ Σ(v′)(x) = Πx ◦ S
π(x)
x (v′π(x)) ,

and by condition (C1), we also have

Π ◦ Σ(v′)(x) = v′π(x) = v′ ◦ π(x).
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Thus, all sections in the image of Σ are Π-projectable. For w ∈ Γ(Ker Π),
condition (2) implies that Π ◦ [Σ(v′), w]A = 0.

Using the fact that every section v of A can be written in the form v =∑
i fi Σ(v′i)+z, with z ∈ Γ(Ker Π), fi ∈ C∞(M) and v′i ∈ Γ(Â), we can prove

the following result:

Proposition 3.9. Let us suppose that (C1), (C2) and the conditions (1), (2)
and (3) hold. Then, (Π, π) is a homomorphism of Lie algebroids.

Proof : Let v =
∑

i fiΣ(v′i) + z and w =
∑

j gjΣ(w′
j) + y be sections of A

with fi, gj ∈ C∞(M), v′i, w
′
j ∈ Γ(Â) and z, y ∈ Γ(Ker Π). Thus,

[v, w]A =
∑

i,j∈I

[fiΣ(v′i), gjΣ(w′
j)]A+

∑

i

[fiΣ(v′i), y]A+
∑

j

[z, gjΣ(w′
j)]A+[z, y]A.

The Leibniz property for the Lie bracket [·, ·]A implies that

[v, w]A =
∑

i,j

figj[Σ(v′i),Σ(w′
j)]A + ρ(

∑

i

fiΣ(v′i))gj Σ(w′
j)

−ρ(
∑

j

gjΣ(w′
j))fi Σ(v′i) +

∑

i

fi[Σ(v′i), y]A −
∑

i

ρ(y)fi Σ(v′i)

+
∑

j

gj[z,Σ(w′
j)]A +

∑

j

ρ(z)gj Σ(w′
j) + [z, y]A

and one can obtain, from the conditions (2) and (3),

Π ◦ [v, w]A =
∑

i,j

figj Π ◦ [Σ(v′i),Σ(w′
j)]A +

∑

j

ρ(v)gj (Π ◦ Σ(w′
j))

−
∑

i

ρ(w)fi (Π ◦ Σ(v′i))

=
∑

i,j

figj ([v′i, w
′
j]Â ◦ π) +

∑

j

ρ(v)gj (w′
j ◦ π) −

∑

i

ρ(w)fi (v
′
i ◦ π).

Now, we have to check that Tπ◦ρ = ρ̂◦Π. As a consequence of condition (1),
we only need to prove the equality for sections of A of the form v = Σ(v′)
for v′ ∈ Γ(A). Because of the reduction condition (C1) we have

ρ̂ ◦ Π ◦ Σ(v′)(x) = ρ̂ ◦ Πx ◦ S
π(x)
x (v′(π(x)) = ρ̂(v′)(π(x)) ,

and ρ̂(v′)(π(x)) := Tπ◦ρ◦Σ(v′)(x) for all x ∈M ; therefore, ρ̂◦Π◦Σ(v′)(x) =
Tπ ◦ ρ ◦ Σ(v′)(x).
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Assuming that the conditions (C1) and (C2) hold, it is easy to prove that
condition (C3) is satisfied if and only if Π is a homomorphism of Lie alge-
broids. Therefore, condition (C3) is equivalent to the conditions (1), (2) and
(3).

Next, we prove that the anchor and the bracket do not depend on the
choice of the map Π̃.

Proposition 3.10. The reduced Lie algebroid structure (ρ̂, [·, ·]Â) in Â is
independent on the choice of the morphism in the reduction conditions of the
Lie algebroid (A, ρ, [·, ·]A).

Proof : Let Π be a different morphism satisfying the reduction conditions. In
order to prove the uniqueness of the reduced anchor, we have to show that

Tπ ◦ ρ ◦ S̃(v′) = Tπ ◦ ρ ◦ S(v′) (6)

for all v′ ∈ Â, where S̃ and S are sections of Π defined, respectively, by Π̃
and Π. Note that S̃(v′)−S(v′) ∈ Ker Π, and since Ker Π ⊂ Ker (Tπ ◦ ρ), (6)
holds. As far as the bracket is concerned we have to show that

Π ◦ [Σ(v′),Σ(w′)]A = Π ◦ [Σ(v′),Σ(w′)]A

for all v′, w′ ∈ Γ(Â). Since Σ(v′) − Σ(v′) ∈ Γ(Ker Π) for all v′ ∈ Γ(Â), there
exists z ∈ Γ(Ker Π) such that Σ(v′) = Σ(v′) + z, and then

Π ◦ [Σ(v′),Σ(w′)]A = Π ◦ [Σ(v′) + z1,Σ(w′) + z2]A

= Π ◦ ([Σ(v′),Σ(w′)]A + [Σ(v′), z2]A)

+Π ◦ ([z1,Σ(w′)]A + [z1, z2]A).

Finally, since [ImΣ,Γ(Ker Π)]A ⊂ Γ(Ker Π) and Γ(Ker Π) is a Lie subalgebra
of Γ(A), we have

Π ◦ [Σ(v′),Σ(w′)]A = Π ◦ [Σ(v′),Σ(w′)]A .

3.3. The reduction theorem. We can summarize almost all the informa-
tion about Lie algebroid reduction in a unique result.

Theorem 3.11. Let (A, ρ, [·, ·]A) be a Lie algebroid over M , dρ its exterior

derivative and (Π, π) : (A, p,M) → (Â, p̂, M̂) a surjective submersion of
vector bundles, satisfying the following conditions:
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(C1) There exists a surjective submersion of vector bundles (Π̃, π) :

(A∗, τ,M) → ((Â)∗, τ̂ , M̂) for which the set

S =
{
Sx′

x = (Π̃x)
∗ : Âx′ → Ax | π(x) = x′, x ∈M

}

is a section of Π;
(C2) If Σ : Γ(Â) → Γ(A) is the map between sections induced by Π̃, then,

ImΣ is a Lie subalgebra of Γ(A).

Then, the quotient vector bundle (Â, p̂, M̂) is a Lie algebroid whose exterior

derivative dρ̂ satisfies the condition dρ̂ ◦ Π̃ = Π̃ ◦ dρ and whose structure
(ρ̂, [·, ·]Â) is given by:

(i) ρ̂ = Tπ ◦ ρ ◦ S;
(ii) [·, ·]Â ◦ π = Π ◦ [Σ(·),Σ(·)]A.

Moreover, the triple (Â, p̂, M̂) is a reduced Lie algebroid of A when one of
the following equivalent conditions holds:

(a) dρ ◦ Π∗ ◦ Π̃ = Π∗ ◦ Π̃ ◦ dρ;
(b) Π is a homomorphism of Lie algebroids;
(c) the following conditions are satisfied:

(1) ρ(Ker Π) ⊂ KerTπ;
(2) [ImΣ,Γ(Ker Π)]A ⊂ Γ(Ker Π);
(3) Γ(Ker Π) is a Lie subalgebra of (Γ(A), [·, ·]A).

3.4. Some examples of reduction.

3.4.1. Poisson manifold. Let (M,Λ) be a Poisson manifold, (T ∗M,Λ♯,

[·, ·]T ∗M) the associated Lie algebroid and (Π, π) : (T ∗M, τ,M) →
(
Â, τ̂ , M̂

)

a surjective submersion, that defines the quotient vector bundle Â =
T ∗M/Ker Π. Suppose that A = T ∗M satisfies the conditions of the reduction

theorem. Then, we can define a Lie algebroid structure in Â by means of:

(i) ρ̂ = Tπ ◦ Λ♯ ◦ S;
(ii) [·, ·]Â ◦ π = Π ◦ [Σ(·),Σ(·)]T ∗M .

Proposition 3.12. Let us suppose that the reduction conditions hold for
Π̃ = Tπ. Let f, g be smooth functions in M such that their differentials df
and dg vanish in CM = KerTπ. Then, d{f, g}M vanishes in CM .



REDUCTION OF LIE ALGEBROID STRUCTURES 15

Proof : Let us denote by C0
M the annihilator of CM . If df ∈ C0

M then there

exists a smooth function f ′ in M̂ , such that, f = f ′ ◦ π. Thus, df(x) =

(π∗)π(x)(df
′(π(x))) = (Π̃x)

∗(df ′(π(x))) = Σ(df ′)(x). In the same way, given

dg ∈ C0
M there is a smooth function g′ in M̂ , such that, dg = Σ(dg′). Using

the condition (C2), we show that

χ(d{f, g}M) = χ([Σ(df ′),Σ(dg′)]T ∗M)

= χ(Σ([df ′, dg′]
T ∗M̂

))

= χ̂([df ′, dg′]
T ∗M̂

) ◦ Π̃.

where χ : Γ(T ∗M) → L(TM) and χ̂ : Γ(T ∗M̂) → L(TM̂) with L(TM) and

L(TM̂) being the spaces of linear functions on TM and TM̂ , respectively.

As the morphism Π̃ = Tπ is zero in CM , then d{f, g}M ∈ C0
M .

Thus, applying the reduction of Marsden-Ratiu ([20]) to the Poisson ma-
nifold M , where the completely integrable distribution is given by CM =

KerTπ, we can define in M̂ (the manifold of leaves) a Poisson bracket. A

Poisson structure in M̂ defines a Lie algebroid structure in T ∗M̂ that coin-
cides with the structure defined by the conditions (i) e (ii).

3.4.2.Group action. Let φ : M×G→M be a right-action of the Lie groupG
on the manifoldM and consider the Lie algebroid structure in the trivial fiber
bundle M×g →M associated to such action φ, where g is the Lie algebra of
G, as given in the example 2.2. Let (Π, π) : (M × g, τ,M) → (N × g, τ̂ , N)
be a surjective submersion of vector bundles defined by Π = (π, idg) and

(Π̃, π) : (M × g∗, τ,M) → (N × g∗, τ̂ , N) a surjective submersion of vector

bundles given by Π̃ = (π, idg∗). Suppose also that ImΣ is a subalgebra of the
space of sections of M × g. Since the reduction conditions (C1), (C2) and
(C3) hold, N × g is endowed with a Lie algebroid structure whose anchor
and Lie bracket are given by:

(i) ρ̂ = Tπ ◦ ρ ◦ S;
(ii) [·, ·]N×g ◦ π = Π ◦ [Σ(·),Σ(·)]M×g.

Note that, S
π(x)
x (X ′

π(x)) = S
π(x)
x (π(x), X ′(π(x))) = (x,X ′(π(x))) for all x ∈

M . Thus, the anchor is given by ρ̂(X ′)(π(x)) = Txπ(XM(x)), with X =
X ′(π(x)) ∈ g, and the bracket is given by

[X ′, Y ′]N×g(x
′) =

(
x′, [X ′(x′), Y ′(x′)]g + ρ̂(X ′)Y ′(x′) − ρ̂(Y ′)X ′(x′)

)
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for all x′ ∈ N and all X ′, Y ′ ∈ Γ(N × g). In the above conditions, only

the homomorphism Π̃ = (π, idg∗) satisfies the reduction conditions of the Lie
algebroid M × g →M .

3.4.3. Reduction of degenerated Lagrangian systems. Let us consider a La-
grangian L ∈ C∞(TQ) satisfying the following conditions (see [2]):

(A1) the Cartan 2-form ωL is presymplectic, i.e. it is a constant rank closed
form;

(A2) the Lagrangian L admits a global dynamics, i.e. there exists a glo-
bally defined vector field X on TQ satisfying the dynamical equation
i(X)ωL = dEL;

(A3) the foliation defined by ωL is regular, i.e. the quotient space has
a differentiable manifold structure and the projection Π : TQ →
TQ/KerωL is a surjective submersion.

The distribution D of Q given by D = {X ∈ X(Q) | Xc ∈ KerωL} is inte-
grable because it is involutive and has constant rank (theorem of Frobenius).
Let us suppose also that

(A4) the distribution D defines a regular foliation of Q, i.e. the space of

the leaves Q̂ = Q/D admits a structure of manifold whose projection

π : Q→ Q̂ is a surjective submersion.

Under these conditions, we can prove that there exists a unique vector bundle

structure in the quotient manifold T̂Q = TQ/KerωL such that the following
diagram commute:

TQ
Π

//

p

��

T̂Q

p̂
��

Q
π

// Q̂

The projection p̂ : T̂Q → Q̂ is given by p̂([X]) = π(p(X)) for each X ∈ TQ
such that Π(X) = [X], where p : TQ→ Q is the canonical projection of the

tangent bundle TQ onto Q. The set T̂Qq̂ = p̂−1(q̂) is endowed with vector

bundle structure for all q̂ ∈ Q̂.
We know that the tangent bundle TQ is a Lie algebroid over Q whose

anchor is given by the identity on TQ and the bracket on sections [·, ·] is the
usual bracket of vector fields on Q. If the surjective submersion of vector

bundles (Π, π) : (TQ, p,Q) → (T̂Q, p̂, Q̂) satisfies the Lie algebroid reduction
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conditions then the bundle T̂Q is endowed with a Lie algebroid structure
given by:

(i) ρ̂ = Tπ ◦ S;
(ii) [·, ·]

T̂Q
◦ π = Π ◦ [Σ(·),Σ(·)].

For example, when Π = Tπ we have that the tangent bundle T̂Q = TQ̂
is endowed with the usual Lie algebroid structure and in this case it is a
reduced Lie algebroid of TQ.

4. Reduction of Lie co-algebroids

It is possible to show that the reduction of a Lie algebroid implies the
reduction of the corresponding Lie co-algebroid according to Marsden-Ratiu
reduction procedure [20]. However, as it will be shown in this section, the
converse is not true in general.

Let (A, ρ, [·, ·]A) be a Lie algebroid over M and (A∗,ΛA∗) the associated Lie
co-algebroid. Let us consider a subbundle C of TA∗ satisfying the following
conditions:

1. C is a completely integrable distribution of A∗, such that, the set Â∗

of the leaves of the foliation defined in A∗ by C is a differentiable ma-

nifold, and the canonical projection (Π̃, π) : (A∗, τ,M) → (Â∗, τ̂ , M̂)
is a surjective submersion of vector bundles;

2. for every pair of affine functions, F,G ∈ C∞(A∗) whose differentials
belong to the annihilator C0 of C, the differential of the bracket of
these functions d{F,G}A∗ still belongs to C0.

According to Marsden-Ratiu reduction theory developed in [20], the bundle

(Â∗, τ̂ , M̂) is endowed with a Poisson structure, {·, ·}∧, given by:
{
F̂ ◦ Π̃, Ĝ ◦ Π̃

}
A∗

=
{
F̂ , Ĝ

}
∧
◦ Π̃, (7)

for all F̂ , Ĝ ∈ C∞(Â∗). The pair (A∗, C) is called reducible Poisson manifold.
Note that, in the given hypotheses, the condition Λ♯(C0) ⊂ TA∗ +C ⊂ T ∗A
holds and therefore the reduced bracket {·, ·}∧ does exist.

Let L(Â∗) and L(A∗) denote the spaces of linear functions on Â∗ and A∗,
respectively. Given a linear function F = χ(v) on A∗ with v ∈ Γ(A) such that

dF ∈ C0, there exists a linear function F̂ = χ̂(v′) defined on Â∗, with v′ ∈

Γ((Â∗)∗), such that F = F̂ ◦ Π̃ = χ̂(v′)◦ Π̃ = χ(Σ(v′)), where χ̂ : Γ((Â∗)∗) →
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L(Â∗), χ : Γ(A) → L(A∗) and Σ : Γ((Â∗)∗) → Γ(A) is the map between

sections induced by the homomorphism Π̃, i.e. Σ(v′)(x) = (Π̃x)
∗(v′π(x)) for

all x ∈ M and v′ ∈ Γ((Â∗)∗). Then, χ(v) = χ(Σ(v′)), that is, v = Σ(v′).
When F = f ◦ τ is a basic function on A∗ whose differential is zero on C,

there exists a basic function F̂ = f ′ ◦ τ̂ on Â∗ such that, F = F̂ ◦ Π. Then,
f ◦ τ = f ′ ◦ τ̂ ◦ Π = f ′ ◦ π ◦ τ , that is, f = f ′ ◦ π.

We will show that the Lie algebroid reduction (LAR) implies the Poisson
reduction (PR) of its associated Lie co-algebroid, in the sense of Marsden-
Ratiu.

(A, ρ, [·, ·]A)
LAR
−→ (Â, ρ̂, [·, ·]Â) =⇒ (A∗,ΛA∗)

PR
−→ ((Â)∗,ΛÂ∗) ,

But, the Poisson reduction of the Lie co-algebroid does not imply, in general,
the Lie algebroid reduction, unless the reduction conditions (C1) and (C3)
are satisfied.

(A, ρ, [·, ·]A)
LAR
−→ (Â, ρ̂, [·, ·]Â) ⇐=/ (A∗,ΛA∗)

PR
−→ ((Â)∗,ΛÂ∗)

Lemma 4.1. Let (A, ρ, [·, ·]A) be a reducible Lie algebroid whose reduced

Lie algebroid is (Â, ρ̂, [·, ·]Â), according to theorem 3.11. Then, the Lie co-

algebroid (Â)∗ is endowed with a linear Poisson bracket {·, ·}∧ that satisfies
condition (7).

Proof : Since the Lie algebroid A is reducible, the bundle Â is endowed with
a Lie algebroid structure according to the reduction theorem 3.11. Thus, the
dual bundle of Â is endowed with a Poisson structure given by:

{f ◦ τ̂ , g ◦ τ̂}∧ = 0, {χ̂(v′), f ◦ τ̂}∧ = ρ̂(v′)f ◦ τ̂ , {χ̂(v′), χ̂(w′)}∧ = χ([v′, w′]Â),

where f and g are smooth functions on M̂ and v′ and w′ are sections of Â.
But τ̂ ◦ Π̃ = π ◦ τ and ImΣ is a subalgebra of Γ(A), and so:

{χ̂(v′), f ◦ τ̂}∧ ◦ Π̃ = ρ̂(v′)f ◦ π ◦ τ, {χ̂(v′), χ̂(w′)}∧ ◦ Π̃ = χ([Σ(v′),Σ(w′)]A).

Since ρ̂ := π∗ ◦ ρ ◦ Σ, we have

{χ̂(v′), f ◦ τ̂}∧ ◦ Π̃ = ρ(Σ(v′))(f ◦ π) ◦ τ =
{
χ̂(v′) ◦ Π̃, f ◦ π ◦ τ

}
A∗

.

Once again by τ̂ ◦ Π̃ = π ◦ τ , we obtain

{χ̂(v′), f ◦ τ̂}∧ ◦ Π̃ =
{
χ̂(v′) ◦ Π̃, f ◦ τ̂ ◦ Π̃

}
A∗

.
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We also have

{χ̂(v′), χ̂(w′)}∧ ◦ Π̃ = χ([Σ(v′),Σ(w′)]A) = {χ(Σ(v′)), χ(Σ(w′))}A∗

=
{
χ̂(v′) ◦ Π̃, χ̂(w′) ◦ Π̃

}
A∗

.

As the bracket of basic functions is zero, the condition (7) is trivially sa-
tisfied for this type of functions. Therefore, the condition (7) holds for all

affine functions F̂ on (Â)∗ and extensions F̂ ◦ Π̃ whose differentials belong
to the annihilator of C. Since the set of differentials of affine functions on
(Â)∗ generates the cotangent space in each point of (Â)∗, we conclude that

the condition holds for all functions F̂ of (Â)∗.

Theorem 4.2. In the conditions of the previous lemma, let C = KerT Π̃.
Then (A∗, C) is a reducible Poisson manifold whose reduced Poisson manifold

is the Lie co-algebroid of Â, ((Â)∗, {·, ·}∧).

Proof : We have to show that C is a distribution in the conditions of Poisson
reduction, in the sense of Marsden-Ratiu. The first condition is obvious
because C is the kernel of a surjective submersion. We just need to prove
condition 2. Given two functions F,G ∈ C∞(A∗) with dF, dG ∈ C0, there

exist F̂ , Ĝ ∈ C∞(Â∗), such that, F = F̂ ◦ Π̃ and G = Ĝ ◦ Π̃. By the above
lemma, we have

{F,G}A∗ =
{
F̂ , Ĝ

}
∧
◦ Π̃,

then d {F,G}A∗ ∈ C0. Therefore, (A∗, C) is a reducible Poisson manifold.

Proposition 4.3. Let (A, ρ, [·, ·]A) be a Lie algebroid over M and suppose
that C is a subbundle of TA∗ satisfying the Marsden-Ratiu reduction condi-
tions for the Poisson structure of the Lie co-algebroid A∗. Then, the space
ImΣ is a Lie subalgebra of Γ(A).

Proof : We have to show that [Σ(v′),Σ(w′)]A ⊂ ImΣ for all sections v′, w′ ∈

Γ(Â). Let F = χ̂(v′) ◦ Π̃ and G = χ̂(w′) ◦ Π̃ be two linear functions in A∗

with differentials vanishing in C. Then,

{F,G}A∗ = {χ(Σ(v′)), χ(Σ(w′))}A∗ = χ([Σ(v′),Σ(w′)]A),

with v′, w′ ∈ Γ(Â). On the other hand, from condition 7, we have

{F,G}A∗ = {χ̂(v′), χ̂(v′)}∧ ◦ Π̃.
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Since the reduced bracket is linear, there exists a section u′ of Â = (Â∗)∗,
such that, {F,G}A∗ = χ(Σ(u′)). Therefore,

χ([Σ(v′),Σ(w′)]A) = χ(Σ(u′)).

Proposition 4.4. In the conditions of the previous proposition, (Â, p̂, M̂) is
endowed with a Lie algebroid structure whose anchor is given by ρ̂ = Tπ◦ρ◦S
and the bracket on the sections satisfies Σ([v′, w′]Â) = [Σ(v′),Σ(w′)]A for all

v′, w′ ∈ Γ(Â).

Proof : The reduced bracket is linear, then the dual bundle of Â∗ is endowed
with a Lie algebroid structure. The bracket of sections of Â is defined by the
condition Σ([v′, w′]Â) = [Σ(v′),Σ(w′)]A, for all v′, w′ ∈ Γ(Â). Given a linear

function F = χ(v′)◦ Π̃ and a basic function G = g ◦ τ̂ ◦ Π̃ on A∗, then by (7),

{F,G}A∗ = {χ(v′), g ◦ τ̂}∧ ◦ Π̃. (8)

By definition of {·, ·}A∗, we have

{F,G}A∗ ={χ(Σ(v′)), g ◦ π ◦ τ}A∗ =[Tπ◦ρ◦Σ(v′)]g◦τ◦π=[Tπ◦ρ◦Σ(v′)]g◦τ̂◦Π̃.

Since Π̃ is a surjective submersion, by (8) we obtain

{χ(v′), g ◦ τ̂}∧ = [Tπ ◦ ρ ◦ Σ(v′)]g ◦ τ̂ .

By the definition Σ(v′)(x) = S
π(x)
x (v′(π(x)) for all x ∈ M , we conclude

ρ̂ = Tπ ◦ ρ ◦ S.

When the homomorphism (Π̃, π) satisfies the reduction conditions (C1)

and (C3) with respect to (Π, π) : (A, p,M) → (Â, p̂, M̂), the Lie algebroid A
is reducible.

Let us present two more examples of reduction:

Example 4.1. Let G be a finite dimensional Lie group with Lie algebra g and
A = TG the tangent bundle of G. The canonical lifting of the action of G on
itself by left translation defines a regular left action of G on A∗ = T ∗G whose
space of orbits is g∗. The canonical projection Π̃ : T ∗G → g∗ = T ∗G/G is a
morphism of vector bundles over π : G→ G/G = {·}, where the distribution

KerT Π̃ is the tangent space to the orbits of T ∗G. Recall that we can identify
T ∗G with G × g∗ and, with this identification, Π̃(g, α) = α for all g ∈ G

and α ∈ g∗; Π̃ is clearly a homomorphism of vector bundles. In theses
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conditions, g∗ is endowed with a linear Poisson structure such that Π̃ is a
Poisson morphism [20].

Let (Π, π) : (TG, p,G) → (g, p̂, {·}) be the canonical projection defined by
the tangent representation of the action of G on itself. Since TG ≡ G×g we
have Π(g,X) = X for all X ∈ g e g ∈ G. The homomorphism (Π̃, π) satisfies
the reduction conditions with respect to (Π, π) and ImΣ is a Lie subalgebra
of Γ(TG). Therefore, we can conclude that g is a reduced Lie algebroid of
TG, when the tangent bundle TG is endowed with the usual Lie algebroid
structure (idTG, [·, ·]) and g with the usual Lie algebroid structure in a finite
dimensional Lie algebra.

Example 4.2 (Toda). A finite non periodic Toda system is a system of n
particles in a line, with a exponential interaction between neighbor particles
described by the Hamiltonian

H(q1, ...qn, p1, ..., pn) =
1

2

n∑

k=1

p2
k +

n−1∑

k=1

e(qk−1−qk),

where qk represent the local coordinates of the configuration space Rn and pk

the associated moments. The phase space T ∗Rn is endowed with the canonical
symplectic structure σ =

∑n
i=1 dqi ∧ dpi , i.e. {qi, pi} = 1 and the other

fundamental brackets are null. Let us now consider the manifold R2n−1 with
coordinates denoted a1, ..., an−1, b1, ..., bn. This manifold can be endowed with
a Poisson bracket defined by:

{ai, bi} = −
1

4
ai , {ai, bi+1} =

1

4
ai ,

the other brackets are zero. The Flaschka transformation [9], defined by

Π̃ : T ∗Rn −→ R2n−1

(q1, ..., qn, p1, ..., pn) 7−→ (a1, ..., an−1, b1, ..., bn)

with bi = −1
2 pi and ai = 1

2 e
(qk−qk+1)

2 , is a symplectic realization of R2n−1 with

the above mentioned Poisson structure, i.e. Π̃ : T ∗Rn → R2n−1 is a Poisson
map. Therefore, we can look at this Poisson manifold as a reduced manifold
of T ∗Rn. With the identification R2n−1 = Rn−1 × Rn, we observe that the
Flaschka transformation is a homomorphism of vector bundles over the map
π : (q1, ..., qn) ∈ Rn → (a1, ..., an−1) ∈ Rn−1, where T ∗Rn is the cotangent
bundle to the manifold Rn and Rn−1×Rn is a trivial bundle over Rn−1. Once
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the Poisson structures in the vector bundles are linear, this means that the
dual bundles TRn and Rn−1 ×Rn are endowed with Lie algebroid structures.
Thus, we can ask if the usual Lie algebroid structure in TRn is reduced into
the Lie algebroid structure in Rn−1 × Rn. Actually this is the case. The
projection of TRn ≡ Rn×Rn on Rn−1×Rn is given by the homomorphism of
vector bundles Π = (π,−2 idRn) over π. This homomorphism together with
the Flaschka transformation satisfy the reduction conditions of Lie algebroids.
Note that Ker Πx = {0} for all x ∈ Rn and ImΣ is a Lie subalgebra of X(Rn)
because the Flaschka transformation is a Poisson morphism.

5. Reduction of Lie algebroids with symmetry

In this section, we recall the definition of representation of Lie groups in
vector bundles following Cariñena and al. [3] and we define representation
of Lie groups in Lie algebroids in agreement with [25]. Next we prove, by
showing that the Lie algebroid reduction conditions hold, that if a represen-
tation of a Lie group in a Lie algebroid defining a free and proper action on
the Lie algebroid is given, then such Lie algebroid can be reduced.

5.1. Lie group representation on Lie algebroids. Let G be a Lie group
G with neutral element e and Lie algebra g.

Definition 5.1 ([3]). Given a vector bundle (A, π,M), a map Φ : G →
Aut(A) is said to be a representation of the Lie group G in the vector bundle
A, if it satisfies the following properties:

(i) Φ(g g′) = Φ(g)Φ(g′) for all g, g′ ∈ G;
(ii) Φ̄ : G × A → A, defined by Φ̄(g, v) = Φ(g)v, is smooth for all g ∈ G

and v ∈ A;

Such vector bundle representation of G in A gives rise to a linear represen-
tation R : G→ Aut(Γ(A)) of G in the space Γ(A) of sections of A:

[R(g)(v)](g x) = Φ(g)x vx,

for each v ∈ Γ(A), where φg : x 7→ φ(g, x) = g x for each g ∈ G and x ∈M .

The representations of Lie groups in vector bundles have been playing
a relevant rôle in quantum mechanics. Actually, a particularly important
example is that of induced representations of groups [26] which are used to
obtain the classification of elementary systems [30], and the later generaliza-
tion of locally operating representations of Lie transformation groups [11, 12].
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These are linear or multiplier representations of a connected Lie group acting
transitively (on the left) on a manifold M , and the representation space is
assumed to be the linear space of sections of a vector bundle over M , the
relevant equivalence concept being local equivalence.

As we can see, the representation Φ defines an action Φ̄ of G on the vector
bundle A, with base map φ, and induces a representation of the Lie group
G in the space of sections of A. We define the contragredient representation
Φc (or co-action for short) of Φ as follows:

〈Φc(g)(α), v〉 :=
〈
α,Φ(g−1)(v)

〉
,

for each α ∈ A∗ and v ∈ A. This co-action defines a representation of G on
the vector bundle A∗ that determines a linear representation Rc of G in the
space of sections of A∗. This linear representation is the linear contragredient
representation of R.

In what follows (A, ρ, [·, ·]A) is a Lie algebroid over M .

Definition 5.2. A representation Φ : G → Aut(A) of the Lie group G on
the vector bundle A is said to be a Lie algebroid representation, if for each
g ∈ G the associated linear representation R(g) is an automorphism of Lie
algebroids, i.e.

(i) φg ∗ ◦ ρ = ρ ◦ R(g);
(ii) R(g)([v, w]A) = [R(g)v,R(g)w]A, for all v, w ∈ Γ(A).

In the above definition, φg ∗ : X(M) → X(M) is the morphism given by
(Tφg, φg) : (TM, τM ,M) → (TM, τM ,M) on the spaces of sections of the
tangent bundle TM , i.e. φg ∗(X) = Tφg ◦X ◦ φg−1 for all X ∈ X(M). Note
that the first condition of the definition is equivalent to

ρ = φg−1 ∗ ◦ ρ ◦ R(g), (9)

where φg−1 is the inverse map of φg.

Example 5.1. Let g be a Lie algebra of finite dimension endowed with its
usual Lie algebroid structure. The adjoint representation of the Lie group G
on g, defines a Lie algebroid representation Ad : G→ GL(g; R). Note that in
this situation the group representation on the vector bundle g coincide with
the linear representation of the group on the space of sections.

We next prove, using the definition of Lie algebroid representation, that
the contragredient representation of Φ defines, for each g ∈ G, a Poisson
morphism and, therefore, the associated action is a Poisson action:
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Proposition 5.3. Given a representation Φ : G→ Aut(A) of the Lie group
G on the Lie algebroid A, the contragredient representation Ψ = Φc : G →
Aut(A∗) defines a Poisson action of the Lie group G on the Lie co-algebroid
(A∗,ΛA∗).

Proof : We have to show that Ψ(g) : A∗ → A∗ is a Poisson morphism for all
g ∈ G. The affine functions generate the cotangent space to A∗, and then it
is sufficient to show that

{F ◦ Ψ(g), G ◦ Ψ(g)}A∗ = {F,G}A∗ ◦ Ψ(g)

for all affine functions F and G on A∗. Since the Poisson bracket on the Lie
co-algebroid A∗ is zero on the basic functions, we only need to show the above
equality when both functions are linear functions or when one is linear and
the other is basic. Let F = χ(v) and G = χ(w) be two linear functions on A∗

associated, respectively, to the sections v and w of A. Taking into account
that F ◦ Ψ(g) = χ(v) ◦Ψ(g) = χ(R(g−1)(v)), and using the definition of the
bracket {·, ·}A∗, we have

{F ◦ Ψ(g), G ◦ Ψ(g)}A∗ =
{
χ(R(g−1)(v)), χ(R(g−1)(w))

}
A∗

= χ([R(g−1)(v),R(g−1)(w)]A).

But, for each g ∈ G, the linear representation R is a homomorphism of Lie
algebras; then,

{F ◦ Ψ(g), G ◦ Ψ(g)}A∗ = χ(R(g−1)([v, w]A)) = χ([v, w]A) ◦ Ψ(g)

= {χ(v), χ(w)}A∗ ◦ Ψ(g) = {F,G}A∗ ◦ Ψ(g).

Now, let F = χ(v) be the linear function on A∗ associated to the section v
of A and let G = h ◦ τ be a basic function on A∗. Then,

{F ◦ Ψ(g), G ◦ Ψ(g)}A∗ =
{
χ(R(g−1)(v)), h ◦ τ ◦ Ψ(g)

}
A∗

=
{
χ(R(g−1)(v)), h ◦ φg ◦ τ

}
A∗

= ρ(R(g−1)(v))(h ◦ φg) ◦ τ

= ((φg)∗ ◦ ρ ◦ R(g−1)(v))h ◦ φg ◦ τ

(9)
= ρ(v)h ◦ φg ◦ τ = ρ(v)h ◦ τ ◦ Ψ(g)

= {χ(v), h ◦ τ}A∗ ◦ Ψ(g) = {F,G}A∗ ◦ Ψ(g).
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On the other hand, given a representation Ψ of G on the Lie co-algebroid
A∗ whose associated action Ψ̄ is Poisson, one can easily prove that the con-
tragredient representation of G in A is a Lie algebroid representation.

Example 5.2. Let us consider the cotangent bundle T ∗M endowed with its
usual symplectic structure and suppose that φ is a left action of the Lie group
G on M . The canonical lifting of this Lie group action is an action on T ∗M ,

Ψ : G× T ∗M → T ∗M
(g, α) 7→ Ψ(g, α) = tφg(α)

where tφg : T ∗M → T ∗M is the canonical lifting of the diffeomorphism φg :
M →M ,

〈
tφg(α), v

〉
= 〈α, Tφg−1(v)〉 .

Note that tφg = (Tφg−1)∗ =: (Tφ)c(g). The contragredient representation of
the representation defined by the action Ψ is a map Tφ : G → Aut(TM)
given by (Tφ)(g) = Tφg for all g ∈ G. It is a representation of G on the
vector bundle TM . The linear representation associated to Tφ is given by
R(g) = φg ∗.

Let us suppose that TM is endowed with its usual Lie algebroid structure.
Since the action Ψ is symplectic, the contragredient representation Tφ defines
a Lie algebroid representation. Note that the first condition of the definition
is satisfied because the anchor is the identity map and R(g) = φg ∗, and the
second condition also holds because the map Ψg−1 is a Poisson morphism of
the Lie co-algebroid T ∗M for all g ∈ G.

5.2. Reduction. Let us consider a Lie algebroid (A, ρ, [·, ·]A) over M and a
Lie algebroid representation Φ of the Lie group G on A. Let Ψ = Φc be the
contragredient representation of G on A∗. Suppose, additionally, that Φ and
Ψ define free and proper actions of G on A and A∗, respectively. Then, the

canonical projection Π̃ : A∗ → Â∗ = A∗/G is a surjective submersion, the

projection Π̃ is given by

Π̃(α) = [α]G = {g.α := Ψ(g)α | g ∈ G} .

Since A∗ is a vector bundle, there exists a unique vector bundle structure in

Â∗, τ̂ : Â∗ → M̂ such that Π̃ is a submersion of vector bundles over the basis
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π : M → M̂ , where π is the canonical projection of M in M̂ = M/G, [19].

A∗

τ
��

Π̃
//
Â∗

τ̂
��

M
π

//
M̂

The projection τ̂ is given by τ̂([α]G) = π(τ(α)) for each α ∈ A∗, that is, given

an element αx ∈ Ax, τ̂([αx]G) := π(τ(αx)) = π(x) = x̂. The set Â∗
x̂ = τ̂−1(x̂)

is a vector space for all x̂ ∈ M̂ . Moreover, Π̃x : A∗
x → Â∗

x̂ is an isomorphism
of vector spaces for each x ∈ M : if [αx]G = [βx]G, there exists g ∈ G such
that α = g β. Then, x = g x, which implies g = e (because ψ : G×M →M ,
the base map to the action defined by Ψ, is a free action); therefore, αx = βx.

In a similar way, using the canonical projection of A over A/G, Π : A →

Â = A/G, we build a homomorphism of fiber bundles over π : M → M̂ =
M/G.

A

p

��

Π
// Â

p̂
��

M
π

//
M̂

We will show that the homomorphism (Π̃, π) verifies the Lie algebroid

reduction conditions. First of all, remember that the set of sections of Â =
A/G is isomorphic to the set of G-invariant sections of A: if v ∈ ΓG(A) then
v′ = [v]G verifies Π◦v = v′◦π; therefore, v′ is a section of A/G. On the other
hand, if v′ ∈ Γ(A/G) we have that v(x) = (Πx)

−1(v′π(x)) is a G-invariant

section of A [19].

Proposition 5.4. In the above conditions, the reduction condition (C1)
holds.

Proof : Given a section v′ of A/G, there exists a unique section v ∈ ΓG(A)
such that Πx(vx) = v′π(x). Thus, for α ∈ Γ(A) and x ∈M , we have

〈
αx, (Π̃x)

∗(v′π(x))
〉

:=
〈
Π̃x(αx), v

′
π(x)

〉
=

〈
[αx]G, v

′
π(x)

〉
=

〈
α′

π(x), v
′
π(x)

〉
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with α′ ∈ Γ(A∗/G). The above function is G-invariant and linear, therefore
there exists v̄ ∈ ΓG(A) such that

〈αx, v̄x〉 =
〈
α′

π(x), v
′
π(x)

〉
=

〈
αx, (Π̃x)

∗(v′π(x))
〉
,

and so (Π̃x)
∗(v′π(x)) = v̄x. For all αx = (Πx)

∗(α′
π(x)), we have

〈
α′

π(x), v
′
π(x)

〉
= 〈αx, v̄x〉 =

〈
α′

π(x),Πx(v̄x)
〉
,

then v′π(x) = Πx(v̄x). Therefore, (Π̃x)
∗(v′π(x)) = v̄x = vx. In this way,

Πx ◦ S
π(x)
x (v′π(x)) = Πx ◦ (Π̃x)

∗(v′π(x)) = Πx(vx) = [vx]G = v′π(x)

for all x ∈M .

Proposition 5.5. In the above conditions, the reduction condition (C2)
holds.

Proof : We will show that ImΣ is a subalgebra of the space of sections of A.
In fact, the image by Σ of a section of A/G is a G-invariant section of A,
because Π ◦ Σ(v′) = v′ ◦ π for all v′ ∈ Γ(A/G), so

v(x) = (Πx)
−1(v′π(x)) = Σ(v′)(x).

Therefore, each G-invariant section is of the form Σ(v′), with v′ ∈ Γ(A/G).
Taking into account that the bracket ofG-invariant sections is stillG-invariant,
for all v′, w′ ∈ Γ(A/G), there exists a z′ ∈ Γ(A/G) such that Π◦[Σ(v′),Σ(w′)]
= z′ ◦ π = Π ◦ Σ(z′), therefore, [Σ(v′),Σ(w′)] = Σ(z′).

Each section v of A is related with a G-invariant section vG of A and so
each section of A is of the form v = R(g)(vG) = R(g)(Σ(v′)), with g ∈ G
and v′ ∈ Γ(A/G).

Proposition 5.6. Under the above conditions, Π is a homomorphism of Lie
algebroids and (Â, ρ̂, [·, ·]Â) is a reduced Lie algebroid of A.

Proof : Let v be a section of Ker Π. Then,

Π ◦ v = s′0 ◦ π = Π ◦ Σ(s′0),

where s′0 is the zero section of Â. Thus, there exists g ∈ G such that v =
R(g)(Σ(s′0)). But,

Σ(s′0)(x) = Sπ(x)
x (s′0(π(x))) = 0
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for all x ∈M , therefore, Σ(s′0) is the zero section of A, s0. Since R(g) is an
isomorphism of the spaces of sections, we have R(g)(s0) = s0. Thus, v = s0,
that is, Γ(Ker Π) = {s0}. From proposition 3.9, Π is a homomorphism of Lie
algebroids.

Once the reduction conditions (C1), (C2) and (C3) hold, the quotient bun-

dle Â = A/G is endowed with a Lie algebroid structure given by the reduction
theorem.

From theorem 4.2, we know that (A∗, C = Ker Π̃) is a reducible Poisson

manifold. We define in (Â)∗ = A∗/G = Â∗ a linear Poisson structure {·, ·}∧
that verifies {

f ◦ Π̃, g ◦ Π̃
}

A∗

= {f, g}∧ ◦ Π̃,

where f, g ∈ C∞(A∗/G); F = f ◦ Π̃ and G = g ◦ Π̃ are smooth functions on
A∗, G-invariant extensions of f and g, respectively. So, the Poisson bracket
of G-invariant functions on A∗ is still G-invariant.

Example 5.3 (Principal bundle). Let us consider a principal bundle
P (M,G, π) over a manifold M with structural group G. The right action
of G on P provides a right action of G on the tangent bundle (TP, p, P ).
This action induces in the quotient space TP/G, a vector bundle structure
over M , in such a way that the natural projection Π : TP → TP/G is a
surjective submersion and a morphism of vector bundles over π : P → M ,
that makes the following diagram commutative:

TP

p
��

Π
// TP/G

p/G
��

P
π

// M

where p/G : TP/G → M is the projection given by p/G([X]G) = π(p(X)) =
[p(X)]G. In the same way, we can say that the right action of G on P gives
an action of G on (T ∗P, τ, P ) that induces in the space T ∗P/G a structure of

vector bundle over M , such that the natural projection (Π̃, π) : (T ∗P, τ, P ) →
(T ∗P/G, τ/G,M) is a surjective submersion of vector bundles that verifies

τ/G ◦ Π̃ = π ◦ τ , where τ/G : T ∗P/G → M is the projection given by

τ/G([α]G) = π(τ(α)) = [τ(α)]G. For all X̂ ∈ Γ(TP/G) and u ∈ P , we have

Σ(X̂)(u) = Sπ(u)
u (X̂π(u)) = (Π̃u)

∗(X̂π(u)) = (Πu)
−1(X̂π(u)) = X(u)
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with X ∈ ΓG(TP ). Under these conditions, the vector bundle TP/G is en-
dowed with the following structure of reduced Lie algebroid:

(i) ρ̂ = Tπ ◦ S

(ii) [X̂, Ŷ ]TP/G ◦π = Π◦ [Σ(X̂),Σ(Ŷ )]TP for all X̂, Ŷ ∈ Γ(TP/G), where

Σ is the map between sections given by Π̃.

The above structure is precisely the structure of gauge algebroid in TP/G.
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