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Abstract: In a recent paper [2], we studied the concept of Dirac-Nijenhuis struc-
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1. Introduction
From a geometrical point of view, it is well known that Dirac structures

are intimately related to Lie algebroids and Lie bialgebroids [3, 17, 16]. A
Dirac structure on a manifold M was defined in [4, 3] as a subbundle D of the
Whitney sum TM ⊕ T ∗M satisfying certain properties, which correspond to
the definition of a Lie algebroid structure. Later, the concept was generalized
to similar subbundles defined on Whitney sums of the form A ⊕ A∗ where
(A,A∗) is a Lie bialgebroid [17]. These Whitney sums are examples of the so
called Courant algebroids, and therefore, Dirac structures arise as suitable
subbundles of those. Finally, in [24, 7] the concept was generalized again and
defined as subbundles of generalized Courant algebroids, which are similar
to the usual ones but include a suitable 1-cocycle in the definition.

On the other hand, the deformation of structures by using Nijenhuis oper-
ators is a concept often used in the Literature. Originally proposed within
the framework of integrable systems (see the introduction and references of
[21]), it allows a deformation of Lie algebra structures defined on different
types of manifolds. It has been recently extended to the Lie algebroid case,
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and therefore a very interesting example seems to be the study of the de-
formation of Lie algebroid structure which corresponds to a Dirac manifold.
In [5], the problem was discussed for the case of Poisson manifolds (corre-
sponding to the case of Poisson-Nijenhuis manifolds [13, 14]). Within the Lie
algebroid domain, the Jacobi-Nijenhuis case (i.e. the deformation associated
to a Jacobi manifold) was also studied in [10, 23]. Recently, we studied [2]
the problem of the geometric characterization of the deformation of a Dirac
structure defined in the double of a Lie bialgebroid, problem which was also
studied in [18] and within the framework of the deformation of Courant alge-
broids in [1]. In this paper, we study the same problem for the case of Dirac
structures defined on generalized Courant algebroids, aiming to characterize
the case of a Jacobi-Nijenhuis manifolds as a Dirac-Nijenhuis structure on
this generalized setting.

The structure of the paper is as follows. In Section 2 we review some basic
facts about Jacobi manifolds and its characterization in terms of the so called
generalized Lie bialgebroids (or Jacobi bialgebroids). Section 3 is devoted to
the summary of the basic properties of generalized Courant algebroids and
their corresponding Dirac structures. In Section 4, we study the deformation
of generalized structures at three levels: Lie algebroids, Lie bialgebroids and
Courant algebroids; while Section 5 presents the deformation of their corre-
sponding Dirac structures and proves that Jacobi-Nijenhuis manifolds are a
particular example of these.

2. Generalized Lie (Jacobi) bialgebroids
Let (A, [·, ·], ρ) be a Lie algebroid over M , A∗ its dual vector bundle and

denote by
∧

A = ⊕k∈Z
∧k A and

∧
A∗ = ⊕k∈Z

∧k A∗ the graded exterior
algebras of A and A∗, respectively.

Let φ ∈ Γ(A∗) be a 1-cocycle for the Lie algebroid cohomology complex
with trivial coefficients (see [19] and [9]), i.e. for all X, Y ∈ Γ(A),

〈φ, [X,Y ]〉 = ρ(X)〈φ, Y 〉 − ρ(Y )〈φ,X〉. (1)

Using the 1-cocycle φ, we can define a new representation ρφ of the Lie
algebra (Γ(A), [·, ·]) on C∞(M,R), by setting

ρφ : Γ(A)× C∞(M,R) → C∞(M,R), ρφ(X, f) = ρ(X)f + 〈φ,X〉f.
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We obtain a new cohomology complex, whose differential cohomology oper-
ator is given by

dφ : Γ(
∧k

A∗) → Γ(
∧k+1

A∗), dφ(β) = dβ + φ ∧ β.

For any X ∈ Γ(A), the Lie derivative operator with respect to X is given by

Lφ
X : Γ(

∧k
A∗) → Γ(

∧k
A∗), Lφ

X(β) = LXβ + 〈φ,X〉β.

It is also possible to consider a φ-Schouten bracket on the graded algebra
Γ(

∧
A), denoted by [·, ·]φ, which is defined as follows: for P ∈ Γ(

∧pA) and
Q ∈ Γ(

∧qA),

[P,Q]φ = [P, Q] + (p− 1)P ∧ (iφQ) + (−1)p(q − 1)(iφP ) ∧Q,

where iφQ can be interpreted as the usual contraction of a multivector field
by a 1-form. For more details see [9] and [6].

Suppose that the vector bundle (A, [·, ·], ρ) and its dual vector bundle
(A∗, [·, ·]∗, ρ∗) are both Lie algebroids over a manifold M . Let d (resp. d∗)
denote the differential of A (resp. A∗). Let φ ∈ Γ(A∗) (resp. W ∈ Γ(A))
be a 1-cocycle in the Lie algebroid cohomology complex of (A, [·, ·], ρ) (resp.
(A∗, [·, ·]∗, ρ∗)).
Definition 2.1 ([6, 9]). The pair ((A, φ), (A∗,W )) is a generalized Lie bial-
gebroid (or a Jacobi bialgebroid) if for all P ∈ Γ(

∧p A) and Q ∈ Γ(
∧

A),

dW
∗ [P,Q]φ = [dW

∗ P, Q]φ + (−1)p+1[P, dW
∗ Q]φ.

When φ = 0 and W = 0, we recover the notion of Lie bialgebroid, [20] and
[12].

Example 2.2. If M is a differentiable manifold, then the triple (TM ×
R, [·, ·], π) is a Lie algebroid over M , with π the projection over the first
factor and [·, ·] given by

[(X, f), (Y, g)] = ([X,Y ], X(g)−Y (f)), (X, f), (Y, g) ∈ X(M)×C∞(M,R).
(2)

The pair ((TM × R, (0, 1)), (T ∗M × R, (0, 0))) is a generalized Lie bialge-
broid, where T ∗M × R is endowed with the null Lie algebroid structure, i.e.
[·, ·]∗ = 0 and ρ∗ = 0.



4 J. CLEMENTE-GALLARDO AND J. M. NUNES DA COSTA

The next example, which appears in [9], is related with the notion of Jacobi
manifold. We recall that a Jacobi manifold ([15]) is a smooth manifold M
equipped with a bivector field Λ and a vector field E such that [Λ, Λ] =
−2E ∧ Λ and [E, Λ] = 0.

Example 2.3. Let (M, Λ, E) be a Jacobi manifold. Consider the associated
Lie algebroid (T ∗M ×R, [·, ·](Λ,E), π ◦ (Λ, E)#) over M ([11]), where (Λ, E)#

is the vector bundle morphism given by

(Λ, E)#(α, f) = (Λ#(α) + fE,−〈α, E〉), (3)

for any section α of T ∗M and f ∈ C∞(M,R), and [·, ·](Λ,E) is the bracket
given by

[(α, f), (β, g)](Λ,E) := (γ, h), (4)

with

γ := LΛ#(α)β − LΛ#(β)α− d(Λ(α, β)) + fLEβ − gLEα− iE(α ∧ β),

h := −Λ(α, β) + Λ(α, dg)− Λ(β, df) + 〈fdg − gdf, E〉.
The pair ((TM × R, (0, 1)), (T ∗M × R, (−E, 0))) is a generalized Lie bial-

gebroid.

3. Generalized Courant algebroids and Dirac structures
The notion of Courant algebroid was introduced by Liu et al. ([17]) for

describing the geometric structure of the double A⊕A∗ of a Lie bialgebroid
(A,A∗). In order to interpret the double of a generalized Lie bialgebroid, we
introduced in [24] the notion of generalized Courant algebroid.

Definition 3.1. A generalized Courant algebroid is a pair (E, θ), where E
is a vector bundle E → M equipped with a nondegenerate symmetric bilinear
form (·, ·) on the bundle, a skew-symmetric bracket [·, ·] on Γ(E) and a bundle
map ρθ : E → TM×R, which is a first-order differential operator, and where
θ ∈ Γ(E∗) is such that, for any e1, e2 ∈ Γ(E), 〈θ, [e1, e2]〉 = ρ(e1)〈θ, e2〉 −
ρ(e2)〈θ, e1〉, ρ(e1) being the derivation associated with ρθ(e1) (i.e., ρθ(e1) =
ρ(e1) + 〈θ, e1〉), satisfying, for all e, e1, e2, e3 ∈ Γ(E) the following properties:

i) [[e1, e2], e3] + c.p. = DθT (e1, e2, e3),
where T (e1, e2, e3) = 1

3([e1, e2], e3) + c.p. and Dθ : C∞(M,R) → Γ(A)
is the first-order differential operator given by (Dθf, e) = 1

2ρ
θ(e)f.
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ii) ρθ([e1, e2]) = [ρθ(e1), ρθ(e2)],
where the bracket on the right-hand side is the Lie bracket (2) on
Γ(TM × R);

iii) ρθ(e)(e1, e2) = ([e, e1] +Dθ(e, e1), e2) + (e1, [e, e2] +Dθ(e, e2));
iv) for any f, g ∈ C∞(M,R), (Dθf,Dθg) = 0.

In [7], under the name of Courant-Jacobi algebroid, an equivalent definition
is presented. This last version generalizes the Courant algebroid definition
given by Roytenberg ([25]). The equivalence of both definitions is proved in
[24].

When θ = 0, the generalized Courant algebroid (E, 0) is just the Courant
algebroid E.

Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid over M . On the
Whitney sum bundle A⊕A∗ we can define two non-degenerate bilinear forms,
one symmetric, denoted by (·, ·)+, and the other skew-symmetric, denoted
by (·, ·)−, by setting, for any X1 + α1, X2 + α2 ∈ A⊕ A∗,

(X1 + α1, X2 + α2)± =
1
2

(〈α1, X2〉 ± 〈α2, X1〉). (5)

On the space Γ(A ⊕ A∗) of the global cross sections of A ⊕ A∗, which is
identified with Γ(A)⊕ Γ(A∗), we consider the following bracket:

[[X1 + α1, X2 + α2]] =
(
[X1, X2]

φ + LW
∗α1

X2 − LW
∗α2

X1 − dW
∗ (e1, e2)−

)

+
(

[α1, α2]
W
∗ + Lφ

X1
α2 − Lφ

X2
α1 + dφ(e1, e2)−

)
, (6)

where e1 = X1 + α1 and e2 = X2 + α2.
Using the anchor maps a and a∗ of A and A∗, respectively, and the 1-

cocycles φ and W , we define the vector bundle maps ρ : A⊕A∗ → TM and
ρφ+W : A⊕A∗ → TM ×R, which are given, for any section X +α of A⊕A∗,
by

ρ(X +α) = a(X) +a∗(α), ρφ+W (X +α) = a(X) +a∗(α) + 〈φ,X〉+ 〈α,W 〉,
(7)

respectively.

Theorem 3.2 ([24]). If ((A, φ), (A∗,W )) is a generalized Lie bialgebroid over
M , then the pair (A ⊕ A∗, θ), with θ = φ + W , is a generalized Courant
algebroid with the bracket [[·, ·]] on Γ(A ⊕ A∗) given by (6), the symmetric
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bilinear form (·, ·) given by (·, ·)+ of (5), the vector bundle map ρθ given by
(7) and the operator Dθ given by Dθ = (dW + dφ

∗)|C∞(M,R).

The last theorem and the examples of generalized Lie bialgebroids given
in the previous section, provide examples of generalized Courant algebroids.
We are mainly interested in example 2.2 that enables us to conclude that
((TM × R) ⊕ (T ∗M × R), (0, 1) + (0, 0)) is a generalized Courant algebroid
over M .

The bracket (6) on the space of sections of this generalized Courant alge-
broid, that was introduced by A. Wade in [26], is given, for all (Xi, fi) +
(αi, gi) ∈ Γ((TM × R)⊕ (T ∗M × R))), i = 1, 2, by

[[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]] =

= ([X1, X2], X1(f2)−X2(f1)) +

+

(
f1α2 − f2α1 + LX1α2 − LX2α1 +

1
2
d(〈α1, X2〉 − 〈α2, X1〉)

+
1
2

(f2dg1 − g1df2 + g2df1 − f1dg2),

X1(g2)−X2(g1) +
1
2

(〈α1, X2〉 − 〈α2, X1〉) +
1
2

(f1g2 − f2g1)

)
. (8)

Let us now recall the notions of Dirac structure for a generalized Courant
algebroid and for a Courant algebroid. Consider thus a generalized Courant
algebroid (E, θ) (resp. Courant algebroid E). A subbundle L ⊂ E of the
generalized Courant algebroid (E, θ) (resp. Courant algebroid E) is said to
be integrable if Γ(L) is closed under the bracket [·, ·] on Γ(E).

Definition 3.3. A Dirac structure for the generalized Courant algebroid
(E, θ) (resp. Courant algebroid E) is an integrable subbundle L of E which
is maximally isotropic with respect to the symmetric bilinear form (·, ·).

An immediate consequence of the previous definition is the following.

Proposition 3.4 ([24]). If L is a Dirac structure for the generalized Courant
algebroid (E, θ) and θ ∈ Γ(L∗), then (L, ρ|L, [·, ·]|L) is a Lie algebroid and θ is
a 1-cocycle for the Lie algebroid cohomology complex with trivial coefficients.

If θ = 0 in the previous proposition, i.e. if E is a Courant algebroid, then
we recover a result from [17].
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Let us now recall the notion of characteristic pair, introduced in [16]. Let
A be a vector bundle, D ⊂ A a subbundle of A and Ω a bivector field,
Ω ∈ Γ(

∧2 A). Consider the subbundle L of A⊕ A∗, given by

L = {X + Ω#α + α, X ∈ D, α ∈ D⊥} = D ⊕ graph(Ω#|D⊥), (9)

where D⊥ stands for the conormal bundle of D.
Clearly L ⊂ A⊕ A∗ is maximally isotropic with respect to the symmetric

bilinear form (5). In what follows, we will assume that D = L ∩ A is of
constant rank.

Definition 3.5 ([16]). The pair (D, Ω) is called the characteristic pair of
the subbundle L of A ⊕ A∗ given by (9), while D = L ∩ A is called the
characteristic subbundle of L.

Theorem 3.6 ([24]). Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid
and L ⊂ A ⊕ A∗ a maximal isotropic subbundle of A ⊕ A∗ defined by a
characteristic pair (D, Ω), i.e

L = {X + Ω#α + α, X ∈ D, α ∈ D⊥} = D ⊕ graph(Ω#|D⊥).

Then L is a Dirac structure for the generalized Courant algebroid (A ⊕
A∗, φ + W ) if and only if:

i) D is a Lie subalgebroid of A;

ii) dW
∗ Ω +

1
2

[Ω, Ω]φ = 0 (modD);

iii) for any α, β ∈ Γ(D⊥),

[α, β]∗ + [α, β]Ω ∈ Γ(D⊥),

where [α, β]Ω = LΩ#(α)β − LΩ#(β)α− d(Ω(α, β)).

Remark 3.7. Under the assumptions of the above theorem, we can also call
L a Dirac structure for the generalized Lie bialgebroid ((A, φ), (A∗,W )).

If we consider now the generalized Courant algebroid structure ((TM ×
R) ⊕ (T ∗M × R), (0, 1) + (0, 0)) described above, theorem 3.6 implies that
(M, Λ, E) is a Jacobi manifold if and only if graph(Λ, E)# is a Dirac structure
for the generalized Courant algebroid ((TM×R)⊕(T ∗M×R), (0, 1)+(0, 0)).
In other words,
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(graph(Λ, E)#, [[·, ·]]|graph(Λ,E)#, π|graph(Λ,E)#),

with [[·, ·]] given by (8), is a Lie algebroid over M .
A simple computation shows that,

Lemma 3.8. For any sections (α, f) and (β, g) of T ∗M ×R, the Lie bracket
on the Lie algebroid graph(Λ, E)# takes the following form:

[[(Λ, E)#(α, f) + (α, f), (Λ, E)#(β, g) + (β, g)]]|graph(Λ,E)# =

= [(Λ, E)#(α, f), (Λ, E)#(β, g)] + [(α, f), (β, g)](Λ,E). (10)

Hence, on graph(Λ, E)#, the skew-symmetric product (8) factorizes in two
operations, one defined on TM × R and the other on T ∗M × R, which are
dual to each other. This result will be very useful for us in the next section
when studying the deformation of the Lie algebroid structure by Nijenhuis
operators.

4. Nijenhuis operators on Lie algebroids and generalized
Lie bialgebroids and their doubles

The concept of Nijenhuis operator on Lie algebroids is well known ([14, 8])
as a simple generalization of the usual concept for vector fields.

Definition 4.1. Let (A, [·, ·], ρ) be a Lie algebroid. A linear transformation

N : A → A

is said to be a Nijenhuis transformation on A if and only if the torsion tensor
TN defined as

TN(X,Y ) = [N(X), N(Y )]−N([X,N(Y )])−N([N(X), Y ]) + N 2([X, Y ])
(11)

vanishes for any X,Y ∈ ΓA.

This is equivalent to have a new Lie structure on the sections of A, N
being a homomorphism for them. But in the case of a Lie algebroid, this
also implies that another Lie algebroid structure is available for A.

Lemma 4.2 ([8]). Consider a Lie algebroid (A, [·, ·], ρ) and a Nijenhuis op-
erator N : A → A. Define the following bracket on the sections of A:

[X, Y ]N = −N([X, Y ]) + [X,N(Y )] + [N(X), Y ]. (12)
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Consider the mapping
N̂ = ρ ◦N : A → TM. (13)

Then, (A, [·, ·]N , N̂) is a Lie algebroid. This new Lie algebroid has a new
exterior derivative, defined as

dN = [iN , d] = iN ◦ d− d ◦ iN , (14)

where iN is the superderivation of degree zero on the forms Γ(
∧

A∗) defined
by

iNθ(X1, · · · , Xp) =
p∑

i=1

θ(X1, · · · , NXi, Xi+1, · · · , Xp). (15)

The new structure leads also to a new Schouten bracket:

Proposition 4.3 ([14]). Let N be a Nijenhuis operator on a Lie algebroid
A. The Schouten bracket defined on Γ(

∧
A) by extension of the deformed

bracket [·, ·]N satisfies

[Q,Q′]N = [iN∗Q,Q′] + [Q, iN∗Q′]− iN∗[Q,Q′], (16)

where iN∗ is the superderivation of degree zero on the sections of
∧

A defined
as:

iN∗Ψ(θ1, · · · , θp) =
p∑

i=1

Ψ(θ1, · · · , N ∗θi, θi+1, · · · , θp). (17)

Let (A, [·, ·], ρ) be a Lie algebroid with a 1-cocycle φ and N a Nijenhuis
operator on A. Then,

Lemma 4.4. N ∗φ is a 1-cocycle for the Lie algebroid (A, [·, ·]N , N̂).

Proof : Let X and Y be any sections of A. Then, using (1) we know that

〈N ∗φ, [X,Y ]N〉 = 〈φ,N [X, Y ]N〉 = 〈φ, [NX, NY ]〉
= ρ(NX)〈φ,NY 〉 − ρ(NY )〈φ,NX〉
= N̂(X)〈N ∗φ, Y 〉 − N̂(Y )〈N ∗φ,X〉,

which means that N ∗φ is a 1-cocycle for the Lie algebroid (A, [·, ·]N , N̂).

Regarding the Lie algebroid (A, [·, ·]N , N̂) and the 1-cocycle Φ = N ∗φ, we
can proceed as in Section 2. Hence, we can define:
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• the deformed Schouten bracket with cocycle. For P ∈ Γ(
∧pA) and

Q ∈ Γ(
∧qA), it is defined as

[P, Q]ΦN = [P, Q]N + (p− 1)P ∧ (iΦQ) + (−1)p(q − 1)(iΦP ) ∧Q,

• the deformed Lie derivative LΦ
NX(β) = LN

Xβ + 〈Φ, X〉β,
• and the deformed exterior differential dΦ

N(β) = dNβ + Φ ∧ β.
The next step is to consider the action of a Nijenhuis transformation on

a generalized Lie bialgebroid. Our objective is to apply these concepts to
the deformation of Dirac structure in the following sections, therefore we
consider now just those situations that may be interesting later.

Consider then a generalized Lie bialgebroid ((A, φ), (A∗, W )). In principle,
we can consider two different transformations applied on each factor, i.e.:{

N : A → A

Υ : A∗ → A∗,
(18)

such that they define two new Lie algebroid structures on the factors, i.e.
(A, [·, ·]N , N̂) and (A∗, [·, ·]Υ, Υ̂) are Lie algebroids with Φ = N ∗φ and Ξ =
Υ∗W 1-cocycles for A and A∗, respectively. We must verify now whether they
define a new generalized Lie bialgebroid. As we know, the transformation
on the Lie algebroid structures implies a transformation of the Lie algebroid
cohomologies, i.e. there are two new exterior differentials dΦ

N and dΞ
∗Υ which

are the ones to consider.

Definition 4.5. Consider a generalized Lie bialgebroid ((A, φ), (A∗,W )) and
a transformation of the type (18), such that N and Υ are Nijenhuis operators
on A and A∗, respectively. We say that the pair (N, Υ) defines a trivial
deformation of the generalized Lie bialgebroid structure if and only if the pair(

((A, [·, ·]N , N̂), Φ), ((A∗, [·, ·]Υ, Υ̂), Ξ)
)

is a new generalized Lie bialgebroid,

i.e. for all P ∈ Γ(
∧p A) and Q ∈ Γ(

∧
A),

dΞ
∗Υ[P,Q]ΦN = [dΞ

∗ΥP, Q]ΦN + (−1)p+1[P, dΞ
∗ΥQ]ΦN . (19)

Now we want to consider the deformation of the double of a generalized Lie
bialgebroid. In [2] this problem was studied in the case of a Lie bialgebroid.
Consider then a generalized Lie bialgebroid ((A, φ), (A∗,W )). We saw in
[24] that (A⊕ A∗, φ + W ) is a generalized Courant algebroid. We are going
to consider transformations of the skew-symmetric structure, and define the
notion of Nijenhuis operator for this framework.
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As it happens in [2], we do not consider the most general deformations of
A ⊕ A∗, but some particular types which are of interest in the next section
to deform Dirac structures.

Let us consider the skew-symmetric bracket (6) on the sections of A⊕A∗.
Even if it does not define a Lie algebra structure it is still a skew-symmetric
one, and we can still consider a deformation of the corresponding structure,
and ask it to be trivial in the sense of being homomorphic to the original
one.

Definition 4.6. Consider the double of a generalized Lie bialgebroid (B =
A⊕A∗, φ + W ) and the bracket (6). Consider a deformation of the structure
in the form:

[[b1, b2]]λ = [[b1, b2]] + λ[[b1, b2]]N ∀b1, b2 ∈ ΓB

where [[·, ·]]N = [[N·, ·]] + [[·,N·]] − N [[·, ·]] and N : ΓB → ΓB is a linear
operator. Consider also a deformation of the set of sections of B in the
form:

Tλ = IdΓB + λN .

Then, we say that the deformation is trivial if

Tλ[[b1, b2]]λ = [[Tλb1, Tλb2]] ∀b1, b2 ∈ ΓB.

We also can consider a certain Nijenhuis-like property for the operator N .
Formally, we can still define the Nijenhuis torsion in the way we did above:

TN (b1, b2) = [[N (b1),N (b2)]]−N ([[b1,N (b2)]])−N ([[N (b1), b2]])+N 2([[b1, b2]])

∀b1, b2 ∈ ΓB. (20)

To ask this quantity to vanish identically, is equivalent to ask the operator
N to satisfy:

N [[b1, b2]]N = [[N b1,N b2]]. (21)

In the following, we will also call Nijenhuis operator to an operator N :
ΓB → ΓB which satisfies this condition. Of course, it is clear that many
of the properties of the pure Nijenhuis operator will not be shared by these,
but the formal definition is still possible. It is still true, though, that these
operators define trivial deformations of the skew-symmetric structure of B,
as the usual Nijenhuis operators define trivial deformations of Lie structures.

If we consider a deformation of a generalized Lie bialgebroid ((A, φ), (A∗,W ))
by Nijenhuis operators, in the sense discussed above, we know that such a
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deformation provides new Lie structures on ΓA and ΓA∗, new Lie derivatives
and new exterior differentials. This implies that we can consider the analogue
of the bracket (6), for the new generalized Courant algebroid structure, i.e.

[[X1 + α1, X2 + α2]]N =

(
[X1, X2]

Φ
N + LΞ

∗Υα1
X2 − LΞ

∗Υα2
X1 − 1

2
dΞ
∗Υ(e1, e2)−

)

+

(
[α1, α2]

Ξ
Υ + LΦ

NX1
α2 − LΦ

NX2
α1 +

1
2
dΦ

N(e1, e2)−

)
,

(22)

with e1 = X1 + α1 and e2 = X2 + α2, and where the brackets [·, ·]ΦN and [·, ·]ΞΥ
are the brackets associated (via the corresponding cocycles Φ = N ∗φ and
Ξ = Υ∗W ) to the Lie algebroids (A, [·, ·]N , N̂) and (A∗, [·, ·]Υ, Υ̂).

But we can also try to see this new bracket as the result of a deformation
of the original generalized Courant algebroid structure of B = A ⊕ A∗, in
the sense of Definition 4.6 using the bracket above as the linear term of the
deformation. Then, the condition for the deformation (Tλ, [·, ·]λ) to be trivial
will be that the operator N in Tλ is a Nijenhuis operator for the original
bracket. This implies:

[[X1 + α1, X2 + α2]]N =

[[N (X1 + α1), X2 + α2]] + [[X1 + α1,N (X2 + α2)]]−N [[X1 + α1, X2 + α2]]

and

N [[X1 + α1, X2 + α2]]N = [[N (X1 + α1),N (X2 + α2)]].

Surprisingly, it turns out that not all deformations of the Lie algebroids A
and A∗ define also a deformation for the double. For instance, if we consider
the usual case (φ = 0 = W ) some conditions arise from the double structure:

Theorem 4.7 ([2]). Consider the double of a Lie bialgebroid A ⊕ A∗ and
consider two Nijenhuis operators N for A and Υ for A∗. Then, if

• N ∗ + Υ = 2λ1 where λ1 ∈ R,
• N 2 = λ2 where λ2 ∈ R,

then N = N ×Υ : A⊕ A∗ → A⊕ A∗ is a Nijenhuis operator for A⊕ A∗.
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5. Generalized Dirac-Nijenhuis structures and Jacobi-
Nijenhuis manifolds

5.1. Dirac-Nijenhuis structures for generalized Lie bialgebroids. In
[2] we studied the concept of Dirac-Nijenhuis structures in the context of
usual Lie bialgebroids. We considered them associated with deformations of
the Lie algebroid structure that Dirac bundles are endowed with. We intro-
duced two slightly different types of these structures depending on whether
or not the Courant algebroid structure was affected by the deformation. In
this paper, we intend to consider the analogue notion in the case of general-
ized Courant algebroids. As most of the results are proven in a completely
analogous way, we refer the interested reader to [2] for a more detailed expo-
sition.

At a general level, we will consider the analogue [2] for a Dirac structure
D defined on the double of a generalized Lie bialgebroid ((A, φ), (A∗,W )).
We can consider two different frameworks:

• A transformation that defines a trivial deformation of the skew-symme-
tric operation (6) on the double of the generalized Lie bialgebroid and
defines a new generalized Courant algebroid structure on it, and, as a
consequence, transforms the Lie algebroid structure of D into a new
one.

• A transformation that deforms the skew-symmetric operation (6) in
such a way that it defines a trivial deformation of the Lie algebroid
structure of D. In this case, we do not care about the transformation
of the generalized Courant algebroid structure of the double.

Therefore, we can define:

Definition 5.1. Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid over
a differentiable manifold M . Then, (D,N ) is said to be a generalized
Dirac-Nijenhuis structure of type I (or M to be a generalized Dirac-
Nijenhuis manifold of type I) if D is a Dirac structure for the generalized
Lie bialgebroid ((A, φ), (A∗,W )) and the operator N : A ⊕ A∗ → A ⊕ A∗

preserves D (i.e. N (D) ⊂ D) and defines:

• a trivial deformation of the skew-symmetric algebra of A⊕ A∗ whose
Nijenhuis torsion vanishes (with respect to the skew-symmetric bracket
defined on A⊕ A∗) and
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• a new skew-symmetric operation [[·, ·]]N for which D is also a Dirac
structure with respect to the generalized Lie bialgebroid
((A,N ∗φ), (A∗, Υ∗W )).

But we also saw that we have the possibility of deforming the Lie alge-
broid structure of D without paying attention to the structure of the double.
Hence, it makes sense to define:

Definition 5.2. Let ((A, φ), (A∗,W )) be a generalized Lie bialgebroid over
a differentiable manifold M . Then, (D,N ) is said to be a generalized
Dirac-Nijenhuis structure of type II (or M to be a generalized Dirac-
Nijenhuis manifold of type II) if D is a Dirac structure with respect to the
generalized Lie bialgebroid ((A, φ), (A∗,W )) and the operator N : A⊕ A∗ →
A⊕A∗ defines a trivial deformation of the Lie algebroid structure of D, i.e.
such that the Nijenhuis torsion of N with respect to the bracket (6) vanishes
identically on ΓD. Of course we also assume that the transformation N
preserves D.

From a formal point of view, the definitions of Dirac-Nijenhuis mani-
folds are obviously not affected by the introduction of cocycles in the skew-
symmetric operation of the double. These changes do affect the bundles
which are closed under them and that satisfy the definition, but not the
formal definition itself. Being interested only in Jacobi manifolds, only the
second definition is relevant for us in the present paper and henceforth we
will postpone the analysis of type I manifolds to a future paper.

5.2. Jacobi-Nijenhuis manifolds. The original definition of Jacobi-Nijen-
huis manifold was given by Marrero et al. in [22]. In [23], we introduced a
stricter definition and called it strict Jacobi-Nijenhuis manifold, which is the
one we are going to consider in this paper. For simplicity, we will omit the
word strict.

Let M be a differentiable manifold and N : TM×R→ TM×R a Nijenhuis
operator on the Lie algebroid (TM × R, [·, ·], π), with [·, ·] given by (2).

Suppose thus that M is equipped with a Jacobi structure (Λ, E) and a
Nijenhuis operator N and consider a bivector field Λ1 and a vector field E1

on M , defined by

(Λ1, E1)
# = N ◦ (Λ, E)#.
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Definition 5.3. A Jacobi-Nijenhuis manifold (M, (Λ, E), N) is a Jacobi man-
ifold (M, Λ, E) with a Nijenhuis operator N satisfying the following compat-
ibility conditions:

N ◦ (Λ, E)# = (Λ, E)# ◦ N ∗ (23)

and
C((Λ, E), N) = 0, (24)

where

C((Λ, E), N)((α, f), (β, g)) = [(α, f), (β, g)](Λ1,E1) − [N ∗(α, f), (β, g)](Λ,E)

− [(α, f), N ∗(β, g)](Λ,E) + N ∗[(α, f), (β, g)](Λ,E),

for all (α, f), (β, g) ∈ Ω1(M)×C∞(M), and [·, ·](Λ,E) (resp. [·, ·](Λ1,E1)) is the
bracket (4) associated with (Λ, E)(resp. (Λ1, E1)).

We see that the structure is very similar to the case of Poisson-Nijenhuis
structure which was proven to be a Dirac-Nijenhuis structure of type II in
[2]. Therefore, as we had to move from Courant algebroids to generalized
Courant algebroids to describe Jacobi manifolds as Dirac bundles defined on
them, it is reasonable to expect that Jacobi-Nijenhuis structures should be
seen as examples of generalized Dirac-Nijenhuis structures of type II. The
next theorem establishes this fact.

Theorem 5.4. Let (M, (Λ, E), N) be a Jacobi-Nijenhuis manifold. Then,

(graph(Λ, E)#, N = N ×N ∗)

is a generalized Dirac-Nijenhuis structure of type II for the generalized Courant
algebroid (TM × R⊕ T ∗M × R, (0, 1) + (0, 0)).

Proof : Let (α, f) and (β, g) be two arbitrary sections of T ∗M × R. Since

N ((Λ, E)#(α, f) + (α, f)) = N((Λ, E)#(α, f)) + N ∗(α, f)
(23)
= (Λ, E)#(N ∗(α, f)) + N ∗(α, f),

N preserves graph (Λ, E)#. Hence, we just need to prove that N is a Nijen-
huis operator on graph(Λ, E)#.
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Moreover, we know from Lemma 3.8 that the deformed skew-product of
the generalized Courant algebroid factorizes. Then we have

[[N ((Λ, E)#(α, f) + (α, f)),N ((Λ, E)#(β, g) + (β, g))]] =

= [[(Λ, E)#(N ∗(α, f)) + N ∗(α, f), (Λ, E)#(N ∗(β, g)) + N ∗(β, g)]]
(10)
= [N(Λ, E)#(α, f), N(Λ, E)#(β, g)] + [N ∗(α, f), N ∗(β, g)](Λ,E) (25)

and

N ([[(Λ, E)#(α, f) + (α, f), (Λ, E)#(β, g) + (β, g)]]N ) =

= N ([[N ((Λ, E)#(α, f) + (α, f)), (Λ, E)#(β, g) + (β, g)]]

+[[(Λ, E)#(α, f) + (α, f),N ((Λ, E)#(β, g) + (β, g))]]

−N ([[(Λ, E)#(α, f) + (α, f), (Λ, E)#(β, g) + (β, g)]]))

= N ([[(Λ, E)#(N ∗(α, f)) + N ∗(α, f), (Λ, E)#(β, g) + (β, g)]]

+[[(Λ, E)#(α, f) + (α, f), (Λ, E)#(N ∗(β, g)) + N ∗(β, g)]])

−N 2([(Λ, E)#(α, f), (Λ, E)#(β, g)])− (N ∗)2([(α, f), (β, g)](Λ,E))

= N([(Λ, E)#(N ∗(α, f)), (Λ, E)#(β, g)]) + N ∗([(N ∗(α, f)), (β, g)](Λ,E))

+N([(Λ, E)#(α, f), (Λ, E)#(N ∗(β, g))]) + N ∗([(α, f), (N ∗(β, g))](Λ,E))

−N 2([(Λ, E)#(α, f), (Λ, E)#(β, g)])− (N ∗)2([(α, f), (β, g)](Λ,E))

= N([(Λ, E)#(α, f), (Λ, E)#(β, g)]N) + N ∗([(α, f), (β, g)](Λ,E))N∗), (26)

where, for the sake of simplicity we write [[·, ·]] instead of [[·, ·]]|graph(Λ,E)#.
The fact that N is a Nijenhuis operator ensures the equality of the first

terms of (25) and (26). On the other hand, the vanishing of the Nijenhuis
torsion of N and of the concomitant C((Λ, E), N), guarantee that

[N ∗(α, f), N ∗(β, g)](Λ,E) = N ∗([(α, f), (β, g)](Λ,E))N∗.

So,

N ([[(Λ, E)#(α, f) + (α, f), (Λ, E)#(β, g) + (β, g)]]N ) =

= [[N ((Λ, E)#(α, f) + (α, f)),N ((Λ, E)#(β, g) + (β, g))]]

and N|graph(Λ,E)# is a Nijenhuis operator for the Lie algebroid graph (Λ, E)#.
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