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Abstract: We mathematically justify a reduced piezoelectric plate model. This
is achieved considering the three-dimensional static equations of piezoelectricity,
for a nonhomogeneous anisotropic thin plate, and using the asymptotic analysis to
compute the limit of the displacement vector and electric potential, as the thickness
of the plate approaches zero. We prove that the three-dimensional displacement
vector converges to a Kirchhoff-Love displacement, that solves a two-dimensional
piezoelectric plate model, defined on the middle surface of the plate. Moreover,
the three-dimensional electric potential converges to a scalar function that is a
second order polynomial with respect to the thickness variable, with coefficients
that depend on the transverse component of the Kirchhoff-Love displacement. We
remark that the results of this paper generalize a previous work of A. Sene (2001)
for homogeneous and isotropic materials.
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1. Introduction
Piezoelectric plates and more generally structures involving piezoelectric

materials are widely used in real-life applications, namely as sensors or ac-
tuators. The justification is that piezoelectric materials are characterized
by the fact that a mechanical deformation generates an electric field on the
material and, vice-versa, the application to the material of an electric field
produces a deformation (cf. Ikeda [9]).

In the literature there are several recent papers concerning the modelling
of piezoelectric structures. We refer in particular the papers by Bernadou
and Haenel [1, 2, 3], for the modelization and numerical approximation of
piezoelectric thin shells, Collard and Miara [6] for the justification of geomet-
rically nonlinear thin piezoelectric shells models, Raoult and Sene [11], for
the modelling of piezoelectric plates including magnetic effects, Sene [13], for
the modelling of piezoelectric static thin plates, Sabu [12], for the modelling
of eigenvalues problems for thin piezoelectric shells. The technique used in
Collard and Miara [6], Raoult and Sene [11], Sene [13] and Sabu [12] is the
asymptotic analysis (cf. Ciarlet [4, 5] for a description of the asymptotic
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analysis procedure applied to elastic plates and shells) and the materials are
homogeneous and isotropic.

The present paper is inspired in Sene [13], and we use again the asymptotic
analysis to derive a reduced piezoelectric plate model from the static three-
dimensional piezoelectric system, but for a nonhomogeneous and anisotropic
material, with nonhomogeneous piezoelectric and dielectric coefficients. In
particular, we remark that the results of this paper generalize those of Sene
[13], obtained for homogeneous isotropic piezoelectric plates, with constant
piezoelectric and dielectric coefficients.

We briefly summarize now the main results of the paper. Let h > 0 be
a small parameter, and for each h we consider the static three-dimensional
piezoelectric problem, for a nonhomogeneous and anisotropic (more specifi-
cally monoclinic) plate Ω̄h = ω̄ × [−h, h], with middle surface ω̄ and thick-
ness 2h. Applying the asymptotic analysis technique, we redefine this three-
dimensional piezoelectric problem into an equivalent problem posed over the
set Ω̄ = ω̄×[−1, 1], that is independent of h. Denoting by (u(h), ϕ(h)) the so-
lution of this latter problem, where u(h) is the displacement vector and ϕ(h)
is the electric potential of the plate Ω, we prove that the pair (u(h), ϕ(h))
converges weakly and also strongly, when h→ 0+, to the pair (u, ϕ), in appro-
priate functional spaces independent of h. The limit displacement vector u is
a Kirchhoff-Love displacement and the unique solution of a two-dimensional
piezoelectric plate model, that is totally independent of ϕ, but depends on
the mechanical and electric data of the three-dimensional piezoelectric prob-
lem. The limit electric potential is a second order polynomial, with respect
to the thickness variable, whose coefficients depend on the transverse com-
ponent of the Kirchhoff-Love displacement u, the elastic, piezoelectric and
dielectric coefficients, and the electric potential data applied on the upper
and lower faces of the plate (cf. (58).

The theorem 3.4 describes the variational formulation of the two-dimensional
piezoelectric plate model and the expression of ϕ. The theorem 4.1 presents
the boundary value problem formulation of the two-dimensional piezoelectric
plate model. In particular this model is a generalization of the usual elasticity
plate model for anisotropic plates (cf. Green and Zerna [8] and Destuynder
[7]): the stress resultants and the stress couples differ from the pure elastic-
ity stress resultants and the stress couples because they include terms that
depend on the piezoelectric and dielectric coefficients (cf. N̂αβ and M̂αβ de-
fined by (63) or by (67) in theorem 4.1). In fact, comparing the equations
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(64)-(65) that define the two-dimensional piezoelectric plate model, with the
usual elasticity plate model for anisotropic plates, it appears on the left-hand
sides of (64)-(65) an additional fourth order term and an additional second
order term, respectively (cf. expressions of Mαβ and Nαβ defined by (62)),
and on the corresponding right-hand sides there are terms that depend on
the electric potential data applied on the upper and lower faces of the plate,
and that act like a force in the two-dimensional piezoelectric plate model.

For a better physical understanding of the limit problem, the theorem 4.2
presents the formulation of the two-dimensional piezoelectric plate model and
the expression of ϕ, with respect to the original plate Ω̄h.

Finally let us shortly describe the contents of this paper. After this intro-
duction we recall in section 2 the three-dimensional piezoelectric plate model.
The asymptotic analysis is done in section 3 and it involves the definitions
of the scalings for the unknowns, the assumptions on the data, the calculus
of the limit of (u(h), ϕ(h)), when h approaches zero, and the variational for-
mulation of the limit problem. The section 4 concerns the formulation of the
two-dimensional piezoelectric plate model as a boundary value problem. In
section 5 we make some observations.

2. The three-dimensional piezoelectric plate model
In this section we first introduce some notations. Then, we recall the static

three-dimensional piezoelectric model, for a nonhomogeneous anisotropic
thin plate, and we describe its formulation as a boundary value problem
and the variational formulation.

2.1. Notations. Let ω ⊂ IR2 be a bounded domain with a Lipschitz con-
tinuous boundary ∂ω and γ0, γe subsets of ∂ω, such that, meas(γ0) > 0 and
meas(γe) > 0. We also define γ1 = ∂ω \ γ0, γs = ∂ω \ γe.

For each 0 < h ≤ 1 we consider the sets

Ωh = ω × (−h, h), Γh
± = ω × {±h}, Γh

D = γ0 × (−h, h),
Γh

1 = γ1 × (−h, h), Γh
N = Γh

1
⋃

Γh
±,

Γh
eN = γs × (−h, h), Γh

eD = Γh
±

⋃ (
γe × (−h, h)

)
,

(1)

where Ωh is a plate with middle surface ω and thickness 2h, Γh
+ and Γh

− are,
respectively, the upper and lower faces of the plate Ωh, the sets Γh

D, Γh
1 and

Γh
eN are portions of the lateral surface ∂ω × (−h, h) of Ωh, and finally Γh

N

and Γh
eD are portions of the boundary ∂Ωh of Ωh. An arbitrary point of Ωh
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is denoted by xh = (xh
1 , x

h
2 , x

h
3), where the first two components (xh

1 , x
h
2) =

(x1, x2) ∈ ω are independent of h and xh
3 ∈ (−h, h). We also denote by

νh = (νh
1 , ν

h
2 , ν

h
3 ) the outward unit normal vector to ∂Ωh.

Throughout the paper, the latin indices i, j, k, l... belong to the set
{1, 2, 3}, the greek indices α, β, µ... vary in the set {1, 2} and the sum-
mation convention with respect to repeated indices is employed, that is,
aibi =

∑3
i=1 aibi. Moreover we denote by a · b = aibi the inner product of

the vectors a = (ai) and b = (bi), by Ce = (Cijklekl) the contraction of a
fourth order tensor C = (Cijkl) with a second order tensor e = (ekl) and by
Ce : d = Cijklekldij the inner product of the tensors Ce and d = (dij). Given
a function θ(xh) defined in Ωh we denote by ∂h

i θ its partial derivative with
respect to xh

i , that is, ∂h
i θ = ∂θ

∂xh
i
.

2.2. Boundary value problem. In the sequel we consider a static three-
dimensional piezoelectric plate model, disregarding the thermal and magnetic
effects, and for the case of small deformations and linear piezoelectricity. This
is a model with three groups of equations and boundary conditions, that is
described below.

Mechanical equilibrium equations −divσh(uh, ϕh) = fh ⇐⇒ −∂h
j σ

h
ij(u

h, ϕh) = fh
i , in Ωh,

σh(uh, ϕh) νh = gh ⇐⇒ σh
ij(u

h, ϕh) νh
j = gh

i , on Γh
N ,

uh = 0, on Γh
D,

(2)

Constitutive equations[
σh(uh, ϕh) = Cheh(uh)− P hEh(ϕh), in Ωh,
Dh(uh, ϕh) = P heh(uh) + εhEh(ϕh), in Ωh,

(3)

Maxwell-Gauss equations divDh(uh, ϕh) = 0 ⇐⇒ ∂h
i D

h
i (u

h, ϕh) = 0, in Ωh,
Dh(uh, ϕh)νh = 0 ⇐⇒ Dh

i (u
h, ϕh)νh

i = 0, on Γh
eN ,

ϕh = ϕh
0 , on Γh

eD.
(4)

The unknown of the piezoelectric plate model (2)-(4) is the pair (uh, ϕh),
where uh : Ωh → IR3 denotes the displacement vector field and ϕh : Ωh → IR
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is the electric potential, that is a scalar field. For each point xh ∈ Ω̄h, the
vector uh(xh) represents the displacement that the point xh undergoes and
ϕh(xh) represents the electric potential at xh.

The mechanical equilibrium equations express the balance of mechanical
loads and internal stresses. We suppose that fh is the density of the applied
body forces acting on the plate Ωh, gh is the density of applied surface forces
on Γh

N and we also assume that the plate is clamped along Γh
D.

The constitutive equations represent the electromechanical interaction that
characterizes piezoelectricity. It is a relation between the stress tensor σh :
Ωh → IR9, the electric displacement vector Dh : Ωh → IR3, the linear strain
tensor eh(uh) and the electric field vector Eh(ϕh), where

eh(uh) =
1

2

(
∇huh + (∇huh)T

)
and Eh(ϕh) = −∇hϕh, (5)

or, equivalently, componentwise

eh
ij(u

h) =
1

2

(
∂h

i u
h
j + ∂h

j u
h
i ) and Eh

i (ϕh) = −∂h
i ϕ

h. (6)

Moreover Ch = (Ch
ijkl) is the elastic fourth order tensor field, P h = (P h

ijk)

is the piezoelectric third order tensor field, and εh = (εh
ij) is the dielectric

second order tensor field.
Finally the Maxwell-Gauss equations are the equations that govern the

electric displacement vector field Dh. We assume that ϕh
0 is the electric

potential applied on Γh
eD and there is no electric loading in Ωh nor on Γh

eN .
In addition we suppose the following hypotheses on the data: the applied

forces and applied electric potential have the regularity

fh ∈
[
L2(Ωh)

]3
, gh ∈

[
L2(Γh

N)
]3
, ϕh

0 ∈ H
1
2 (Γh

eD), (7)

and the three tensor fields Ch = (Ch
ijkl), P

h = (P h
ijk) and εh = (εh

ij) are
independent of the thickness h but depend on x = (x1, x2, x3) ∈ ω̄ × [−1, 1],
that is, there exist tensor fields C = (Cijkl), P = (Pijk) and ε = (εij), such
that, for any xh = (x1, x2, hx3) ∈ Ω̄h with x3 ∈ [−1, 1], then

Ch
ijkl(x

h) = Cijkl(x)

P h
ijk(x

h) = Pijk(x)

εh
ij(x

h) = εij(x)

, and x = (x1, x2, x3) ∈ ω̄ × [−1, 1], (8)



6 ISABEL M. NARRA FIGUEIREDO AND CARLOS M. FRANCO LEAL

where Cijkl, Pijk and εij are independent of h. We also assume that Cijkl,
Pijk, εij are smooth enough functions defined in ω̄ × [−1, 1], that verify the
following symmetric and coercive properties:

• in ω̄ × [−1, 1]

Cijkl = Cjikl = Cklij, Cαβγ3 = 0 = Cα333,

Pijk = Pikj, εij = εji,
(9)

• there exists constants c1 > 0 and c2 > 0, such that

Cijkl(x)MklMij ≥ c1

3∑
i,j=1

(Mij)
2 and εij(x)θiθj ≥ c2

3∑
i=1

θ2
i (10)

for every symmetric 3× 3 real matrix M and any vector θ ∈ IR3 and
for every x ∈ ω̄ × [−1, 1].

The hypotheses Cαβγ3 = 0 = Cα333 are usually assumed for plates and physi-
cally they mean that the plate has elastic symmetry with respect to the plane
x3 = 0 (cf. Green and Zerna [8]). Consequently the material is monoclinic
and the number of independent elastic coefficients Cijkl is equal to 13.

In particular, we also remark that for a homogeneous and isotropic material
the elasticity coefficients Cijkl are constants defined by

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (11)

where λ and µ are the Lamé constants, and δij = 0 if i 6= j, and δij = 1 if
i = j.

2.3. Variational formulation. We define the space of admissible displace-
ments

V h =
{
vh ∈ [H1(Ωh)]3 : vh

|Γh
D

= 0
}

(12)

with the norm ‖vh‖V h = ‖∇vh‖[L2(Ω)]9, and the space of admissible electric
potentials

Ψh =
{
ψh ∈ H1(Ωh) : ψh

|Γh
eD

= 0
}

(13)

with the norm ‖ψh‖Ψh = ‖∇ψh‖[L2(Ω)]3. Let ϕ̄h = ϕh−ϕh
0 , where ϕh

0 is a trace

lifting in H1(Ωh) of the boundary potential acting on Γh
eD (cf. (4)). Then,
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the variational formulation of the system (2)-(4) is defined by{
Find (uh, ϕ̄h) ∈ V h ×Ψh such that:

ah
(
(uh, ϕ̄h), (vh, ψh)

)
= lh(vh, ψh), ∀(vh, ψh) ∈ V h ×Ψh,

(14)

where 
ah

(
(uh, ϕ̄h), (vh, ψh)

)
=∫

Ωh Ce
h(uh) : eh(vh) dxh +

∫
Ωh εij ∂

h
i ϕ̄

h ∂h
j ψ

h dxh

+
∫

Ωh Pijk

(
∂h

i ϕ̄
heh

jk(v
h)− ∂h

i ψ
heh

jk(u
h)

)
dxh

(15)

and [
lh(vh, ψh) =

∫
Ωh f

h · vh dxh +
∫

Γh
N
gh · vh dΓh

N

−
∫

Ωh εij ∂
h
i ϕ

h
0 ∂

h
j ψ

h dxh −
∫

Ωh Pijk ∂
h
i ϕ

h
0 e

h
jk(v

h) dxh.
(16)

To obtain (14) we do the inner product of the first equation of (2) by vh ∈ V h

and we multiply the first equation of (4) by ψh ∈ Ψh. Afterwards we add the
two resulting equations, we integrate in Ω, we use the Green’s formula, all
the boundary conditions and the constitutive equations defined in (2)-(4).

With the definition of ah(., .) it is clear that[
ah

(
(vh, ψh), (vh, ψh)

)
=∫

Ωh Ce
h(vh) : eh(vh) dxh +

∫
Ωh εij ∂

h
i ψ

h ∂h
j ψ

h dxh,
(17)

and therefore, by the coercive properties (10) and the Lax-Milgram lemma,
the variational problem (14) has a unique solution.

3. Asymptotic analysis
In this section we apply the asymptotic analysis procedure (as developed

by Ciarlet [4]) to the variational problem (14). We first transform the three-
dimensional piezoelectric plate problem (14), into an equivalent problem de-
pending on h, but posed over a set Ω = ω × (−1, 1) independent of h, using
appropriate scalings of the unknowns uh, ϕh and convenient assumptions on
the data. Then we study the behavior of the scaled displacements, electric
potentials, stresses and electric vectors as the thickness h → 0+. The the-
orem 3.4 gives a characterization of the limit displacement vector and the
limit electric potential.
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3.1. The scaled three-dimensional problem. We redefine here the three-
dimensional variational problem (14) in the domain Ω = ω × (−1, 1) in-
dependent of h. To each x = (x1, x2, x3) ∈ Ω we associate the element
xh = (x1, x2, hx3) ∈ Ωh. We also consider the subsets defined in (1) for the
choice h = 1, that is

Γ± = ω × {±1}, ΓD = γ0 × (−1, 1),

Γ1 = γ1 × (−1, 1), ΓN = Γ1
⋃

Γ±,

ΓeN = γs × (−1, 1), ΓeD = Γ±
⋃ (

γe × (−1, 1)
)
.

(18)

We denote by ν = (ν1, ν2) = (να) the unit outer normal vector along ∂ω, by
τ = (τ1, τ2) = (τα), with τ1 = −ν2 and τ2 = ν1, the unit tangent vector along
∂ω, by ∂θ

∂ν = να∂αθ the outer normal derivative of the scalar function θ along
∂ω, and by ∂τθ = τα∂αθ the tangential derivative of the scalar function θ
along ∂ω. We also denote by ∂i = ∂

∂xi
and ∂ij = ∂2

∂xi∂xj
, the first and second

partial derivatives with respect to xi and xj.
We follow exactly the same choices of Sene [13] for the assumptions on the

data and the scalings of the unknowns and the constitutive equations. We
suppose that the data verify the hypotheses

fh
α(xh) = h2fα(x), fh

3 (xh) = h3f3(x), x ∈ Ω,

gh
α(xh) = h2gα(x), gh

3 (xh) = h3g3(x), x ∈ Γ1,

gh
α(xh) = h3gα(x), gh

3 (xh) = h4g3(x), x ∈ Γ±,

ϕh
0(x

h) = h3ϕ0(x), x ∈ Ω̄,

(19)

where fα ∈ H1(Ω), f3 ∈ L2(Ω), gα ∈ H1(ΓN), g3 ∈ L2(ΓN), ϕ0 ∈ H1(Ω). In
addition we denote by g+

3 = g3|Γ+
, g−3 = g3|Γ− , ϕ+

0 = ϕ0|Γ+
, ϕ−0 = ϕ0|Γ− and we

assume that ϕ+
0 − ϕ−0 ∈ H1(ω). For the unknowns we define the scalings

uh
α(xh) = h2uα(h)(x), u3

α(xh) = hu3(h)(x), x ∈ Ω,

ϕh(xh) = h3ϕ(h)(x), x ∈ Ω.
(20)

The scalings of the stress tensor and the electric displacement vector are
induced by (20) and are defined by

σij(h)(u(h), ϕ(h)) = h−2σh
ij(u

h, ϕh), Di(u(h), ϕ(h)) = h−2Dh
i (u

h, ϕh),
(21)
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where

σij(h)(u(h), ϕ(h)) = Cijlm κlm(h) + hPαij ∂αϕ(h) + P3ij ∂3ϕ(h),

Di(h)(u(h), ϕ(h)) = Pilm κlm(h)− h εiα ∂αϕ(h)− εi3 ∂3ϕ(h).
(22)

We also introduce the scaled admissible displacement space V and the
scaled admissible electric potential space Ψ

V =
{
v ∈ [H1(Ω)]3 : v|ΓD

= 0
}

Ψ =
{
ψ ∈ H1(Ω) : ψ|ΓeD

= 0
}
,

(23)

equipped with the norms ‖v‖V = ‖∇v‖(L2(Ω))9 and ‖ψ‖Ψ = ‖∇ψ‖(L2(Ω))3,
respectively.

For any v ∈ V we define the second order symmetric tensor field κ(h)(v) =
(κij(h)(v)) by

καβ(h)(v) = eαβ(v) = 1
2(∂βvα + ∂αvβ),

κα3(h)(v) = 1
heα3(v) = 1

2h(∂3vα + ∂αv3),

κ33(h)(v) = 1
h2e33(v) = 1

h2∂3v3.

(24)

In particular, when v = u(h) we set κ(h) = κ(h)(u(h)). As a consequence of
the scalings (20) we have

eh(uh) = h2κ(h)(u(h)) = h2κ(h) and eh(vh) = h2κ(h)(v). (25)

Using all the scalings and assumptions on the data, we conclude that (14) is
equivalent to the following scaled three-dimensional variational problem{

Find (u(h), ϕ̄(h)) ∈ V ×Ψ such that:

a(h)
(
(u(h), ϕ̄(h)), (v, ψ)

)
= l(h)(v, ψ), ∀(v, ψ) ∈ V ×Ψ,

(26)

where
a(h)

(
(u(h), ϕ̄(h)), (v, ψ)

)
=

∫
ΩCκ(h) : κ(h)(v) dx+

∫
Ω ε33 ∂3ϕ̄(h) ∂3ψ dx

+
∫

Ω P3jk

[
∂3ϕ̄(h)κjk(h)(v)− ∂3ψ κjk(h)

]
dx

+h
∫

Ω ε3α

[
∂αϕ̄(h) ∂3ψ + ∂3ϕ̄(h) ∂αψ

]
dx

+h
∫

Ω Pαjk

[
∂αϕ̄(h)κjk(h)(v)− ∂αψ κjk(h)

]
dx+ h2

∫
Ω εαβ ∂αϕ̄(h) ∂βψ dx,

(27)
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and 
l(h)(v, ψ) =

∫
Ω f · v dx+

∫
ΓN
g · v dΓN −

∫
Ω ε33 ∂3ϕ0 ∂3ψ dx

−h
∫

Ω εα3
[
∂αϕ0 ∂3ψ + ∂3ϕ0 ∂αψ

]
dx− h2

∫
Ω εαβ ∂αϕ0 ∂βψ dx

−
∫

Ω P3ij ∂3ϕ0 κij(h)(v) dx− h
∫

Ω Pαij ∂αϕ0 κij(h)(v) dx.

(28)

3.2.The limit problem. We essentially compute here the limit of the scaled
displacements and scaled electric potentials (u(h), ϕ(h)), when h→ 0+. We
identify also the limit problem, that we call reduced piezoelectric plate model.

Let

VKL = {v ∈ [H1(Ω)]3 : v|ΓD
= 0, ei3(v) = 0},

Ψl = {ψ ∈ L2(Ω) : ∂3ψ ∈ L2(Ω)},
Ψl0 = {ψ ∈ L2(Ω) : ∂3ψ ∈ L2(Ω), ψ|Γ± = 0}.

(29)

The space VKL, which is called the Kirchhoff-Love displacement space, is also
defined by

VKL = {v ∈ [H1(Ω)]3 : ∃(η1, η2) ∈ VH(ω), η3 ∈ V3(ω),

vα(x) = ηα(x1, x2)− x3∂αη3(x1, x2), v3(x) = η3(x1, x2)},
(30)

where

VH(ω) = {η = (η1, η2) ∈ [H1(ω)]2 : η|γ0
= 0},

V3(ω) = {η3 ∈ H2(ω) : η3|γ0
= 0, ∂νη3|γ0

= 0}.
(31)

Theorem 3.1. There exist u ∈ [H1(Ω)]3, κ ∈ [L2(Ω)]9 and ϕ ∈ L2(Ω)
and subsequences {u(h)}h>0, {κ(h)}h>0 and {(h∂1ϕ(h), h∂2ϕ(h), ∂3ϕ(h))}h>0
(still indexed by h), such that the following weak convergences are satisfied,
when h→ 0+,

u(h) ⇀ u in [H1(Ω)]3,

κ(h) ⇀ κ in [L2(Ω)]9,

ϕ(h) ⇀ ϕ in L2(Ω),

(h∂1ϕ(h), h∂2ϕ(h), ∂3ϕ(h)) ⇀ (0, 0, ∂3ϕ) in [L2(Ω)]3.

(32)
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Moreover, the limits u, κ and ϕ belong to the spaces VKL, [L2(Ω)]9 and Ψl,
respectively, ϕ = ϕ0 on Γ± and

καβ = eαβ(u), in L2(Ω),

κ33 = − 1
C3333

(P333∂3ϕ+ C33αβeαβ(u)), in L2(Ω),

κ13 = −
1
2det

 P313 C1323
P323 C2323


det

 C1313 C1323
C2313 C2323

 ∂3ϕ, in L2(Ω),

κ23 = −
1
2det

 C1313 P313
C2313 P323


det

 C1313 C1323
C2313 C2323

 ∂3ϕ, in L2(Ω).

(33)

Proof. Taking (v, ψ) = (u(h), ϕ̄(h)) in (26) we obtain{
‖u(h)‖2

V +
∫

Ω κ(h) : κ(h)dx

+‖h ∂1ϕ(h)‖2
L2(Ω) + ‖h ∂2ϕ(h)‖2

L2(Ω) + ‖∂3ϕ(h)‖2
L2(Ω) < c

(34)

where c > 0 is a constant independent of h. Arguing as in Sene ([13],
proposition 3.1) the weak convergences in (32) are a direct consequence of
this inequality.

The sequence κi3(h) is bounded in L2(Ω), because of (34), and consequently
eα3(u(h)) = hκα3(h) and e33(u(h)) = h2κ33(h) strongly converge to zero in
L2(Ω). Thus ei3(u) = 0, which means that u ∈ VKL.

The first equation in (33) is a consequence of the first two convergences
in (32). To obtain the remaining three equations of (33) we first multiply
equation (26) by h2 and consider ψ = 0, then we multiply (26) by h and take
(v3, ψ) = (0, 0). In both cases we consider the limit when h→ 0. We obtain
that

C33lmκlm + P333∂3ϕ̄ = −P333∂3ϕ0, in L2(Ω),

Cα3lmκlm + P3α3∂3ϕ̄ = −P3α3∂3ϕ0, in L2(Ω),
(35)
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where ϕ̄ = ϕ− ϕ0. Taking into account that Cαβγ3 = 0 = Cα333, the system
(35) reduces to

C33αβκαβ + C3333κ33 = −P333∂3ϕ, in L2(Ω),

2Cα3β3κβ3 = −P3α3∂3ϕ, in L2(Ω),
(36)

and the solution of this system is precisely (33).�

As a consequence of the previous theorem we have the following limit result
for the scaled stress tensor and the scaled electric displacement field.

Theorem 3.2. There exist σ ∈ [L2(Ω)]9, D ∈ [L2(Ω)]3 and subsequences
{σij(h)(u(h), ϕ(h))}h>0 and {Di(h)(u(h), ϕ(h))}h>0 (still indexed by h), such
that the following weak convergences are satisfied, when h→ 0+,

σij(h)(u(h), ϕ(h)) ⇀ σij in [L2(Ω)]9,

Di(h)(u(h), ϕ(h)) ⇀ Di in [L2(Ω)]3,
(37)

where

σi3 = 0,

σαβ =
[
Cαβγρ − Cαβ33C33γρ

C3333

]
eγρ(u) +

[
P3αβ − Cαβ33

C3333
P333

]
∂3ϕ,

(38)

and

Di =
[
Piαβ − Cαβ33

C3333
Pi33

]
eαβ(u)−

{
εi3 +

Pi33P333

C3333

+ 1

det

 C1313 C1323
C2313 C2323


[
P323
P313

]T [
C1313 −C1323
−C2313 C2323

] [
Pi23
Pi13

]}
∂3ϕ.

(39)

Proof. Using the theorem 3.1 and taking the weak limit in (22) when h→ 0+,
we have that

σij = Cijlmκlm + P3ij∂3ϕ,

Di = Pilmκlm − εi3∂3ϕ.
(40)

But using (36) we immediately have σi3 = 0. Then introducing the definition
of κlm in (40) we obtain the definitions of σαβ and Di. �

We observe that σi3 = 0 means that at the limit the stresses are plane.
This agrees with the a priori hypotheses on the stresses made by Bernadou
and Hanel [1], p.4015, for piezoelectric thin shells.
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The next theorem gives a first characterization of the weak limit (u, ϕ)
defined in theorem 3.1. To that purpose we introduce the reduced elasticity
coefficients Aαβγρ defined by

Aαβγρ = Cαβγρ −
Cαβ33C33γρ

C3333
, (41)

the coefficients p3αβ

p3αβ = P3αβ −
Cαβ33

C3333
P333, (42)

and p33
p33 = ε33 +

P333P333

C3333

+ 1

det

 C1313 C1323
C2313 C2323


[
P323
−P313

]T [
C1313 C1323
C2313 C2323

] [
P323
−P313

]
.

(43)

We remark that the positivity hypothesis (10) guarantees that in ω̄× [−1, 1]

C3333 > 0, ε33 > 0, det

[
C1313 C1323
C2313 C2323

]
> 0, (44)

and [
C1313 C1323
C2313 C2323

]
(45)

is a positive definite matrix, which implies that p33 > c in Ω̄, with c a strictly
positive constant. Also as a consequence of the hypothesis (10), A = (Aαβγρ)
is coercive (cf. Figueiredo and Leal [10]), that is, there exists a constant
c > 0 independent of x

Aαβγρ(x)MγρMαβ ≥ c

2∑
α,β=1

(Mαβ)
2 (46)

for every symmetric 2× 2 real matrix M and for every x ∈ ω̄ × [−1, 1].
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Theorem 3.3. The weak limit (u, ϕ) is the unique solution of the variational
problem 

Find (u, ϕ) ∈ VKL ×Ψl such that:

a
(
(u, ϕ), (v, ψ)

)
= l(v, ψ), ∀(v, ψ) ∈ VKL ×Ψl0,

ϕ = ϕ0, on Γ±,

(47)

where[
a
(
(u, ϕ), (v, ψ)

)
=

∫
ΩAαβγρeαβ(u)eγρ(v) dx+

∫
Ω p33 ∂3ϕ∂3ψ dx

−
∫

Ω p3αβ

[
eαβ(u)∂3ψ − eαβ(v)∂3ϕ

]
dx,

(48)

and

l(v, ψ) =

∫
Ω
f · v dx+

∫
ΓN

g · v dΓN . (49)

Proof. Considering (v, ψ) ∈ VKL × Ψ in (27)-(28), taking the limit when
h→ 0+ and using theorem 3.1 we get

lim
h→0+

a(h)
(
(u(h), ϕ̄(h)), (v, ψ)

)
=∫

ΩCαβijκijeαβ(v) dx+
∫

Ω ε33 ∂3ϕ̄ ∂3ψ dx+

+
∫

Ω P3αβ ∂3ϕ̄ eαβ(v) dx−
∫

Ω P3lm ∂3ψ κlm dx,

(50)

and lim
h→0+

l(h)(v, ψ) =

∫
Ω
f · v dx+

∫
ΓN

g · v dΓN −
∫

Ω
ε33 ∂3ϕ0 ∂3ψ dx

−
∫

Ω P3αβ ∂3ϕ0 eαβ(v) dx.
(51)

Remarking that ϕ̄ = ϕ − ϕ0 and introducing in (50)-(51) the definitions of
κij, given in theorem 3.1, we clearly have (47).

To prove the uniqueness of the solution we suppose that (û, ϕ̂) is another
solution of (47), and define z = û− u and χ = ϕ̂− ϕ. Then subtracting the
equations

a((u, ϕ), (z, χ)) = l(z, χ)

a((û, ϕ̂), (z, χ)) = l(z, χ)
(52)

we get

0 = a((z, χ), (z, χ)) =

∫
Ω
Aαβγρeαβ(z)eγρ(z) dx+

∫
Ω
p33 ∂3χ∂3χdx. (53)
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But because of the ellipticity of the coefficients Aαβγρ, cf. (46), and the
property of p33 we have

0 =
∫

ΩAαβγρeαβ(z)eγρ(z) dx+
∫

Ω p33 ∂3χ∂3χdx

≥ c1
∑2

α,β=1 ‖eαβ(z)‖L2(Ω) + c2‖∂3χ‖2
L2(Ω),

(54)

where c1 and c2 are strictly positive constants. Hence z = 0 in VKL, ∂3χ = 0
in L2(Ω) and χ = 0 in Ψl0, and this finishes the proof. �

Remark – Using arguments similar to those of Sene ([13], theorem 4.1) we
can state that the weak convergences verified in theorem 3.1 are also strong.

We can also demonstrate that the limit electric potential ϕ has an explicit
form as a function of the third component of the limit displacement u. This
characterization of ϕ induces a simplification of the limit variational problem
defined in (47); it can be reduced to a variational problem whose unknown is
only the Kirchhoff-Love displacement u. These statements are summarized
in the next theorem.

Theorem 3.4 (The reduced piezoelectric plate model). When h → 0, the
solution (u(h), ϕ(h)) of (2)-(4) converges strongly to (u, ϕ), in the functional
space H1(Ω)× L2(Ω), and verifies the properties i) and ii) described below.

i) The limit displacement u is a Kirchhoff-Love displacement vector field,
that is

u(x) = (u1(x), u2(x), u3(x)), x = (x1, x2, x3) ∈ Ω̄

u1(x) = ζ1(x1, x2)− x3∂1ζ3(x1, x2)

u2(x) = ζ2(x1, x2)− x3∂2ζ3(x1, x2)

u3(x) = ζ3(x1, x2)

(55)

where ζ1, ζ2 ∈ VH(ω), ζ3 ∈ V3(ω), and u is the solution of the problem{
Find u ∈ VKL such that:

ā(u, v) = l̄(v), ∀v ∈ VKL,
(56)

where

ā(u, v) =
∫

ΩAαβγρeαβ(u)eγρ(v) dx−
∫

Ω x3
p3αβp3γρ

p33
∂γρζ3 eαβ(v) dx,

l̄(v) =
∫

Ω f · v dx+
∫

ΓN
g · v dΓN −

∫
Ω

ϕ+
0 −ϕ−0

2 p3αβ eαβ(v) dx.
(57)
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ii) The limit electric potential ϕ is a second order polynomial in x3, whose
coefficients depend on ζ3, and the exact analytic form of ϕ is the following

ϕ(x1, x2, x3) =
∑2

m=0 ψ
m(x1, x2)x

m
3 ,

ψ0 = ϕ+
0 +ϕ−0

2 +
p3αβ

2p33
∂αβζ3,

ψ1 = ϕ+
0 −ϕ−0

2 ,

ψ2 = −p3αβ

2p33
∂αβζ3.

(58)

Proof. The proof of ii) is exactly the same as in Sene ([13], theorem 3.1). To
demonstrate i) it is enough to take ψ = 0 in (47) and to replace ϕ by the
expression (58). �

4. The two-dimensional piezolectric plate model
In this section we give the formulation of the problem (56) as a boundary

value problem, that we call two-dimensional piezoelectric plate model. The
word two-dimensional means that the solution u is completely determined
by the solution ζ = (ζ1, ζ2, ζ3) of a two-dimensional boundary value problem
posed over the middle surface ω of the plate, and the word piezolectric signi-
fies that this model depends on the elastic and electric data imposed on the
three-dimensional problem. Besides, the theorem 4.2 gives the formulation of
this two-dimensional piezolectric plate model and the expression of the limit
electric potential, with respect to the original plate Ω̄h = ω̄h × [−h, h]. This
is achieved after de-scaling the limit displacement vector u, the limit electric
potential ϕ and the variational equations (56) and (47).

To formulate the results of this section we must define the following coef-
ficients

Aαβγρ(x1, x2) =
∫ +1
−1 Aαβγρ(x)dx3

Bαβγρ(x1, x2) =
∫ +1
−1 x3Aαβγρ(x)dx3

Cαβγρ(x1, x2) =
∫ +1
−1 x

2
3Aαβγρ(x)dx3

(59)

and
Dαβγρ(x1, x2) =

∫ +1
−1 x3

p3αβp3γρ

p33
(x)dx3

Eαβγρ(x1, x2) =
∫ +1
−1 x

2
3

p3αβp3γρ

p33
(x)dx3.

(60)

These new coefficients depend on (x1, x2) ∈ ω and are associated to the
elasticity, piezoelectric and dielectric coefficients. Moreover we define also
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the tensors N = (Nαβ) and M = (Mαβ), associated to the Kirchhoff-Love
displacement u, by

[
Nαβ

Mαβ

]
=

[
Aαβγρ −Bαβγρ −Dαβγρ

−Bαβγρ Cαβγρ + Eαβγρ

] [
eγρ(ζ)

∂γρζ3

]
(61)

that is

Nαβ(ζ1, ζ2, ζ3) = Aαβγρeγρ(ζ)−
(
Bαβγρ +Dαβγρ

)
∂γρζ3

Mαβ(ζ1, ζ2, ζ3) = −Bαβγρeγρ(ζ) +
(
Cαβγρ + Eαβγρ

)
∂γρζ3,

(62)

and we remark that both Nαβ and Mαβ depend on the three functions

(ζ1, ζ2, ζ3) = ζ that define u. We also introduce the coefficients N̂αβ and

M̂αβ by

N̂αβ = Nαβ + ϕ+
0 −ϕ−0

2

∫ +1
−1 p3αβ(x)dx3

M̂αβ = Mαβ − ϕ+
0 −ϕ−0

2

∫ +1
−1 x3p3αβ(x)dx3,

(63)

The following theorem formulates the variational problem (56) as a system
of two coupled boundary value problems.

Theorem 4.1 (The two-dimensional piezoelectric plate model). The compo-
nents ζi, for i = 1, 2, 3, of the Kirchhoff-Love displacement u, are the solution
of the following system of dependent boundary value problems (64)-(65), de-
fined on the middle surface of the plate, and depending on the piezoelectric,
dielectric and elastic coefficients, the applied forces and the electric potential
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data:

 ∂αβMαβ =
∫ 1
−1(x3∂αfα + f3) dx3 + g+

3 + g−3 + ∂α(g+
α − g−α )

+∂αβ

(
ϕ+

0 −ϕ−0
2

∫ 1
−1 x3 p3αβ dx3

)
, in ω,

ζ3 = 0 = ∂ζ3

∂ν , on γ0,

Mαβνανβ = ϕ+
0 −ϕ−0

2

∫ 1
−1 x3 p3αβ νανβ dx3 +

∫ 1
−1 gα(−x3) να dx3, on γ1,

∂αMαβνβ + ∂τ(Mαβνατβ) =
∫ 1
−1 x3fα να dx3 + (g+

α − g−α ) να

−
∫ 1
−1 g3 dx3 − ∂τ

( ∫ 1
−1 gα x3 dx3 τα

)
+∂α

(
ϕ+

0 −ϕ−0
2

∫ 1
−1 x3 p3αβ dx3

)
νβ

+∂τ

(
ϕ+

0 −ϕ−0
2

∫ 1
−1 x3 p3αβ dx3 νατβ

)
, on γ1,

(64)
and 

[
−∂αNαβ =

∫ 1
−1 fβ dx3 + (g+

β + g−β )

+∂α

(
ϕ+

0 −ϕ−0
2

∫ 1
−1 p3αβ dx3

)
, in ω,

(ζ1, ζ2) = (0, 0), on γ0,

Nαβνα =
∫ 1
−1 gβ dx3 − ϕ+

0 −ϕ−0
2

∫ 1
−1 p3αβ dx3 να, on γ1.

(65)

Moreover

σαβ = Aαβγρ

(
eγρ(ζ)− x3∂γρζ3

)
− x3

p3αβp3γρ

p33
∂γρζ3 + p3αβ

ϕ+
0 − ϕ−0

2
(66)

and

N̂αβ =

∫ 1

−1
σαβ dx3, −M̂αβ =

∫ 1

−1
x3 σαβ dx3 (67)

which means that N̂αβ are the stress resultants and −M̂αβ are the stress
couples (or bending moments), as in the pure elasticity case.

Proof. First we choose, in (56), v ∈ VKL with the components

vα(x) = −x3∂αη3(x1, x2), v3(x) = η3(x1, x2), (68)

and then
vα(x) = ηα(x1, x2), v3(x) = 0. (69)
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The variational equation (56) may be written as{ ∫
ω Mαβ ∂αβ η3 dω = −

∫
Ω

ϕ+
0 −ϕ−0

2 p3αβ(−x3∂αη3) dx

+
∫

Ω

[
fα(−x3∂αη3) + f3η3

]
dx+

∫
ΓN

[
gα(−x3∂αη3) + g3η3

]
dΓN ,

(70)

for the first choice of v, and it may be written as{ ∫
ω Nαβ eαβ(η) dω = −

∫
Ω

ϕ+
0 −ϕ−0

2 p3αβeαβ(η) dx

+
∫

Ω fαηα dx+
∫

ΓN
gαηα dΓN ,

(71)

for the second choice of v, with Mαβ and Nαβ defined by (61)-(62). Applying
the Green’s formula to (70) and (71) we obtain (64) and (65), respectively.
The definition of σαβ in (66) is a consequence of the expression (38) and the
following formula for ∂3ϕ

∂3ϕ = −p3αβ

p33
x3∂αβζ3 +

ϕ+
0 − ϕ−0

2
(72)

that is obtained directly from the definition (58) of ϕ. �

We observe that the system (64)-(65) generalizes the usual pure elasticity
plate model for anisotropic plates (cf. Green and Zerna [8] and Destuynder
[7]). Moreover we have the following corollary of the previous theorem.

Corollary 4.1. In particular, when Cijkl, p3αβ and p33 are independent of
x3, then the problems (64)-(65) are also independent. More specifically, we
have that:

i) the component ζ3 is the solution of the scalar boundary value equation

∂αβMαβ =
∫ 1
−1(x3∂αfα + f3) dx3 + g+

3 + g−3 + ∂α(g+
α − g−α ), in ω,

ζ3 = 0 = ∂ζ3

∂ν , on γ0,

Mαβνανβ =
∫ 1
−1 gα(−x3) να dx3, on γ1,

∂αMαβνβ + ∂τ(Mαβνατβ) =
∫ 1
−1 x3fα να dx3 + (g+

α − g−α ) να

−
∫ 1
−1 g3 dx3 − ∂τ

( ∫ 1
−1 gα x3 dx3 τα

)
, on γ1,

(73)
with

Mαβ = Mαβ(ζ3) =
2

3

(
Aαβγρ +

p3αβp3γρ

p33

)
∂γρζ3, (74)
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ii) the pair (ζ1, ζ2) is the solution of the boundary value system
−∂αNαβ =

∫ 1
−1 fβ dx3 + (g+

β + g−β ) + ∂α

(
p3αβ(ϕ

+
0 − ϕ−0 )

)
, in ω,

(ζ1, ζ2) = (0, 0), on γ0,

Nαβνα =
∫ 1
−1 gβ dx3 − p3αβ(ϕ

+
0 − ϕ−0 ) να, on γ1.

(75)

with

Nαβ = Nαβ(ζ1, ζ2) = 2Aαβγρ eγρ(ζ). (76)

Proof. When Cijkl, p3αβ and p33 are independent of x3 the system (73)-(76)
is obtained directly from (64)-(65). �

We remark that the previous theorem 4.1 and corollary 4.1 generalize the
results obtained by Sene [13]. In fact, for a homogeneous isotropic thin plate,
that is, a plate where Cijkl is defined by (11) and such that Pijk and εij are
constants independent of x and h, then Cijkl, p3αβ and p33 are independent
of x3, the system (73)-(76) is verified and coincides with the plate model
deduced by Sene ([13], theorem 3.3).

To interpret the limit problem (64)-(65) and the expression of the limit
electric potential (58), with respect to the original plate Ω̄h = ω̄h× [−h, h] it
is convenient to formulate (64)-(65) and (58) in Ω̄h. In order to do that we
define the functions ζh

1 , ζh
2 and ζh

3 by the de-scalings

ζh
α = h2ζα and ζh

3 = hζ3, in ω̄, (77)

and zh
i by

zh
α(xh) = h2uα(x) and zh

3 (xh) = hu3(x), (78)

and φh by

φh(xh) = h3ϕ(x), (79)

for all xh = (x1, x2, hx3), with x = (x1, x2, x3) ∈ Ω̄ = ω̄ × [−1, 1]. The
functions ζh

i are called the limit displacements of the middle surface ω of the
plate Ω̄h = ω̄× [−h, h]. The functions ζh

α and ζh
3 are respectively the in-plane,

and transverse displacements. The functions zh
i and φh are, respectively, the

limit displacements and limit electric potential, inside the plate Ω̄h.
We can now state the following immediate consequence of theorem 3.4,

parts i) and ii).
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Theorem 4.2. The de-scaled functions (ζh
1 , ζ

h
2 , ζ

h
3 ) defined in ω are the so-

lution of the system

 ∂αβM
h
αβ =

∫ +h

−h (xh
3∂αf

h
α + fh

3 ) dxh
3 + gh+

3 + gh−
3 + h∂α(gh+

α − gh−
α )

+∂αβ

(
ϕh+

0 −ϕh−
0

2h

∫ +h

−h x
h
3 p3αβ dx

h
3

)
, in ω,

ζh
3 = 0 = ∂ζh

3

∂ν , on γ0,

Mh
αβνανβ = ϕh+

0 −ϕh−
0

2h

∫ +h

−h x
h
3 p3αβ dx

h
3νανβ +

∫ +h

−h g
h
α(−xh

3) να dx
h
3 , on γ1,

∂αM
h
αβνβ + ∂τ(M

h
αβνατβ) =

∫ +h

−h x
h
3f

h
α να dx

h
3 + h(gh+

α − gh−
α ) να

−
∫ +h

−h g
h
3 dx

h
3 − ∂τ

( ∫ +h

−h g
h
α x

h
3 dx

h
3 τα

)
+∂α

(
ϕh+

0 −ϕh−
0

2h

∫ +h

−h x
h
3 p3αβ dx

h
3

)
νβ

+∂τ

(
ϕh+

0 −ϕh−
0

2h

∫ +h

−h x
h
3 p3αβ dx

h
3 νατβ

)
, on γ1,

(80)
and 

 −∂αN
h
αβ =

∫ +h

−h f
h
β dx

h
3 + (gh+

β + gh−
β )

+∂α

(
ϕh+

0 −ϕh−
0

2h

∫ +h

−h p3αβ dx
h
3

)
, in ω,

(ζh
1 , ζ

h
2 ) = (0, 0), on γ0,

Nh
αβνα =

∫ +h

−h g
h
β dx

h
3 −

ϕh+
0 −ϕh−

0

2h

∫ +h

−h p3αβ dx
h
3 να, on γ1.

(81)

For any (x1, x2) ∈ ω̄,

gh±
i (x1, x2) = gh

i (x1, x2,±h), ϕh±
0 (x1, x2) = ϕh

0(x1, x2,±h) (82)

and Nh
αβ and Mh

αβ are defined by
Nh

αβ(ζ
h
1 , ζ

h
2 , ζ

h
3 ) =∫ +h

−h Aαβγρ dx
h
3 eγρ(ζ)−

∫ +h

−h x
h
3

(
Aαβγρ +

p3αβp3γρ

p33

)
dxh

3 ∂γρζ3,
(83)
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and
Mh

αβ(ζ
h
1 , ζ

h
2 , ζ

h
3 ) =

−
∫ +h

−h x
h
3Aαβγρ dx

h
3 eγρ(ζ) +

∫ +h

−h (xh
3)

2
(
Aαβγρ +

p3αβp3γρ

p33

)
dxh

3 ∂γρζ3.
(84)

The vector field zh = (zh
i ) defined in (78) is a Kirchhoff-Love displacement

field, that is,

eh
i3(z

h) =
1

2
(∂h

i z3 + ∂h
3 zi) = 0, (85)

that verifies
zh
α = ζh

α − xh
3∂αζ

h
3 and zh

3 = ζh
3 in Ω̄h, (86)

where ζh
i are the solution of (80)-(81).

The limit electric potential φh in the plate Ω̄h is defined by

φh(x1, x2, x
h
3) =

∑2
m=0 φ

m(x1, x2)(x
h
3)

m,

φ0(x1, x2) = ϕh+
0 +ϕh−

0

2 + h2 p3αβ

2p33
∂αβζ

h
3 ,

φ1(x1, x2) = ϕh+
0 −ϕh−

0

2h ,

φ2(x1, x2) = −p3αβ

2p33
∂αβζ

h
3 ,

(87)

or equivalently{
φh(x1, x2, x

h
3) =

ϕh+
0 +ϕh−

0

2 + h2 p3αβ

2p33
∂αβζ

h
3 + ϕh+

0 −ϕh−
0

2h xh
3 −

p3αβ

2p33
∂αβζ

h
3 (xh

3)
2.

(88)

Proof. To obtain (80)-(84) we just consider the variational problem (56)
formulated in Ωh, the de-scalings (77)-(78) and argue as in the proof of
theorem 4.1. The formulas (85)-(86) are a direct consequence of the de-
scalings (77)-(78) and the properties of u. To establish (87) we consider
v = 0 in the variational equation (47) and we follow the same reasoning of
Sene ([13], theorem 3.1), but in the domain Ωh, instead of Ω, and we use the
de-scalings (77) and (79). �

5. Comments
We remark that if we do not assume the hypothesis Cαβγ3 = 0 = Cα333,

then we have the general case of anisotropy, with 21 independent elastic
coefficients Cijkl. Therefore the formulas (33) for κ, deduced in theorem 3.1,
would be more complicated and, consequently, the expression of the reduced
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piezoelectric plate model, given in theorem 3.4, would be more complex.
Nevertheless, we think that it is still possible to generalize the results of this
paper to this case of a general anisotropic material.
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