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ABSTRACT: We mathematically justify a reduced piezoelectric plate model. This
is achieved considering the three-dimensional static equations of piezoelectricity,
for a nonhomogeneous anisotropic thin plate, and using the asymptotic analysis to
compute the limit of the displacement vector and electric potential, as the thickness
of the plate approaches zero. We prove that the three-dimensional displacement
vector converges to a Kirchhoff-Love displacement, that solves a two-dimensional
piezoelectric plate model, defined on the middle surface of the plate. Moreover,
the three-dimensional electric potential converges to a scalar function that is a
second order polynomial with respect to the thickness variable, with coefficients
that depend on the transverse component of the Kirchhoff-Love displacement. We
remark that the results of this paper generalize a previous work of A. Sene (2001)
for homogeneous and isotropic materials.
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1. Introduction

Piezoelectric plates and more generally structures involving piezoelectric
materials are widely used in real-life applications, namely as sensors or ac-
tuators. The justification is that piezoelectric materials are characterized
by the fact that a mechanical deformation generates an electric field on the
material and, vice-versa, the application to the material of an electric field
produces a deformation (cf. Ikeda [9]).

In the literature there are several recent papers concerning the modelling
of piezoelectric structures. We refer in particular the papers by Bernadou
and Haenel [1, 2, 3], for the modelization and numerical approximation of
piezoelectric thin shells, Collard and Miara [6] for the justification of geomet-
rically nonlinear thin piezoelectric shells models, Raoult and Sene [11], for
the modelling of piezoelectric plates including magnetic effects, Sene [13], for
the modelling of piezoelectric static thin plates, Sabu [12], for the modelling
of eigenvalues problems for thin piezoelectric shells. The technique used in
Collard and Miara [6], Raoult and Sene [11], Sene [13] and Sabu [12] is the
asymptotic analysis (cf. Ciarlet [4, 5] for a description of the asymptotic
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analysis procedure applied to elastic plates and shells) and the materials are
homogeneous and isotropic.

The present paper is inspired in Sene [13], and we use again the asymptotic
analysis to derive a reduced piezoelectric plate model from the static three-
dimensional piezoelectric system, but for a nonhomogeneous and anisotropic
material, with nonhomogeneous piezoelectric and dielectric coefficients. In
particular, we remark that the results of this paper generalize those of Sene
[13], obtained for homogeneous isotropic piezoelectric plates, with constant
piezoelectric and dielectric coefficients.

We briefly summarize now the main results of the paper. Let h > 0 be
a small parameter, and for each h we consider the static three-dimensional
piezoelectric problem, for a nonhomogeneous and anisotropic (more specifi-
cally monoclinic) plate Q" = © x [—h, h], with middle surface & and thick-
ness 2h. Applying the asymptotic analysis technique, we redefine this three-
dimensional piezoelectric problem into an equivalent problem posed over the
set 1 = wx[—1, 1], that is independent of h. Denoting by (u(h), ¢(h)) the so-
lution of this latter problem, where u(h) is the displacement vector and ¢(h)
is the electric potential of the plate (2, we prove that the pair (u(h), p(h))
converges weakly and also strongly, when h — 07, to the pair (u, ), in appro-
priate functional spaces independent of h. The limit displacement vector u is
a Kirchhoff-Love displacement and the unique solution of a two-dimensional
piezoelectric plate model, that is totally independent of ¢, but depends on
the mechanical and electric data of the three-dimensional piezoelectric prob-
lem. The limit electric potential is a second order polynomial, with respect
to the thickness variable, whose coefficients depend on the transverse com-
ponent of the Kirchhoff-Love displacement u, the elastic, piezoelectric and
dielectric coefficients, and the electric potential data applied on the upper
and lower faces of the plate (cf. (58).

The theorem 3.4 describes the variational formulation of the two-dimensional
piezoelectric plate model and the expression of ¢. The theorem 4.1 presents
the boundary value problem formulation of the two-dimensional piezoelectric
plate model. In particular this model is a generalization of the usual elasticity
plate model for anisotropic plates (cf. Green and Zerna [8] and Destuynder
[7]): the stress resultants and the stress couples differ from the pure elastic-
ity stress resultants and the stress couples because they include terms that
depend on the piezoelectric and dielectric coefficients (cf. Nug and M,y de-
fined by (63) or by (67) in theorem 4.1). In fact, comparing the equations
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(64)-(65) that define the two-dimensional piezoelectric plate model, with the
usual elasticity plate model for anisotropic plates, it appears on the left-hand
sides of (64)-(65) an additional fourth order term and an additional second
order term, respectively (cf. expressions of M, and N,z defined by (62)),
and on the corresponding right-hand sides there are terms that depend on
the electric potential data applied on the upper and lower faces of the plate,
and that act like a force in the two-dimensional piezoelectric plate model.

For a better physical understanding of the limit problem, the theorem 4.2
presents the formulation of the two-dimensional piezoelectric plate model and
the expression of ¢, with respect to the original plate Q".

Finally let us shortly describe the contents of this paper. After this intro-
duction we recall in section 2 the three-dimensional piezoelectric plate model.
The asymptotic analysis is done in section 3 and it involves the definitions
of the scalings for the unknowns, the assumptions on the data, the calculus
of the limit of (u(h),¢(h)), when h approaches zero, and the variational for-
mulation of the limit problem. The section 4 concerns the formulation of the
two-dimensional piezoelectric plate model as a boundary value problem. In
section 5 we make some observations.

2. The three-dimensional piezoelectric plate model

In this section we first introduce some notations. Then, we recall the static
three-dimensional piezoelectric model, for a nonhomogeneous anisotropic
thin plate, and we describe its formulation as a boundary value problem
and the variational formulation.

2.1. Notations. Let w C IR? be a bounded domain with a Lipschitz con-
tinuous boundary dw and 7y, 7. subsets of dw, such that, meas(yy) > 0 and
meas(vy.) > 0. We also define v = 0w \ 7o, 75 = 0w \ Ye-

For each 0 < h <1 we consider the sets

O =w x (=h,h), Th =wx{Eh}, T = x(=h,h),
[ =y x (=h,h), Th=T7UTL, (1)

FZN = Vs X (_h7 h)? FZD = F}jl: U (fye X (_h7 h))?
where " is a plate with middle surface w and thickness 2h, F}}r and I'" are,
respectively, the upper and lower faces of the plate Q" the sets T'%, 't and

[y are portions of the lateral surface Ow x (—h, h) of Q" and finally T'%
and ', are portions of the boundary Q" of Q. An arbitrary point of "
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is denoted by z" = (af, xh ), where the first two components (27, 2%) =

(z1,79) € w are independent of h and 2% € (—h,h). We also denote by
v = (VP vl vl the outward unit normal vector to Q.

Throughout the paper, the latin indices ¢, j, k, [... belong to the set
{1,2,3}, the greek indices a, (3, p... vary in the set {1,2} and the sum-
mation convention with respect to repeated indices is employed, that is,
a;b; = 23:1 a;b;. Moreover we denote by a - b = a;b; the inner product of
the vectors a = (a;) and b = (b;), by Ce = (Cjjmex) the contraction of a
fourth order tensor C' = (Cjjz) with a second order tensor e = (ey;) and by
Ce:d= Cijklekldij the inner product of the tensors Ce and d = (d;;). Given
a function f(2") defined in Q" we denote by 96 its partial derivative with

respect to x?, that is, 910 = af

(2

2.2. Boundary value problem. In the sequel we consider a static three-
dimensional piezoelectric plate model, disregarding the thermal and magnetic
effects, and for the case of small deformations and linear piezoelectricity. This
is a model with three groups of equations and boundary conditions, that is
described below.

Mechanical equilibrium equations

~diva (" o) = 1 = ool ) = fI i O,

" (u ,90)1/ =g" = oi(u ,w)vh—gz, on I, (2
uh:0, on F}]D,

Constitutive equations

o, ) = CheM () — PREMgh), i O, 5
DMut, ) = Prel(uf) + EMgh), i Q1

Mazwell-Gauss equations
dith( ,cp M =0 < (‘3hDh(uh,goh) =0, in QF
Dh( et =0 < DMu' " =0, on Thy, (4)
<)O - ()007 On Fe

The unknown of the piezoelectric plate model (2)-(4) is the pair (u”, o),
where u" : Q" — IR* denotes the displacement vector field and ¢" : Q" — IR
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is the electric potential, that is a scalar field. For each point z" € Q" the
vector u”(2") represents the displacement that the point 2" undergoes and
©"(2") represents the electric potential at .

The mechanical equilibrium equations express the balance of mechanical
loads and internal stresses. We suppose that f” is the density of the applied
body forces acting on the plate Q", ¢" is the density of applied surface forces
on I'% and we also assume that the plate is clamped along T'%.

The constitutive equations represent the electromechanical interaction that
characterizes piezoelectricity. It is a relation between the stress tensor o :
Q" — IRY. the electric displacement vector D" : Q" — IR3, the linear strain
tensor e(u") and the electric field vector E"("), where

1
e(uh) = é(thh + (VM) and  E"(p") = —V"e", (5)
or, equivalently, componentwise

1
eiy(u") = S (0w + 0juy) and  Ej(¢") = —0/¢". (6)

Moreover O = (C[ijz) is the elastic fourth order tensor field, P" = (Pj;k)

is the piezoelectric third order tensor field, and & = (5%) is the dielectric
second order tensor field.

Finally the Maxwell-Gauss equations are the equations that govern the
electric displacement vector field D". We assume that o} is the electric
potential applied on ' and there is no electric loading in Q" nor on Ty

In addition we suppose the following hypotheses on the data: the applied
forces and applied electric potential have the regularity

fre[t@n’, ¢ e [LPTN] el e Hx (). (7)
and the three tensor fields C" = (C’Zhjkl), Ph = (ng) and &' = (6%) are

independent of the thickness h but depend on x = (x1, 29, x3) € @ X [—1,1],
that is, there exist tensor fields C' = (Cjjx), P = (Px) and € = (g4;), such
that, for any 2" = (1, 22, hwz) € Q" with 23 € [~1,1], then

Cihjkl(xh) = Cijkl(ﬂf)

Ply(a") = Pyr(x) , and z = (z1,29,73) € x [-1,1],  (8)

ey (x") = ei(x)
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where Cjjr, Piji and g;; are independent of h. We also assume that Cjjj,
Pjji, €ij are smooth enough functions defined in w x [—1,1], that verify the
following symmetric and coercive properties:

oinwx[-1,1]
Cijrt = Cjirr = Chaij, Capyz = 0 = Cazas,
Piji = Py, Eij = Ejis

e there exists constants ¢; > 0 and ¢y > 0, such that

3
Cijkl(x)Mkle‘j Z C1 Z(Mij)Q and sij(x)ﬁiéj Z () 293 (10)

ij=1 i=1

for every symmetric 3 X 3 real matrix M and any vector § € IR® and
for every z € w x [—1,1].
The hypotheses Cy3,3 = 0 = Cy333 are usually assumed for plates and physi-
cally they mean that the plate has elastic symmetry with respect to the plane
r3 = 0 (cf. Green and Zerna [8]). Consequently the material is monoclinic
and the number of independent elastic coefficients Cj;p; is equal to 13.
In particular, we also remark that for a homogeneous and isotropic material
the elasticity coefficients Cj;;; are constants defined by

Cijir = N6ij0r + 11(0ir051 + 0410k (11)
where A and p are the Lamé constants, and d;; = 0 if ¢ # 7, and ¢;; = 1 if
i = .

2.3. Variational formulation. We define the space of admissible displace-

ments

vh = {vh e [H\(QNP: ol = } (12)
with the norm [[v"|lyn = ||[Vo"||z2()9, and the space of admissible electric
potentials

wh = {w e H\QM : = o} (13)

with the norm [|[¢"||gr = ||[V§" || 122 Let " = " — ¢, where ¢ is a trace
lifting in H'(Q") of the boundary potential acting on ', (cf. (4)). Then,
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the variational formulation of the system (2)-(4) is defined by

Find (u",@") € V* x U"  such that: (14)
(1), (8, 9) = P, uh), V(g € VI X,
where i
o (. ), o 01) =
Jor CeM(uh) e (") da" + [ €55 00" OT" da” (15)
+ Jon Piji (07"l (v) — Ofphel (u)) da”
and

[ (", ") = th oot dah + frh gt - o drt,
" (16)

= Jo €63 0705 OF " da — [ Prjr 070 €5 (v")
To obtain (14) we do the inner product of the first equation of (2) by v" € V"
and we multiply the first equation of (4) by ¥ € U". Afterwards we add the
two resulting equations, we integrate in €2, we use the Green’s formula, all

the boundary conditions and the constitutive equations defined in (2)-(4).
With the definition of a”(.,.) it is clear that

(0 00, (") =

(17)
Jon Ce"(W") = (") da + [ €55 00" D" da,

and therefore, by the coercive properties (10) and the Lax-Milgram lemma,
the variational problem (14) has a unique solution.

3. Asymptotic analysis

In this section we apply the asymptotic analysis procedure (as developed
by Ciarlet [4]) to the variational problem (14). We first transform the three-
dimensional piezoelectric plate problem (14), into an equivalent problem de-
pending on A, but posed over a set 2 = w x (—1,1) independent of h, using
appropriate scalings of the unknowns u”, ¢" and convenient assumptions on
the data. Then we study the behavior of the scaled displacements, electric
potentials, stresses and electric vectors as the thickness h — 07. The the-
orem 3.4 gives a characterization of the limit displacement vector and the
limit electric potential.
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3.1. The scaled three-dimensional problem. We redefine here the three-
dimensional variational problem (14) in the domain Q = w x (—1,1) in-
dependent of h. To each z = (x1,x2,23) € Q we associate the element
ah = (21, 29, has) € Q". We also consider the subsets defined in (1) for the
choice h = 1, that is

I'n =wx {:I:l}, FD:’VO X (—1,1),
Fl =7 X (_17 1)7 1—‘N — Fl UF:IU (18)
Lenv =7 x (=1,1), Tep=T4U (7 x (-1,1)).

We denote by v = (11, 15) = (v,) the unit outer normal vector along dw, by
T = (11,72) = (74), with 3 = —15 and 75 = v, the unit tangent vector along
Ow, by % = 1,0,0 the outer normal derivative of the scalar function 6 along
Ow, and by 0,0 = 7,0,0 the tangential derivative of the scalar function 6
along dw. We also denote by 0, = Ti and 0; = 525 a , the first and second
partial derivatives with respect to z; and ;.

We follow exactly the same choices of Sene [13] for the assumptions on the
data and the scalings of the unknowns and the constitutive equations. We
suppose that the data verify the hypotheses

( ) = h2fa(x), fi?(xh) - hng(x)v r € Q,
(2") = h?ga(z),  g5(a") = hPgs(x

gZ )7 S F17

h 3 h(,.h 4 (19>
ga( ) =h ga(x), g3 (x ) =h 93(1}), WA F:I:,
908( ) - h3900(x)7 S Q:

where f, € H'(Q), f3 € L*(Q), g € H'(T'xy), g3 € L*(Tn), w0 € H(Q). In
addition we denote by g3 = 93r, > 93 = 93lr_> of = Polr, s Po = ol and we
assume that pi — ¢, € H'(w). For the unknowns we define the scalings

ug (") = hPua(h)(z),  ud(a") = hus(h)(z), =€,

« «

() = B3p(h)(z), =€ Q. (20)

The scalings of the stress tensor and the electric displacement vector are
induced by (20) and are defined by

0ij(R)(u(h), p(h)) = h20};(u", ¢"),  Di(u(h), p(h)) = hQD?(uhAOh)(,m)
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where
0ij(h)(u(h), o(h)) = Cijim Kim(h) + h Faij Oap(h) + P3i; 93p(h),
Di(h)(u(h), p(h)) = Pim tim(h) — heia ap(h) — €i3050(h).

We also introduce the scaled admissible displacement space V' and the
scaled admissible electric potential space W

V= {v eH QP up, = o}

v={yen(@: ur,=0},

equipped with the norms |jv|ly = [[Vvl[(z2@)e and [[¢|le = [V (z20)),
respectively.
For any v € V' we define the second order symmetric tensor field x(h)(v) =

(rij(h)(v)) by

(22)

(23)

Fap(h)(v) = eap(v) = 5(Ipva + Davp),
) = %eag,(v) = ﬁ(&gva + 8avg), (24)
Hgg(h)(v) = #633(@) = #83@3.

In particular, when v = u(h) we set k(h) = k(h)(u(h)). As a consequence of
the scalings (20) we have

e"(u") = K?k(h)(u(h)) = R*x(h) and e"(v") = A?k(h)(v).  (25)

Using all the scalings and assumptions on the data, we conclude that (14) is
equivalent to the following scaled three-dimensional variational problem

{ Find (u(h),p(h)) € V x ¥ such that:

(B (W), 5(1)), (0, 9)) = U)o, ), V(o) eV W, OO

where

[ a(h)((u(h),@(h)), (v,9)) = [o Cr(h) : k(h)(v) d + [ £33 03p(h) Os¢) dar
+ Jo Psjic [03@(h) ki (h)(v) — O3t kjp(R)] da

+h fQ €3a [8ag5(h) 83¢ + (%,@(h) 80577@} dx

+h o Paji; [0a@(h) tj1(1) (V) = Oat) kji(h)] dz + B? [ €05 Oap(h) Op¢) da,
(27)
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and
[(h)(v, ) = [ f -vder+ fFN g-vdly — [ €33 O30 O3t d
—h [ €a3 [Oatp0 O30 + O30 Oatp] dzz — h? [y €0 Oatpo O da (28)
— Jo Psij O30 kij(h) (v) do — h [o Paij Oatpo kij(h)(v) de.

3.2. The limit problem. We essentially compute here the limit of the scaled

displacements and scaled electric potentials (u(h), p(h)), when h — 0F. We

identify also the limit problem, that we call reduced piezoelectric plate model.
Let

Vkr ={ve[H'(Q)]: wvr,=0, es(v)=0},
U, ={ e L*(Q): 0Op € L)}, (29)
\Ifl() = {¢ - L2(Q) : 83¢ - L2(Q), ¢\Fi = O}

The space Vi, which is called the Kirchhoff-Love displacement space, is also
defined by

Vir ={v € [H'(QP: 3(n,m) € Va(w), ns € Vs(w),

(30)
Vo (T) = Na(T1, T2) — 230am3(21, T2), v3(w) = N3(w1, 72)},

where
Via(w) ={n=(n,m) € [H'(W)*: np, =0},
Vi(w) = {n3 € H*(w) : N3, =0, Oum, =0}

Theorem 3.1. There exist u € [HY(Q)]?, k € [L*(Q)]° and ¢ € L*(Q)

and subsequences {u(h)}n=o, {k(h)}n=0 and {(hd1p(h), hdxp(h), O3p(h)) }r=o
(still indexed by h), such that the following weak convergences are satisfied,

when h — 07,

(31)

w(h) =~u in [H'(Q)P,
k(h) = r i [LH(Q)
p(h) =@ in L*(9),
(hdip(h), hdap(h), Osp(h)) — (0,0,05p) in  [L*(Q))°.

(32)
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Moreover, the limits u, k and @ belong to the spaces Vi, [L*(Q)]° and ¥,
respectively, o = ©g on 'y and

Kap = €ap(u), in L2(9),

L (P333030 + C33ap€a5(w)), in  L*Q),

C3333

K33 = —

K13 = — 3 83g0, m L2(Q),
det[ Ciz13 Chzas (33)

C Py |
édet|: 1313 313

C P
oy — 2313 Pao3 | Oso. in L2(Q)
det[ Ciz1z Chses

C2313 C2323 ]

Proof. Taking (v,v) = (u(h), @(h)) in (26) we obtain

{ [u(R)[5 + fQ k(h) @ k(h)dx (34)

HIR (W) 1320y + 1B Do (B[ + 1050(R) 132 < €

where ¢ > 0 is a constant independent of h. Arguing as in Sene ([13],
proposition 3.1) the weak convergences in (32) are a direct consequence of
this inequality.

The sequence x;3(h) is bounded in L?*(Q), because of (34), and consequently
eas(u(h)) = hkaz(h) and es3(u(h)) = h?k33(h) strongly converge to zero in
L*(Q)). Thus e;3(u) = 0, which means that u € Vip.

The first equation in (33) is a consequence of the first two convergences
in (32). To obtain the remaining three equations of (33) we first multiply
equation (26) by h* and consider ¢» = 0, then we multiply (26) by h and take
(v3,7%) = (0,0). In both cases we consider the limit when A — 0. We obtain
that

Csgimbim + P33303p = —P3330300, in  L*(Q),

. . ) (35)
CosimBim + P3a303p = —Psa303p0, in L7(Q),
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where ¢ = ¢ — ¢y. Taking into account that Cyg.3 = 0 = Cj333, the system
(35) reduces to
Cssaplap + Csssskss = —Passdsp, in L*H(Q),

. ) (36)
2Ca33k33 = —P3a305¢p, in L*(Q),

and the solution of this system is precisely (33).H

As a consequence of the previous theorem we have the following limit result
for the scaled stress tensor and the scaled electric displacement field.

Theorem 3.2. There exist o € [L*(Q)]°, D € [L*(Q)]® and subsequences
{oij(h)(u(h), o(h))}h=0 and {D;(h)(u(h), p(h))}r=o (still indexed by h), such

that the following weak convergences are satisfied, when h — 07,

oij () (u(h), p(h)) = oi; in [LA(Q)],

. 513 (37)
Di(h)(u(h),o(h)) = D; in  [L*(Q)]°,
where
0i3 = 07 ( )
38
Co33C33+, Coye
Oaf = [Caﬁw - 253323 }ew(u) + [P 3af Cgfsj P 333} Iz,
and
Pi33P333
Dy = [Py = 22 P ea(u) — { =
[Pias — G Piss | eap(u) — i3 + Co

4 1 [ P33 ]T [ Ciziz  —Clisos ] [ Pia3 } }8 o (39)

Cisiz Chises | | D313 —Ch313  Ca3as Pii3 T

det
Cosz1z Cazog

Proof. Using the theorem 3.1 and taking the weak limit in (22) when h — 07,

we have that

0ij = Cijimkim + Psii03¢,
j J j (40)
D; = Pimkim — €i303.
But using (36) we immediately have ;3 = 0. Then introducing the definition
of Ky, in (40) we obtain the definitions of 0,4 and D;. B

We observe that o;3 = 0 means that at the limit the stresses are plane.
This agrees with the a priori hypotheses on the stresses made by Bernadou
and Hanel [1], p.4015, for piezoelectric thin shells.
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The next theorem gives a first characterization of the weak limit (u, ¢)
defined in theorem 3.1. To that purpose we introduce the reduced elasticity
coefficients A,g,, defined by

Aaprp = Caprp — %’ (41)
the coefficients p3qg
pias = Poas — 22 P (42)
and ps3
([ Ps33Ps33
P33 = €33 + Oy

C'2313 02323

X L+ 1 [ Pso3 ]T[Cmg 01323] [ P33 ] (43)
detlclglg 01323] — P33 Ca313 Ca323 —P13 |-

\

We remark that the positivity hypothesis (10) guarantees that in w x [—1, 1]

03333 > 0, g3z > 0, det 01313 01323 > 0, (44)
Co313 Cagas

and

(45)

Ciziz Clsas
Caziz Cagas

is a positive definite matrix, which implies that ps3 > ¢ in , with c a strictly
positive constant. Also as a consequence of the hypothesis (10), A = (Aup+,)
is coercive (cf. Figueiredo and Leal [10]), that is, there exists a constant
¢ > 0 independent of x

2

Aaprp(x) My Mas = ¢ Z (Maﬁ)Q (46)
a,0=1

for every symmetric 2 x 2 real matrix M and for every x € @ x [—1,1].
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Theorem 3.3. The weak limit (u, @) is the unique solution of the variational

problem
Find (u,p) € Vg X U such that:
a((u, @), (v,9)) =1(v,9), V(v,9) € Vi x Wy, (47)
¢ =wo, on Iy,
where
a((u, ), (0,9)) = [ AapypCap(u)esp(v) dz + [ ps3 O3 Os¢) da (48)
— JoP3ap [€ap(u)O39) — eap(v)B3p] da,
and
l(v,tb):/ﬂf-vda:—i—/r g-vdly. (49)

Proof. Considering (v,v) € Vg x ¥ in (27)-(28), taking the limit when
h — 07 and using theorem 3.1 we get

lim a(h)((u(h), o(h)), (v.4)) =

—0+
fQ Cagij/{ijeag (?)) dr + fQ €33 83@ 83¢ dr—+ (50)
+ [ P3ap 03 eap(v) do — [ Psim O3t ki, diz,
and
tim 1(0)(o,0) = [ fovdat [ Lg-vdly - | cndspnowas -

— Jo Psap 93¢0 €ap(v) di.

Remarking that ¢ = ¢ — ¢y and introducing in (50)-(51) the definitions of
Kij, given in theorem 3.1, we clearly have (47).

To prove the uniqueness of the solution we suppose that (u, @) is another
solution of (47), and define z = 4 — v and xy = ¢ — ¢. Then subtracting the
equations

(52)



A PIEZOELECTRIC ANISOTROPIC PLATE MODEL 15

But because of the ellipticity of the coefficients A,g,,, cf. (46), and the
property of ps3 we have

0 = fQ Anpryplas(2)eqp(2) da:+pr33 O3x O3x dx
p
> 130 5ot leap(2)llz2(@) + 2ll03x (1720

where ¢; and ¢y are strictly positive constants. Hence z = 0 in Vi, d3x =0
in L?(Q) and x = 0 in ¥y, and this finishes the proof. W

Remark — Using arguments similar to those of Sene ([13], theorem 4.1) we
can state that the weak convergences verified in theorem 3.1 are also strong.

(54)

We can also demonstrate that the limit electric potential ¢ has an explicit
form as a function of the third component of the limit displacement u. This
characterization of ¢ induces a simplification of the limit variational problem
defined in (47); it can be reduced to a variational problem whose unknown is
only the Kirchhoff-Love displacement u. These statements are summarized
in the next theorem.

Theorem 3.4 (The reduced piezoelectric plate model). When h — 0, the
solution (u(h),o(h)) of (2)-(4) converges strongly to (u, ), in the functional
space HY(Q) x L*(Q)), and verifies the properties i) and ii) described below.

i) The limit displacement u is a Kirchhoff-Love displacement vector field,
that 1s

u(z) = (ui(z),ue(z), us(z)), x = (x1,22,23) €

ur(z) = Ci(x1, v2) — 1301G3(w1, 72) (55)
us () = Go(w1, w2) — 2302(3(21, 22)
uz(x) = (3(1, 72)
where (1, ¢ € Vy(w), (3 € V3(w), and u is the solution of the problem
Find w e Vi  such that:
_ (56)
a(u,v) =1(v), Vv € Vkp,
where
a(u,v) = [o Aapypeap(t)eq,(v — Jo pmﬁfw OypC3 €ap(v) d, (57)
Y4

v) = fQ frvde+ er g-vdly — fQ £0 ;p(? D30 €ap(v) d.
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i1) The limit electric potential @ is a second order polynomial in x3, whose
coefficients depend on (3, and the exact analytic form of ¢ is the following

Qp(l’l) X2, $3) - Z?n 0 ¢m($1, x?)x?a

wO oF ﬂﬁo + P3as 804 <3’
sz O (58)

¢1 — 2 ;00 7

¢2 - - g:;,(;i aaBCS-

Proof. The proof of ii) is exactly the same as in Sene ([13], theorem 3.1). To
demonstrate i) it is enough to take ¢ = 0 in (47) and to replace ¢ by the
expression (58). W

4. The two-dimensional piezolectric plate model

In this section we give the formulation of the problem (56) as a boundary
value problem, that we call two-dimensional piezoelectric plate model. The
word two-dimensional means that the solution u is completely determined
by the solution ¢ = ({1, (3, (3) of a two-dimensional boundary value problem
posed over the middle surface w of the plate, and the word piezolectric signi-
fies that this model depends on the elastic and electric data imposed on the
three-dimensional problem. Besides, the theorem 4.2 gives the formulation of
this two-dimensional piezolectric plate model and the expression of the limit
electric potential, with respect to the original plate Q" = &" x [—h, h]. This
is achieved after de-scaling the limit displacement vector u, the limit electric
potential ¢ and the variational equations (56) and (47).

To formulate the results of this section we must define the following coef-
ficients

Aaﬁvp(afla T) = f:l Aaﬂw(x)dx?)
Bopyp(1,22) = f+11 x3Aaﬂ7p(x)d5’73 (59)

Capyp(T1, T2) f 1 Aaprp(T)das
and

p3a,8p3
Dapyp(T1, 22) f 1 r pg,w z)ds

gaﬁ’yp(xlaxQ) - ‘/;1 x%%('x)dmi&

These new coefficients depend on (z1,79) € w and are associated to the
elasticity, piezoelectric and dielectric coefficients. Moreover we define also

(60)
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the tensors N = (N,3) and M = (M,g), associated to the Kirchhoff-Love
displacement u, by

[Naﬁ ] _ [ Aasrp  —Bapyp _Daﬁwl [%(C) ] (61)
M, af _Baﬁw Caﬁw + gaﬁw aw<3
that is
NO&B(CI) CQ; C?)) = Aaﬂ’ypefyp(C) - <Baﬂfyp + ’Daﬂ'yp) 8%063
(62)

Maﬁ(Ch Co, CS) - _Baﬁwew(o + (Caﬁw + Saﬁw> 8’YPC37

and we remark that both N,s and M,3 depend on the three functions
(¢1,¢2,¢3) = (¢ that define u. We also introduce the coefficients N,g and
Maﬁ by

A

+7_
Nap = Nog + 252 7 pyasp(a)des
(63)

~

PG|
Maﬁ — Maﬁ — %o 2900 fjl x3p3aﬁ($)dx3a

The following theorem formulates the variational problem (56) as a system
of two coupled boundary value problems.

Theorem 4.1 (The two-dimensional piezoelectric plate model). The compo-
nents (;, fori =1,2,3, of the Kirchhoff-Love displacement u, are the solution
of the following system of dependent boundary value problems (64)-(65), de-
fined on the middle surface of the plate, and depending on the piezoelectric,
dielectric and elastic coefficients, the applied forces and the electric potential



18 ISABEL M. NARRA FIGUEIREDO AND CARLOS M. FRANCO LEAL

data:
([ OusMop = [1 (€300 fa + f3) das + g5 + g5 + Oalgl — 93)

T el .
‘l‘aaﬁ <<,00 2900 f,1 I3 P3as d.ng) ) mow,

ngOz%, on Yo,

| 1
Mopgvavg = 252 [ a3 psapvavpdes + [ ga(—a3) Vo dxs, on 1,

- N

[ Oa Mo + 0y (Magvats) = [1, 23 fa Ve drs + (g — 93) Va
- f,ll 93 dx3 - aT( f,ll Ja 3 dx?) Ta)
+8oz (cpar;po f_ll I3 P3as dIg) Vg

ol
+a7' (SOO 2800 f—l I3 P3ap de VozTﬂ) ) on i,

(64)
and ) .
_aaNaﬂ - ffl fﬁ dx3 + (gg_ + gﬁ_)
Jr— - .
+aa (on 2@0 f_ll P3ap dl’g), mow,
q (65)
(Cl) CQ) - (07 0)7 on. 7o,
.
L Naﬁya - f_ll gp drg — 2 2800 f_ll P3ap drs Vo O 7.
Moreover
+ J—
P3asPl Yo — ¥
Tap = Aagrp(€4p(C) — 2304,G3) — 5’33%(%/}@ + pSaﬂ% (66)
and
A 1 R 1
Nog :/ Tap drs, — M,z :/ x3 00p drs (67)
—1 -1

which means that Nag are the stress resultants and —Mag are the stress
couples (or bending moments), as in the pure elasticity case.

Proof. First we choose, in (56), v € Vi with the components
/UOé(x) - _353804773(551; x?)? 7}3(37) - 773('7:17 372), (68)

and then
V() = nalx1, 22), v3(x) = 0. (69)
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The variational equation (56) may be written as

{ fw Maﬂ aaﬁ ngdw = — fQ ()OSF_T(papiiaﬁ(_xSaanB) dx
+ Jo [fa(=230am3) + fsms] dx + Irs [ga(—230am3) + g3n3] dlw,

for the first choice of v, and it may be written as

+7 —
{ Juo Nag €ap(n) dw = — [ #5"psapeas(n) do
+ Jo fatla dz + [p gana dD'y,

for the second choice of v, with M,z and N,z defined by (61)-(62). Applying
the Green’s formula to (70) and (71) we obtain (64) and (65), respectively.
The definition of 0,4 in (66) is a consequence of the expression (38) and the
following formula for 03¢

(70)

(71)

+ —
p3 Yoy — ¥
aﬁl‘ﬁaﬁ@ 420
D33 2

that is obtained directly from the definition (58) of ¢. W
We observe that the system (64)-(65) generalizes the usual pure elasticity

plate model for anisotropic plates (cf. Green and Zerna [8] and Destuynder
[7]). Moreover we have the following corollary of the previous theorem.

O3 = — (72)

Corollary 4.1. In particular, when Cijii, p3ap and ps3 are independent of
x3, then the problems (64)-(65) are also independent. More specifically, we
have that:

i) the component (3 is the solution of the scalar boundary value equation
1 _ _ .

( OupMeap = [ (230afa + f3)drs+ g3 + 95 +0algf —g,), i w,

C3 =0= %a on 7o,

1
Mogvavg = [~ ga(—x3) Vo das, on i,

7\

OaMapvp + Or(MapraTs) = f_ll 23 fo Vo dxg + (9;: — 9a) Va

\ —f_1193d5€3—3T(f_119a333d$37a), on v,
(73)
with )
P3asP3
Mo = Mag(Gs) = 5 (Aasp + 7272 ) 2,65 (74
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i) the pair (C1, (o) is the solution of the boundary value system

( _aaNozﬁ - f_ll fﬂ d$3 + (g; + gﬁ_) + aa (p?)aﬂ(%p(—; - SO(;)>, imn W,
(Cla CQ) - (07 0)? on o, (75)

1 _
. Naﬁyoz = f,l gp de _p3aﬁ(908_ — %o ) Va, on - 1.

7\

with
Naﬂ = Naﬂ((la CQ) = 2Aaﬂ7p e’yp(C)' (76)

Proof. When Cjji, psap and pss are independent of x3 the system (73)-(76)
is obtained directly from (64)-(65). W

We remark that the previous theorem 4.1 and corollary 4.1 generalize the
results obtained by Sene [13]. In fact, for a homogeneous isotropic thin plate,
that is, a plate where Cjjy; is defined by (11) and such that Pj; and ¢;; are
constants independent of x and h, then Cjjz, p3as and ps3 are independent
of x3, the system (73)-(76) is verified and coincides with the plate model
deduced by Sene ([13], theorem 3.3).

To interpret the limit problem (64)-(65) and the expression of the limit
electric potential (58), with respect to the original plate Q" = &" x [~h, h] it
is convenient to formulate (64)-(65) and (58) in Q". In order to do that we
define the functions ¢, ¢ and ¢ by the de-scalings

(P=n*¢ and (' =hG, in o, (77)

and 2! by
22" = hPug(z) and 20 (2") = hus(2), (78)

and ¢" by
¢"(a") = Wp(x), (79)

for all 2" = (x1, 9, has), with © = (z1,79,23) € Q = © x [~1,1]. The
functions (" are called the limit displacements of the middle surface w of the
plate Q" = & x [—h, h]. The functions ¢" and ¢} are respectively the in-plane,
and transverse displacements. The functions 2! and ¢" are, respectively, the
limit displacements and limit electric potential, inside the plate Q7.

We can now state the following immediate consequence of theorem 3.4,
parts i) and ii).
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Theorem 4.2. The de-scaled functions (¢}, ¢k, ¢h) defined in w are the so-
lution of the system

+h _ _
([ OupMly = [T (@h0ufh + f3) dal + i " + gi ™ + hoa(ght — gh™)

h+_  _h— +h .
-I—(?ag(% [ Th D3as d:p’?}), in w,
o h
ng():%, on v,

—@0

M/ qvavs = 2 f o T8 psap dalvag + f L ge(—ah) vo daly, on

«Q
+h —
[ 0, MD v + 0-(MPyvams) = [ 2l {1 ve dal + h(ght — gl va
+h
f h ggdxg - aT(f h gaa??, dwi’) 7_04)
+8a <ap0 —<p +hh T3 P3ag dZU3> V3

+9, (A

+h h h
_p X3 p30¢ﬂ dx?, VaTﬂ) ; on n,

(80)
and

+h =
([ —0uNly = [ fhdal+ (gh" + gl)

h+_ _h— 4h .
+8oz(‘p0 2];00 f—h P3as d$§)7 m o w,

(C{La@) - (070)7 on "o,

ht_ph= r+h
Nﬁya—f p 9 dal — 2 [N psagdalve,  on .

For any (x1,x2) € @,
gi*t (w1, m2) = g} (w1, w9, D), o0 (21, 1) = @ (1, T2, £h) (82)
and N" op and M" op are defined by
N(Qﬂ(C?? C;La C?il) -

+hA h +h _h A P3aP3yp h o <83)
f—h aBrp 475 €4,(C) — _p T3\ Aapyp T dxg Oy Cs,
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and
h (rh ~h sh
M75(¢r, G5, G5) =
+h _n h +h h\2 P3P h
— [ 5 Aapp drg e (Q) + [ (2) <Aaﬁw + = ;3337/)) d 0yCs.

The wvector field 2" = (2I') defined in (78) is a Kirchhoff-Love displacement
field, that 1s,

(84)

1
en(2") = 502+ 052z) = 0, (85)
that verifies
= —atoct oand A =¢ in QF (86)
where (! are the solution of (80)-(81). )
The limit electric potential ¢ in the plate Q" is defined by

¢h(I1, X2, xh) = 27271:0 " (1, 372)(515?)7”,

ht |, h—
O (11, 23) = FAE 4 2 g ol (87
8\ (21, 9) = obt—oh”
1,42) — oh )
¢ (21, 22) = —gj’gfﬁaﬁ@,

or equivalently
{ ¢h(x17 L2, .%‘g) =

h+ h— h+ h—
Yo P 2 P3ap h Yo —¥o ,.h __ P3aB h(,.h\2
) + h/ 2]933 aaﬂci)) + oh —SU3 2]?33 aaﬂC3 (.CU:))) .

(88)

Proof. To obtain (80)-(84) we just consider the variational problem (56)
formulated in Q" the de-scalings (77)-(78) and argue as in the proof of
theorem 4.1. The formulas (85)-(86) are a direct consequence of the de-
scalings (77)-(78) and the properties of u. To establish (87) we consider
v = 0 in the variational equation (47) and we follow the same reasoning of
Sene ([13], theorem 3.1), but in the domain Q" instead of 2, and we use the
de-scalings (77) and (79). H

5. Comments

We remark that if we do not assume the hypothesis Cpgy3 = 0 = Cyzss,
then we have the general case of anisotropy, with 21 independent elastic
coefficients Cjjx;. Therefore the formulas (33) for s, deduced in theorem 3.1,
would be more complicated and, consequently, the expression of the reduced
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piezoelectric plate model, given in theorem 3.4, would be more complex.
Nevertheless, we think that it is still possible to generalize the results of this
paper to this case of a general anisotropic material.

Acknowledgments

This work is part of the project " New materials, adaptive systems and their
nonlinearities; modelling, control and numerical simulation” carried out in
the framework of the european community program ”Improving the human
research potential and the socio-economic knowledge base” (HRN-CT-2002-
00284).

References

[1]

2]

M. BERNADOU AND C. HAENEL, Modelization and numerical approximation of piezoelec-
tric thin shells. I. The continuous problems, Computer Methods in Applied Mechanics and
Engineering, 192, 37-38 (2003) pp. 4003-4030.

M. BERNADOU AND C. HAENEL, Modelization and numerical approximation of piezoelectric
thin shells. II. Approximation by finite element methods and numerical experiments, Computer
Methods in Applied Mechanics and Engineering, 192, 37-38 (2003) pp. 4045-4073.

M. BERNADOU AND C. HAENEL, Modelization and numerical approximation of piezoelectric
thin shells. III. From the patches to the active structures, Computer Methods in Applied
Mechanics and Engineering, 192, 37-38 (2003) pp. 4075-4107.

P. CIARLET, Mathematical FElasticity, Volume II: Theory of Plates, North-Holland, Amster-
dam, 1997.

P. CIARLET, Mathematical Elasticity, Volume II: Theory of Shells, North-Holland, Amster-
dam, 2000.

C. COLLARD AND B. MIARA, Two-dimensional models for geometrically nonlinear thin piezo-
electric shells, Asymptotic Analysis, 31, 2 (2003) pp. 113-151.

P. DESTUYNDER, Une Théorie Asymptotique de Plaques Minces en Elasticité Linéaire, Mas-
son, Paris, 1986.

A .E. GREEN AND W. ZERNA, Theoretical Elasticity, 2nd Edition, Oxford Press, 1968.

T. IKEDA, Fundamentals of Piezoelectricity, Oxford University Press, 1990.

I. FIGUEIREDO AND C. LEAL, Ellipticity of the Koiter and Naghdi models for nonhomogeneous
anisotropic shells, Applicable Analysis, 70, 1-2, (1998) pp. 75-84.

A. RAOULT AND A. SENE, Modelling of piezoelectric plates including magnetic effects, As-
ymptotic Analysis, 34, 1 (2003) pp. 1-40.

N. SaBuU, Vibrations of thin piezoelectric flexural shells: two dimensional approximation, Jour-
nal of Elasticity, 68, (2002) pp. 145-165.

A. SENE, Modelling of piezoelectric static thin plates, Asymptotic Analysis, 25, 1 (2001) pp.
1-20.

IsABEL M. NARRA FIGUEIREDO

DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE DE COIMBRA, APARTADO 3008, 3001-454 CoIM-
BRA, PORTUGAL

E-mail address: Isabel.Figueiredo@mat.uc.pt

URL: http://www.mat.uc.pt/ isabelf



24 ISABEL M. NARRA FIGUEIREDO AND CARLOS M. FRANCO LEAL

CARLOS M. FRANCO LEAL
DEPARTAMENTO DE MATEMATICA, UNIVERSIDADE DE COIMBRA, APARTADO 3008, 3001-454 CoIM-

BRA, PORTUGAL
E-mail address: carlosl@mat.uc.pt



