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COMPUTING TIME DEPENDENT WAITING TIME
PROBABILITIES IN NONSTATIONARY MARKOVIAN
QUEUEING SYSTEMS

LINDA V. GREEN AND JOAO L. C. SOARES

ABSTRACT: In this paper we present algorithms that compute, exactly or approx-
imately, time dependent waiting time tail probabilities and the time dependent
expected waiting time in M (t)/M/s(t) queueing systems.

1. Introduction

In many service systems, the performance measure of interest is a function
of the tail probability of the waiting time. For example, in many telephone
call centers, the service target is a maximum fraction of customers delayed for
more than a given number of seconds, e.g. the probability that a customer
waits more than twenty seconds is less than fifteen percent. In many of
these systems, like call centers, the customer arrival rate varies over the day,
and managers vary the staffing over the day in order to meet the desired
performance standard.

In this paper we consider an M (t)/M/s(t) queueing system with periodic
arrival rate {A(t),t > 0}, service rate u, and the number of servers at time ¢,
s(t). Let W,(t) denote the waiting time in queue of a customer that arrives
to the system at time t. We are interested in computing the tail probability
P(W,(t) > x). When = = 0, this reduces to the probability of delay, which
is dependent only on the number of servers at time t. But when x > 0, the
derivation is complicated by the fact that the event "W, (t) > 2’ depends not
only on s(t), the number of servers available at time ¢, but also on the number
of servers available after ¢, i.e., s(u),u € (¢,t+z]. Similarly, the derivation of
the expected waiting time in queue, denoted E(W,(t)), is problematic since
it depends upon the tail probabilities.

In our derivations we assume that the infinite dimensional vector p(t) =
[pn(t)], where p,(t) denotes the probability of n customers in the system at
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time ¢, is known. For example, this vector p(t) may have been obtained nu-
merically as the solution of the Chapman-Kolmogorov differential equations
that describe the queueing system at hand (see e.g. [2]). Let W (t) denote
the waiting time before service of a customer that arrives at time ¢ and sees
n people in the system. Then

P(Wy(t) > ) = > P(W;(t) > z)pa(t), (1)
n=s(t)

and
EW,(t) = > E(W;(t)pa(t). (2)
n=s(t)

In this paper, we present exact expressions for P(W(t) > x) in the important
special case where the number of servers changes at most once in the interval
(t,t + x), and we present an algorithm for the general case. "Easy-to-
compute” lower and upper bounds are also derived for the general case. We
do a similar analysis with E(W(t)), for any n, so that the desired quantities
follow from (1) and (2).

Since the departure process behaves as an non-homogeneous Poisson pro-
cess with rate us(u), for v > ¢, (assuming an infinite queue at time t) the
number of departures over the time period [t,¢ + z] is Poisson distributed
with mean

0= /t ) du. 3)

Thus, when n > s(t), we may be tempted to say that the event "W7(t) > z’

is equivalent to the event 'n — s(t) or fewer departures over [¢,t + x|’ so that
P(W(t) > x) would be given by

n—s(t) jo—a
P('n — s(t) or fewer departures over [t,t + x]’) = E ¢ i (4)
, J:
J=0

This is not true in general. For example, suppose the number of servers
changes exactly once over the time period [t,t + x| at the epoch t + At,
and the resulting number of servers is reduced to a level that is less than
the number of customers in service. Then the ”excess” customers being
served at the epoch ¢ + At will have to join the queue so that the (n 4 1)st
customer at time ¢ may have to see more than n — s(t) departures over
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[t,t + z] before starting service. Thus, P(W/'(t) > x) is not always given
by (4), contrary to the exposition in the appendix of [1]. Similarly, if the
number of servers increases during [¢,t + x|, fewer than n — s(t) departures
may result in W;'(t) < z.

In Section 2, we derive precise and simple formulae for P(W,'(t) > x) when
the number of servers changes at most once in the interval [¢, ¢+ z]|. In many
actual settings this is a valid assumption. For example, in a call center, x is
likely to be a number of seconds, while staffing levels are typically changed
in intervals ranging from 15 minutes to 2 hours. In Section 3, we study the
general case, i.e., when the number of servers changes finitely many times.
Then, in Sections 4 and 5, we do a similar analysis for E(W'(t)).

2. The simplest cases for P(W/(t) > z)

Assume that the number of servers does not change during the time period
t,t + ], ie., s(u) = so,u € [t,t + x]. Then, a = psox and W (t) is either
zero, when n < sg, or the sum of n — sy + 1 independent and identically
distributed (i.i.d.) exponential random variables with mean 1/(usy), when
n > sg. Mathematically,

n Z ae if n > S0
PWJ(t) > z) = — il - (5)
0 if n < sp.

Now, assume that the number of servers changes exactly once in [¢,t + z],
i.e., there exists some At < x such that

| oso Hfueltt+ A,
S(U’)_{sl if u€ [t + At t+ 7). (6)

In this case, a = yo + y1 where yg = uspAt and y; = psi(z — At). Notice
that P(W(t) > x) = 0 when n < max(s, s1) because the (n+1)st customer
will begin service no later than time ¢t + At. When n > max(sg, s1) then
P(W;(t) > z) will have a positive value computed in the following way,
distinctly for when the number of servers increases or decreases at time t+ At.

Assume sy < sy, i.e., the number of servers increases at time t + At. Then,
for n > sy, the events ’Wq”(t) > 1’ and 'n — s; or fewer departures over
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[t,t 4+ ] are equivalent. Thus,

nz:ﬁ ae ifn>s

n , = 81,

POV () > )= 4 2= ] (7
0 if n < s1.

Now, assume that sy > sy, i.e., the number of servers decreases at time
t + At. For any n > s, let K,,;(u) denote the number of departures over
[t,t+wu). The event 'W/'(t) > 2’ can be expressed as the union of two disjoint
events: 'K, ;(x) <n—s¢ and 'K, (At) <n—sp,n—s9 < Kpi(z) <n—sy'.
Putting together the probabilities of these two events we get

P(W(t) > z) = (8)

n—=so

aje_“ n—=so je_yo n—j—si ie—yl
sS40 (2 ) e
B 0 §=0 J: imnjsorl

0 if n < sp.

Or, by using the combinatorial identity
n Jo
-3 (454) 0
j=0 J! =0

which is generally valid for any pair of real numbers g, 1 such that a = yo+y;

(see Lemma 1 in the appendix), we get the following equivalent expression
for (8)

PW"t) > x) = 10
q
n—si J —a n—sq —0 n—jr—si ; -
B s () () e
N 0 j=n—so+1
0 if n < s,

that allows for the computation of P(W,*'(t) > x) from P(W'(t) > x) in
O(sg — s1) operations.

3. The general case for P(W(t) > )

In general, s(u),u € [t,t + x] is piecewise constant, i.e., for some finite
K, there are K + 1 positive integers sg, s1,...,Sxg and K + 1 real numbers
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satisfying 0 = Aty < Aty < Aty < ... < Atg < Atgy1 = x such that, for
every u € [t,t + x],

sop ifue [t + Ato,t+ Atl),
S1 if u e [t—FAtl,t—f—Atg),

s(u) =
sk ifue [t—FAtK,t—f-AtK_H].

Define the following quantities that will be used in the results that follow.
Foreachi=1,2,..., K, let

Si - maX{Sia Sit1y - SK})
yi = wsi (At — At;)

t+x K K
a;, = ,u/ s(u) du = Z,LLS]' (Atj 1 — Atj) = Zij
j=i

t+AL; i

so that ag equals the value of a defined in (3). Theorem 1 below provides
a characterization of P(W/'(t) > x) from which an ”easy-to-compute” lower
bound can be derived. Theorem 2 provides a similar characterization for an
”easy-to-compute” upper bound.

Theorem 1. For every1=0,1,..., K,

n—Si ]
a
_a, a; | P
PW(t+At) >z —At) =4 © (ZO it “Z(”)> S
=
0 ifn < S;,
where, ox(n) = 0, for everyn, and, for everyi =0,1,..., K—1, andn > S;,
—Si j
oi(n) = Z =~oir1(n —Jj)
— J!

j n—j—95i4+1 k
7 E : ai—|—1
k!

k:n—j—Sl—l—l

@

-S;
pi(n) = Z
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Proof: We prove this statement by mathematical induction. When ¢ = K,
(5) applies, so that

PW,'(t+ Atg) > 2 — Atg) = Z
0 ifn < SK.

L o~ YK
K@

if n > sk,

Since ax = yx and Sk = sk, we conclude that the statement is true when
i = K. Now, suppose that (11) holds for some ¢ + 1. We will prove that it
also holds for i. Conditioning on the system state at time ¢ + At; 1,

P(WI(t+ Aty) > & — Aty) =

N5 ] —Yi
B DC POWPTI(t+ Atir) > @ — Aliyy) ifn > s, Y
= 2T (12)
0 if n < s,

because the number of service completions over [t + At;, t + At; 1) is Poisson
distributed with parameter y;.

First, assume s; > S;,1 which, in particular, implies s; = S; > S;.1. For
every n < S; = s;, P(W/(t + At;) > x — At;) = 0 follows from (12). For
every n > S;, we have that n — 7 > §; > S;1, for every j =0,1,...,n — 5,
so that, from (12), from the induction hypothesis and from the combinatorial
identity (9),

n—=S; yje_yi n—j—=>Si+1 ak
o v —Qi41 Zitl '
s ( i ( + ( 2o w tol ‘7)>)> Y
0 k=0
n—=S; y] n—7—>Sit1 a,k n—.S; y]
— e (SRS ) S - ) (14)
i\ & K — j!

n—=S; j n—j7—=Si11 k j

; n—.9S;
| ) ) )09

)|
k=n—j—S;+1 J:

I
Cb\
8
R
. 3
n L Mto
S8

I

ml

&
VRS
1M
LT e
.Q_-|sgb

+

Q

S

N—
~__—

(16)
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Thus, (11) follows when s; > S;;1. Finally, assume s; < S;;1, which implies
s; < .S; = S;y1. Then, from the induction hypothesis,

n<S = n—j<n<Si (j=0,1,...,n—s;)
= P(an_'](t_‘_Ati+1>a:_AtZ'+]_)):O (] O,l,...,n—si),

so that P(W/(t + At;) > x — At;) = 0, follows from (12). Moreover, n > S;
implies

n—7<S8-1<S841 J=n-=-S+1,n—-85+2,....n—s;)
which, in turn, also implies
P(W;*j(t—l—AtHl>J:—Ati+1)):0 (J=n—=8S+1,n—-5+2,....,n—s;).
Furthermore,
n>S8 = n—7>5=S+,1 (j=01,...,n—35).

Thus, (13) and the chain of equalities (14)-(16) is again valid so that the
desired result follows also when when s; < .5;,1. u

Theorem 1 implies that P(W'(t + At;) > x — At;) > [;(n) where, for any
1=0,1,..., K and n > 5;,

Il

o

E
VR
<. :‘
N g
S8

+

>

S
~

which is an interesting expression because it allows for the computation of
li(n + 1) from [;(n) in O(max{S; — S;;1,1}) operations. A necessary and
sufficient condition for this lower bound to be tight for any n is that S;,1 =

Sk.
Theorem 2. For everyi1=0,1,..., K,

n—Sk j
POVI(E+ At) > o~ Af)={ © (Z i '(”)>

=0
0 an < SZ',
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where, ex(n) =0, for every n, and, for everyi=0,1,..., K—1, andn > S;,

n—SZ- i

ei(n) = o(n)+ “reir1(n —J)
=0

n—SK yj ﬂ—j—SK a,k
— Ji 141
o =33 415"
j=n—5;+1 k=0

Proof: As before, we prove this statement through mathematical induction.
The statement is true when ¢ = K, as shown in the proof of Theorem 1.
Now, suppose that the statement is true for some 7 + 1 and we prove that it
is also true for 7. As in (12), the exact value of P(W[(t + At;) > z — At;)
can be derived through conditioning on the system state at time t + At; 1.

First, assume s; > S;.1 which, in particular, implies s; = S; > S;11 > Sk.
For every n < S; = s;, P(W/(t + At;) > x — At;) = 0 follows from (12). For
every n > S;, we have that n — 53 > S; > §;,1, for every j =0,1,....,.n — 5;
so that, from (12), from the induction hypothesis and from (9),

P(WIMt+ At) >z — At;) =
S _] n_j_SK k
—a; i @it :
= e a; Z— kl €i+1(nj>>> (18)
=0 J! k=0 '
-S; n—j—Sk n—S; j
ya ak . J
= e Z = o) > Zea(n—j) (19)
j=0 J k=0 ' j=0 J:
n—Sk j n—Sk j n—j—Sk n—>S; j
—a; a: . a: Y
S OO B SIA ( IE) B of SRURN) T
j=0 J: j=n—S8;+1 J: k=0 ’ §j=0 J:

TL—SK aj
= e % ( —Z — el(n)> . (21)
4]
7=0

Thus, (17) follows when s; > S;;1. Finally, assume s; < S;;1, which implies
s; < 8; = 8S;11 > Sk. Then, from the induction hypothesis,

n<ys, = n—jg.n<5i+1 (]
= P(an_](t-i-Ati_H>$—Ati+1)):0 (j: , ,...,n—si),
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so that P(W/(t + At;) > x — At;) = 0, follows from (12). Moreover, n > S;
implies

n—j3 <85 —-—1<8 (j:n—Si+1,n—Si+2,...,n—si)
which, in turn, implies
P(an_j(t—f—Ati_H > x—AtiH)) =0 (] = n—Si+1,n—Si+2, ce ,n—si).

Thus, the chain of equalities (18)-(20) is again valid so that the desired result
follows also when s; < S;11. [

Theorem 2 implies that P(W,'(t + At;) > 2 — At;) < u;(n) where, for any
i=0,1,...,K and n > S,

n—Sk CLj
ui(n) = e (Z —+ — 5Z(n)>

|
=0
n—Sk j n—Sk j n—j—Sk L
i DL D 1 DD
= € T Ty
;! ! !
=0 j=n—S;+1 k=0

As before, this expression is interesting because it allows for the computation
of u;(n + 1) from wu;(n) in O(max{S; — Sk, 1}) operations. A necessary
and sufficient condition for this upper bound to be tight for any n is that
Siy1 = Sk

4. The simplest cases for E(W](1))

If s(u) = s, for every u € [t,00) then W/'(t) is either zero, when n < s,
or the sum of n — sy + 1 independent and identically distributed exponential
random variables with mean 1/(usg), when n > so. Thus,

n — So + 1 )
n ————— ifn > s,
E(W™Mt)) = 1150 (22)
0 if n < sp.

Now, assume that the number of servers changes exactly once in [t, 00). Le.,
there exists some At such that

(1) = so ifu et t+ At),
W= s ifu et + At 00).
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Our general expressions use the expressions of P(W7(t) > z) derived in
Section 2, distinctly for the cases of sy < s1 and sy > s1, and the fact that

+00

E(WI(t)) = /0 AtP(W;(t) > 1) dz + / P(W?(t) > z) da.

At

If s < s1 then P(W(t) > x) is given by expression (5) when z < At, and
by expression (7) when & > At. Thus, for each n < so, E(W/'(t)) = 0. For
each n € {sg, 50+ 1,...,51 — 1}, E(W7(t)) equals

At At [T S0 i,—(usox)
/ PWJ/(t) > z)dx = / (Z ('LLSOI)Z,'@ > dx
0 0 :

1=0

1 Y0 n—=>so yz
= — d
HSo Jo <ZZO: i! v

where yg = usgAt, which, from Lemma 2, equals

o 1 n—sg 1j o~ Yo n—so—1 4 Y0
nTsT o :;) il (1 -y e ) + At ( yoe ) (23)
0

j=0 J!

For any n > s1, E(W(t)) equals (23) plus

/ TP > 1) da =

At

_ /“” (Z (502t + s (2 — At))* e ot o N») "

7!
At i=0

1 (X yle ™V
[4S1 /yo ; i!

which, from Lemma 2 of the appendix, equals

; n—s1—1 4
n—31—|—1 (Z yOG yO) S()At ( yOe y0>
(24)

If s > 51 then P(W(t) > x) is given by expression (5) when z < At, and
by expression (8) when x > At. Thus, for any n < so, E(W/(t)) = 0. For
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any n > so, E(W[(t)) equals (23) plus

n—s ] n—so—1 4
n—s+1 (2) yOe yO) soAt ( ~ yoe yO) (25)
plus

sy <ygeyo> /+oo ( (e ((usl(x—At))Z o~ (s (o At»)) ]
€T =
|
=0 J: At i=n—j—so+1
50507
— 3 : dy
!
pS1 0 i=n—j—so+1 v
_ Sp—s1 yde Yo
M1

through Lemma 2 of the appendix. We note that, in any case, E(W;"(t))
can be computed from E(W,'(t)) in O(1) operations.

5. The general case for E(W/(t))

Now, we assume a more general case. Suppose that, for some K finite, there
are K + 1 positive integers sg, s1, ..., Sk, and K + 1 real numbers satisfying
0= Aty < Aty < Aty < ... < Aty such that, for every u € [t, 00),

sg ifuée [t+At0,t+At1),
S1 if u e [t—FAtl,t—l—Atg),
s(u) =

sk ifuet+ Atg,00).

The quantities E(W}'(t)), for every n, can be computed recursively. We use
conditioning on the number of service completions to derive the recursion
formula. The formula is initiated, for + = K, with

n— Sk + 1 £ >
— ifn>s
EW,'(t + Atg)) = USK =k (26)
0 if n < sg.
For a generic ¢ € {0,1,..., K — 1} we have the following derivation. For any

n < s;, E(W](t+ At;)) = 0, while, for any n > s;,
BV (1 + At)) =
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n—s; j —y; n—s; ] — s

2 : Yi€ yic n—j

= Am(t) (1 — j' ) + E ]' (Ati_H — Ati + E(Wq j(t + Ati+1))) ,
Jj=0 j=0

where y; = ps;(At;y1 — At;) and A, (t) denotes the expected value of W (¢ +
At;) given that there are more than n —s; service completions in the interval
[t -+ Ati, t 4+ Ati+1). Thus,

Ain(t) = E(X|X < At — At),

where X is the sum of n — s; + 1 i.i.d. exponential random variables of
parameter ps;. From Lemma 3 in the appendix,

y e
HSi Cyje Y
1- Z 4!
=0
and so, for any n > s;,
E(W,(t+ Aty)) =
n—s;+1 S ey — yle ¥
- T s <1 B yz—l + (At — Aty) Z . T
[1Si i = L
n—5 yJ —Yi .
+) F—BWI (4 Ati)),

= !

In the end of a backward application of this recursion formula we obtain
E(WZ(t)) = E(W}(t + Aty)), for any n.
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6. Appendix
Lemma 1. For any pair of reals yo,y1, and integer n > 0,

zn: (yo + yl)j _ - y_g) (”J :Z:l) (28)

=7

Proof: From the binomial expansion, for any integer n > 0,

n

n n' 7
(vo+u1)" = Z myoy? "

/Li

Thus, for any integer n > 0,

(o +1) =% Yoyl ur v (v
PRUETIRN 3 ST o) o 1o ]
j=0 j=0 =0 1=0 j=1t 1=0 7=0
from where (28) follows. n

Lemma 2. For any real yo > 0 and integer n > 0,

n

Yo i~y "= nlo g~y
ye Yo€ Yp€
/O (E: ‘ )dy_(n+1)<1§:oj! >+y0< . ) (29)
i=0 j j=0

7=0

n n ] n—1 4
[(E7F) oo (5) - (£57)
w \i=0 " =0 I = 7

and, for any pair of integers m,n > 0 such that m > n,

=n

Proof: As it may be checked

(55 o{g57) £

j=0 =0 i=0

Thus, (29) and (30) follow from the Fundamental Theorem of Calculus. Since
the sum of (29) and (30) is n + 1, (31) follows trivially. m
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Lemma 3. If {F;;i =1,2,...,n} are n i.i.d. exponential random variables

with mean (or parameter) b and X =Y., E; then, for every t > 0,
e )

E(X|X<t)=nb|1- 1”' . (32)
n— t/bl —t/b

i=0 ! /

M

Proof:
t
/ Fx(t) — Fx(x) dz
EX|X<t) = 2
(XX < i
t T n—1 Tt
/ (1 — exp (——> ( )) dx
0 b 0 Zl'
= - 1=
Fx(t)
n—1 t i
t— / exp (—— — dx
_ — Jo )bz'
- Fx(t)
n—1 t/h i —y
t—b (/ J° dy>
0 'L!
— 1=0
Fx(t)
n—1 ) j
t—bz (1—exp <—%> t—'>
— 1=0 7=0 J
Fx(t)
n—1 1 ;
t t’
_ 4 i—0 j=0
Fx(t)
n—1 ;
t t _
t—bn+bexp (—5> 2 ’_z'(n —1)
= t— =




— t—
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n—1 ; n—2 :
¢ pio =2y
t—bn+b _L S _
n eXp( b) (nz;bz' b;blz‘!)
n—1 :
¢ ¢
I —exp <_ g) P
1=0
1 -t bn (1 -
— eX — - - — 0N — eX — = -
P\ 7y ) 2% P\ biil
i=0 1=0
n—1 :
t 1
1— ! L
eXp( b) £ il
< t> tn_l
eXp - 1 — |
bt b) bn1(n—1)
+ n—1 i
1 — _Z _
eXp( b) bil
=0
( N )
ex —_— =
p b/ bn!
ENEIE
2
\ b))
[ |

When n =1, (32) becomes
o—t/b
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