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Abstract: We analyse the shape semiderivative of the solution to an asymptotic
nonlinear adaptive elastic rod model, derived in Figueiredo and Trabucho [8], with
respect to small perturbations of the cross section. Taking advantage of the special
structure of this model, which is defined by generalized Bernoulli-Navier elastic
equilibrium equations coupled with an ordinary differential equation with respect
to time, using the properties of the forms and data defining the model, and the
regularity of its solution, we compute and completely identify, in an appropriate
functional space involving time, the weak shape semiderivative.
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1. Introduction

In this paper we consider a sensitivity analysis problem in shape optimiza-
tion: the calculus of a derivative of the solution to an asymptotic nonlinear
adaptive elastic rod model, with respect to shape variations of the cross sec-
tion of the rod. More precisely, for each small parameter s ∈ [0, δ], we define
a perturbed adaptive elastic rod Ωs = ωs × [0, L]. The scalar L > 0 is its
length and ωs = ω + s θ(ω) is a perturbation of a fixed cross section ω, in the
direction of the vector field θ = (θ1, θ2), that realizes the shape variation. To
each rod Ωs, we associate the corresponding unique solution (us, ds) of the as-
ymptotic adaptive elastic rod model, derived in Figueiredo and Trabucho [8].
The purpose of this paper is to compute the limit (us−u

s , ds−d
s ), when s → 0+,

where (u, d) is the solution of the rod model for the case s = 0. This limit
is the semiderivative of the shape function J : s ∈ [0, δ] → J(Ωs) = (us, ds),
at s = 0 in the direction of the vector field θ (in the sense of Delfour and
Zolésio [6], p.289), or equivalently, the material derivative of the map J at
s = 0 (in the sense of Haslinger and Mäkinen [9], p.111).

The difficulties that arise in the computation of the limit (us−u
s , ds−d

s ), when
s → 0+, are caused by the complicated form of the asymptotic adaptive elas-
tic rod model derived in Figueiredo and Trabucho [8]. In fact, this is a
simplified adaptive elastic model (proposed for the mathematical modeling
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of the physiological process of bone remodeling) that couples the generalized
Bernoulli-Navier elastic equilibrium equations with an ordinary differential
equation with respect to time, which is the remodeling rate equation, that
expresses the process of absorption and deposition of bone material due to an
external stimulus (cf. Cowin and Hegedus [3, 4], Cowin and Nachlinger [5],
and Monnier and Trabucho [10], for a description of the theory of adaptive
elasticity and results of uniqueness and existence of three-dimensional solu-
tions). For each s ∈ [0, δ], the unique solution of this asymptotic adaptive
elastic rod model, is the pair (us, ds), where us is the displacement vector
field of the rod Ωs, and ds is a scalar field that represents the change in
volume fraction of the elastic material in the rod Ωs. Moreover, us is the
solution of the generalized Bernoulli-Navier equilibrium equations and ds is
the solution of the remodeling rate equation. In particular, us and ds are
coupled in the model because the material coefficients depend on ds and the
remodeling rate equation depends on us.

In spite of this complicated structure of the model we succeeded in the
calculus of the limit (us−u

s , ds−d
s ), when s → 0+. There are two main results in

this paper. The first principal result consists in proving that, for each time t,
the sequence (us−u

s , ds−d
s )(., t) converges weakly to (ū, d̄)(., t), when s → 0+, in

an appropriate functional space of Sobolev type (we note that the pair (us, ds)
is the solution of the perturbed rod model, reformulated in the unperturbed
fixed domain Ω, which is the domain of (u, d)). The second main result is the
identification of the weak shape semiderivative (ū, d̄), as the unique solution
of a nonlinear problem which couples a variational equation (whose solution
is ū) and depends on (u, d) and d̄, and an ordinary differential equation with
respect to time (whose solution is d̄), and that depends on (u, d) and ū.

The reasonings used to achieve these two main results are next summarized.
We show that the sequences (us, ds) and (us−u

s , ds−d
s ) are bounded in appro-

priate functional spaces, involving time; we use the continuity, the ellipticity,
the regularity properties and the special structure of the asymptotic adaptive
elastic rod model. To identify the weak shape semiderivative we also apply
the weak or/and strong convergence of the sequences {us} and {ds}, when
s → 0+, and again, the special structure of the asymptotic adaptive elastic
rod model. In particular, due to the form of the remodeling rate equation, we
are able to use the integral Gronwall’s inequality, which is the key to obtain
the estimates for the sequences {ds} and {ds−d

s } and to identify the ordinary
differential equation with respect to time, whose solution is d̄.
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Finally let us briefly explain the contents of the paper. After this intro-
duction, in section 2, we describe the problem Ps, which is the asymptotic
nonlinear adaptive elastic model for the perturbed rod Ωs, we also prove a
regularity property of its solution and finally we define the shape problem,
that we want to solve. In section 3 we reformulate the problem Ps in the
unperturbed domain Ω, which is necessary, because, in order to compute the
limit of the quotient sequence (us−u

s , ds−d
s ), the vector fields us, u, ds and d

must be defined in the same fixed domain, independent of s. In section 4 we
prove that all the sequences {us}, {ds}, {us−u

s } and {ds−d
s } are bounded in ap-

propriate functional spaces involving time, we determine, for each time t, the
weak limit of the quotient sequence (us−u

s , ds−d
s )(., t), when s → 0+, and we

identify the weak shape semiderivative (this identification is summarized in
theorems 4.14, 4.15 and corollary 4.3). Finally we present some conclusions
and future work.

2. Description of the Problem

In this section we first introduce the notations used in this paper. We
consider a family of rods Ωs = ωs × [0, L], with length L and cross section
ωs, parameterized by s ∈ [0, δ], which is a small parameter. We assume that
ωs = ω + s θ(ω) is a perturbation of ω = ω0 in the direction of the vector
field θ, so Ωs is a perturbation of the rod Ω = ω × [0, L] = Ω0. Next, for
each s, we describe the adaptive elastic rod model, derived in Figueiredo and
Trabucho [8]. This model (denoted by Ps, for each s) is highly nonlinear. In
fact, the unknown is a pair (us, ds) whose components are coupled; us is a
vector field, that represents the displacement of the rod Ωs, and solves the
generalized Bernoulli-Navier equilibrium equations, and ds is a scalar vector
field, that measures the change in volume fraction of the elastic material,
and that is the solution of the remodeling rate equation, that depends on
us. Aferwards we recall the result of existence and uniqueness of the solution
of the rod model Ps (proved in Figueiredo and Trabucho [8]). Moreover, we
also prove a regularity result for the displacement vector field us. Finally, we
describe the shape problem under consideration in this paper. Defining the
map J(s) = (us, ds), for s ∈ [0, δ], the shape problem consists in the calculus
of the semiderivative dJ(Ω; θ) at s = 0 in the direction of the vector field θ,
in the sense of Delfour and Zolésio [6], p.289.
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2.1. Notations. Let δ > 0 be a small parameter and for each s ∈ [0, δ]
we consider the perturbation Is of the identity operator I in R

2, defined
by Is(x1, x2) = (I + sθ)(x1, x2) = (xs1, xs2), for all (x1, x2) ∈ R

2, where θ =
(θ1, θ2) : R

2 −→ R
2 is a vector field regular enough (at least θ ∈ [W 2,∞(R2)]2).

Let ω be an open, bounded and connected subset of R
2, with a boundary

∂ω regular enough. For each s ∈ [0, δ] we define ωs = Is(ω), which is the
perturbation of ω in the direction of the vector field θ. We also denote by
Ωs the set occupied by a cylindrical adaptive elastic rod, in its reference
configuration, with length L > 0 and cross section ωs, that is

Ωs = ωs × [0, L] = Is(ω) × [0, L] ⊂ R
3. (1)

Moreover we denote by xs = (xs1, xs2, x3) a generic element of Ωs and define
the sets

Γs = ∂ωs×]0, L[, Γs0 = ωs × {0}, ΓsL = ωs × {L}, (2)

where ∂ωs is the boundary of ωs. These three sets represent, respectively, the
lateral boundary of the rod Ωs and its two extremities. The unit outer normal
vector along the boundary ∂Ωs of Ωs is denoted by ns = (ns1, ns2, ns3). We
assume that, for each s ∈ [0, δ] the coordinate system (O, xs1, xs2, x3) is a
principal system of inertia associated with the rod Ωs. Consequently, axis
Ox3 passes through the centroid of each section ωs × {x3} and we have

∫

ωs

xs1 dωs =

∫

ωs

xs2 dωs =

∫

ωs

xs1xs2 dωs = 0. (3)

We observe that the choice of the vector field θ, that realizes the shape
variation of the cross section ω, must be admissible with this last condition.

The set Cm(Ωs) stands for the space of real functions m times continuously
differentiable in Ωs. The spaces W m,q(Ωs) and W 0,q(Ωs) = Lq(Ωs) are the
usual Sobolev spaces, where q is a real number satisfying 1 ≤ q ≤ ∞ and
m is a positive integer. The norms in these Sobolev spaces are denoted by
‖.‖W m,q(Ωs). The set

Rs = {vs ∈ R
3 : vs = a + b ∧ xs, a, b ∈ R

3} (4)

where ∧ is the exterior product in R
3, is the set of infinitesimal rigid dis-

placements. We denote by [W m,q(Ωs)]
3 \ Rs the quotient space induced by

the set Rs in the Sobolev space [W m,q(Ωs)]
3.

Throughout the paper, the latin indices i, j, k, l... belong to the set
{1, 2, 3}, the greek indices α, β, µ... vary in the set {1, 2} and the summation
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convention with respect to repeated indices is employed, that is, for example
aibi =

∑3
i=1 aibi.

Let T > 0 be a real parameter and denote by t the time variable in the
interval [0, T ]. If V is a topological vectorial space, the set Cm([0, T ]; V )
is the space of functions g : t ∈ [0, T ] → g(t) ∈ V , such that g is m times
continuously differentiable with respect to t. If V is a Banach space we denote
‖.‖Cm([0,T ];V ) the usual norm in Cm([0, T ]; V ). Moreover, given a function

gs(xs, t) defined in Ωs × [0, T ] we denote by ġs its partial derivative with
respect to time, by ∂sαgs and ∂3gs its partial derivatives with respect to xsα

and x3, respectively, that is, ġs = ∂gs

∂t , ∂sαgs = ∂gs

∂xsα
and ∂3gs = ∂gs

∂x3
.

2.2. The adaptive elastic rod model. The theory of adaptive elasticity
(cf. Cowin and Hegedus [3, 4]) is proposed for the mathematical modeling
of the physiological process of bone remodeling (and it is a generalization of
linearized elasticity). The basic system of equations governing the adaptive
elasticity model couples the equilibrium and constitutive equations with an
ordinary differential equation with respect to time, which is the remodeling
rate equation. This latter equation mathematically expresses the process
of absorption and deposition of bone material due to an external stimulus.
Figueiredo and Trabucho [8], applied the asymptotic expansion method (cf.
Trabucho and Viaño [11], for an explanation of the mathematical modeling of
rods with the asymptotic expansion method) to the model derived in Cowin
and Hegedus [3, 4], with the modifications proposed in Monnier and Trabucho
[10], for a remodeling rate equation depending nonlinearly or linearly on the
strain field, and for a thin rod whose cross section is a function of a small
parameter. They obtained a simplified adaptive elastic rod model (that we
denote also by asymptotic adaptive elastic rod model), that is a system of
nonlinear coupled equations, with generalized Bernoulli-Navier equilibrium
equations and a simplified remodeling rate equation. This system is defined
as follows, for any perturbed rod Ωs (with s ∈ [0, δ]) and in the case where
the original three-dimensional remodeling rate equation depends linearly on
the strain field:









us = (us1, us2, us3) : Ωs × [0, T ] → R
3, ds : Ωs × [0, T ] → R,

usα : [0, L] × [0, T ] → R,

us3 = us3 − xsα∂3usα and us3 : [0, L] × [0, T ] → R,

(us, ds) satisfies:

(5)
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the equilibrium equations in (0, L) × (0, T ),













[
−∂3

(
ls(ds)∂3us3 − esα(ds)∂33usα

)
=

∫

ωs
γs(ξs0 + Pη(ds)) fs3 dωs +

∫

∂ωs
gs3 d∂ωs,







∂33

(
− esβ(ds)∂3us3 + hsαβ(ds)∂33usα

)
=

∫

ωs
γs(ξs0 + Pη(ds)) fsβ dωs +

∫

∂ωs
gsβ d∂ωs

+
∫

ωs
xsβ ∂3[γs(ξs0 + Pη(ds)) fs3] dωs +

∫

∂ωs
xsβ ∂3gs3 d∂ωs,

(6)

the boundary conditions for {x3} × (0, T ), with x3 = 0, L,












(
ls(ds)∂3us3 − esα(ds)∂33usα

)
(x3) =

∫

ωs
hs3(x3) dωs,

(
esβ(ds)∂3us3 − hsαβ(ds)∂33usα

)
(x3) =

∫

ωs
xsβ hs3(x3) dωs,







∂3

(
esβ(ds)∂3us3 − hsαβ(ds)∂33usα

)
(x3) =

∫

ωs
hsβ(x3) dωs −

∫

∂ωs
xsβgs3(x3) d∂ωs

−
∫

ωs
xsβ γs(ξs0 + Pη(ds))fs3(x3) dωs,

(7)

the remodeling rate equation,






ḋs = c(ds)e33(us) + a(ds), in Ωs × (0, T ),

c(ds) = Aαβ(ds)
bαβ33(ds)
b3333(ds)

+ A33(ds),

ds(xs, 0) = ds(xs), in Ωs.

(8)

The unknowns of the model (5)-(8) are the displacement vector field us(xs, t),
corresponding to the displacement of the point xs of the rod Ωs at time t
and the measure of change in volume fraction of the elastic material (from
the reference volume fraction ξs0) dε(xs, t) at (xs, t). In particular e33(us) =
∂3us3 = ∂3us3 − xsα∂33usα is an element of the linear strain tensor

(
eij(us)

)
,

and it is a function of us.
On the other hand, the data of the model (5)-(8) are the following: the

open set Ωs × (0, T ), the density γs = γ of the full elastic material, which
is supposed to be a constant independent of s, the reference volume fraction
of the elastic material ξs0, that belongs to C1(Ωs) for each s, the body load
fs = (fsi), such that fsi ∈ C1([0, T ]) and depends only on t, the normal
tractions on the boundary gs = (gsi) and hs = (hsi), the initial value of
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the change in volume fraction ds(xs), which belongs to C0(Ωs), the trunca-
tion operator Pη(.), and the coefficients ls(ds), esα(ds), hsαβ(ds), c(ds), a(ds),
Aαβ(ds), A33(ds), bαβ33(ds) and b3333(ds), which are all material coefficients
depending upon the change in volume fraction ds.

On these data we also suppose further conditions, which we will describe
next. We assume that, for each s ∈ [0, δ], 0 < ξmin

s0 ≤ ξs0(xs) ≤ ξmax
s0 < 1 and

that the normal tractions verify

gsi ∈ C1([0, T ]; W 1−1/p,p(Γs)), hsi ∈ C1([0, T ]; W 1−1/p,p(Γs0 ∪ ΓsL)), (9)

with p > 3. In addition we assume that the resultant of the system of applied
forces is null for rigid displacements, that is, for any vs = (vsi), and for all
t ∈ [0, T ]

{ ∫

Ωs
γ(ξs0 + Pη(ds))fsivsidxs +

∫

Γs
gsivsidΓs

+
∫

Γs0∪ΓsL
hsivsid(Γs0 ∪ ΓsL) = 0.

(10)

The truncation operator Pη, of class C1, is defined by

Pη(ds)(xs) =







−ξs0(xs) + η
2 , if ds(xs) ≤ −ξs0(xs) + η

2

ds(xs), if η − ξs0(xs) ≤ ds(xs) ≤ 1 − ξs0(xs) − η

1 − ξs0(xs), if ds(xs) ≥ 1 − ξs0(xs)

(11)

and satisfies

0 <
η

2
≤ (ξs0 + Pη(ds))(xs) ≤ 1, ∀xs ∈ Ωs. (12)

The coefficients bαβ33(ds) and b3333(ds) are continuously differentiable with
respect to ds and are elements of the matrix

(
bijkl(ds)

)
which is the inverse

matrix of the three-dimensional elastic coefficients
(
cijkl(ds)

)
of the rod Ωs

(cf. Figueiredo and Trabucho [8]). Moreover bαβ33(ds) and b3333(ds) belong
to the space C1([0, T ]; C1(R3)) when ds ∈ C1([0, T ]; C0(Ωs)) (cf. Monnier
and Trabucho [10] and also Figueiredo and Trabucho [8]). The coefficients
Aαβ(ds), A33(ds) and a(ds) are remodeling rate coefficients and are supposed
continuously differentiable with respect to ds. In addition we also assume that
there exist strictly positive constants C1, C2, C3, C4, C5 and C6 independent
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of s and t, such that for any (xs, t) ∈ Ω × [0, T ]

0 < C1 ≤
1

b3333(ds)
≤ C2, ∀s ∈ [0, δ], (13)

|c(ds)| ≤ C3, |a(ds)| ≤ C4, , ∀s ∈ [0, δ], (14)

|c′(ds)| ≤ C5, |a′(ds)| ≤ C6, , ∀s ∈ [0, δ], (15)

where c′(.) and a′(.) are the derivatives of the scalar functions c(.) and a(.).
The coefficients ls(ds), esα(ds) and hsαβ(ds), that depend on the elasticity

coefficient b3333(ds) (cf. Figueiredo and Trabucho [8]), are functions of x3 and
t, and are defined by

ls(x3, t) =
∫

ωs

1
b3333(ds)

dωs,

esα(x3, t) =
∫

ωs

xsα

b3333(ds)
dωs, hsαβ(x3, t) =

∫

ωs

xsαxsβ

b3333(ds)
dωs.

(16)

Doing the variational formulation of the equilibrium equations (that is ob-
tained multiplying the first equilibrium equation (6) by vs3 ∈ W 1,2(0, L) and
the second and third equilibrium equations by xs1 vs1 and xs2 vs2, respec-
tively, with vsβ ∈ W 2,2(0, L), for β = 1, 2, and subsequently integrating in
(0, L) and using the boundary condititons (7)), the asymptotic adaptive elas-
tic rod model (5)-(8) is equivalent to the following nonlinear (variational and
differential) system (Ps) (cf. Figueiredo and Trabucho [8])

Ps












Find us : Ωs × [0, T ] → R
3, ds : Ωs × [0, T ] → R such that :

us(., t) ∈ V (Ωs) \ Rs,

as(us, vs) = Ls(vs), ∀vs ∈ V (Ωs) \ Rs,

ḋs = c(ds)e33(us) + a(ds), in Ωs × (0, T ),

ds(xs, 0) = ds(xs), in Ωs.

(17)

The space V (Ωs) =
{

vs ∈ [W 1,2(Ωs)]
3 : eαβ(vs) = e3β(vs) = 0

}

is identified

with
{

vs = (vs1, vs2, vs3) ∈ [W 2,2(0, L)]2 × W 1,2(Ωs) : vsα(xs) = vsα(x3),

vs3(xs) = vs3(x3) − xsα∂3vsα(x3), vs3 ∈ W 1,2(0, L)
}

,
(18)



SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 9

and the quotient space V (Ωs) \ Rs is the set
{

vs = zs + a + b ∧ xs : zs ∈ V (Ωs), a ∈ R
3, b = (b1, b2, 0) ∈ R

3
}

. (19)

The bilinear form as(., .), depending on the unknown ds, is defined in the
space V (Ωs) \ Rs by

as(zs, vs) =

∫

Ωs

1

b3333(ds)
e33(zs)e33(vs)dΩs, ∀zs, vs ∈ V (Ωs) \ Rs (20)

and Ls(.) is a linear form also defined in V (Ωs) \ Rs by
{

Ls(vs) =
∫

Ωs
γ(ξs0 + Pη(ds)) fsi vsi dΩs +

∫

Γs
gsi vsi dΓs

+
∫

Γs0∪ΓsL
hsi vsi d(Γs0 ∪ ΓsL).

(21)

Remark 2.1 (Justification of the definition of V (Ωs) \ Rs). We must have
b3 = 0 in the definition (19), because otherwise the quotient space V (Ωs)\Rs

would not be contained in V (Ωs). In fact developing vs = zs + a + b ∧ xs we
have for the first component, vs1 = zs1 + a1 + b2x3 − b3xs2, for the second
component vs2 = zs2 + a2 − b1x3 + b3xs1 and finally for the third component
vs3 = zs3−xsα∂3zsα +a3 +b1xs2−b2xs1. Therefore if b3 6= 0, then vs /∈ V (Ωs),
and if b3 = 0, we have

vs1 = zs1 + a1 + b2x3 (vs1 depends only on x3)

vs2 = zs2 + a2 − b1x3 (vs2 depends only on x3)

vs3 = zs3 − xsα∂3zsα + a3 + b1xs2 − b2xs1

= zs3 + a3
︸ ︷︷ ︸

vs3

−xsα∂3vsα = vs3 − xsα∂3vsα

(22)

because (b1, b2, 0) ∧ xs =
(
b2x3,−b1x3, b1xs2 − b2xs1). �

By the following Korn’s type inequality in the quotient space V (Ωs) \ Rs

(cf. Ciarlet [1] or Valent [12]) we have

∃c > 0 : ‖vs‖
2
[W 1,2(Ωs)]3

≤ c‖e33(vs)‖
2
L2(Ωs)

, (23)

where vs = (vs1, vs2, vs3), vsα ∈ W 2,2(0, L) and vs3 = vs3 − xsα∂3vsα, with
vs3 ∈ W 1,2(0, L)

e33(vs) = ∂3vs3 = ∂3vs3 − xsα∂33vsα, and due to (3),

‖e33(vs)‖
2
L2(Ωs)

= ‖∂3vs3‖
2
L2(0,L) +

( ∫

ωs
x2

sαdωs

)
‖∂33vsα‖

2
L2(0,L).

(24)
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Hence, we conclude that ‖e33(.)‖L2(Ωs) is a norm in the space V (Ωs) \ Rs

equivalent to the usual norm induced in the quotient space by ‖.‖[W 1,2(Ωs)]3.
Moreover V (Ωs) \Rs is a Hilbert space with the norm ‖e33(.)‖L2(Ωs) and the
bilinear form as(., .) is elliptic in V (Ωs) \Rs. In fact, there exists a constant
C > 0, such that, for all vs ∈ V (Ωs) \ Rs

{
as(vs, vs) =

∫

Ωs

1
b3333(ds)

e33(vs) e33(vs) dΩs ≥

C1‖e33(vs)‖
2
L2(Ωs)

= C1‖vs‖
2
V (Ωs)\Rs

≥ C‖vs‖
2
[W 1,2(Ωs)]3

,
(25)

where C1 is the constant defined in condition (13).
For each s ∈ [0, δ], the existence and uniqueness of solution of the asymp-

totic adaptive elastic rod model Ps (cf. (17)) is proved in Figueiredo and
Trabucho [8], and relies on the Schauder’s fixed point theorem. The next
theorem recalls this statement of existence and uniqueness.

Theorem 2.1 (Existence and uniqueness of solution of Ps). Let s ∈ [0, δ]

be fixed. Assuming that, for each fixed d̂s, the unique solution ûs of the
equilibrium problem

{

Find us(., t) ∈ V (Ωs) \ Rs, such that :

as(us, vs) = Ls(vs), ∀vs ∈ V (Ωs) \ Rs,
(26)

is regular enough, then there exists a unique pair (us, ds), solution of problem
Ps (cf. (17)), verifying

us ∈ C1([0, T ]; V (Ωs) \ Rs) and ds ∈ C1([0, T ]; C0(Ωs)). � (27)

The next theorem is a regularity result, that will be important in section
4, and, to prove it, we introduce the following notations

zs3 = ls(ds)∂3us3 − esα(ds)∂33usα,

zsβ = −esβ(ds)∂3us3 + hsαβ(ds)∂33usα,

Fs3 =
∫

ωs
γ(ξs0 + Pη(ds)) fs3 dωs +

∫

∂ωs
gs3 d∂ωs,

Fsβ =

{ ∫

ωs
γ(ξs0 + Pη(ds)) fsβ dωs +

∫

∂ωs
gsβ d∂ωs

+
∫

ωs
xsβ ∂3[γ(ξs0 + Pη(ds)) fs3] dωs +

∫

∂ωs
xsβ ∂3gs3 d∂ωs,

(28)
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and the matrix Ms

Ms =





ls −es1 −es2

−es1 hs11 hs12

−es2 hs21 hs22



 . (29)

We remark that

zs3 ∈ C1([0, T ]; L2(0, L)) and zsβ ∈ C1([0, T ]; L2(0, L)), for β = 1, 2,

Fs3 ∈ C1([0, T ]; L2(0, L)) and Fsβ ∈ C1([0, T ]; L2(0, L)), for β = 1, 2,

Ms ∈ C1
(
[0, T ]; [C1(R3)]9

)
.

(30)

Theorem 2.2 (Regularity of us). Let (us, ds) be the unique solution of prob-
lem Ps (cf. (17)). We assume that the determinant of matrix Ms is not zero,
det Ms 6= 0. Then, for each t ∈ [0, T ]

usβ(., t) ∈ W 3,2(0, L) and us3(., t) ∈ W 2,2(0, L). (31)

In consequence, and because us = (us1, us2, us3−xsβ∂3 usβ), we have us(., t) ∈
[W 2,2(Ωs)]

3.

(Note – for example, if 1
b3333(ds) = c, where c is a constant, then

detMs = [

∫

ωs

1dωs

∫

ωs

x2
s1dωs

∫

ωs

x2
s1dωs ] c−3 > 0) (32)

Proof: We first remark that the equilibrium equations (6) can be written in
the form

−∂3 zs3 = Fs3,

∂33 zsβ = Fsβ, β = 1, 2,
(33)

and for each t, Fs3(., t) and Fsβ(., t) belong to the space L2(0, L).
Since zs3(., t) belongs to L2(0, L), and because of the first equilibrium

equation in (33), also ∂3 zs3(., t) belongs to L2(0, L), so we conclude that
zs3(., t) ∈ W 1,2(0, L), for each t.

For each t, zsβ(., t) ∈ L2(0, L) and so ∂3 zsβ(., t) ∈ [W 1,2(0, L)]′, where
[W 1,2(0, L)]′ is the dual of W 1,2(0, L). But from the second equilibrium
equation in (33) we have that ∂33 zsβ(., t) ∈ L2(0, L) and also ∂33 zsβ(., t) ∈
[W 1,2(0, L)]′ because L2(0, L) ⊂ [W 1,2(0, L)]′. So, because of a lemma of
J.L.Lions (cf. Ciarlet [2], p. 39) ∂3 zsβ(., t) ∈ L2(0, L). Hence the elements
zsβ(., t), ∂3 zsβ(., t) and ∂33 zsβ(., t) belong to the space L2(0, L), which means
that zsβ(., t) ∈ W 2,2(0, L).
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Therefore, assembling these properties we obtain, for each t

zs3(., t) = ps3(., t) ∈ W 1,2(0, L),

zs1(., t) = ps1(., t) ∈ W 2,2(0, L),

zs2(., t) = ps2(., t) ∈ W 2,2(0, L),

(34)

where psi is a primitive of Fsi (in the sense of distributions in W 1,2(0, L)),
for i = 1, 2, 3. Replacing zsi by its definition (cf. (28)) the system (34) is
equivalent to the following system of three equations





ls −es1 −es2

−es1 hs11 hs12

−es2 hs21 hs22









∂3us3

∂33us1

∂33us2



 =





ps3

ps1

ps2



 (35)

With the assumption det Ms 6= 0, we may solve the system (35). We obtain,
for ∂3us3(., t)

∂3us3(., t) =

det





ps3 −es1 −es2

ps1 hs11 hs12

ps2 hs21 hs22





det Ms
∈ W 1,2(0, L) (36)

for ∂33us1(., t)

∂33us1(., t) =

det





ls ps3 −es2

−es1 ps1 hs12

−es2 ps2 hs22





det Ms
∈ W 1,2(0, L) (37)

and for ∂33us2(., t)

∂33us2(., t) =

det





ls −es1 ps3

−es1 hs11 ps1

−es2 hs21 ps2





det Ms
∈ W 1,2(0, L). (38)

We remark that the regularity indicated in (36)-(38) depends also on the
regularity of the elements of Ms that belong to the space C1([0, T ]; C1(R3)).

So we conclude that the component usβ(., t) ∈ W 3,2(0, L), for β = 1, 2 and
us3(., t) ∈ W 2,2(0, L), which implies that us(., t) ∈ [W 2,2(Ωs)]

3. �
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2.3. The shape probem. We consider now the shape map J defined by

J : [0, δ] −→ C1([0, T ]; V (Ωs) \ Rs) × C1([0, T ]; C0(Ωs))

s −→ J(Ωs) = (us, ds)
(39)

where (us, ds) is the unique solution of the nonlinear adaptive rod model
Ps (cf. (17)), defined in the perturbed rod Ωs. For each s, the functions
us(xs, t) and ds(xs, t) are the displacement and the measure of change in
volume fraction of the elastic material, at the point xs of the rod Ωs, and at
time t. Moreover, as remarked before, the unknowns us and ds are coupled
in the model Ps.

We recall that Is(ω) is a perturbation of the cross section ω of the rod
Ω = ω × [0, L] (cf. (1)), so Ωs is a perturbation of the rod Ω, that is

Ωs = Is(ω) × [0, L] = (I + s θ)(ω) × [0, L],

and

Ω = ω × [0, L] = I0(ω) × [0, L] = Ω0.

(40)

The aim of this paper is to compute the shape semiderivative dJ(Ω; θ) at
s = 0, in the direction of the vector field θ. This semiderivative is defined by
(cf. Delfour and Zolésio [6], p.289)

dJ(Ω; θ) = lim
s→0+

J(Ωs) − J(Ω)

s
. (41)

Accordingly to the definition of J we have

dJ(Ω; θ) = lim
s→0+

(us, ds) − (u, d)

s
=

(

lim
s→0+

us − u

s
, lim

s→0+

ds − d

s

)

(42)

where (u, d) is the solution of problem (17) but for the unperturbed rod
Ω0 = Ω = ω × [0, L].

We also remark that the semiderivative dJ(Ω; θ) is equivalent to the defini-
tion of the material derivative of the map J at s = 0, in the sense of Haslinger
and Mäkinen [9], p.111.

In section 4, we prove that it is possible to compute and to identify, in a
weak sense and in an appropriate product space, this shape semiderivative.
The final identification result is described in theorems 4.14-4.15 and corollary
4.3.
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3. Equivalent Formulation of the Adaptive Rod Model

In order to be able to calculate the shape semiderivative indicated in (42)
we must reformulate, for each s, the problem Ps (cf. (17)) in the domain
Ω × [0, T ], independent of s. Therefore we first formulate, in Ω, all the
forms involved in the definition of problem Ps. Afterwards, we describe the
resulting rod model, that is denoted by P s, equivalent to Ps, formulated in
Ω × [0, T ].

3.1. Reformulations of the forms defining Ps. We define the homeo-
morphism

Q(x1, x2, x3) =
(
x1 + sθ1(x1, x2), x2 + sθ2(x1, x2), x3

)
, (43)

that verifies

Ωs = Qs(Ω), det∇Qs = 1 + s div θ + s2 det∇θ, (44)

where the matrices ∇Qs and ∇θ are the gradients of Qs and θ, respectively,
and div θ = ∂αθα is the divergence of θ.

To each function vs defined in Ωs we associate the corresponding function
vs (with upper index s) defined on Ω by

vs = vs ◦ Qs. (45)

Hence and because of remark 2.1 for any vs ∈ V (Ωs) \ Rs, then

vs
1 = zs

1 + a1 + b2x3

vs
s2 = zs

2 + a2 − b1x3

vs
3 = zs

3 − xα∂3z
s
α + a3 + b1x2 − b2x1

= zs
3 + a3

︸ ︷︷ ︸
vs
3

−xα∂3v
s
α = vs

3 − xα∂3v
s
α

(46)

and consequently vs ∈ V (Ω)\R (whose definition is (19), for the case s = 0).
Moreover,

e33(vs) = ∂3vs3 − xsα∂33vsα = ∂3vs3 − (xα + s θα)∂33v
s
α

= ∂3v
s
3 − xα∂33v

s
α − s θα∂33v

s
α

= e33(v
s) − s θα∂33v

s
α.

(47)
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Using (44)-(47) and the change of variables formula for domain and boundary
integrals (cf. Delfour and Zolésio [6], p.351-353) we get for as(us, vs)

∫

Ω

1

b3333(ds)

(
e33(u

s) − s θα∂33u
s
α

)(
e33(v

s) − s θα∂33v
s
α

)
det∇QsdΩ, (48)

and for Ls(vs)







∫

Ω γ(ξs
0 + Pη(d

s)) f s
i vs

i (det∇Qs) dΩ

+
∫

Γ gs
i vs

i |(Cof ∇Qs)
Tn|R3 dΓ

+
∫

Γ0∪ΓL
hs

i vs
i |(Cof ∇Qs)

T n|R3 d(Γ0 ∪ ΓsL).

(49)

In (49) |.|R3 is the euclidean norm in R
3, (Cof ∇Qs)

T is the transpose of the
cofactor matrix of ∇Qs, that is (Cof ∇Qs)

T = (det∇Qs)(∇Qs)
−T , whose

definition is





1 + s∂2θ2 −s∂1θ2 0
−s∂2θ1 1 + s∂1θ1 0

0 0 (1 + s∂2θ2)(1 + s∂1θ1) − s2∂1θ2∂2θ1



 (50)

and n = (n1, n2, n3) is the unit outer normal vector along the boundary ∂Ω
of Ω. We remark that

n(x) = (n1(x), n2(x), 0), for x ∈ Γ = ∂ω×]0, L[,

n(x) = (0, 0,−1), for x ∈ Γ0 = ω × {0},

n(x) = (0, 0, 1), for x ∈ ΓL = ω × {L}.

(51)

Developing (48)-(49) we obtain the following decomposition for as(us, vs) and
Ls(vs)

as
0(u

s, vs) + sas
1(u

s, vs) + s2as
2(u

s, vs) + s3as
3(u

s, vs) + s4as
4(u

s, vs),

{

F s
0 (vs) + Gs

0(v
s) + Hs

0(v
s) + s

(
F s

1 (vs) + Gs
1(v

s) + Hs
1(v

s)
)
+

s2
(
F s

2 (vs) + Gs
2(v

s) + Hs
2(v

s)
)

+ s3
(
F s

3 (vs) + Gs
3(v

s) + Hs
3(v

s)
)
.

(52)
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The bilinear forms as
i (., .) for i = 0, 1, 2, 3, 4, depend on θ and ds, and are

defined by the formulas

as
0(u, v) =

∫

Ω
1

b3333(ds)e33(u)e33(v)dΩ,

as
1(u, v) =







∫

Ω
1

b3333(ds)

[

− θα

(
e33(u)∂33vα + e33(v)∂33uα

)

+e33(u)e33(v)div θ
]

dΩ,

as
2(u, v) =







∫

Ω
1

b3333(ds)

[

e33(u)e33(v) det∇θ + θα θβ ∂33uα ∂33vβ

−(div θ) θα

(
e33(u)∂33vα + e33(v)∂33uα

)]

dΩ,

as
3(u, v) =







∫

Ω
1

b3333(ds)

[

θαθβ∂33uα∂33vβ div θ

−(det∇θ) θα

(
e33(u)∂33vα + e33(v)∂33uα

)]

dΩ,

as
4(u, v) =

∫

Ω
1

b3333(ds)

[

θα θβ ∂33uα ∂33vβ det∇θ
]

dΩ,

(53)

for any pair (u, v) in the space V (Ω) \ R. The linear forms F s
0 , F s

1 , F s
2 and

F s
3 , depend on θ and ds, and are also defined in the same quotient space

V (Ω) \ R by the following expressions

F s
0 (v) =

∫

Ω γ(ξs
0 + Pη(d

s)) (f s
α vα + f s

3 v3) dΩ,

F s
1 (v) =

∫

Ω γ(ξs
0 + Pη(d

s))
[

(f s
α vα + f s

3 v3) div θ − f s
3 θα ∂3vα

]

dΩ,

F s
2 (v) =

∫

Ω γ(ξs
0 + Pη(d

s))
[

(f s
α vα + f s

3 v3) det∇θ

−f s
3 θα ∂3vα div θ

]

dΩ,

F s
3 (v) = −

∫

Ω γ(ξs
0 + Pη(d

s)) f s
3 θα ∂3vα det∇θ dΩ.

(54)

The linear forms Gs
0, Gs

1, Gs
2, Gs

3 and Hs
0 , Hs

1 , Hs
2 , Hs

3 result from the change
of variable in the boundary integrals (defined in Γs and in Γs0 ∪ ΓsL, respec-
tively). Their expressions, that depend on θ and n, but are independent of
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ds, are the following for any v in the space V (Ω) \ R:

Gs
0(v) =

∫

Γ

(
gs

α vα + gs
3 v3

)
dΓ,

Gs
1(v) =

∫

Γ

[

(gs
α vα + gs

3 v3) G1(θ, n) − gs
3 θα ∂3vα

]

dΓ,

Gs
2(v) =

∫

Γ

[

(gs
α vα + gs

3 v3) G2(θ, n) − gs
3 θα ∂3vα G1(θ, n)

]

dΓ,

Gs
3(v) = −

∫

Γ gs
3 θα ∂3vα G3(θ, n) dΓ,

(55)

where G1(θ, n), G2(θ, n) and G3(θ, n) are bounded scalar functions of θ and
n, the unit outer normal vector, and

Hs
0(v) =

∫

Γ0∪ΓL

(
hs

α vα + hs
3 v3

)
dΓ0 ∪ ΓL,

Hs
1(v) =

∫

Γ0∪ΓL

[

(hs
α vα + hs

3 v3) H1(θ) − hs
3 θα ∂3vα

]

dΓ0 ∪ ΓL,

Hs
2(v) =

∫

Γ0∪ΓL

[

(hs
α vα + hs

3 v3) H2(θ) − hs
3 θα ∂3vα H1(θ)

]

dΓ0 ∪ ΓL,

Hs
3(v) = −

∫

Γ0∪ΓL
hs

3 θα ∂3vα H2(θ) dΓ0 ∪ ΓL,

(56)

where H1(θ) and H2(θ) are bounded scalar functions of θ.

3.2. The problem Ps formulated in Ω × [0,T]. As a direct consequence
of (52) we deduce the next theorem which formulates the problem Ps in Ω;
the new equivalent problem is denoted by P s, with upper index s.

Theorem 3.1 ( Problem P s ). We assume that for each s ∈ [0, δ], ds(x, 0) =
d(x) in Ω, and d is independent of s. We denote by (u, d) the unique solution
of problem P s, for s = 0, that is, (u, d) is the solution of the following system
P 0 (cf. (17), for the case s = 0), formulated in Ω × [0, T ]












Find u : Ω × [0, T ] → R
3, and d : Ω × [0, T ] → R such that :

u(., t) ∈ V (Ω) \ R,

a0(u, v) = L0(v) ≡ F0(v) + G0(v) + H0(v), ∀v ∈ V (Ω) \ R,

ḋ = c(d)e33(u) + a(d), in Ω × (0, T ),

d(x, 0) = d(x), in Ω,

(57)
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where a0(., .), F0(.), G0(.) and H0(.) are independent of s and are defined by

a0(z, v) =
∫

Ω
1

b3333(d) e33(z) e33(v) dΩ, (a0(., .) depends on d)

F0(v) =
∫

Ω γ(ξ0 + Pη(d)) (fα vα + f3 v3) dΩ, (F0(.) depends on d)

G0(v) =
∫

Γ

(
gα vα + g3 v3

)
dΓ,

H0(v) =
∫

Γ0∪ΓL

(
hα vα + h3 v3

)
dΓ0 ∪ ΓL, ∀z, v ∈ V (Ω) \ R.

(58)

Then, the problem Ps (cf. (17)), for s 6= 0, is equivalent to the following
problem P s posed in the domain Ω × [0, T ] independent of s





















Find us : Ω × [0, T ] → R
3, and ds : Ω × [0, T ] → R such that :

us(., t) ∈ V (Ω) \ R,








as
0(u

s, v) + s as
1(u

s, v) + s2 as
2(u

s, v) + s3 as
3(u

s, v)

+s4 as
4(u

s, v) = F s
0 (v) + sF s

1 (v) + s2 F s
2 (v) + s3 F s

3 (v)

+Gs
0(v) + s Gs

1(v) + s2 Gs
2(v) + s3 Gs

3(v)

+Hs
0(v) + s Hs

1(v) + s2 Hs
2(v) + s3 Hs

3(v), ∀v ∈ V (Ω) \ R,

ḋs = c(ds)e33(u
s) + a(ds) − s c(ds)θα∂33u

s
α, in Ω × (0, T ),

ds(x, 0) = d(x), in Ω,

(59)

where the sets V (Ω) and V (Ω) \R are defined in (18) and (19), for the case
s = 0.

4. Calculus and Identification of the Shape Semideriva-

tive

In this section we first prove that the sequence {(us, ds)} is bounded in the
space C0([0, T ]; V (Ω) \ R) × C0([0, T ]; L2(Ω)), {us} is bounded in the space
C0([0, T ]; W 2,2(Ω)), and {e33(u

s)} is bounded in the space C0([0, T ]; C0(Ω)),
independently of s. Then we show, that the quotient sequence {(us−u

s , ds−d
s )},

where (u, d) is the solution of problem P 0, is also bounded, independently
of s, in the space C0([0, T ]; V (Ω) \ R) × C0([0, T ]; L2(Ω)). These results
guarantee the existence, for each t, of a pair (ū, d̄)(., t), which is the weak
limit of a subsequence of {(us−u

s , ds−d
s )(., t)} in the reflexive Banach space

V (Ω) \R× L2(Ω), when s → 0+; consequently, (ū, d̄)(., t) is the weak shape



SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 19

semiderivative of the functional J , defined in (42), at s = 0 in the direction
of the vector field θ, for each t. We also prove that the sequence {e33(u

s)}
converges strongly to 0 in C0([0, T ]; C0(Ω)), and {ds} converges strongly to
d in C0([0, T ]; C0(Ω)), when s → 0+. Using all these estimates and conver-
gence results, we identify the weak shape semiderivative (ū, d̄) as the unique
solution of a nonlinear problem: the component ū is the solution of a vari-
ational equation, depending on (u, d) and d̄, where d̄ is the solution of an
ordinary differential equation with respect to time, depending on (u, d) and
ū. Morover we show that ū ∈ C1([0, T ]; V (Ω)\R) and d̄ ∈ C1([0, T ]; C0(Ω)).

4.1. Preliminary estimates.

Theorem 4.1 (First estimates for the sequences us and ds). We suppose that
the conditions (13)-(14) are verified and d(x) ∈ L2(Ω), then

∃c1 > 0 : ‖us‖C0([0,T ];V (Ω)\R) ≤ c1, ∀s ∈ [0, δ], (60)

∃c2 > 0 : ‖ds‖C0([0,T ];L2(Ω)) ≤ c2, ∀s ∈ [0, δ], (61)

where c1 and c2 are constants independent of s.

Proof: The pair (us, ds) is the solution of problem P s (cf. (59)), thus for
each time t,

as
0(u

s, us) = Ls(us) −

4∑

i=1

si as
i (u

s, us). (62)

By the ellipticity of as
0(., .) in V (Ω) \ R (cf. (25)) we have for each t

as
0(u

s, us) ≥ c ‖us(., t)‖2
V (Ω)\R, (63)

where C is a constant independent of s and t. But applying (24)

‖e33(u
s(., t))‖2

L2(Ω) = ‖∂3u
s
3(., t)‖

2
L2(0,L) +

(
∫

ω

x2
αdω

)
‖∂33u

s
α(., t)‖2

L2(0,L), (64)

hence

‖∂3u
s
3(., t)‖L2(0,L) ≤ ‖e33(u

s(., t))‖L2(Ω) = ‖us(., t)‖V (Ω)\R

‖∂33u
s
α(., t)‖L2(0,L) ≤ c‖e33(u

s(., t))‖L2(Ω) = c‖us(., t)‖V (Ω)\R,
(65)

where c is a constant independent of s and t. Thus using (64)-(65) we easily
check that as

i (., .), for i = 1, 2, 3, 4, are continuous bilinear forms, that verify
for each t

as
i (u

s, us) ≤ ci ‖u
s(., t)‖2

V (Ω)\R (66)
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with ci strictly positive constants, independent of s and t, but depending on
θ. Analogously, using (64)-(65) we verify again, that, Ls(.) is a linear form,
and, for each t

Ls(us) ≤ cL ‖u
s(., t)‖V (Ω)\R (67)

where cL is another strictly positive constant independent of s and t. So
applying (63), (66) and (67) to (62), we conclude that for each time t

(

c −
4∑

i=1

si ci

)

‖us(., t)‖2
V (Ω)\R ≤ cL ‖u

s(., t)‖V (Ω)\R (68)

and we obtain the estimate (60), since s is a very small parameter.
Taking the integral in time in the remodeling rate equation of problem

(59), we get

ds(x, t) =

∫ t

0

[

c(ds)e33(u
s) + a(ds) − s c(ds)θα∂33u

s
α

]

dr + d(x). (69)

But as the material and remodeling coefficients c(ds) and a(ds) appearing in
(69) are bounded (cf. (14)) we deduce that

‖ds(., t)‖L2(Ω) ≤

∫ T

0

[

c1 ‖u
s(., t)‖V (Ω)\R + c2

]

dr + ‖d(x)‖L2(Ω), (70)

with c1 and c2 two strictly positive constants independent of s. Therefore
and because of (60) we have the inequality (61). �

Theorem 4.2 (Second estimate for the sequence us). We assume that condi-
tion (13) is verified, the hypotheses of theorem 2.2 are satisfied, and 1

b3333(ds) =

b + O(s), where b : R → R is a scalar function, where b is independent of
s, 0 < |b| ≤ c with c > 0 a constant, and O(s) is a term of order s (cf.
Monnier and Trabucho [10], formulas (6) and (2), for a justification of this
latter condition on the material coefficient b3333(d

s)). Then

∃c1 > 0 : ‖us‖C0([0,T ];W 2,2(Ω)) ≤ c1, (71)

∃c2 > 0 : ‖e33(u
s)‖C0([0,T ];C0(Ω)) ≤ c2, (72)

where c1 and c2 are constants independent of s ∈ [0, δ].

Proof: Using the relations (36)-(38) in the proof of the regularity theorem
(2.2), we deduce that for each t

‖us(., t)‖W 2,2(Ω) ≤ C(M s; ps
i ) (73)
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where M s = Ms ◦ Qs, ps
i = psi ◦ Qs and C(M s; ps

i ) is a strictly positive
constant depending on the W 1,2(0, L) norms of the elements of M s and ps

i .
As ps

i , for i = 1, 2, 3, are data of the problem, related to the forces (cf. (34)),
and due to the definition of M s and the additional hypothesis for 1

b3333(ds) , we

easily deduce that

∃c > 0 : C(M s; ps
i ) ≤ c, ∀s ∈ [0, δ], (74)

where c is independent of s and t, and therefore we have (71).
Also from the regularity result we have, for each t,

e33(u
s)(., t) = ∂3u

s
3(., t) − xα∂33u

s
α(., t) ∈ W 1,2(Ω) ∩ C0(Ω) (75)

because ∂3u
s
3(., t) and ∂33u

s
α(., t) belong to W 1,2(0, L) which is compactly

embedded in the space C0([0, L]). Hence we get

‖e33(u
s)(., t)‖C0(Ω) ≤ c1 ‖e33(u

s)(., t)‖W 1,2(Ω) ≤ c2 ‖u
s(., t)‖W 2,2(Ω) ≤ c3 (76)

where c1, c2 and c3 are constants independent of s and t, and consequently
we have (72). �

Theorem 4.3 (Estimate for the sequence us−u
s ). Let (us, ds) and (u, d) be

the solutions of problems P s (cf. (59)) and P 0 (cf. (57)), respectively. We
assume that conditions (13)-(15) are verified, and, for each s, ξs

0 = ξ0, f s
i =

fi, gs
i = gi, hs

i = hi, where ξ0, fi, gi and hi are independent of s. Then,

‖
us − u

s
‖C0([0,T ];V (Ω)\R) ≤ c1 ‖

ds − d

s
‖C0([0,T ];L2(Ω)) + c2, (77)

where c1 and c2 are strictly positive constants independent of s and t.

Proof: In this proof we sometimes write us instead of us(., t) in order to
simplify the notations. For each t we have

as(us, v) = Ls(v), ∀v ∈ V (Ω) \ R

a0(u, v) = L0(v), ∀v ∈ V (Ω) \ R
(78)

which implies that

1

s
[as(us, v) − a0(u, v)] =

Ls(v) − L0(v)

s
. (79)
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Developing this last equation for the choice v = us−u
s and observing that, for

each t,







1
s

[ ∫

Ω
1

b3333(ds)e33(u
s)e33(

us−u
s )dΩ −

∫

Ω
1

b3333(d)e33(u)e33(
us−u

s )dΩ
]

=
∫

Ω
1

b3333(ds)e33(
us−u

s )e33(
us−u

s )dΩ+

∫

Ω
b3333(d)−b3333(ds)

s

(
b3333(d) b3333(d

s)
)−1

e33(u)e33(
us−u

s ) dΩ

(80)

we obtain that (79) is equivalent to the equation






















as
0(

us−u
s , us−u

s ) = −s3 as
4(u

s, us−u
s )

−
∫

Ω
b3333(d)−b3333(ds)

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(
us−u

s ) dΩ+

1
s

[

F s
0 (us−u

s ) − F0(
us−u

s )
]

+

1
s

[

Gs
0(

us−u
s ) − G0(

us−u
s ) + Hs

0(
us−u

s ) − H0(
us−u

s )
]

+

−as
1(u

s, us−u
s ) + F s

1 (us−u
s ) + Gs

1(
us−u

s ) + Hs
1(

us−u
s )+

s
[

− as
2(u

s, us−u
s ) + F s

2 (us−u
s ) + Gs

2(
us−u

s ) + Hs
2(

us−u
s )

]

+

s2
[

− as
3(u

s, us−u
s ) + F s

3 (us−u
s ) + Gs

3(
us−u

s ) + Hs
3(

us−u
s )

]

.

(81)

Using this last equation, the ellipticity of as
0(., .) and the properties of con-

tinuity of all the other remaining terms in (81) we obtain the estimate (77).
We explain next these calculations in detail, analyzing (81), for each t.

Because of condition (13), we have for each t

|as
0(

us − u

s
,
us − u

s
)| ≥ c ‖

us − u

s
(., t)‖2

V (Ω)\R (82)

where c is a strictly positive constant independent of s and t. Using the
definitions of as

i (., .) and the estimate (60) we obviously obtain
{

|as
i (u

s, us−u
s )| ≤ cai

‖us(., t)‖V (Ω)\R ‖us−u
s (., t)‖V (Ω)\R ≤

cai
‖us−u

s (., t)‖V (Ω)\R

(83)

where cai
and cai

, for i = 1, 2, 3, 4, are strictly positive constants independent
of s and t. Considering now the definitions of the forces F s

i , Gs
i , and Hs

i we
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easily check that, for each t

F s
i (

us − u

s
) + Gs

i (
us − u

s
) + Hs

i (
us − u

s
) ≤ ci ‖

us − u

s
(., t)‖V (Ω)\R (84)

where ci, for i = 1, 2, 3, are other strictly positive constants independent of
s and t. In addition we have also, for each t

1
s

[

Gs
0(

us−u
s ) − G0(

us−u
s )

]

= 0

1
s

[

Hs
0(

us−u
s ) − H0(

us−u
s )

]

= 0.
(85)

Using the mean value theorem for the operator Pη, we deduce











∣
∣
∣
1
s

[

F s
0 (us−u

s ) − F0(
us−u

s )
]∣
∣
∣ ≤

∫

Ω γ |
Pη(ds)−Pη(d)

s | |fα
us

α−uα

s + f3
us

3−u3

s | dΩ =

∫

Ω γ |
Pη(ds)−Pη(d)

ds−d | |d
s−d
s | |fα

us
α−uα

s + f3
us

3−u3

s | dΩ ≤

c0 ‖
ds−d

s (., t)‖L2(Ω)) ‖
us−u

s (., t)‖V (Ω)\R)

(86)

where c0 is a strictly positive constant independent of s and t. Finally, using
the mean value theorem for the material coefficient b3333(.), the estimate (72),
for s = 0, and condition (13) we get








∣
∣
∣

∫

Ω
b3333(d)−b3333(ds)

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(
us−u

s ) dΩ
∣
∣
∣ =

∣
∣
∣

∫

Ω
b3333(d)−b3333(ds)

ds−d
ds−d

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(
us−u

s ) dΩ
∣
∣
∣ ≤

cb ‖
ds−d

s (., t)‖L2(Ω)) ‖
us−u

s (., t)‖V (Ω)\R

(87)

where cb is a strictly positive constant independent of s and t. Therefore
using (81) and the estimates (82)-(87), we have, for each t

{
c ‖us−u

s (., t)‖2
V (Ω)\R ≤

c1 ‖
ds−d

s (., t)‖L2(Ω)) ‖
us−u

s (., t)‖V (Ω)\R) + c2 ‖
us−u

s (., t)‖V (Ω)\R)

(88)

where c, c1 and c2 are strictly positive constants independent of s and t. The
proof is finished, dividing (88) by c ‖us−u

s (., t)‖V (Ω)\R. �

Theorem 4.4 (Estimate for the sequence ds−d
s ). Let (us, ds) and (u, d) be

the solutions of problems (59) and (57), respectively. We assume that the
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hypotheses of the previous theorem 4.3 are satisfied. Then,

‖
ds − d

s
‖C0([0,T ];L2(Ω)) ≤ c (89)

where c is a strictly positive constant independent of s and t.

Proof: We write the remodeling rate equations of problems P s (cf. (59))
and P 0 (cf. (57))

{

ḋs = c(ds)e33(u
s) + a(ds) − s c(ds)θα∂33u

s
α, in Ω × (0, T ),

ds(x, 0) = d(x), in Ω,
(90)

{

ḋ = c(d)e33(u) + a(d), in Ω × (0, T ),

d(x, 0) = d(x), in Ω.
(91)

Subtracting (91) from (90) we obtain







ḋs − ḋ = c(ds)e33(u
s − u)

+[c(ds) − c(d)]e33(u) + a(ds) − a(d) − s c(ds)θα∂33u
s
α

(ds − d)(x, 0) = 0.

(92)

Integrating in time between zero and t







(ds − d)(x, t) =
∫ t

0

[

c(ds)e33(u
s − u) + [c(ds) − c(d)]e33(u)

+a(ds) − a(d) − s c(ds)θα∂33u
s
α

]

dr.
(93)

Taking the L2(Ω) norm in (93), using the conditions (13)-(15) and the mean
value theorem for the terms c(ds)− c(d) and a(ds)−a(d), we obtain, for each
t, the estimate







‖(ds − d)(., t)‖L2(Ω) ≤
∫ t

0

[

c1 ‖e33(u
s − u)(., r)‖L2(Ω)

+c2 ‖(d
s − d)(., r)‖L2(Ω) ‖e33(u)(., r)‖C0(Ω)

+c3 ‖(d
s − d)(., r)‖L2(Ω) + s c4 ‖∂33u

s
α(., r)‖L2(Ω)

]

dr.

(94)
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where c1, c2, c3 and c4 are strictly positive constants independent of s and t.
But

‖e33(u
s − u)(., t)‖L2(Ω) = ‖(us − u)(., t)‖V (Ω)\R

‖e33(u)(., t)‖C0(Ω) ≤ c2

‖∂33u
s
α(., t)‖L2(Ω) ≤ c0‖e33u

s(., r)‖L2(Ω) = c0‖u
s(., t)‖V (Ω)\R ≤ c

(95)

where c2 is the constant defined in (72), for the case s = 0, c0 is defined in
(65) and c is a constant depending on the constant defined in (60); these
three constants are independent of s and t. So we have from (94)-(95) and
theorem 4.3







‖ds−d
s (., t)‖L2(Ω) ≤

∫ t

0

[

c1 ‖
us−u

s (., r)‖V (Ω)\R + c5 ‖
ds−d

s (., r)‖L2(Ω) + c6

]

dr ≤

c7 +
∫ t

0 c8 ‖
ds−d

s (., r)‖L2(Ω) dr,

(96)

with c5, c6, c7 and c8 other strictly positive constants independent of s and
t. Then using the integral Gronwall’s inequality (cf. Evans [7], p. 625)

‖
ds − d

s
(., t)‖L2(Ω) ≤ c7 (1 + tc8e

c8t), ∀t ∈ [0, T ], (97)

which implies (89). �

Corollary 4.1. With the hypotheses of theorem 4.3

∃c > 0 : ‖
us − u

s
‖C0([0,T ];V (Ω)\R) ≤ c, (98)

where c is independent of s and t. �

So we have reached the conclusion that the solutions (us, ds) and (u, d) of
problems P s and P 0, respectively, verify for all s ∈ [0, δ]

‖
us − u

s
‖C0([0,T ];V (Ω)\R) ≤ c1 and ‖

ds − d

s
‖C0([0,T ];L2(Ω)) ≤ c2 (99)

where c1 and c2 are strictly positive constants independent of s.
Hence, for each t, each one of the bounded quotient sequences {us−u

s }(., t)

and {ds−d
s }(., t) has a subsequence, that converges weakly, when s → 0+, in

V (Ω) \R and L2(Ω), respectively. This statement and a consequence of it is
summarized in the next theorem.
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Theorem 4.5 (Weak limits of the quotient sequences). Let (us, ds) and (u, d)
be the solutions of problems P s and P 0 and we assume that the hypotheses
of theorem (4.3) are verified. Then, for each t, there exists a subsequence of
{(us, ds)(., t)}, also denoted by {(us, ds)(., t)}, and elements ū(., t) ∈ V (Ω)\R
and d̄(., t) ∈ L2(Ω), such that, when the parameter s → 0+

us − u

s
(., t) ⇀ ū(., t) weakly in V (Ω) \ R, (100)

e33(
us − u

s
)(., t) ⇀ e33(ū)(., t) weakly in L2(Ω), (101)

ds − d

s
(., t) ⇀ d̄(., t) weakly in L2(Ω), (102)

and therefore, when s → 0+

(us − u)(., t) −→ 0 strongly in V (Ω) \ R, (103)

e33(u
s − u)(., t) −→ 0 strongly in L2(Ω), (104)

(ds − d)(., t) −→ 0 strongly in L2(Ω). � (105)

We finish this section with a convergence result for the sequences {us} and
e33(u

s), and a corollary concerning the convergence of the sequence {ds}, that
will be useful in subsection (4.2).

Theorem 4.6 (Strong limit of e33(u
s)). Let (us, ds) and (u, d) be the solutions

of problems P s and P 0 and we assume that the hypotheses of theorems 2.2, 4.2
and 4.3 are verified. Then, there exists a subsequence of {us}, also denoted
by {us}, that verifies the following convergence, when the parameter s → 0+,

e33(u
s − u) −→ 0 strongly in C0([0, T ]; C0(Ω)). (106)

Proof: Recalling the definition of us−u and its regularity (cf. theorem 2.2),
we have

us − u =
(

us
1 − u1, u

s
2 − u2, u

s
3 − u3 − xα∂3(u

s
α − uα)

)

, (107)

where for each t, (us
α−uα)(., t) ∈ W 3,2(0, L), for α = 1, 2 and (us

3−u3)(., t) ∈
W 2,2(0, L). The calculus of e33(u

s − u) gives

e33(u
s − u) = ∂3(u

s
3 − u3) = ∂3(u

s
3 − u3) − xα∂33(u

s
α − uα), (108)



SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 27

where [∂3(u
s
3 − u3)](., t) ∈ W 1,2(0, L) and [∂33(u

s
α − uα)](., t) ∈ W 1,2(0, L), for

α = 1, 2. But, because of the strong convergence (104),

‖e33(u
s − u)(., t)‖L2(Ω) −→ 0 when s → 0+. (109)

Applying the definition of ‖e33(u
s − u)(., t)‖L2(Ω) (cf. (24)), that is

{
‖e33(u

s − u)(., t)‖2
L2(Ω) = ‖∂3(u

s
3 − u3)(., t)‖

2
L2(0,L)

+
( ∫

ω x2
αdω

)
‖∂33(u

s
α − uα)(., t)‖2

L2(0,L),
(110)

we conclude that, for each t

∂3(u
s
3 − u3)(., t) −→ 0 strongly in L2(0, L), (111)

∂33(u
s
α − uα)(., t) −→ 0 strongly in L2(0, L). (112)

On the other hand we get directly from (71)
{

‖e33(u
s − u)‖C0([0,T ];W 1,2(Ω)) ≤ ‖us − u‖C0([0,T ];W 2,2(Ω)) ≤

‖us‖C0([0,T ];W 2,2(Ω)) + ‖u‖C0([0,T ];W 2,2(Ω)) ≤ c.
(113)

where c is a constant independent of s. Therefore the sequences ∂3(u
s
3 − u3)

and ∂33(u
s
α − uα) are bounded in C0([0, T ]; W 1,2(0, L)), and consequently,

because of (111)-(112), we obtain the following weak convergences, when
s → 0+

∂3(u
s
3 − u3)(., t) ⇀ 0 weakly in W 1,2(0, L), (114)

∂33(u
s
α − uα)(., t) ⇀ 0 weakly in W 1,2(0, L). (115)

But as the space W 1,2(0, L) is compactly embedded in C0([0, L]), we have,
when s → 0+

∂3(u
s
3 − u3)(., t) −→ 0 strongly in C0([0, L]), (116)

∂33(u
s
α − uα)(., t) −→ 0 strongly in C0([0, L]), (117)

which implies the strong convergence of e33(u
s−u) to 0 in C0([0, T ]; C0(Ω)). �

Corollary 4.2 (Strong limit of ds). Let (us, ds) and (u, d) be the solutions
of problems P s and P 0, and we assume the same hypotheses of theorem 4.6.
Then, there exists a constant c > 0 independent of s, such that when s → 0+

ds − d −→ 0 strongly in C0([0, T ]; C0(Ω)). (118)
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Proof: Using exactly the same arguments in the beginning of theorem 4.4
(cf. formulas (93), (95) and (96)), we have







|(ds − d)(x, t)| ≤
∫ t

0

[

c1 |e33(u
s − u)(x, r)| + c2 |(d

s − d)(x, r)| |e33(u)(x, r)|

+c3 |(d
s − d)(x, r)| + s c4 |∂33u

s
α(x, r)|

]

dr ≤
∫ t

0

[

c1 |e33(u
s − u)(x, r)| + c5 |(d

s − d)(x, r)| + s c4

]

dr

(119)

where the constants ci, for i = 1, 2, 3, 4, 5, are strictly positive constants
independent of s and t and consequently







|(ds − d)(x, t)| ≤

T
[

c1 ‖e33(u
s − u)‖C0([0,T ];C0(Ω)) + s c4

]

︸ ︷︷ ︸
ϕs

+
∫ t

0 c5 |(d
s − d)(x, r)| dr. (120)

Because of the strong convergence (106), the scalar ϕs → 0, when s → 0+.
Then using the integral Gronwall’s inequality (cf. Evans [7], p. 625)

|(ds − d)(x, t)| ≤ ϕs (1 + tc5e
c5t), ∀t ∈ [0, T ], (121)

which implies (118). �

4.2. Shape semiderivatives. The objective of this section is to identify,
for each t, the weak limits ū(., t) and d̄(., t) of the sequences {us−u

s (., t)}

and {ds−d
s (., t)}, defined in (100) and (102). To this end we proceed in the

following way: we consider again the problems P s and P 0, we subtract and
divide by s the equilibrium variational equations and the remodeling rate
equations, and then we take the limit, when the parameter s → 0+. We
conclude that, for each t, the pair (ū(., t), d̄(., t)) is the solution of another
nonlinear problem. Finally we identify (ū, d̄) as the unique solution of this
latter problem in the space C1([0, T ]; V (Ω) \ R) × C1([0, T ]; C0(Ω)).

4.2.1. Shape semiderivative ū(., t). For each t ∈ [0, T ], the two equilibrium
variational equations, of problems P s and P 0, are

as(us, v) = Ls(v), ∀v ∈ V (Ω) \ R,

a0(u, v) = L0(v), ∀v ∈ V (Ω) \ R,
(122)
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and subtracting and dividing by s we obtain (cf. (79)-(81))






















∫

Ω
1

b3333(ds)e33(
us−u

s )e33(v)dΩ+

∫

Ω
b3333(d)−b3333(ds)

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(v) dΩ+

as
1(u

s, v) =

1
s

[

F s
0 (v) − F0(v) + Gs

0(v) − G0(v) + Hs
0(v) − H0(v)

]

+

F s
1 (v) + Gs

1(v) + Hs
1(v)+

s
[

− as
2(u

s, v) + F s
2 (v) + Gs

2(v) + Hs
2(v)

]

+

s2
[

− as
3(v) + F s

3 (v) + Gs
3(v) + Hs

3(v)
]

− s3 as
4(u

s, v).

(123)

We compute now, for each t, the limit of each term of (123). Accordingly to
the definitions of the forms involved in the last terms of this equation, it is
clear that, for each t, the sum







s
[

− as
2(u

s, v) + F s
2 (v) + Gs

2(v) + Hs
2(v)

]

+

s2
[

− as
3(v) + F s

3 (v) + Gs
3(v) + Hs

3(v)
]

− s3 as
4(u

s, v)
(124)

converges to 0 when s → 0+, because we have the product of bounded terms
by s or by a positive power of s. The calculus of the other limits requires a
more careful analysis.

Theorem 4.7. We assume the hypotheses of theorems 2.2, 4.2 and 4.3. Then
for each t, when s → 0+,

∫

Ω

1

b3333(ds)
e33(

us − u

s
)e33(v)dΩ −→

∫

Ω

1

b3333(d)
e33(ū)e33(v)dΩ. (125)

Proof: We have






|
∫

Ω e33(
us−u

s ) 1
b3333(ds) e33(v)dΩ −

∫

Ω
1

b3333(d)e33(ū)e33(v)dΩ| ≤

|
∫

Ω
1

b3333(ds)e33(
us−u

s − ū)e33(v)dΩ|+

|
∫

Ω

(
1

b3333(ds) −
1

b3333(d)

)

e33(ū) e33(v)dΩ|.

(126)
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The sequence e33(
us−u

s )(., t) weakly converges to e33(ū)(., t) in L2(Ω) (cf.
(101)), therefore, for each t

|

∫

Ω

1

b3333(ds)
e33(

us − u

s
− ū) e33(v) dΩ| −→ 0, when s → 0+. (127)

Because of condition (13), the mean value theorem for the function 1
b3333(.)

and

the strong convergence of ds to d in C0([0, T ]; C0(Ω)) (cf. (118)) we have, for
each t, when s → 0+

1

b3333(ds)
e33(v) −→

1

b3333(d)
e33(v), strongly in L2(Ω). (128)

In fact, for each t, when s → 0+







∫

Ω | 1
b3333(ds) −

1
b3333(d) |

2 |e33(v)|2 dΩ ≤

supΩ | 1
b3333(ds) −

1
b3333(d) |

2
∫

Ω |e33(v)|2 dΩ ≤

c ‖ds − d‖C0([0,T ];C0(Ω))

∫

Ω |e33(v)|2 dΩ.

(129)

Using again the condition (13), the mean value theorem for the function
1

b3333(.)
and the strong convergence of ds to d in C0([0, T ]; C0(Ω)) we have for

the last term of (126), and for each t, when s → 0+







∫

Ω

∣
∣
∣

1
b3333(ds) −

1
b3333(d)

∣
∣
∣ |e33(ū) e33(v)| dΩ ≤

supΩ | 1
b3333(ds) −

1
b3333(d) | ‖e33(ū)‖L2(Ω) ‖e33(v)‖L2(Ω) −→ 0,

(130)

which terminates the proof. �

Theorem 4.8. We assume the hypotheses of theorems 2.2, 4.2 and 4.3. Then
for each t, when s → 0+

∫

Ω
b3333(d)−b3333(d

s)
s

(
b3333(d

s) b3333(d)
)−1

e33(u) e33(v) dΩ

↓

−
∫

Ω b′3333(d) b3333(d)−2 d̄ e33(u) e33(v) dΩ

(131)

where b′3333(.) is the first derivative of the scalar function b3333(.).
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Proof: We remark that






∫

Ω

b3333(d) − b3333(d
s)

ds − d

(
b3333(d

s) b3333(d)
)−1

︸ ︷︷ ︸

Ψs

ds−d
s e33(u) e33(v) dΩ

−
∫

Ω b′3333(d) b3333(d)−2

︸ ︷︷ ︸

Ψ

d̄ e33(u) e33(v) dΩ =

∫

Ω

(Ψs − Ψ)
ds − d

s
e33(u) e33(v) dΩ

︸ ︷︷ ︸

Term 1

+

∫

Ω

Ψ
(ds − d

s
− d̄

)

e33(u) e33(v) dΩ
︸ ︷︷ ︸

Term 2

(132)

For each t, the sequence (Ψs−Ψ)(., t) converges strongly to 0 in C0(Ω), when
s → 0+, because of condition (13), the mean value theorem for the function
b3333(.), the condition (72) for the case s = 0, and the strong convergence of
ds to d in C0([0, T ]; C0(Ω)) (cf. corollary 4.2, formula (118)). Thus, for each
t, the term 1 in equation (132) verifies, when s → 0+







∣
∣
∣

∫

Ω(Ψs − Ψ) ds−d
s e33(u) e33(v) dΩ

∣
∣
∣ ≤

‖(Ψs − Ψ) e33(u)‖C0(Ω)

∫

Ω |d
s−d
s e33(v)| dΩ ≤

‖(Ψs − Ψ) e33(u)‖C0(Ω)‖
ds−d

s ‖C0([0,T ];L2(Ω)) ‖e33(v)‖L2(Ω) −→ 0.

(133)

The term 2 also converges to 0, when s → 0+, because Ψe33(u)e33(v) belongs
to L2(Ω), for each t, and ds−d

s (., t) weakly converges to d̄(., t) in L2(Ω), for
each t (cf. theorem 4.5, formula (102)). �

Theorem 4.9. We assume the hypotheses of theorems 2.2, 4.2 and 4.3. Then
for each t, when s → 0+

∫

Ω
1

b3333(ds)

[

e33(u
s)e33(v)div θ − θα

(
e33(u

s)∂33vα + e33(v)∂33u
s
α

)]

dΩ

↓
∫

Ω
1

b3333(d)

[

e33(u)e33(v)div θ − θα

(
e33(u)∂33vα + e33(v)∂33uα

)]

dΩ.

(134)
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Proof: It is enough to prove that, for each t, when s → 0+

∫

Ω
1

b3333(ds)θαe33(u
s) ∂33vα dΩ −→

∫

Ω
1

b3333(d)θαe33(u) ∂33vα dΩ
∫

Ω
1

b3333(ds)θαe33(v) ∂33u
s
α dΩ −→

∫

Ω
1

b3333(d)θαe33(v)∂33uα dΩ
∫

Ω
1

b3333(ds) e33(u
s)e33(v)div θ dΩ −→

∫

Ω
1

b3333(d) e33(u)e33(v)div θ dΩ,

(135)

We only give a sketch of the proof of the first convergence indicated in (135),
because the arguments for proving the remaining two are similar.

We have the following estimate, for each t






∣
∣
∣

∫

Ω
1

b3333(ds)θαe33(u
s) ∂33vα dΩ −

∫

Ω
1

b3333(d) θαe33(u) ∂33vα dΩ
∣
∣
∣ ≤

∫

Ω

∣
∣
∣

1
b3333(ds) e33(u

s) − 1
b3333(d) e33(u)

∣
∣
∣ |θα ∂33vα| dΩ ≤

∫

Ω

[∣
∣ 1
b3333(ds)

(
e33(u

s) − e33(u)
)∣
∣

+
∣
∣
(

1
b3333(ds) −

1
b3333(d)

)
e33(u)

∣
∣

]

|θα ∂33vα| dΩ.

(136)

But, for each t, ‖
(
e33(u

s) − e33(u)
)
(., t)‖L2(Ω) converges strongly to 0, when

s → 0+ (cf. theorem 4.5, formula (103)), so
{

‖ 1
b3333(ds)

(
e33(u

s) − e33(u)
)
‖L2(Ω)‖θα ∂33vα‖L2(Ω) ≤

c1 ‖e33(u
s) − e33(u)‖L2(Ω) ‖θα ∂33vα‖L2(Ω) −→ 0.

(137)

Also, for each t, ‖(ds − d)(., t)‖L2(Ω) converges strongly to 0, when s → 0+

(cf. theorem 4.5, formula (105)), hence, when s → 0+

{
‖
(

1
b3333(ds) −

1
b3333(d)

)
e33(u)‖L2(Ω) ‖θα ∂33vα‖L2(Ω) ≤

c2‖d
s − d‖L2(Ω) ‖e33(u)‖C0([0,T ];C0(Ω)) ‖θα ∂33vα‖L2(Ω) −→ 0. �

(138)

Theorem 4.10. We assume the hypotheses of theorems 2.2, 4.2 and 4.3.
Then, for each t, when s → 0+

1
s

[

F s
0 (v) − F0(v) + Gs

0(v) − G0(v) + Hs
0(v) − H0(v)

]

↓
∫

Ω γ d̄ P ′
η(d) (fα vα + f3 v3) dΩ,

(139)

where P ′
η(.) is the first derivative of the scalar function Pη(.).
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Proof: As a consequence of the hypotheses we have that Gs
0(v) = G0(v) and

Hs
0(v) = H0(v). We analyse now the difference







1
s

[

F s
0 (v) − F0(v)

]

−
∫

Ω γ d̄ P ′
η(d) (fα vα + f3 v3) dΩ =

∫

Ω γ
(

Pη(ds)−Pη(d)
s − d̄P ′

η(d)
)

(fα vα + f3 v3) dΩ =

∫

Ω γ
[

Pη(ds)−Pη(d)
ds−d

(
ds−d

s − d̄
)

+
(Pη(ds)−Pη(d)

ds−d − P ′
η(d)

)
d̄

]

(fα vα + f3 v3) dΩ.

(140)

But, for each t when s → 0+, the term
∫

Ω

γ
Pη(d

s) − Pη(d)

ds − d

(ds − d

s
− d̄

)
(fα vα + f3 v3) dΩ −→ 0, (141)

because γ
Pη(ds)−Pη(d)

ds−d (fα vα+f3 v3) converges strongly to γ P ′
η(d) (fα vα+f3 v3)

in L2(Ω) and ds−d
s converges weakly to d̄ in L2(Ω), for each t (cf. theorem 4.5,

formula (102)); and the remaining last term in (140) verifies, when s → 0+

∫

Ω

γ
(Pη(d

s) − Pη(d)

ds − d
− P ′

η(d)
)
d̄ (fα vα + f3 v3) dΩ −→ 0, (142)

since for each t, d̄ (fα vα + f3 u3) belongs to L1(Ω) and γ
(Pη(ds)−Pη(d)

ds−d −P ′
η(d)

)

converges strongly to 0 in C0([0, T ]; C0(Ω)). From (141)-(142) the conclusion
follows. �

Theorem 4.11. We assume the hypotheses of theorems 2.2, 4.2 and 4.3.
Then for each t, when s → 0+

F s
1 (v) + Gs

1(v) + Hs
1(v)

↓






∫

Ω γ(ξ0 + Pη(d))
[

(fα vα + f3 v3) div θ − f3 θα ∂3vα

]

dΩ+
∫

Γ

[

(gα vα + g3 v3) G1(θ, n) − g3 θα ∂3vα

]

dΓ+
∫

Γ0∪ΓL

[

(hα vα + h3 v3) H1(θ) − h3 θα ∂3vα

]

dΓ0 ∪ ΓL.

(143)

Proof: To prove this theorem we apply the definitions of the forms F s
1 , Gs

1, Hs
1

and the strong convergence of Pη(d
s) to Pη(d) in the space C0([0, T ]; C0(Ω)).

�
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Assembling the information of theorems 4.7- 4.11 and the equation (123)
we concluded the following.

Theorem 4.12 (identification of ū(., t)). The weak limit ū(., t) of the se-
quence {us−u

s }(., t) verifies the following variational equation for each t ∈
[0, T ]

B(ū, v) = S(v), ∀v ∈ V (Ω) \ R, (144)

where B(., .) is a bilinear form defined by

B(z, v) =

∫

Ω

1

b3333(d)
e33(z) e33(v) dΩ, ∀z, v ∈ V (Ω) \ R, (145)

and S(.) is a linear form defined for all v ∈ V (Ω) \ R by






S(v) =
∫

Ω b′3333(d) b3333(d)−2 d̄ e33(u) e33(v) dΩ

−
∫

Ω
1

b3333(d)

[

− θα

(
e33(u)∂33vα + e33(v)∂33uα

)

+e33(u)e33(v)div θ
]

dΩ

+
∫

Ω γ d̄ P ′
η(d) (fα vα + f3 v3) dΩ

+
∫

Ω γ(ξ0 + Pη(d))
[

(fα vα + f3 v3) div θ − f3 θα ∂3vα

]

dΩ

+
∫

Γ

[

(gα vα + g3 v3) G1(θ, n) − g3 θα ∂3vα

]

dΓ

+
∫

Γ0∪ΓL

[

(hα vα + h3 v3) H1(θ) − h3 θα ∂3vα

]

dΓ0 ∪ ΓL.

(146)

4.2.2. Shape semiderivative d̄(., t). By subtracting and dividing by s the
remodeling rate equations of problems P s and P 0 and integrating in time
between zero and t, we obtain







(ds−d)
s (., t) =

∫ t

0

[

c(ds) e33(
us−u

s )

+c(ds)−c(d)
s e33(u) + a(ds)−a(d)

s − c(ds)θα∂33u
s
α

]

dr.
(147)

Working with this equation we are able to prove the following theorem.

Theorem 4.13 (identification of d̄(., t)). We assume that the hypotheses of
theorems 2.2, 4.2 and 4.3 are verified. For each t, the weak limit d̄(., t) of
the sequence {ds−d

s (., t)} is the solution of the following ordinary differential
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equation with respect to time






˙̄ s
d = c(d)e33(ū) + d̄ [c′(d) e33(u) + a′(d)]

−c(d) θα∂33uα, in Ω × (0, T ),

d̄(x, 0) = 0, in Ω,

(148)

where (u, d) is the solution of problem P 0 and ū(., t) is the weak limit of the
sequence {us−u

s (., t)} already identified in theorem 4.12.

Proof: Using the equation (147) and considering any v ∈ L2(Ω) we have, for
each t,







∫

Ω
ds−d

s v dΩ =
∫ t

0

(∫

Ω

[

c(ds) e33(
us−u

s )

+c(ds)−c(d)
s e33(u) + a(ds)−a(d)

s − c(ds)θα∂33u
s
α

]

v dΩ
)

dr.
(149)

On the other hand, and for each t, we have the following convergences, when
s → 0+







c(ds) −→ c(d) strongly in C0(Ω),

e33(
us−u

s ) ⇀ e33(ū) weakly in L2(Ω),

c(ds)−c(d)
s e33(u) ⇀ d̄ c′(d) e33(u) weakly in L2(Ω),

a(ds)−a(d)
s ⇀ d̄a′(d) weakly in L2(Ω),

∂33u
s
α −→ ∂33uα strongly in L2(Ω).

(150)

Hence we conclude that, for each t,






lims→0+

∫

Ω
ds−d

s v dΩ =
∫

Ω

( ∫ t

0

[

c(d)e33(ū)

+d̄ c′(d) e33(u) + d̄ a′(d) − c(d) θα∂33uα

]

dr
)

v dΩ.
(151)

But, for each t, and by (102), ds−d
s (., t) converges weakly to d̄(., t) in L2(Ω),

when s → 0+. Therefore d̄(., t) must verify (148), since the weak limit is
unique. �

4.2.3. Final identification result. Collecting the results of theorems 4.12 and
4.13 we have the following theorem, that identifies, for each t, the (weak)
shape semiderivatives ū(., t) and d̄(., t).
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Theorem 4.14. We assume that the hypotheses of theorems 2.2, 4.2 and 4.3
are verified. For each t ∈ [0, T ], the weak shape semiderivative (ū, d̄)(., t) is
an element of the space V (Ω)\R×L2(Ω) and is the solution of the following
nonlinear problem (P̄ )

P̄















Find ū : Ω × [0, T ] → R
3, d̄ : Ω × [0, T ] → R such that :

ū(., t) ∈ V (Ω) \ R,

B(ū, v) = S(v), ∀v ∈ V (Ω) \ R,

˙̄ds = c(d)e33(ū) + d̄ [c′(d) e33(u) + a′(d)] − c(d) θα∂33uα,

in Ω × (0, T ),

d̄(x, 0) = 0, in Ω.

(152)

The bilinear form B(., .) is defined by

B(z, v) =

∫

Ω

1

b3333(d)
e33(z) e33(v) dΩ, ∀z, v ∈ V (Ω) \ R, (153)

and S(.) is a linear form defined for all v ∈ V (Ω) \ R, by






S(v) =
∫

Ω b′3333(d) b3333(d)−2 d̄ e33(u) e33(v) dΩ

−
∫

Ω
1

b3333(d)

[

− θα

(
e33(u)∂33vα + e33(v)∂33uα

)

+e33(u)e33(v)div θ
]

dΩ

+
∫

Ω γ d̄ P ′
η(d) (fα vα + f3 v3) dΩ

+
∫

Ω γ(ξ0 + Pη(d))
[

(fα vα + f3 v3) div θ − f3 θα ∂3vα

]

dΩ

+
∫

Γ

[

(gα vα + g3 v3) G1(θ, n) − g3 θα ∂3vα

]

dΓ

+
∫

Γ0∪ΓL

[

(hα vα + h3 v3) H1(θ) − h3 θα ∂3vα

]

dΓ0 ∪ ΓL,

(154)

We remark S(.) depends on (u, d), which is the solution of problem P 0 and
also on d̄, which is the weak shape semiderivative of ds, at s = 0 and in the
direction of the vector field θ. The bilinear form B(., .) depends on d, that is
the measure of change in volume fraction of the elastic material of problem
P 0. �
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Moreover we have the following existence and uniqueness theorem for prob-
lem P̄ .

Theorem 4.15. There exists a unique solution (ū, d̄) of problem P̄ , defined
in (152), which verifies

ū ∈ C1([0, T ]; V (Ω) \ R) d̄ ∈ C1([0, T ]; C0(Ω)). (155)

Proof: The arguments are analogous to those of the proof of existence and
uniqueness of solution of problem Ps (cf. Figueiredo and Trabucho [8]), and
rely on the Schauder’s fixed point theorem. �

As a result of the previous theorem 4.15 we have the following final iden-
tification result.

Corollary 4.3. We assume that the hypotheses of theorems 2.2, 4.2 and 4.3
are verified. For each t ∈ [0, T ], the entire sequence {(us−u

s , ds−d
s )(., t)} weakly

converges to (ū, d̄)(., t) in the space V (Ω) \ R × L2(Ω), when s → 0+. Thus,
the shape map J defined in (39) by

J : [0, δ] −→ C1([0, T ]; V (Ω) \ R) × C1([0, T ]; C0(Ω))

s −→ J(Ωs) = (us, ds)
(156)

has a weak shape semiderivative dJ(Ω; θ), at s = 0, in the direction of the
vector field θ (cf. (41)), that is perfectly defined, for each t, by

dJ(Ω; θ)(., t) = (ū, d̄)(., t), (157)

where (ū, d̄) ∈ C1([0, T ]; V (Ω) \R)×C1([0, T ]; C0(Ω)) is the unique solution
of problem P̄ . �

5. Conclusion and future work

In this paper we considered the family Ωs, of perturbed thin rods, for
s ∈ [0, δ], and the corresponding family of solutions (us, ds) of the nonlinear
asymptotic adaptive elastic model, derived in Figueiredo and Trabucho [8].
We proved that, for each t, the sequence (us−u

s , ds−d
s )(., t) converges weakly to

(ū, d̄)(., t) in the space V (Ω) \ R × L2(Ω), when s → 0+. Consequently, for
each t, (ū, d̄)(., t) is the weak shape semiderivative of the function J(Ωs) =
(us, ds), at s = 0 in the direction of the vector field θ. Moreover, we prove
that the pair (ū, d̄) is the unique solution of another nonlinear problem that
couples a variational equation, depending on (u, d) and d̄, and an ordinary
differential equation with respect to time, depending on (u, d) and ū. We
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intend to apply this methodology to analyse the weak shape semiderivative
of the solution to the nonlinear adaptive elastic asymptotic model (5)-(8),
but for the case where the remodeling rate equation (8) depends nonlinearly
on e33(us) (cf. Figueiredo and Trabucho [8]). We think that this nonlinear
term may originate some difficulties in the proof that the sequence { ds−d

s } is
bounded, independently of s, and subsequently in the identification of the
shape semiderivative.

Note– This work is part of the project ”New materials, adaptive systems
and their nonlinearities; modelling, control and numerical simulation” carried
out in the framework of the european community program ”Improving the
human research potential and the socio-economic knowledge base” (HRN-
CT-2002-00284).
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