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ABSTRACT: We analyse the shape semiderivative of the solution to an asymptotic
nonlinear adaptive elastic rod model, derived in Figueiredo and Trabucho [8], with
respect to small perturbations of the cross section. Taking advantage of the special
structure of this model, which is defined by generalized Bernoulli-Navier elastic
equilibrium equations coupled with an ordinary differential equation with respect
to time, using the properties of the forms and data defining the model, and the
regularity of its solution, we compute and completely identify, in an appropriate
functional space involving time, the weak shape semiderivative.
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1. Introduction

In this paper we consider a sensitivity analysis problem in shape optimiza-
tion: the calculus of a derivative of the solution to an asymptotic nonlinear
adaptive elastic rod model, with respect to shape variations of the cross sec-
tion of the rod. More precisely, for each small parameter s € [0, §], we define
a perturbed adaptive elastic rod Q, = @, x [0, L]. The scalar L > 0 is its
length and wy = w+ s 6(w) is a perturbation of a fixed cross section w, in the
direction of the vector field § = (61, 62), that realizes the shape variation. To
each rod €, we associate the corresponding unique solution (u*, d*) of the as-
ymptotic adaptive elastic rod model, derived in Figueiredo and Trabucho [8].
The purpose of this paper is to compute the limit (“ —u & . —4) when s — 0¥,
where (u,d) is the solution of the rod model for the case s = 0. This limit
is the semiderivative of the shape function J : s € [0,d] — J(Q) = (u*, d*),
at s = 0 in the direction of the vector field # (in the sense of Delfour and
Zolésio [6], p.289), or equivalently, the material derivative of the map J at
s = 0 (in the sense of Haslinger and Mékinen [9], p.111).

The difficulties that arise in the computation of the limit (“ — ), when
s — 0T, are caused by the complicated form of the asymptotlc adaptive elas-
tic rod model derived in Figueiredo and Trabucho [8]. In fact, this is a
simplified adaptive elastic model (proposed for the mathematical modeling
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of the physiological process of bone remodeling) that couples the generalized
Bernoulli-Navier elastic equilibrium equations with an ordinary differential
equation with respect to time, which is the remodeling rate equation, that
expresses the process of absorption and deposition of bone material due to an
external stimulus (cf. Cowin and Hegedus [3, 4], Cowin and Nachlinger [5],
and Monnier and Trabucho [10], for a description of the theory of adaptive
elasticity and results of uniqueness and existence of three-dimensional solu-
tions). For each s € [0,¢], the unique solution of this asymptotic adaptive
elastic rod model, is the pair (u®,d®), where u® is the displacement vector
field of the rod g, and d* is a scalar field that represents the change in
volume fraction of the elastic material in the rod Q,. Moreover, u® is the
solution of the generalized Bernoulli-Navier equilibrium equations and d* is
the solution of the remodeling rate equation. In particular, u® and d* are
coupled in the model because the material coefficients depend on d* and the
remodeling rate equation depends on u°.

In spite of this complicated structure of the model we succeeded in the
calculus of the limit (“=%, =) when s — 0. There are two main results in
this paper. The first prln(:lpal result consists in proving that, for each time ¢,
the sequence (=%, £=4)(_, ¢) converges weakly to (&, d)(.,t), when s — 0%, in
an appropriate functlonal space of Sobolev type (we note that the pair (u®, d*)
is the solution of the perturbed rod model, reformulated in the unperturbed
fixed domain €2, which is the domain of (u,d)). The second main result is the
identification of the weak shape semiderivative (@, d), as the unique solution
of a nonlinear problem which couples a variational equation (whose solution
is 4) and depends on (u,d) and d, and an ordinary differential equation with
respect to time (whose solution is d), and that depends on (u,d) and 4.

The reasonings used to achieve these two main results are next summarized.
We show that the sequences (u’,d*) and (“ —u & » =4y are bounded in appro-
priate functional spaces, involving time; we use the continuity, the ellipticity,
the regularity properties and the special structure of the asymptotic adaptive
elastic rod model. To identify the weak shape semiderivative we also apply
the weak or/and strong convergence of the sequences {u*} and {d*}, when
s — 07, and again, the special structure of the asymptotic adaptive elastic
rod model. In particular, due to the form of the remodeling rate equation, we
are able to use the integral Gronwall’s inequality, which is the key to obtain
the estimates for the sequences {d*} and {£=2} and to identify the ordinary
differential equation with respect to time, whose solution is d.




SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 3

Finally let us briefly explain the contents of the paper. After this intro-
duction, in section 2, we describe the problem P;, which is the asymptotic
nonlinear adaptive elastic model for the perturbed rod Q,, we also prove a
regularity property of its solution and finally we define the shape problem,
that we want to solve. In section 3 we reformulate the problem P, in the
unperturbed domain €, which is necessary, because, in order to compute the
limit of the quotient sequence (%, ds—:i), the vector fields u®, u, d* and d
must be defined in the same fixed domain, independent of s. In section 4 we
prove that all the sequences {u*}, {d*}, {*=2} and {£=¢} are bounded in ap-
propriate functional spaces involving time, we determine, for each time ¢, the
weak limit of the quotient sequence (£=%, £=4)(_ ¢), when s — 0", and we
identify the weak shape semiderivative (this identification is summarized in
theorems 4.14, 4.15 and corollary 4.3). Finally we present some conclusions

and future work.

2. Description of the Problem

In this section we first introduce the notations used in this paper. We
consider a family of rods Q; = w, x [0, L], with length L and cross section
ws, parameterized by s € [0, 0], which is a small parameter. We assume that
ws = w + sf(w) is a perturbation of w = wy in the direction of the vector
field 0, so Q, is a perturbation of the rod Q = @ x [0, L] = Qy. Next, for
each s, we describe the adaptive elastic rod model, derived in Figueiredo and
Trabucho [8]. This model (denoted by P, for cach s) is highly nonlinear. In
fact, the unknown is a pair (ug,ds) whose components are coupled; u is a
vector field, that represents the displacement of the rod Q, and solves the
generalized Bernoulli-Navier equilibrium equations, and d; is a scalar vector
field, that measures the change in volume fraction of the elastic material,
and that is the solution of the remodeling rate equation, that depends on
ug. Aferwards we recall the result of existence and uniqueness of the solution
of the rod model Ps (proved in Figueiredo and Trabucho [8]). Moreover, we
also prove a regularity result for the displacement vector field us. Finally, we
describe the shape problem under consideration in this paper. Defining the
map J(s) = (us,ds), for s € [0, ], the shape problem consists in the calculus
of the semiderivative d.J(£2;0) at s = 0 in the direction of the vector field 6,
in the sense of Delfour and Zolésio [6], p.289.
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2.1. Notations. Let § > 0 be a small parameter and for each s € [0, J]
we consider the perturbation I, of the identity operator I in R?, defined
by Ig(x1,22) = (I + s0)(x1,72) = (241, Ts2), for all (z1,29) € R?, where 6 =
(01,6) : R? — R?is a vector field regular enough (at least 6 € [W3><(R?)]?).

Let w be an open, bounded and connected subset of R?, with a boundary
Ow regular enough. For each s € [0,4] we define wy = I;(w), which is the
perturbation of w in the direction of the vector field 8. We also denote by
Q, the set occupied by a cylindrical adaptive elastic rod, in its reference
configuration, with length L > 0 and cross section wy, that is

Oy =w, x [0,L] = I(w) x [0, L] C R®. (1)

Moreover we denote by x5 = (241, Zs,T3) a generic element of Q, and define
the sets

T, =0wx]0,L], To=m,x{0}, Ty=m,x{L}, (2

where Ows is the boundary of w,. These three sets represent, respectively, the
lateral boundary of the rod Q, and its two extremities. The unit outer normal
vector along the boundary 9 of € is denoted by ng = (ns,ns,ns). We
assume that, for each s € [0,0] the coordinate system (O, g, x5, 23) is a
principal system of inertia associated with the rod §2,. Consequently, axis
Oz passes through the centroid of each section ws x {z3} and we have

/ Te1 dwy = / Teo dwg = / Te1Tgo dws = 0. (3)

We observe that the choice of the vector field 6, that realizes the shape
variation of the cross section w, must be admissible with this last condition.

The set C™(€2,) stands for the space of real functions m times continuously
differentiable in Q. The spaces W™4(€)) and W%(Q,) = LI(Q) are the
usual Sobolev spaces, where ¢ is a real number satisfying 1 < ¢ < oo and
m is a positive integer. The norms in these Sobolev spaces are denoted by

H . Hu/m,q(ﬂs>. ThC SCt

Re={v, €ER*: v,=a+bAwx, abecR’} (4)
where A is the exterior product in R?, is the set of infinitesimal rigid dis-
placements. We denote by [W™4(Q,)]* \ R, the quotient space induced by
the set R in the Sobolev space [W™4(£))]3.

Throughout the paper, the latin indices ¢, j, k, [... belong to the set
{1,2,3}, the greek indices a, 3, pi... vary in the set {1,2} and the summation
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convention with respect to repeated indices is employed, that is, for example
aibi = Z?:l CLibi.

Let T' > 0 be a real parameter and denote by t the time variable in the
interval [0,7]. If V is a topological vectorial space, the set C™([0,T;V)
is the space of functions ¢ : t € [0,7] — g(t) € V, such that g is m times
continuously differentiable with respect to ¢t. If V' is a Banach space we denote
Il-llem o,y the usual norm in C™([0,T7]; V). Moreover, given a function
gs(xs,t) defined in Q x [0,7] we denote by g, its partial derivative with
respect to time, by Jsags and 83g5rits partial derivatives with respect to x4,

and w3, respectively, that is, g, = %, Osa¥s = a‘)g” and 0395 = gf;

Tsa

2.2. The adaptive elastic rod model. The theory of adaptive elasticity
(cf. Cowin and Hegedus [3, 4]) is proposed for the mathematical modeling
of the physiological process of bone remodeling (and it is a generalization of
linearized elasticity). The basic system of equations governing the adaptive
elasticity model couples the equilibrium and constitutive equations with an
ordinary differential equation with respect to time, which is the remodeling
rate equation. This latter equation mathematically expresses the process
of absorption and deposition of bone material due to an external stimulus.
Figueiredo and Trabucho [8], applied the asymptotic expansion method (cf.
Trabucho and Viafo [11], for an explanation of the mathematical modeling of
rods with the asymptotic expansion method) to the model derived in Cowin
and Hegedus [3, 4], with the modifications proposed in Monnier and Trabucho
[10], for a remodeling rate equation depending nonlinearly or linearly on the
strain field, and for a thin rod whose cross section is a function of a small
parameter. They obtained a simplified adaptive elastic rod model (that we
denote also by asymptotic adaptive elastic rod model), that is a system of
nonlinear coupled equations, with generalized Bernoulli-Navier equilibrium
equations and a simplified remodeling rate equation. This system is defined
as follows, for any perturbed rod Q (with s € [0,d]) and in the case where
the original three-dimensional remodeling rate equation depends linearly on
the strain field:

s = (Ug1, Usa, Ugz) : Qs X [0,T] = R3, dy: Qy x [0,T] — R,
o [0,L] x[0,7T] — R,
Us3 = Ugg — xsaai’)usoz and Ugs - [07 L} X [OaT] - Rv

(us,ds) satisfies:

(5)
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the equilibrium equations in (0, L) x (0,7,

[ —0 (ls(ds)ﬁggsg — em(ds)aggum) =

L (&0 + Pylds)) fss dws + [, gs3 dOws,

[ O3 — e(d)Dstty + o (ds) Dagtisn) = ©)
Jo. 75(&so + Py(dy)) fip dws + [, gsp d0w;
i + [, 25 Os[7s(Eo + Py(ds)) fal dws + [, %55 D393 dOws,
the boundary conditions for {73} x (0,7), with T3 = 0, L,
[ (1s(ds) D — €s0(ds)Dusa) (Tz) = [, hsa(T3) dws,
(e.sﬁ(d.s)a:&sg - hsaa( )aasum)( f Lsp hss(%) dws,
O3 (esp(ds) O3ty — hsap(ds)Ds3uisa) (Ts) = (7)
Lo s (@) dws — [, 253953(T3) dOws
— [, mepvs(&o + Py(dy)) fs(T3) dows,

the remodeling rate equation,

d = c(dy)ess(us) + a(dy), in Q,x(0,7),
o(ds) = Aap(de) 2225 + Agy(dy), (8)
dS(ISa 0) = ds( s); in ﬁs

The unknowns of the model (5)-(8) are the displacement vector field u,(xs, t),
corresponding to the displacement of the point z, of the rod Q at time ¢
and the measure of change in volume fraction of the elastic material (from
the reference volume fraction &y) d°(xs,t) at (zs,t). In particular ess(us) =
O3us3 = O3l — TsaO33Usq is an element of the linear strain tensor (eij(us)),
and it is a function of wu.

On the other hand, the data of the model (5)-(8) are the following: the
open set 25 x (0,7, the density 75 = v of the full elastic material, which
is supposed to be a constant independent of s, the reference volume fraction
of the elastic material £, that belongs to C1(€;) for each s, the body load
fs = (fsi), such that f,; € C*([0,7]) and depends only on ¢, the normal
tractions on the boundary g; = (gs) and hs = (hy), the initial value of
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the change in volume fraction d,(x), which belongs to C°(€),), the trunca-
tion operator P,(.), and the coefficients I(ds), €sa(ds), hsap(ds), c(ds), a(ds),
Aunp(dy), Ass(ds), bapss(ds) and bssgss(ds), which are all material coefficients
depending upon the change in volume fraction d;.

On these data we also suppose further conditions, which we will describe
next. We assume that, for each s € [0,4], 0 < £ < £yo(xs) < 5 < 1 and
that the normal tractions verify

gsi € CH[0, T WYPP(L)), hg € CH(0, T WP (D UTur)), (9)

with p > 3. In addition we assume that the resultant of the system of applied
forces is null for rigid displacements, that is, for any vs = (vg), and for all
te€0,1]

{ st 7(530 + P7](d8))fsivsidxs + st gsivsidrs (10)

+ stoUFSL hsivsid(Tso UTs) = 0.
The truncation operator P,, of class C?, is defined by

—&o(xs) + 4, if dy(xs
1 — &olxs), if dy(zs

and satisfies

0<7 < (E+Pd)@) <1, Vo, e (12)

The coefficients bqgs3(ds) and bsgss(ds) are continuously differentiable with
respect to dg; and are elements of the matrix (bl-jkl(ds)) which is the inverse
matrix of the three-dimensional elastic coefficients (Cijkl(ds)) of the rod
(cf. Figueiredo and Trabucho [8]). Moreover b,gs3(ds) and bssss(ds) belong
to the space C'([0,T]; C*(R?)) when d, € C*([0,T]; C°(€)) (cf. Monnier
and Trabucho [10] and also Figueiredo and Trabucho [8]). The coefficients
Aup(dy), Ass(ds) and a(ds) are remodeling rate coefficients and are supposed
continuously differentiable with respect to d,. In addition we also assume that
there exist strictly positive constants C1, Cs, C3, Cy, Cs and C independent
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of s and t, such that for any (z,,t) € Q x [0, 7]

0<(C; < < (O, Vs € [0, 4], 13
<20 0.9 1)
lc(ds)| < Cs, la(ds)| < Cy,, Vs €]0,4], (14)
|C/(da)| S C5a ’a/(dé)| S Cﬁay VS S [Oa 6]7 (15>

where ¢/(.) and d(.) are the derivatives of the scalar functions ¢(.) and af(.).

The coefficients [5(ds), esq(ds) and hsap(ds), that depend on the elasticity
coefficient bgsss(ds) (cf. Figueiredo and Trabucho [8]), are functions of z3 and
t, and are defined by

1
ls(xiﬁv t) = -fws mdws’

. (16)
Cualon ) = [, e huanlenst) = [, 250

Doing the variational formulation of the equilibrium equations (that is ob-
tained multiplying the first equilibrium equation (6) by v,3 € WH%(0, L) and
the second and third equilibrium equations by x4 vs1 and x4 vg, respec-
tively, with vss € W2(0, L), for 3 = 1,2, and subsequently integrating in
(0, L) and using the boundary condititons (7)), the asymptotic adaptive elas-
tic rod model (5)-(8) is equivalent to the following nonlinear (variational and
differential) system (Ps) (cf. Figueiredo and Trabucho [8])

Find us : Qs x [0,7] — R3,  dy: Qg x [0,7] — R such that :

us(.,t) € V(Qq) \ Ry,

P, | as(us,vs) = Lg(vs), Vs € V() \ R, (17)
dy = c(dy)ess(us) +a(dy), in Qx (0,7T),

ds(25,0) = dg(ws), in Q.

The space V(§2,) = {vs e W2(Q)]P:  eap(vs) = ezpvg) = O} is identified
with

{vs - (’U.slvvs%vsii) S [WZQ(O’ L)}Q X WLQ(QS) : ’U.soz(xs) - vsw(xi%)y

(18)
vg3(Ts) = 253($3) - xsaa?)vsa(xfi)v Vg3 € WI’Q(Oa L)}7
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and the quotient space V() \ Ry is the set
{vs = tatbAzy: 5 €V(Q), acRP b= (b,b,0) € R3}. (19)

The bilinear form as(.,.), depending on the unknown ds, is defined in the

space V(€2,) \ Rs by

1
CLS(ZS,US) = / 633(2’5)633(05)d95, VZS, Vs € V(Qs) \Rs (20)
q. b3333(ds)

and L(.) is a linear form also defined in V' (§2;) \ R by
{ Ls(vs) = st 7(550 + Pn(ds)) fsi Usi dQs + st Gsi Usi dFs
+ stOUFsL hsi Vsi d(Fso U FsL)-

Remark 2.1 (Justification of the definition of V(£2;) \ Rs). We must have
bs = 0 in the definition (19), because otherwise the quotient space V(25) \ Rs
would not be contained in V(Qy). In fact developing vy = zs + a+ b A x5 we
have for the first component, vg = zg + a1 + boxs — b3z, for the second
component vy = zZg + as — bixg + bsxsy and finally for the third component
Us3 = Zgg — Tsa032sa + a3+ 01252 — baxs1. Therefore if bs # 0, then vs & V(Qy),
and if bs = 0, we have

(21)

Us1 = 2zs1 + a1 + baxs  (vg depends only on x3)
Vsg = Zs2 + ag — birs  (vs2 depends only on x3)
Us3 = Zg3 — TsaO32sa + a3 + b1z — o (22)
= 2z + a3 —T5a03Vsa = U3 — TsaD3Usa
gy
because (b1, ba,0) A x5 = (bgazg, —bix3, bixso — boxsy). O

By the following Korn’s type inequality in the quotient space V' (€2) \ R
(cf. Ciarlet [1] or Valent [12]) we have
Je> 00 fosllfyrep < clless(va)llzaq,), (23)
where v; = (vg1, V52, Vs3), Vsa € W??(0,L) and vgg = 0,3 — T5a030s0, With
Vg3 € W1’2(07 L)

e33(vs) = 03053 = D303 — TsaO33Vsa, and due to (3),
2 2 2 2 (24)
He33(US)HL2(QS) = ”afiQsSHLQ(O,L) + (fws ‘TsadWS) ”aftisaHL?(o,Ly
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Hence, we conclude that |es3(.)|[z2(q,) is a norm in the space V(£2) \ R
equivalent to the usual norm induced in the quotient space by ||.||pr12(q,)s-
Moreover V(£2) \ R is a Hilbert space with the norm ||ess(.)||z2(0,) and the
bilinear form as(.,.) is elliptic in V(€2,) \ Rs. In fact, there exists a constant

C > 0, such that, for all v, € V(£2) \ Ry

{ CLS(US, U.s) - st WIMS) 633(U.s) 633(U.s) an Z

(25)
01”633(1)-9)”%2(95) = Cl”v-S’H%/(QS)\RS > CHU-s”[Qsz(QS)]Ba

where (1 is the constant defined in condition (13).

For each s € [0, ¢], the existence and uniqueness of solution of the asymp-
totic adaptive elastic rod model Py (cf. (17)) is proved in Figueiredo and
Trabucho [8], and relies on the Schauder’s fixed point theorem. The next
theorem recalls this statement of existence and uniqueness.

Theorem 2.1 (Existence and uniqueness of solution of Py). Let s € [0,0]
be fized. Assuming that, for each fixed ds, the unique solution Us of the
equilibrium problem

Findug(.,t) € V(Q,) \ Rs, such that:
{ (+0) € V) 20

as(usavs) = Ls(vs); VUS € V(QS) \R87

is reqular enough, then there exists a unique pair (us, ds), solution of problem

Ps (¢f. (17)), verifying
us € CH[0, T|; V(Q)\Rs)  and  ds € CH[0,T};C°(Q)). O (27)

The next theorem is a regularity result, that will be important in section
4, and, to prove it, we introduce the following notations

%83 = ls(ds)aiiﬂsg - esa(ds)a&?usa;
Zsf = _esﬁ(ds)a?)ﬂs?) + hsozﬂ(ds)a?)f}usm
Fg = fws ’Y(fso + Pn(da)) Js3 dws + -f(?ws gs3 dOws;, (28)

F — fws 7(530 + Pn(ds)) fsﬂ de + f(?ws gsﬂ daws
Sﬂ + fws TsB 85 [7(550 + Pn(da)) fa&] dws + f()ws Tsg 05953 dawsy
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and the matrix M,
ls —€g51 —€59
Ms = —€51 hsll hslg . (29)
—es heor hg
We remark that
zs3 € C1([0,T]; L*(0, L)) and 2z, € CY([0,T); L*(0,L)), for f=1,2,
Fy € CH[0,T); L*(0,L)) and Fys € CY([0,T];L*(0,L)), for3=1,2,

M, e C' ([0, T); [C"(R)]9). (30)

Theorem 2.2 (Regularity of ug). Let (us,ds) be the unique solution of prob-
lem Py (cf. (17)). We assume that the determinant of matriz Mj is not zero,
det My # 0. Then, for each t € [0,T]

ugp(.,t) € W*2(0,L) and ug(.,t) € W0, L). (31)

In consequence, and because us = (Us1, Us, Ugg — Tsp03 Usg), we have us(.,t) €
[W22(,))°.

(Note — for example, if ml(dé) = ¢, where ¢ is a constant, then

det M = [/ ldw, / 2% dw / 22 dws] ¢ > 0) (32)

Proof: We first remark that the equilibrium equations (6) can be written in
the form

—03 253 = Fl,

D325 = Fsg, [=1,2,
and for each ¢, Fi3(.,t) and Fy4(.,t) belong to the space L*(0, L).

Since zg(.,t) belongs to L*(0,L), and because of the first equilibrium
equation in (33), also 03 zg(.,t) belongs to L*(0,L), so we conclude that
ze3(.,t) € WL2(0, L), for each t.

For each t, z(.,t) € L*(0,L) and so 03 2.4(.,t) € [WH%(0,L)]', where
[(W12(0,L)]" is the dual of W'2(0,L). But from the second equilibrium
equation in (33) we have that 053 255(.,t) € L?(0, L) and also 933 z5(.,t) €
(W20, L)]" because L*(0,L) C [W'*(0,L)]. So, because of a lemma of
J.L.Lions (cf. Ciarlet [2], p. 39) 05 zss(.,t) € L*(0,L). Hence the elements
2sa(. 1), O3 255(., ) and 033 z55(., t) belong to the space L*(0, L), which means
that z44(.,t) € W22(0, L).

(33)
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Therefore, assembling these properties we obtain, for each ¢
2a3(, 1) = ps3(., 1) € WH(0, L),
z51(.,t) = psi(., ) € W22(0, L), (34)
ze(, ) = pea(., 1) € W(0, L),
where py; is a primitive of Fy; (in the sense of distributions in W'%(0, L)),

for i = 1,2,3. Replacing zy; by its definition (cf. (28)) the system (34) is
equivalent to the following system of three equations

ls —€s1 —€s2 85233 Ps3
—es1 ha1r hao O3us1 | = | ps1 (35)
—es hgr  hgn 03312 Ds2

With the assumption det My # 0, we may solve the system (35). We obtain,
for Jsus(., 1)

Ps3 —€s1 —€s2
det | pa ha1  heo

P2 heor  hex
Oz, 1) = SNV e Wh(0,1L) (36)

for 833u81(.7 t)

ls Ps3 —€s2
det | —eq1 psa Do
—e P2 hs2

D33tg1 (., 1) = Qetil c W20, L) (37)
and for Os3us(.,t)
ls  —esq pss
det | —es1 hs1 pst
Osstta (o, t) = e hai pe e W2(0,L). (38)

det M,

We remark that the regularity indicated in (36)-(38) depends also on the
regularity of the elements of M; that belong to the space C*([0, T]; C*(R?)).

So we conclude that the component ugs(.,t) € W32(0, L), for 8 =1,2 and
ug(.,t) € W20, L), which implies that u,(.,t) € [W22(Q,)]?. O
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2.3. The shape probem. We consider now the shape map J defined by
J:[0,8] — CY[0,T};V(2)\ Rs) x C([0,T]; CO(2))

39
s — J(Q) = (us, ds) (39)

where (us,ds) is the unique solution of the nonlinear adaptive rod model
Py (cf. (17)), defined in the perturbed rod €25. For each s, the functions
us(xs,t) and dg(zs,t) are the displacement and the measure of change in
volume fraction of the elastic material, at the point x, of the rod €, and at
time ¢t. Moreover, as remarked before, the unknowns u, and d, are coupled
in the model FP;.

We recall that I;(w) is a perturbation of the cross section w of the rod
Q=w x[0,L] (cf. (1)), so Qj is a perturbation of the rod €2, that is

Q= L@w) x [0,L] = (I +s0)(w) x [0, L],
and (40)

ﬁzw X [O,L] = I()(w) X [O,L} = Qo.

The aim of this paper is to compute the shape semiderivative d.J(€);6) at
s = 0, in the direction of the vector field 6. This semiderivative is defined by
(cf. Delfour and Zolésio [6], p.289)

Q) — J(Q
dJ(€;0) = lim M (41)
s—0+t S
Accordingly to the definition of J we have
dﬂQﬁ%:Mngﬁgi:ﬁﬂﬁz<hml%_u,Mn%_d) (42)
s—0t S s—07F S s—07F S

where (u,d) is the solution of problem (17) but for the unperturbed rod
Q=0=wx0,L].

We also remark that the semiderivative d.J(€; 0) is equivalent to the defini-
tion of the material derivative of the map J at s = 0, in the sense of Haslinger
and Mékinen [9], p.111.

In section 4, we prove that it is possible to compute and to identify, in a
weak sense and in an appropriate product space, this shape semiderivative.
The final identification result is described in theorems 4.14-4.15 and corollary
4.3.
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3. Equivalent Formulation of the Adaptive Rod Model

In order to be able to calculate the shape semiderivative indicated in (42)
we must reformulate, for each s, the problem Ps (cf. (17)) in the domain
Q x [0,7)], independent of s. Therefore we first formulate, in €, all the
forms involved in the definition of problem P,. Afterwards, we describe the
resulting rod model, that is denoted by P?*, equivalent to P, formulated in
Q2 x [0,77.

3.1. Reformulations of the forms defining Ps. We define the homeo-
morphism

Q(z1, 22, 23) = (1 + 01 (21, 22), T2 + sba(x1, 22), 73), (43)
that verifies
Qs =Qs(Q),  detVQs =1+ sdivf+ s*det V0, (44)

where the matrices V@, and V6 are the gradients of Qs and 6, respectively,
and div 0 = 0,0, is the divergence of 6.

To each function v, defined in 2, we associate the corresponding function
v® (with upper index s) defined on € by

v° = v 0 Q. (45)
Hence and because of remark 2.1 for any v, € V(£2) \ Rs, then
v] = 2§ + a1 + bexs
Vg = 25+ ag — bixs

U§ = éi — Jj’aagzz + a3 + bixes — baxy (46)

S

= ég + as —l’aag’l)i = Q§ - 1’(1831}0[
-

S
U3

and consequently v* € V(Q)\ R (whose definition is (19), for the case s = 0).
Moreover,

633(U.9) - 83233 - xsaa33vsa - 83253 - (m(y + s 9(1)0531/&
= 0305 — 2,0330), — 50,0330, (47)

= 833(118) — S@aaggv(‘i.
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Using (44)-(47) and the change of variables formula for domain and boundary
integrals (cf. Delfour and Zolésio [6], p.351-353) we get for as(us, vs)

1
/Q m (egg(us) — S 90[8331[;) (633(1}8) — S eaaggvz) det VQsdQ, (48)

and for L(vs)

Jo (& + Py(d®)) £ 05 (det VQ,) dS)
+ Jpgi v (Cof VQy)Tn|gs dT (49)
+ Jroor, P vl [(Cof VQo) nlps d(To UTy).

In (49) |.|gs is the euclidean norm in R?, (Cof VQ;)? is the transpose of the
cofactor matrix of VQj, that is (Cof VQ,)T = (det VQ,)(VQs)™T, whose
definition is

1+ 505605 —s50105 0
—shhfy 1+ 5010y 0 (50)
0 0 (1 + 8(9292)(1 + 881091) — 8281928291

and n = (n1,n2,n3) is the unit outer normal vector along the boundary 9
of 2. We remark that

n(z) = (n1(x),n2(x),0), for z eIl =Jdwx]0,L],
n(z) = (0,0,—1), for zeTy=w x {0}, (51)
n(z) = (0,0,1), for zel'y =wx{L}.

Developing (48)-(49) we obtain the following decomposition for a,(us, vs) and
Ly(vs)

ag(u®,v®) + saj(u®,v®) + s?aj(u®, v®) + s*aj(u®, v®) + staj(u®, v?),

{ Fy(v®) + Gy(v*) + Hy(w*) + s (Ff(v*) + Gi(v") + H;(v"))+ (52)
§2 (F3(v") + G3(v") + H(v")) + s* (F3(v") + G(v") + Hi(v")).
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The bilinear forms af(.,.) for i = 0,1,2,3,4, depend on # and d*, and are
defined by the formulas

aj(u,v) = [, megg(u)egg(v)dﬁl,

fQ Wl(ds) |: - 00[ (6 (u)a&%va + 655( )833u0z)

ai(u,v) =
+es3(u)ess(v)div 0} s,
s fQ Wlds) [e33(u)633(v) det VO + 0, 05 D331, 03305
CLQ(U, U) - (53)
(dZ’U 9) 9(1( ( )835’[)& + 653( )assua)] dQ,
' Ja m {eaeﬂazswaaggvﬁ div 6
ag(u, ’U) =

—(det VG) 0, (egg(u)aggva + 633(1})833ua):| dsQ,
aj(u,v) = [, b3333 ) [Ha 03 Os3u, D330 det V@} dQ,

for any pair (u,v) in the space V() \ R. The linear forms F§, F}, F5 and
F3, depend on 6 and d°, and are also defined in the same quotient space
V(2) \ R by the following expressions

F5(v) = Jov(& + Py(d”)) (f3 va + f5 v3) dQ2
Fi(0) = Jo /(& + Pold) | (fiva + £ v3) div — £ 80 D30, ] O,

F2 fQ’Y £0+Pr/( )) |:(f U(y+f3 Ud) det V6O (54)
— f5 0 O30, div 9} ds),

F5(v) = — [ 7(& + Py(d¥)) f5 0o O304 det VO dSQ.
The linear forms G§, GY, G5, G5 and Hjj, Hi, H;5, H3 result from the change

of variable in the boundary integrals (defined in I'y and in I'yg U Ty, respec-
tively). Their expressions, that depend on € and n, but are independent of
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d?, are the following for any v in the space V(Q) \ R:
Gy(v) = [r (95 va + g5 vs) dT,
Gi(v) = Ji (95 v+ 9525) G1(6:m) = 50, 030, | T,

G3(0) = Ji |05 va + g303) Ga(8,7) = g3 B Bsva G (0, )| T,
G5(v) = = [1 95 0a D300 G3(6,n) dT,

(55)

where G1(0,n), G2(0,n) and G3(0,n) are bounded scalar functions of § and
n, the unit outer normal vector, and

Hi(v) = [r,or, (P va +hjvs) dTyUT,
Hi(0) = i op, [(hg Vo + W vg) Hy(60) — 1S 0, agva} dlyUTy,

(56)
H3(0) = Jryor, [(0 20 + b5 03) Ha(6) — b 6, 0500 Hy(8)] dTo UT,

H;(U) = — fFUUFL hs 6, O304 H2(9) dl'yUTy,

where H;(0) and Hy(f) are bounded scalar functions of 6.

3.2. The problem P formulated in £ x [0, T]. As a direct consequence
of (52) we deduce the next theorem which formulates the problem Py in €
the new equivalent problem is denoted by P?*, with upper index s.

Theorem 3.1 ( Problem P* ). We assume that for each s € [0, 6], d*(z,0) =
d(z) in Q, and d is independent of s. We denote by (u,d) the unique solution
of problem P*, for s = 0, that is, (u,d) is the solution of the following system
PO (cf. (17), for the case s = 0), formulated in  x [0, 7]

x[0,T] = R3, and d:Qx[0,T] - R such that:

s
o
RS

(4

I

h
o
=

1l
=
=
+

Q
o
=

_|_
=
=

Yo e VIQ\R,  (57)
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where ay(.,.), Fo(.), Go(.) and Hy(.) are independent of s and are defined by
ap(z,v) = [, Wls(d) es3(2) es3(v) dQ,  (ao(.,.) depends on d)
Fo(0) = foy 1@+ Po() (fa va + fr0) A% (Fo(.) depends on d)
Go(v) = [; (9o va + g3 v3) dT,
Hy(v) = frgurL (ha Vo + h3 Q3) dloyUT, Vz,veV(Q)\R.

Then, the problem Py (cf. (17)), for s # 0, is equivalent to the following
problem P*® posed in the domain 2 x [0,T] independent of s

[ Findu®: Qx[0,T] =R3 —and d°:Qx[0,T] =R such that:
u*(,1) € V(Q)\ R,
ag(u®,v) + saj(u®,v) + s? aj(u®,v) + s* a(u®,v)
5t aj(u,v) = F§(0) + sFY(o) + 5% F3(0) + 55 Fi(0)
+G§(v) + s G5 (v) + 2 G5(v) + s° G5(v) (59)
+H(v) + s Hi(v) + s* H5(v) + 83 H;(v), Yo € V(Q) \ R,

(58)

ds = o(d®)es3(u®) + a(d®) — sc(d*)0adszus,, in Qx (0,T),

| d*(x,0) =d(x), in Q,

where the sets V(2) and V(Q) \ R are defined in (18) and (19), for the case
s=0.

4. Calculus and Identification of the Shape Semideriva-
tive

In this section we first prove that the sequence {(u*, d*)} is bounded in the
space CO([0, T); V(2) \ R) x C°([0,T]; L*(£2)), {u*} is bounded in the space
CO([0, T); W22(€2)), and {ez3(u®)} is bounded in the space C°([0, T]; C°(2)),
independently of s. Then we show, that the quotient sequence {(*=%, £=4)},
where (u,d) is the solution of problem P is also bounded, independently
of s, in the space C°([0,T];V(2) \ R) x C°([0,T]; L*(Q)). These results
guarantee the existence, for each ¢, of a pair (u, J)(.,t), which is the weak
limit of a subsequence of {(%=% %=4)(_ #)} in the reflexive Banach space

S S

V(Q)\' R x L*(Q), when s — 0T; consequently, (@, d)(.,t) is the weak shape
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semiderivative of the functional J, defined in (42), at s = 0 in the direction
of the vector field 6, for each t. We also prove that the sequence {es3(u*)}
converges strongly to 0 in C°([0, T]; C°(Q2)), and {d*} converges strongly to
d in C°([0,T];C°(Q)), when s — 0F. Using all these estimates and conver-
gence results, we identify the weak shape semiderivative (%, d) as the unique
solution of a nonlinear problem: the component w is the solution of a vari-
ational equation, depending on (u,d) and d, where d is the solution of an
ordinary differential equation with respect to time, depending on (u,d) and

. Morover we show that @ € C*([0,T]; V(Q)\'R) and d € C([0,T]; C°(2)).

4.1. Preliminary estimates.

Theorem 4.1 (First estimates for the sequences u® and d®). We suppose that
the conditions (18)-(14) are verified and d(x) € L*(Q2), then

Jer >0 uleoqomvionr) < ¢, Vs €0,0], (60)
des >0 Hd8‘|00([07T];L2(Q)) <cy, Vse€ [0,5}, (61)
where ¢ and co are constants independent of s.
Proof: The pair (u*,d’) is the solution of problem P* (cf. (59)), thus for

each time t,

ag(u®, u’) s'ad(uf, u) (62)

M%

i=1
By the ellipticity of aj(.,.) in V(2) \ R (cf. (25)) we have for each ¢

ap(u’,u) = e [lu*( )@ (63)
where C'is a constant independent of s and ¢. But applying (24)

”833(U8(-7t))||%2(9) = Ha?nﬂzsa(wt)H%?(o,L) + (/xidw)\|833ui(.7t)||%2(0@7 (64)
hence ’
105235 )| 22 0.0y < lless(w’( D) z2) = 1w (5 Dllvionr
10531, )| 2 0.0y < elless(u( D))o @) = cllu( D)llvonr
where ¢ is a constant independent of s and ¢. Thus using (64)-(65) we easily

check that af(.,.), for i = 1,2,3,4, are continuous bilinear forms, that verify
for each ¢

(65)

a; (', ') < ¢ [lu'(, ) @nr (66)
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with ¢; strictly positive constants, independent of s and ¢, but depending on
6. Analogously, using (64)-(65) we verify again, that, L*(.) is a linear form,
and, for each ¢
L(w*) < e llu*(H)llvionr (67)
where ¢y, is another strictly positive constant independent of s and t. So
applying (63), (66) and (67) to (62), we conclude that for each time ¢
4
(e= 325" a) I Dl an < ee (- Dllvanr (63)
i=1
and we obtain the estimate (60), since s is a very small parameter.
Taking the integral in time in the remodeling rate equation of problem
(59), we get

&*(x,t) = /0 [c(ds)egg(us)+a(d8)—Sc(ds)Haaggui} dr+d(z).  (69)

But as the material and remodeling coefficients ¢(d*) and a(d®) appearing in
(69) are bounded (cf. (14)) we deduce that

T
Il < [ (61l Ollvann + 2 dr -+ @, (0

with ¢; and ¢y two strictly positive constants independent of s. Therefore
and because of (60) we have the inequality (61). O

Theorem 4.2 (Second estimate for the sequence u*). We assume that condi-

tion (13) is verified, the hypotheses of theorem 2.2 are satisfied, and ml(dé) =

b+ O(s), where b : R — R is a scalar function, where b is independent of
s, 0 < |b| < ¢ with ¢ > 0 a constant, and O(s) is a term of order s (cf.
Monnier and Trabucho [10], formulas (6) and (2), for a justification of this

latter condition on the material coefficient bsgss(d®)). Then
301 >0: ||’U,S”CO([O,T]:W/QJ(Q)) < Cy, (71)
Jea> 00 less(u”) |l oo ryco@y < c2 (72)
where ¢ and ¢y are constants independent of s € [0, 6].

Proof: Using the relations (36)-(38) in the proof of the regularity theorem
(2.2), we deduce that for each ¢

(-, t)[lw=2(0) < C(M?;pj) (73)
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where M*® = Mg o Qs, pi = psi © Qs and C(M?;pf) is a strictly positive
constant depending on the W'?(0, L) norms of the elements of M* and p;.
As p?, for i = 1,2,3, are data of the problem, related to the forces (cf. (34)),
and due to the definition of M* and the additional hypothesis for ml(dé), we
easily deduce that

Je>0:  COM%p))<e, Vsel0,d], (74)

where c¢ is independent of s and ¢, and therefore we have (71).
Also from the regularity result we have, for each t,

633(Us)(., t) = aggg(, t) — Z)L‘wag;gUZ(., t) S WI’Z(Q) N Co(ﬁ) (75)

because d3uj(.,t) and ds3ul(.,t) belong to W2(0,L) which is compactly
embedded in the space C°([0, L]). Hence we get

less(w”) (- D)o@ < i lless(w) (- t)l[wrz) < eallu’( 1) |[wee@) < e (76)

where ¢1, ¢y and c3 are constants independent of s and ¢, and consequently
we have (72). O

Theorem 4.3 (Estimate for the sequence ). Let (u®,d*) and (u,d) be
the solutions of problems P* (cf. (59)) and P° (cf. (57)), respectively. We
assume that conditions (13)-(15) are verified, and, for each s, £ = &, ff =
fi, g8 = gi, hi = h;, where &, f;, g; and h; are independent of s. Then,

ut —u d®—d
lcoqorpvionr) < el

where ¢ and co are strictly positive constants independent of s and t.

. llcoqo,ry;22(0)) + C2, (77)

Proof: In this proof we sometimes write u® instead of u*(.,¢) in order to
simplify the notations. For each ¢ we have

a®(u®,v) = L(v), Yoe VIQ)\R
ap(u,v) = Lo(v), Yo e V(Q\R
which implies that

é{aS(ui v) — ao(u, v)] = M (79)
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Developing this last equation for the choice v = “=* and observing that, for
each ¢,

l{fﬂ me%( )635(“ —1)d() — fQ b3333 653( )653( )40 —

fQ b3333 ds) 33(u )633(u u)dQ—i— (80)

Jo Baana (d) ~baoa (") 'b“m (d") (bssss(d) 63333(d5))_1 ess(u)ess(2) dQ

we obtain that (79) is equivalent to the equation

(u 7u u® 7u) _ 83 CL4(’LL5 %)

- J M(b3535(d'9) b3333(d))_1633( Jess (L=
LR - RS+
LG5 = Gl + Hi (52 — Ho(£52)|+ (81)

—aj(w’, ) + FY(5) + GH(Y) + Hi () +

S

1) Q)+

s [ - ast, 5 4 By (U5) + Gy(5) + H ()| +

uss—u)] .

Using this last equation, the ellipticity of a{(.,.) and the properties of con-

tinuity of all the other remaining terms in (81) we obtain the estimate (77).

We explain next these calculations in detail, analyzing (81), for each ¢.
Because of condition (13), we have for each ¢

u
(Ol nr (82)

where ¢ is a strictly positive constant independent of s and ¢. Using the
definitions of a{(.,.) and the estimate (60) we obviously obtain

{ a5 (u®, “=)] < C, lut () lviong 524G D vianr <

=) vonr

where ¢,, and ¢,;, for i = 1,2, 3,4, are strictly positive constants independent
of s and ¢. Considering now the definitions of the forces F’, G7, and H; we

[ ot + FR )+ G + g

|a8(us —u u'—u

ué
)| = ¢l

(83)

Cq,
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easily check that, for each ¢

s _ s

u® —u u® —u u u
) <cil

F () + G (=) + Hi(=

2 Blvar  (84)

where ¢;, for ¢ = 1,2, 3, are other strictly positive constants independent of
s and t. In addition we have also, for each ¢

Haas) - o) = o
HHg () — Hy(22)] =0

Using the mean value theorem for the operator P,, we deduce

(85)

ﬂ%@%—m@ﬂﬂs
foY’ (d) P, ||fa ul, sua_’_f u§— uS’dQ— (86)
kﬂJﬂi—WiMnaﬁ+f%%MQ<

E=d( )] 120

where ¢ is a strictly positive constant independent of s and ¢. Finally, using
the mean value theorem for the material coefficient bsss3(.), the estimate (72),
for s = 0, and condition (13) we get

_ s . -1 uS—u
)fgw(b%w(dé)bzﬂm(d)) e33(u)ess(*= )dQ’ =
s s —1
’fQ wd 4 (b3333(d®) basss(d))
S e 154G O vz

where ¢ is a strictly positive constant independent of s and ¢. Therefore
using (81) and the estimates (82)-(87), we have, for each ¢

{C|u D @r <
(88)
(s )||L2Q))”u () lvew) () lvonr)

where ¢, ¢; and ¢y are strictly posrmve constants mdependent of s and t. The
proof is finished, dividing (88) ) vepnr. O

Theorem 4.4 (Estimate for the sequence “=%). Let (u*,d*) and (u,d) be
the solutions of problems (59) and (57), respectively. We assume that the

Co

“—(, ) lvianr)

633(U)633(1LS;U) dQ’ < (87)
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hypotheses of the previous theorem 4.3 are satisfied. Then,

”d“"—d

leooayze) < € (89)
where ¢ is a strictly positive constant independent of s and t.

Proof: We write the remodeling rate equations of problems P* (cf. (59))
and P° (cf. (57))

{ ds = C(dS)ejS(us) + a(d:) — S C(ds)eaagguz, in Qx (0,T), (90)

d*(z,0) =d(z), in Q,

{ d= c(d)eyi;(u) + a(d),_ in Qx(0,7), (01)
d(xz,0) =d(z), in Q.

Subtracting (91) from (90) we obtain

d* — d = c(d*)ess(u® — u)
+e(d®) — e(d)]ess(u) + a(d®) — a(d) — s c(d®)0,053us, (92)
(d* — d)(z,0) = 0.

Integrating in time between zero and ¢

(@ = d)(a,t) = fy [e(@)eam(u’ =) + [e(@) = e(lesw)

(93)
+a(d®) — a(d) — sc(d®)0,0s3ul, | dr.

Taking the L?(€2) norm in (93), using the conditions (13)-(15) and the mean
value theorem for the terms c(d*) — ¢(d) and a(d*) — a(d), we obtain, for each
t, the estimate

(@ = ) Dl < fy e less(w® = w)( ) 2oy
+ea [|(d° = d) ()| 2@ lless(w) (- )l oy (94)
“+c3 ”(dS _ d)(, T)"LQ(Q) +Sscy ”aggufy(, 7")”[}(9)] dr.
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where c1, ¢9, c3 and ¢4 are strictly positive constants independent of s and ¢.
But

S

”633(’“8 _ ’LL)(, t)HLQ(Q) = ”(u — u)(’ t)HV(Q)\R
less(w) (-, )l com) < c2 (95)
103308, (- )l z2(0) < collessu’ (7)) = collw’( D llvonr < ¢

where ¢y is the constant defined in (72), for the case s = 0, ¢ is defined in
(65) and ¢ is a constant depending on the constant defined in (60); these
three constants are independent of s and t. So we have from (94)-(95) and
theorem 4.3

1520, ) 2 <

i o]
cr + f(f s

with ¢, ¢g, c7 and cg other strictly positive constants independent of s and
t. Then using the integral Gronwall’s inequality (cf. Evans [7], p. 625)

Hds—d

which implies (89). O

u®—u

(!
S

Gr)llvionr +cs
& —d

S

S

L) lizgey + o] dr < (96)

(o) || £2(q) dr,

(., t)HLz(Q) S Cr (1 —+ thecgt), Vt S {O, T], (97)

Corollary 4.1. With the hypotheses of theorem 4.3

S

u —u

de>0: || HCO([O,T];V(Q)\R) < c, (98)

where ¢ is independent of s and t. O

So we have reached the conclusion that the solutions (u*,d*) and (u,d) of
problems P* and P; respectively, verify for all s € [0, d]

Hus—u d*—d

lleogoryvonmy < c1 - and |
where ¢; and ¢ are strictly positive constants independent of s.
Hence, for each t, each one of the bounded quotient sequences {“;“}(,t)
and {£=2}(.,t) has a subsequence, that converges weakly, when s — 07, in
V(Q)\ R and L%*(), respectively. This statement and a consequence of it is

summarized in the next theorem.

lcogo,ry;22(0)) < c2 (99)
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Theorem 4.5 (Weak limits of the quotient sequences). Let (u®,d*) and (u,d)
be the solutions of problems P* and P° and we assume that the hypotheses
of theorem (4.3) are verified. Then, for each t, there exists a subsequence of
{(u®,d*)(.,t)}, also denoted by {(u®,d*)(.,t)}, and elements u(.,t) € V(Q)\R
and d(.,t) € L*(2), such that, when the parameter s — 0F

“t“(.ﬁ S a(t) weakly in V(Q)\ R, (100)
ess(CU (1) — eg(@)(ot) weakly in LXQ),  (101)
ds_d(.,t) — d(.,t) weakly in L*(Q), (102)

and therefore, when s — 0"

(u® —u)(.,t) — 0 strongly in V() \ R, (103)
esz(u® —u)(.,t) — 0 strongly in  L*(2), (104)
(d* —d)(.,t) — 0 strongly in L*(Q). O (105)

We finish this section with a convergence result for the sequences {u*} and
es3(u®), and a corollary concerning the convergence of the sequence {d*}, that
will be useful in subsection (4.2).

Theorem 4.6 (Strong limit of es3(u®)). Let (u®,d*) and (u,d) be the solutions
of problems P* and P° and we assume that the hypotheses of theorems 2.2, 4.2
and 4.3 are verified. Then, there exists a subsequence of {u®}, also denoted
by {u®}, that verifies the following convergence, when the parameter s — 07,

es3(u® —u) — 0 strongly in  C°([0,T];C°(Q)). (106)

Proof: Recalling the definition of u® —u and its regularity (cf. theorem 2.2),
we have

u —u= <u‘i — Uy, Uy — Uz, U5 — U — ToOs(ud, — ua)>, (107)

where for each ¢, (u, —u,)(.,t) € W32(0, L), for a = 1,2 and (u§ —u3)(.,t) €
W?22(0, L). The calculus of ez3(u® — u) gives

633(Us - U) = 33(”5 - us) = 53(25 - 23) - %533(UZ - Uu), (108)
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where [03(u§ —u3)](.,t) € W12(0, L) and [Os33(us — ua)](.,t) € WH2(0, L), for
a = 1,2. But, because of the strong convergence (104),

less(u® —w)(.,t)||l2) — 0 when s — 07. (109)
Applying the definition of ||ess(u® —w)(.,t)||z2() (cf. (24)), that is

{ lless(u® — U)(-J)H?y(n) = |05 (us — 23)(-775)”%2(0,@ (110)
+( [, w2dw) 1933 (uh, — wa) (- )1F2(0 1)
we conclude that, for each ¢
O3(u — u3)(.,t) — 0 strongly in  L*(0, L), (111)
O3(us — ua)(.,t) — 0 strongly in  L*(0, L). (112)
On the other hand we get directly from (71)
lless(u® = w)llooqozywray < llw” = ulleoqoriwze@) < (113)
[ lleoorywz2()) + [[ulloogorymeza) < e

where ¢ is a constant independent of s. Therefore the sequences 0s(uj — us)
and Os3(ud — u,) are bounded in C°([0,7]; W2(0,L)), and consequently,
because of (111)-(112), we obtain the following weak convergences, when
s— 0"

3(us —ug)(,t) — 0 weakly in W30, L), (114)

Os3(ul —uy)(,, 1) — 0 weakly in W0, L). (115)

But as the space W2(0, L) is compactly embedded in C°([0, L]), we have,
when s — 0

O3(u — u3)(., 1) — 0 strongly in  C°([0, L]), (116)

D3(ul —uy)(.,t) — 0 strongly in  C°([0, L]), (117)
which implies the strong convergence of e33(u®—u) to 0 in C°([0, T]; C*(Q)). O

Corollary 4.2 (Strong limit of d*). Let (u®,d*) and (u,d) be the solutions
of problems P* and P°, and we assume the same hypotheses of theorem 4.6.
Then, there exists a constant ¢ > 0 independent of s, such that when s — 0T

d*—d — 0 strongly in C°([0,T]; C°(Q)). (118)
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Proof: Using exactly the same arguments in the beginning of theorem 4.4
(cf. formulas (93), (95) and (96)), we have

(@ = d)(z,1)] <

Jo {Cl less(u” — u)(z, )| + 2 |(d° — d)(,7)] [ez3(u) (z, 7)|

) ) (119)
ey |(d = d) ()] + s e D (2, 7) ] dr <
fot [cl less(u® —u)(z,r)| 4+ c5 |(d° — d)(z, )| + 804] dr
where the constants ¢;, for ¢ = 1,2,3,4,5, are strictly positive constants

independent of s and ¢ and consequently

[(d* — d)(x,1)] <
T|er lews(u® =)l eagoyenay +ses] + Jy es (@ = d).r)|dr. - (120)

4,95

Because of the strong convergence (106), the scalar ¢* — 0, when s — 0.
Then using the integral Gronwall’s inequality (cf. Evans [7], p. 625)

|(d* — d)(x,t)] < ¢° (1 +tese), VWt e[0,T), (121)
which implies (118). O

4.2. Shape semiderivatives. The objective of this section is to identify,

for each t, the weak limits u(.,t) and d(.,t) of the sequences {“=%(.,t)}
and {£=4(.,¢)}, defined in (100) and (102). To this end we proceed in the
following way: we consider again the problems P* and P°, we subtract and
divide by s the equilibrium variational equations and the remodeling rate
equations, and then we take the limit, when the parameter s — 0%. We
conclude that, for each ¢, the pair (@(.,t),d(.,t)) is the solution of another

nonlinear problem. Finally we identify (@, d) as the unique solution of this

latter problem in the space C1([0,T]; V() \ R) x C1([0,T]; C°(2)).

4.2.1. Shape semiderivative u(.,t). For each t € [0,7], the two equilibrium
variational equations, of problems P* and PY, are

a’(u®,v) = L*(v), Yo e V(Q)\R,

ao(u,v) = Lo(v), Yo e V(Q)\ R, (122)
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and subtracting and dividing by s we obtain (cf. (79)-(81))

Ja b33331(ds)€33(u%u)€33(v)d9+

Jiy sl Db @) (0 () bysza(d)) e (w)ess (v) A+

ai(u®,v) =

%|:F05(U) - FO(U) + G(S)(U) - GO(U) + HS(U) - H()(U):| + (123)
FY(v) + Gi(v) + Hi(v)+

s [~ a3, o) + F(0) + Gs(o) + Hi(w)] +

2| = a(v) + F5(0) + Gy(v) + Hi(0)| — 8y, v).

We compute now, for each ¢, the limit of each term of (123). Accordingly to
the definitions of the forms involved in the last terms of this equation, it is
clear that, for each t, the sum

s [ —aj(u®,v) + F5(v) + G5(v) + Hg(v)] +
(124)
52| = a(v) + F5(0) + Gy(0) + Hi(v)| — a3, )

converges to 0 when s — 0", because we have the product of bounded terms
by s or by a positive power of s. The calculus of the other limits requires a
more careful analysis.

Theorem 4.7. We assume the hypotheses of theorems 2.2, 4.2 and 4.3. Then
for each t, when s — 0T,

u’ —u

/nggggl(ds)eiﬁi%( T Jeas(v)dl — /Qﬁi(d)ezza(u)egza(v)dﬁ. (125)
Proof: We have
| Jq es3(*=2) me:ﬁ(v)dﬁ — o mew(ﬂ)egg(v)dm <
| Jo e (U5 — @ess(v)d9 + (126)

| -fQ (bsssi(ds) o bsssi(@) 833(11) 633(11)619’.
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The sequence ez3(“=4)(.,t) weakly converges to ess3(a)(.,t) in L*(Q) (cf.

S

(101)), therefore, for each ¢

1 s —
|/ - 633(u u—ﬂ)egg(v)dQ] — 0, when s—0". (127)
q b3s33(d®) s

Because of condition (13), the mean value theorem for the function ng() and

the strong convergence of d* to d in C°([0,T]; C°(Q)) (cf. (118)) we have, for
each ¢, when s — 0%

1 ( ) 1
€ v —_— T
bs3s3(d®) 33 bs3s3(d)

In fact, for each ¢, when s — 0
Jo @ ~ ] less(0)]? d2 <
SUPQ |y — o) S less(v) 2 d2 < (129)
clld® — dHCO([o,T];CO(ﬁ)) fn |€33(U)|2 dsl.

Using again the condition (13), the mean value theorem for the function

KZ() and the strong convergence of d* to d in C°([0,T]; C°(Q)) we have for

the last term of (126), and for each ¢, when s — 07

es3(v), strongly in  L*(Q). (128)

1 1 .
fQ b3333(d®) ~ bazzz(d) |633(U) 633(1})’ 2 < (130)
supo [y — s | less(@ |20 less(0) [ r20) — 0,

which terminates the proof. [

Theorem 4.8. We assume the hypotheses of theorems 2.2, 4.2 and 4.3. Then
for each t, when s — 0"

Jiy Bl sl ') (0 () bysas (d))  ess(u) esz(v) dO2
! (131)
— Jo Vs333(d) b3333(d)72 des3(u) es3(v) dS

where bysqs(.) is the first derivative of the scalar function bssss(.).
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Proof: We remark that

basaa(d) — bazas(d® ) o

fQ 33 ;S — ;353( >(b3333(d‘5)bs333(d)) ! d;d ess(u) es3(v) dQ
s
— oy Vhaas(d) sass (d) 72 degs(u) ess(v) dQ2 =
N
’ & —d (132)
/Q(\IJLS — \IJ) . egg(u) 633(?}) ds) +
Term1
d>—d -
/Q\IJ ( B - d) egg(u) 633(?}) d§)
Term?2

For each t, the sequence (¥* —W)(., ) converges strongly to 0 in C°(Q), when
s — 0T, because of condition (13), the mean value theorem for the function
bssss(.), the condition (72) for the case s = 0, and the strong convergence of
ds to d in C°([0,T); C°(Q2)) (cf. corollary 4.2, formula (118)). Thus, for each
t, the term 1 in equation (132) verifies, when s — 07

’fg (W* — W) T egy(u) ess(v dQ)
[(P* — ) ess(u)||com fQ = e5(v)] dQ < (133)

(% = @) ega )| oy | £l oooizyzzion less(@)l2e) — 0.

The term 2 also converges to 0, when s — 07, because Wess(u)ess(v) belongs
to L*(2), for each t, and %= d(.,t) weakly converges to d(.,t) in L*(Q2), for
cach ¢ (cf. theorem 4.5, formula (102)). O

Theorem 4.9. We assume the hypotheses of theorems 2.2, 4.2 and 4.3. Then
for each t, when s — 0%

fQ m [egg(us)egg(v)div 0 — Ha (egg(us)aggva -+ 633(?})833UZ):| ds?
1 (134)
fQ Wls(d) [633(U)633(U)di’l} 0 — Qa (633(U)833U(y + 633(1})({933U(y):| dQ.
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Proof: It is enough to prove that, for each ¢, when s — 0%
Jo m@aegg(us) D330, dQ — [, m@aegg(u) 0330 dS)
o b3333 Foy @y Dass(v) Osgug, dY — o meaegg(v)&;wa s} (135)
fQ W ess3(u®)esgs(v)div @ dQ — fQ Wls(d) ess(u)ess(v)div 6 dS2,

We only give a sketch of the proof of the first convergence indicated in (135),
because the arguments for proving the remaining two are similar.
We have the following estimate, for each ¢

%Gaegg(us) 8331}& dQ — fQ m Gaegg(u) 8331}& dQ S

1 :
fQ bss33(d*) 833(% ) b3333(d 833 ’ |9 8331}0" dd <
(136)
1 s
fQ |:’b3333(d3) (633(U ) - 655(U))|
1
. +’ (bssss(ds) b3333 633 ” ’9 8331)&’ dfl.
But, for each ¢, || (ess(u®) — 633( )) (-, )|l z2(@) converges strongly to 0, when

s — 07 (cf. theorem 4.5, formula (103)), so
{ H—b3333(ds) (ess(u®) — ess(w))]L2() |00 Ossvall r20) < 137)
01H€33(U')—€33( M z2@) 100 Os3vallr2@) — 0.

Also, for each t, ||(d® — d)(.,t)||z2(q) converges strongly to 0, when s — 0%
(cf. theorem 4.5, formula (105)), hence, when s — 07

{ | (Wl(d) - m) e33(w)l|z2@) 100 Os3vallz2i) < (138)
colld® = dl| 2y [less(w) | cogo,rysco @) 10 Ossvall2) — 0. O

Theorem 4.10. We assume the hypotheses of theorems 2.2, 4.2 and 4.3.
Then, for each t, when s — 0"

LR (0) = Rv) + Gi(v) = Go(v) + Hi(v) — Ho(v)
! (139)

fQ v JP;;(d) (fava + fsu3) dQ2,
where Py(.) is the first derivative of the scalar function Py(.).
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Proof: As a consequence of the hypotheses we have that G§j(v) = Go(v) and
H{(v) = Ho(v). We analyse now the difference

%Vmw—%wﬂ—kvwwwuu@+ﬁ%w9=

Sy (BAD=LAD g )) (faVa + f305) dQL =

S (140)
Jarv [T (4 -4d)
ﬂi%%llfw»dkm%+ﬁ%ma
But, for each ¢t when s — 07, the term
P,(d°)— P,(d) ,d°—d
/7 ]( ) )( ) ( —d)(fava+f3y3) dQ) — 0, (141)
o) ds—d S
P,(d*)—P,(d

because y T (fa Vot f303) converges strongly to v P (d) (fa va+f33)

in L2(£2) and £=2 converges weakly to d in L?(1), for each ¢ (cf. theorem 4.5,
formula (102)); and the remaining last term in (140) verifies, when s — 0

LV¢M%E§&Q—ﬂMDMhm+hmMQ—HQ (142)

since for each t, d (f, v + f3u3) belongs to L'(2) and ~ (W — P)(d))
converges strongly to 0 in C°([0,7]; C°(2)). From (141)-(142) the conclusion
follows. [

Theorem 4.11. We assume the hypotheses of theorems 2.2, 4.2 and 4.3.
Then for each t, when s — 0"

Fy(v) + Gi(v) + Hi(v)
!
Ja 1€+ Pold) [ (Fa ve+ fovs) div d — fy 0 Do | d2+ (143)
k“%%+%%KMam—%%@%Pm—
Jryory |(hava + B ) Hi(6) = 1y 0,050, ] dTy UT.

Proof: To prove this theorem we apply the definitions of the forms F}, G, H{
and the strong convergence of P,(d?*) to P,(d) in the space C°([0,T]; C°(2)).
O
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Assembling the information of theorems 4.7- 4.11 and the equation (123)
we concluded the following.

Theorem 4.12 (identification of u(.,t)). The weak limit u(.,t) of the se-
quence {%}(,t) verifies the following variational equation for each t €
[0, 7]

B(u,v) = S(v), Yo e V(Q)\R, (144)
where B(.,.) is a bilinear form defined by

1
B(z,v) = / ——— e33(2) es3(v) d9, Vz, v e V() \ R, (145)
0 bsss3(d)
and S(.) is a linear form defined for allv € V() \ R by
S(0) = Jo, bhaas(d) basas(d)* d ess(w) ez (v) dO2
- Jq bmlw { — 0 (e33(1)D33v4 + €33(v)Ds310)
+e33(u)ess(v)div 9} aQ
+ Jovd P)(d) (fava + f303) dQ2 (146)
+ fQ 7(50 + Pr/(d)) |:(fw Vo + fﬁ Q:ﬁ) div — f3 0(1 031701} ds?
+ fr |:(gw Vo + g3 23) Gl (07 n) — 93 00[ 03’0&} ar
+ foor, [(ha Vo + havs) Hi(8) — h 0, agva] dTyUT).

\

4.2.2. Shape semiderivative d(.,t). By subtracting and dividing by s the
remodeling rate equations of problems P* and P’ and integrating in time
between zero and ¢, we obtain

@(.,t) = fot [C(ds) 633(”88_u)
+7C(ds>;c(d) 633(U) + 7@(&):&((1) - c(dS)G(yaggug] dr.

(147)

Working with this equation we are able to prove the following theorem.

Theorem 4.13 (identification of d(.,t)). We assume that the hypotheses of
theorems 2.2, 4.2 and 4.3 are verified. For each t, the weak limit d(.,t) of
the sequence {<=2(., 1)} is the solution of the following ordinary differential

S
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equation with respect to time
&= c(d)ess(@) + d [/ (d) es(u) + a/(d)]
—c(d) 0,033uq, in Qx(0,7), (148)
d(z,0) =0, in Q,

where (u,d) is the solution of problem PY and u(.,t) is the weak limit of the
sequence {““=%(.,t)} already identified in theorem 4.12.

Proof: Using the equation (147) and considering any v € L*(€2) we have, for
each t,

de: vdf) = fo(ffz[ (d*) ess( _u)

D ) 4 WD (00)0, B3| 0 d2) i

S

(149)

On the other hand, and for each ¢, we have the following convergences, when
s — 0

c(d®) — c(d) strongly in C°(Q),
eg3(“=2) — es3(u) weakly in  L*(€),

Aeld) oo(u) — dc/(d)ess(u) weakly in L2(Q), (150)

ald)—ald) .« ga/(d) weakly in  L2(€),

Os3us, — Os3u, strongly in  L*(9).
Hence we conclude that, for each ¢,
limg_o+ [, =4 vdQ = [, <f0t |:C(d)633(ﬂ)

. i (151)
+dd(d) ess(u) + da'(d) — c(d) eaaggua} dr) v dQ.

But, for each ¢, and by (102), €4, t) converges weakly to d(.,t) in L*(1),
when s — 0%. Therefore d(.,t) must verify (148), since the weak limit is
unique. [J

4.2.3. Final identification result. Collecting the results of theorems 4.12 and
4.13 we have the following theorem, that identifies, for each ¢, the (weak)
shape semiderivatives u(.,t) and d(.,t).
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Theorem 4.14. We assume that the hypotheses of theorems 2.2, 4.2 and 4.3
are verified. For each t € [0,T), the weak shape semiderivative (u,d)(.,t) is
an element of the space V() \ R x L*(Q2) and is the solution of the following
nonlinear problem (P)

el

Findu:Qx[0,T] =R d:Qx[0,7T] =R such that:

u(.,t) e V(O \ R,

B(a,v) = S(v), Yo e V() \R,

cis = c(d)633(ﬂ) + J[C%d) 633(’LL) + d(d)] - C<d) 003310,
in Qx(0,T),

(152)

d(x,0) =0, in Q.

The bilinear form B(.,.) is defined by

B(z,v) :/Qﬁi(d)egg(z) es(0)dQ Vi v e VQ\R,  (153)

and S(.) is a linear form defined for allv € V() \ R, by

S(v) = [, Vysss(d) bssss(d) * d ess(u) ezs(v) dQ
— ot [ — O (e35(1) D300 + €33(0) Dt )
tegs(u)ezs(v)div 9} dQ
+ Jo v d P)(d) (fava + f3v5) dD2 (154)
+ Jo 7 (& + Py(d)) [(fa Vo + f3v3) divl — f30, agva} o
+ Jr [(ga Vo + g303) G1(0,n) — g30, agva} dl’
+ Jrpor, [(ha Vo + hyvg) Hi(0) — h3 0, 53%] dl'yU Ty,

\

We remark S(.) depends on (u,d), which is the solution of problem P° and
also on d, which is the weak shape semiderivative of d*, at s = 0 and in the
direction of the vector field 0. The bilinear form B(.,.) depends on d, that is
the measure of change in volume fraction of the elastic material of problem

P,

O
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Moreover we have the following existence and uniqueness theorem for prob-
lem P.

Theorem 4.15. There exists a unique solution (u,d) of problem P, defined
in (152), which verifies

aeCY0, T VQ\R)  de ' ([0,T);C'@)). (155)

Proof: The arguments are analogous to those of the proof of existence and
uniqueness of solution of problem Py (cf. Figueiredo and Trabucho [8]), and
rely on the Schauder’s fixed point theorem. [

As a result of the previous theorem 4.15 we have the following final iden-
tification result.

Corollary 4.3. We assume that the hypotheses of theorems 2.2, 4.2 and 4.3
are verified. For eacht € [0,T], the entire sequence { “és_“, d'ss_d)(wt)} weakly

converges to (u,d)(.,t) in the space V(2) \ R x L*(2), when s — 0. Thus,
the shape map J defined in (39) by

J: [0,8] — CH[0,T; V(Q)\R) x C'([0,T];C°(Q2))
s — J(Qy) = (v, d)

has a weak shape semiderivative dJ(;6), at s = 0, in the direction of the

vector field 0 (cf. (41)), that is perfectly defined, for each t, by

dJ(;0)(.,t) = (u,d)(.,1), (157)

where (u,d) € CH([0,T}; V() \ R) x C([0,T];C°(Q)) is the unique solution
of problem P. O

(156)

5. Conclusion and future work

In this paper we considered the family €2, of perturbed thin rods, for
s € [0, 4], and the corresponding family of solutions (u®, d®) of the nonlinear
asymptotic adaptive elastic model, derived in Figueiredo and Trabucho [8].
We proved that, for each ¢, the sequence (“g“7 ds;d)(.7 t) converges weakly to
(,d)(.,t) in the space V(Q) \ R x L?(Q2), when s — 0*. Consequently, for
each t, (@,d)(.,t) is the weak shape semiderivative of the function J(Q,) =
(u®,d?), at s = 0 in the direction of the vector field §. Moreover, we prove
that the pair (,d) is the unique solution of another nonlinear problem that
couples a variational equation, depending on (u,d) and d, and an ordinary

differential equation with respect to time, depending on (u,d) and @. We
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intend to apply this methodology to analyse the weak shape semiderivative
of the solution to the nonlinear adaptive elastic asymptotic model (5)-(8),
but for the case where the remodeling rate equation (8) depends nonlinearly
on ess(us) (cf. Figueiredo and Trabucho [8]). We think that this nonlinear
term may originate some difficulties in the proof that the sequence {%} is
bounded, independently of s, and subsequently in the identification of the
shape semiderivative.

Note— This work is part of the project ”New materials, adaptive systems
and their nonlinearities; modelling, control and numerical simulation” carried
out in the framework of the european community program ”Improving the
human research potential and the socio-economic knowledge base” (HRN-
CT-2002-00284).
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