
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 03–26

CONVEX HULL CALCULATIONS:
A Matlab IMPLEMENTATION AND CORRECTNESS

PROOFS FOR THE LRS-ALGORITHM

ALEXANDER KOVAČEC AND BERNARDETE RIBEIRO

Abstract: This paper provides full Matlab -code and informal correctness proofs
for the lexicographic reverse search algorithm for convex hull calculations. The
implementation was tested on a 1993 486-PC for various small and some larger,
partially highly degenerate combinatorial polytopes, one of which (a certain 13-
dimensional 24 vertex polyhedron) occurs naturally in the study of a well known
problem posed by Professor Graciano de Oliveira: see end of section 1.

Keywords: Convex hull computations; Lexicographic reverse search; Matlab im-
plementation; informal Correctness proofs; Linear inequalities; Simplex algorithm.
AMS Subject Classification (2000): 52B55, 68Q25, 15A39, 90C05.

Dedicated to Professor G. N. de Oliveira on his sixty-fifth birthday

0. Introduction

David Avis [A] has recently published an improvement of his 1992 reverse
search algorithm, called lexicographic reverse search, lrs for short, for medi-
ating between the VR- and the H-representation of pointed polyhedra. [A]
explains the ideas of the algorithm and and gives a 15 lines pseudo code. The
algorithm was implemented in C-code and can be downloaded from its home
page in the vicinities of www.cs.mcgill.ca (McGill University Computer
Science Department). Click on people, Avis, lrs home page.

To compile this or competing codes (like PORTA), users have nowadays
to acquire one of the more modern ‘platforms’, that, by cramming disks
full with superfluous and (ob)noxious toys serve mainly - and explicitly, see
(the article containing) [M] - the goal to make people throw away their old,
beloved, and still useful PCs, they finally got to dominate. Disdaining firms
that deride their customers with evermore rapid ‘updating’ cycles, authors
recently implemented lrs in a version that would run on an ‘old’ 1993 486-PC
with equally ‘outdated’ Matlab for Windows 3.1. Matlab users have now

Corresponding Author: Alexander Kovačec, Dep. Matemática, Univ. Coimbra, 3001-454 Coim-
bra, Portugal. kovacec@mat.uc.pt.

1

2 A. KOVAČEC AND B. RIBEIRO

an algorithm that, different from the Quickhull implementation on recent
Matlab 6.1 (not running on Windows 3.1 anyway), will not indicate the
three dimensional cube, for example, as simplicial.

In this paper we describe our Matlab implementation and its usage.

In section 1 we describe, with examples, its use for those who more or less
blindly wish to copy the code and use it. In section 2 we assume the reader
to have [A] at hand and read. The specifics of our implementation are given
quite detailed explanations that should convince of the correctness of the
code given in section 4. These explanations do not cover syntactical details
nor can they guarantee numerical error freeness for too large polyhedra (i.e.
too many rays or vertices or facets). It is helpful, of course, the reader
has a smattering knowledge of Matlab ; however, if he has not, section 3
presents the bare minimum necessary to understand the code. The proofs and
examples should be valuable in case there remain any bugs, for illuminating
Avis’ paper from further perspectives, for extensions and refinements of the
code itself, and for implementing lrs in still other languages.

Disclaimer: users that wish to do series of experiments with really large and
perhaps ‘pathological’ polyhedra, as may be the case in the optimization
community, are for reasons of speed and numerical correctness probably well
advised to stick with Avis’ C-implementation in exact arithmetic. In our
implementation we used a simple heuristic for suppressing ‘numerical noise’.
In spite of the warning [A, p194c3] (=page 194, about 3cm from first text
row) that ‘the reverse search is extremely sensitive to numerical error’, for
reasons we do not quite understand, the heuristic seems to work well for the
‘reasonable’ rational and not too large polyhedra about which the pure math-
ematician wishes information. In case the user senses problems, it might be
useful to choose tolerance settings different from ours, or to do different runs
of lrs on the same polytope.

1. Use of the Matlab implementation of lrs

For the explanations to follow below we recall some facts from the general
theory of polyhedra. We use notions meticulously as defined in Schrijver
[Sch], or Ziegler [Z]. Indeed the reader not too familiar with polytopes and
polyhedra, may wish first of all to recall/transcribe the following notions
and associated notation: feasible set of conditions [Sch, p4c1]; polyhedral

CONVEX HULL CALCULATIONS 3

cone, finitely generated cone, polyhedron, [Sch, p87...89]; characteristic cone
and lineality space of polyhedron, pointed polyhedron, [Sch, p100]; face and
facet, [Sch, p101]; minimal face and vertex of polyhedron [Sch, p104]; edge
and extreme ray of pointed polyhedron, minimal proper face of cone [Sch,
p105].

One form of the decomposition theorem for polyhedra in full generality reads
as follows, the uniqueness claims at the end being a consequence of the
discussion in [Sch, p107].

1.1 Theorem Let P = {x : Hx ≤ b} be a nonempty polyhedron.
i. Choose for each minimal face F of P a point xF ∈ F.
ii. Choose for each minimal proper face F of char.coneP , an arbitrary vector
yF ∈ F \ lin. spaceP
iii. Choose and arbitrary collection z1, . . . , zt of vectors generating lin. spaceP.
Then

P = conv.hull{xF : F minimal face of P }
+ cone{yF : F minimal proper face of char.cone P}
+ lin.hull{z1, . . . , zt}.

The sets conv.hull{...}, cone{...}, and lin.hull{...} herein are unique. �
Ideally one could hope that software dealing with polyhedra could mediate
between these representations in full generality, indicating, given H, b, full
sets of generators for the three sets referred in the uniqueness claim, and
conversely.

Avis [A] and we, in this paper, settle for slightly less, excluding polyhedra
like infinite prisms, halfspaces etc: the current implementation of lrs works
for pointed polyhedra (i.e. above t = 0); or equivalently for polyhedra that
have at least one vertex; see [Sch, p104c-7]. This requirement is natural since
the first preprocessing step for lrs requires translating the inequality system
Hx ≤ b into a dictionary. This is close to the simplex tableau [Sch, p133c6]
and necessitates a vertex for definition. For pointed polyhedra, the minimal
faces are precisely the vertices, the minimal proper faces of characteristic
cones are extreme rays [Sch, p105c-0]. Modifying slightly terms introduced
in [Z], we call the representations of a pointed polyhedron P in the hypothesis
and conclusion of the decomposition theorem a H-representation and a VR-
representation respectively; here H stands for ‘halfspace’, VR for ‘vertex and
(extreme) rays’ ([Z] uses the term V-representation and V there stands for

4 A. KOVAČEC AND B. RIBEIRO

‘vectors’). It is now plain that our VR-representation is equivalent to Avis [A,
equation p181c5]. We can now be precise on what lrs does: it allows to trans-
late a H-representation of a pointed polyhedron into a VR-representation (via
calling [V,R]=htovr(H,b,initv)) and a VR-representation of such a poly-
hedron into a H-representation (via calling [H,b]=vrtoh(V,R)).

We describe these uses by means of two examples

1.2 Example From a H-representation to a VR-representation. On [A,
p181] we find a H-representation of a 3-dimensional polyhedron P = {x :
Hx ≤ b} given via the matrix H and column b as follows:

H =




−1 0 0
0 −1 0
1 0 0
0 1 0
1 0 −1
0 1 −1
−1 0 −1
0 −1 −1




, b =




1
1
1
1
1
1
1
1




.

Assuming no prior information on the set P , the natural way to proceed
is as follows. It has first to be ascertained whether the quest for a VR-
representation makes sense and is non-trivial. To see whether this is the
case first call initv=initvert(H,b). This routine does one of the following
things: it emits a message polyhedron Hx<=b has no vertex, or a message
polyhedron Hx<=b is empty, in these two cases returning with an empty
matrix initv; or it displays a message vertex found and a 2-column ma-
trix initv . The first column of initv gives a vertex of the polyhedron,
the second column the indices at which the vertex satisfies the inequality
system with equality. Only in this third case it makes sense to determine the
VR-representation. Since, in theory, in very badly behaving cases initvert
might take a long time to come up with an answer - if H is an m × d
matrix there may be

(
m
d

)
submatrices to check - you may possibly also see a

message Systematic vertex search begins. This may take time, dis-
played whenever the routine switches from a probabilistic to a deterministic
search procedure.

However, believing that users of this implementation wish to examine not too
large polyhedra only occasionally, we hope this will be no serious obstacle.

CONVEX HULL CALCULATIONS 5

At any rate, users owning the Matlab Optimization toolbox can optionally
resort to a judicious use Matlab ’s linear programming routine lp.m to find
an initial vertex; or they can adapt our simplex routine simplex.m, using
the ideas described in [Sch, p131c5].

initv = -1 1

-1 2

0 7

Assume now you have found via the call to initvert.m,
or otherwise, a vertex and herewith a nonempty 2-
column matrix initv. In the example under consid-
eration, it is the matrix on the left.

The first column indicates a vertex, and the second column the row indices
defining a regular 3 × 3 submatrix of H; and at the same time indices of
inequalities satisfied at the vertex with equality. Now call

[V,R]=htovr(H,b,initv).

Type V and R. You get

V= 0 1 1 -1 -1

0 1 -1 1 -1

-1 0 0 0 0;

R= 1 0 1 0 -1 0 -1 0

1 0 -1 0 1 0 -1 0

0 1 0 1 0 1 0 1;

Matrix V saves the vertices of the polyhedron as columns; R the rays in the
form origin (of ray)/ray, origin/ray, etc. In the present case, the last four
vertices originate the ray [0 0 1]’. �
The file htovr.m finds the VR-representation via two lines of code: first it
calls
[Dictionary, Basis, Nbasis]=tratodic(H,b,initv). This translates the
triple (H, b, initv) to a (m+1) × (m+d+2)-matrix, Dictionary, which
is the initial dictionary and also furnishes initial ordered sets Basis and
Nbasis, about which more later. Then it calls [V,R]=lrs(Dictionary,

Basis, Nbasis). This yields the desired vertices and extreme rays.

As emerges, lrs is at heart a H-to-VR-transform; however, a standard lifting
technique, see the explanations for vtohr.m in section 3, allows to solve with
lrs also the converse problem.

6 A. KOVAČEC AND B. RIBEIRO

1.3 Example From a VR-representation to a H-representation. We sup-
pose known a VR-representation of a d-dimensional pointed polyhedron. The
rays should be given without information concerning their origins. Assume,
say, we begin with the set V and adapted R we have found in example 1. So

V=[0 1 1 -1 -1 R=[0

0 1 -1 1 -1 0

-1 0 0 0 0]; 1];

With this input, a simple call to [H,b]=vrtoh(V,R) yields up to multiplica-
tion with 2 the following matrix H and column b.

H=-1 0 0 b= 1

0 -1 0 1

0 1 0 1

1 0 0 1

-1 0 -1 1

0 -1 -1 1

0 1 -1 1

1 0 -1 1 ,

or an equivalent system. This is equivalent to what we started with in ex-
ample 1.2. �
We have not yet have made extensive use of our implementation, but close
this section with preliminarily reporting that a VR-to-H translation of the
13 dimensional polytope of 24 vertices, occurring naturally in the study of
the so called Oliveira-Marcus conjecture for 4 × 4-matrices, see [D, p254c-1]
and [K] has according to our lrs implementation 82 facets: 16 facets with 18
vertices, 48 facets with 13 vertices, 18 facets with 20 vertices. Furthermore
every vertex is contained in exactly 53 of the facets. A more detailed expo-
sition on this polytope will be available soon.

2. How does the Matlab implementation of lrs work ?

The ideas behind lrs are well explained in Avis’ paper [A]. It is assumed the
reader is familiar with that paper and has it at hand. This section is rather

CONVEX HULL CALCULATIONS 7

to mediate between Avis’ paper and the Matlab implementation adopted.
Users unfamiliar with Matlab should first read the short section 3.

2.1 Figure The lrs-implementation uses 12 M-files; one further file,
simplex.m, implements the simplex algorithm and was written because we
could take advantage of the fact that lrs required to write almost all routines
that also occur as ingredients in the simplex algorithm of linear program-
ming. The files lexmin.m, lxminrat.m, pivot.m, reverse.m, slctpivo.m,
implement the functions named in [A] almost identically, but recall the DOS
operating system allows only eight-letter names. The principal file is lrs.m.
It implements the orchestration given by the pseudo-code [A, p192]. The
files lmv.m, nextset.m are auxiliary, while the remaining files where already
mentioned in section 1. These files are arranged alphabetically in the above
diagramm in counterclockwise order beginning with htovr.m. An arrow,
e.g. nextset.m →initvert.m, means that the function initvert.m calls
upon nextset.m. If no arrow points towards a function, it depends solely on
standard Matlab . �

8 A. KOVAČEC AND B. RIBEIRO

As mentioned in the previous section, the lrs-algorithm does not start at the
H-description of a pointed polyhedron itself. The H-description must first be
translated into an initial dictionary. This is done via tratodic.m which uses
the result of initvert.m which calls nextset.m. So, referring to the codes
of these routines, it is natural to give now the correctness proofs of these
functions in this order. All code is given in section 4; the heads of those files,
also shown when calling help file-name , give hypotheses and conclusions
of what is to be proved. Concerning notation, below 1n is, depending on
context, the row or column with n ones; 0n is similar, x can mean a row or
column. As dogmatic coherence seems impossible and undesirable to achieve,
we change between typewriter- and TEXfonts in hopefully reasonably a man-
ner. We also use a notation we mimick from Matlab . If x = (x1, x2, . . .)
and i, j ∈ ZZn

>0, we write xi:j = (xi, . . . , xj). Notations like xd+1:d+m are to be
understood in accordance with Matlab ’s precedence rules as x(d+1):(d+m),
etc.

nextset.m correctness proof:
It is easy to see from the definition of lexicographic ordering of the fam-
ily of k-subsets of an n-set, that two {0, 1}-n-tuples encoding k-subsets of
{1, . . . , n} are immediate successors of each other if they have the respective
forms [∗, 1, 0, 0m0

, 1m1
], and [∗, 0, 1, 1m1

, 0m0
]. Here ∗ represents the same ini-

tial segments and the zeros or ones can be partially absent, as happens e.g.
for n = 4 if k = 0 or k = 4, or, if k = 2, with the first and last 4-tuples [1
1 0 0] and [0 0 1 1]. Our program works as follows. In line 2, last0 gives
the index of the rightmost 0 in x; xinit is the initial segment of x strictly
to the left of this 0. Strictly to the right of the 0 we find a block of final 1s
that extends till the end of x. This block is saved in xfin1s. In j defined
in line 3, we find the index of the rightmost 1 in xinit. If such a 1 does
not exist, then x is of the form [0, (zeros), 0, 1, (ones), 1], which means it is
the lexicographically last element (in the class considered). In this case, as
claimed, x itself is returned and execution terminates via the return in line
4. Otherwise, we begin constructing nextx in line 5, by putting nextx=x

and modifying the present [1 0] in entries j, j + 1 (underlined above) of x
to [0 1]. Directly after this, we place the block xfin1s and fill in line 6
the remaining final entries with 0es. One also can easily verify that the code
does what it should if applied to special cases that yield xinit or xfin1s as
empty vectors. �

CONVEX HULL CALCULATIONS 9

initvert.m correctness proof:
We have the following fact; see [Sch, p99c-6& p104c-7]: a set P = {x : Hx ≤
b} is either empty or a nonempty polyhedron whose minimal faces have di-
mension n−rank(H). Now, a vertex is a minimal face of dimension 0. It
follows that, if rank(H)<n happens in line 2, the correct message is trans-
mitted, and the function terminates via return. In the opposite case we have
m ≥ n = rank(H) ≥ 1 and the problem is to find a regular n× n submatrix
T of H such that the solution x0 =x0 to the subsystem of equations obtained
from Hx ≤ b by satisfying the corresponding inequalities with equality, also
satisfies Hx0 ≤ b. To find such a (vertex) x0 and corresponding indices sat-
isfied with equality, we first try briefly a probabilistic, then, if unlucky, a
deterministic method.

After entering the lines 4 to 18 while -loop, we enter line 5 at most cl times
defining there a random {0, 1}-m-row z with n 1s and m − n 0s, increasing
variable cnt, originally set 1, each time we execute it. While cnt≤cl, we
jump to line 9 and define there a submatrix T of H. If the choice of z was
lucky T has rank n and defines a vertex. The code of lines 10 to 13 shows
that in this case the vertex and the set I indexing rows for corresponding
equations is returned; we will exit via the return of line 12. During this
phase line 14 guarantees after each unlucky trial a jump back to line 5.

After the cl-th unlucky search we enter line 6 and begin a systematic vertex
search to reach a definitive answer: we define the m−tuple z = [1n, 0m−n]
which is (the characteristic function of) the lexicographically first n-set in
{1, 2, . . . ,m}. The code sets cnt=cl+2, a value never changed later. Thus in
all subsequent processing, commands in lines 5 to 8 remain unexecuted, while
those of lines 14 to 17 gain importance; in particular the value of z is updated
via z=nextset(z) in line 16 with each execution of the loop. Recall that
z=nextset(z) gives the lexicographically next {0, 1}-m-tuple with exactly n
entries 1, or, if we have arrived at the end, then z = [0m−n, 1n] is reproduced.
This latter z is the unique one among the considered m-tuples, whose last
n entries are all equal to 1; that is for which the statements in the if of
line 15 are exectuted. This shows that we leave the while loop via one of
the following events: Case: return is encountered in line 12 within the
body of the if of lines 10 to 13. In this case the code shows us that we have
encountered an n×n-submatrix T of H so that rank(T)=n (is true) and the
unique x solving Tx =b(z) is up to a tolerance of 10 machine epsilons such

10 A. KOVAČEC AND B. RIBEIRO

that b − Hx ≥ 0, that is Hx ≤ b. In other words, x is a vertex. In that
case message and output is correct. (On the used machine, eps≈ 2.3 ·10−16.)

Case: the return of line 12 is not encountered: since rank(H) = n, there
must be an n× n-submatrix of rank n. The preceding discussion shows that
the ranks of all n × n submatrices of H are examined. Hence the result in
[Sch] cited allows to conclude that P is empty. The function terminates via
the return of line 15. In this case, the message is in agreement with truth
again, and, by their initialisation, x0, and I will remain empty, as claimed.
�
Note: The probabilistic phase turned out useful in particular in initvert.m-
calls from vrtoh.m. The reasons are explained in the latter’s correctness
proof.

tratodic.m correctness proof:
The first step in lrs as well as in the simplex algorithm is a translation of
the system of inequalities describing the polyhedron and the linear objective
function into a dictionary. Certain expositions, e.g. [Sch], use for this or a
closely related concept the designation ‘tableau’.

Suppose we are given a pointed nonempty polyhedron P described by a linear
system of inequalities: P = {x : Hx ≤ b}. We assume H is m × d, hence x
is a real d-column, and b a real m-column: H ∈ IRm×d, x ∈ IRd×1, b ∈ IRm×1.
Given Hx1:d ≤ b1:m, we can find m nonnegative numbers collected in an
m-column xd+1:d+m of slack variables such that

Hx1:d + xd+1:d+m = b. (1)

So P = {x1:d : Hx1:d + xd+1:d+m = b, xd+1:d+m ≥ 0}. We know already that
x1:d represents a vertex of P iff we find d of the inequalities Hx1:d ≤ b1:m
corresponding to linearly independent rows of H satisfied with equality. In
other words d of the variables xd+1:m+d corresponding to linearly independent
rows are 0. We fix an initial vertex and follow Avis’ development [A, p182c6]
in assuming after possibly reordering the rows of H that this vertex is de-
termined by putting the final d slack variables to 0: xm+1:m+d = 0. We write
Hupp, Hlow for the upper m − d and lower d rows of (reordered) H respec-
tively. Then Hlow is invertible. Using also bupp = b1:m−d, and blow = bm−d+1:m,
equation (1) splits into two subsystems

Huppx1:d + xd+1:m = bupp. (2upp)
Hlowx1:d + xm+1:m+d = blow (2low)

CONVEX HULL CALCULATIONS 11

From the lower system, we obtain x1:d + H−1
lowxm+1:m+d = H−1

lowblow. Plugging
the resulting x1:d into the upper system yields xd+1:m+Hupp(−H−1

lowxm+1:m+d+
H−1

lowblow) = bupp, or xd+1:m − HuppH
−1
lowxm+1:m+d = bupp − HuppH

−1
lowblow These

facts show that the original system is equivalent to

[
Id 0d×(m−d) H−1

low
0(m−d)×d Im−d −HuppH

−1
low

]
x1:m+d =

[
H−1

lowblow

bupp − HuppH
−1
lowblow

]
. (3)

Note that the matrix on the left of the vertical line is Im. By definition, the
initial dictionary associated to the system Hx ≤ b is now the (m+1)× (m+
d + 2) matrix obtained as follows: first write the augmented matrix of the
above system, that is, include the right hand side column; second modify
(border) this latter matrix so as to accomodate the objective function [A,
p182c10], given by x0 +1dxm+1:m+d = 0. This means joining to the left of the
augmented matrix referred a zero-column and finally putting on top of the
resulting matrix the row [1, 0m, 1d, 0]. We can now analyse the code.

After determining the size of H in line 1 as m × d, line 2 defines I as an
indicator {0, 1}-m-column having d 1’s exactly at the positions that the en-
tries of initv(:,2) indicate. The new matrix H and column b produced
correspond to a rearrangement of the system according to the suggestion
that the final d slack variables put to 0 should be the inital vertex. Line
3 produces the upper and lower parts of matrix H and column b; in line 4
we define invHlow= H−1

low. The Dictionary of line 5 encodes precisely the
augmented matrix of the linear system (2). In line 6 the m × (m + d + 1)
matrix of line 5 is modified to an (m + 1) × (m + d + 2)-matrix in order to
accomodate Avis’ objective row. This matrix is actually precisely the matrix
[A|b] corresponding to [A, p182c-4], would we have presented the polytope P
using his settings [p180c-0]. So Avis’ initial dictionary and the Dictionary

produced by tratodic.m differ only in that we have included the right hand
side column. Line 7 implements a heuristic also implemented in pivot.m.
It is supposed that all entries of the dictionary that are smaller than 100
machine epsilons are actually meant to be 0. For an - albeit superficial -
justification of this, see the notes after the proof to pivot.m. With line 8
tratodic.m exits with the initial Dictionary, Basis, and Nbasis. �
2.2 Example If we call initv=initvert(H,b) with H, b as below (repre-
senting a heavily perturbed, origin-centered, axes-parallel unit cube with side
lengths 2), we get the shown matrix initv.

12 A. KOVAČEC AND B. RIBEIRO

H=[1.0 0.1 -0.3 b=[0.9 initv=1.018 1

-1.0 0.4 -0.2 1.1 1.22 3

0 1.0 0.1 1.3 0.8 5

0 -1.0 0.7 0.8

0 0 1.0 0.8

0 0.1 -1.0]; 1.2];

Now, calling [Dictionary, Basis,Nbasis]=tratodic(H,b,initv), yields

Dictionary=

1 0 0 0 0 0 0 1 1 1 0

0 1 0 0 0 0 0 1.0 -0.1 0.31 1.018

0 0 1 0 0 0 0 0.0 1.0 -0.1 1.22

0 0 0 1 0 0 0 0.0 0.0 1.0 0.8

0 0 0 0 1 0 0 1.0 -0.5 0.55 1.79

0 0 0 0 0 1 0 0.0 1.0 -0.8 1.46

0 0 0 0 0 0 1 0.0 -0.1 1.01 1.878

Basis= 1 2 3 4 5 6 7 , Nbasis = 8 9 10.

This is but one example of a family of dictionaries, bases and cobases or non-
bases, namely they are the corresponding initial objects. Invoking lrs.m or
simplex.m does a number of pivot operations via pivot.m that constantly
manipulate Dictionary, Basis, and Nbasis.

2.3 Observation At any stage, these three objects satisfy the following:
i. The Basis is an (m + 1)-row such that Basis(1:d+1)= [1, 2, . . . , d + 1].
ii. Nbasis is a d−row satisfying Nbasis⊆ {d + 2, . . . ,m + d + 1}.

iii. As sets, Basis and Nbasis partition the set {1, . . . ,m+d+1}; as ordered
tuples they are usually not ascendingly ordered although they are so at start.
iv. Dictionary is an (m + 1) × (m + d + 2)-matrix such that

Dictionary(:,Basis) = Im+1,

the (m + 1)× (m + 1) identity matrix. All dictionaries are row equivalent to
each other and in particular to the initial dictionary using only multiplication
of a row with a nonzero scalar and addition of a scalar multiple of one row to
another as elementary row operations; i.e. no interchanges of rows are used.
v. A triple (Dictionary, Basis, Nbasis) has the property that each of

CONVEX HULL CALCULATIONS 13

its entries determines the other: if (D,B,N) and (D′, B ′, N ′) are triples of
that type with B = B ′, then necessarily D = D′ and N = N ′, etc.
vi. If [D′|b′] is any matrix that is row equivalent to a dictionary, then the
polyhedron P can be described as the set of points x2:d+1 ∈ IRd such that
x = (x1, . . . , xm+d+1) satisfies D′x = b′ and xd+2:m+d+1 ≥ 0, i.o.w.,

P = {x2:d+1 : D′x = b′ and xd+2:m+d+1 ≥ 0}.

vii. Among all such matrices [D′|b′] the dictionaries allow to extract infor-
mation on extremals(=vertices and extreme rays) in a particular convenient
way. Namely, if Dictionary= [D|b], Basis, and Nbasis is a triple as in
v, then a solution x to the system Dx = b, x ≥ 0, x(Nbasis) = 0, re-
stricts to a vertex x2:d+1 =x(2:d+1). In fact, since Dx = b is equivalent
to Dictionary(:,Basis)*x(Basis)+

Dictionary(:,Nbasis)*x(Nbasis)=b, we see by iv that x(Basis)=b and,
by i, the vertex is given by x(2:d+1)=b(2:d+1)=Dictionary(2:d+1,sD2);
see below for sD1, sD2. To see the relation of this to equation (3) above
keep in mind that most indices here used would be by 1 smaller, would the
first row of Dictionary not express the objective function and that Matlab
does not allow adresses to matrix entries to be 0 or negative, forcing us to
deviate slightly from Avis’ indexations.
viii. The column A−1

B As occuring frequently in [A] is just Dictionary(:,s),
as follows from p184c-6.
The proofs for i to vii follow from the proofs for tratodic.m and pivot.m

(below). �
Note: As follows from these explanations, all the dictionaries, bases, and
cobases have the size of the respective initial objects. While for simplicity
of code and(?) speed, the variables Dictionary, Basis, Nbasis, are de-
clared global by the functions where they are first used, namely lrs.m and
simplex.m, and the functions these call, the size of Dictionary and the
cardinality (length) of Nbasis are redetermined in each function necessary,
via the commando [sD1,sD2]=size(Dictionary). Hence we always have
sD1 = m + 1 = |Basis|; sD2 = m + d + 2; and conversely, m = sD1 − 1,
d = sD2− sD1− 1 = |Nbasis| = lNb (=length of Nbasis).

2.4 Example (=2.1 continued). Upon calling pivot(r,s) for an r∈Basis
and an s∈Nbasis, we produce a linear system row equivalent to the previous

14 A. KOVAČEC AND B. RIBEIRO

having at column s the r-th standard vector. To illustrate, if we do on the
previous example pivot(5,8), followed pivot(7,10), we get

Dictionary =

1 0 0 0 -1 0 -0.4455 0 1.5446 0 -2.6267

0 1 0 0 -1 0 0.2376 0 0.3762 0 -0.3257

0 0 1 0 0 0 0.0990 0 0.9901 0 1.4059

0 0 0 1 0 0 -0.9901 0 0.0990 0 -1.0594

0 0 0 0 1 0 -0.5446 1 -0.4455 0 0.7673

0 0 0 0 0 1 0.7921 0 0.9208 0 2.9475

0 0 0 0 0 0 0.9901 0 -0.0990 1 1.8594

Basis= 1 2 3 4 8 6 10 , Nbasis = 5 9 7.

�
To ascertain these claims this is a good place to present the

pivot.m correctness proof:
An r ∈ Basis occupies a position, say t, found in line 4, as is there found
the position tn of s ∈ Nbasis. In other words, r=Basis(t), s=NBasis(tn).
So Dictionary(:,r) is a column that is the t-th standard vector (i.e. has
a single 1 in t-th entry, 0s elsewhere). By line 3, line 5 divides the t-th row
by the value that stands in the Dictionary’s s−th column. The command
Dictionary(t,s)=1 there is to guarantee a clean 1. The loop lines 6-8 cleans
all other entries of column s to 0, and yields a new dictionary equivalent to
the entering one. In particular Dictionary(:,s) is now the t-th standard
vector. In line 9 the appropriate updatings are done: by line 4, element s
in the cobasis and r in the basis are interchanged leaving all other positions
unchanged; so the ‘conservation law’ Basis	 NBasis = {1, 2, . . . ,m + d + 1}
is obeyed. A heuristic is used to account for numerical errors: we assumed
that values in modulus ≤ 10−14 are meant to be zero and did say so explicitly
in the line 10. To go sure, line 11 also produces a clean standard vector for
column s of the dictionary. �
Notes: As mentioned, numerical errors and their propagation are the Achilles-
heel of the implementation. The effect of lines 10, 11 can be ‘fabulous’ (?).
In the example of the polytope referred at the end of section 1, in which
pivot.m, as explained here led to the system of 82 inequalities, the supres-
sion of these lines led, apparently due to blow up of numerical noise, to some
780 inequalities.

CONVEX HULL CALCULATIONS 15

2.5 Observation For understanding the mechanics of lrs as well as of the
simplex algorithm, it is important to understand a polyhedron and motions
in it via dictionaries. If we base ourselves on the description given in vi
above, i.e. P = {x2:d+1 : D′x = b′ and xd+2:m+d+1 ≥ 0}, then we home in
at a vertex of P if we put d of those nonnegative variables in xd+2:m+d+1
equal to 0, that could appear in an Nbasis. To leave that vertex along
an edge or ray, means to increase exactly one of these variables, say xs,
s ∈ Nbasis, while counterbalancing this increase by means of the variables
in Basis so as to satisfy the system of equations. If we assume [D′|b′] to
be an accompanying Dictionary, we see that this means that x2:d+1 ‘moves’
exactly along the opposite direction of the subtuple with components 2:d+1
given in column s of the dictionary. So -Dictionary(2:d+1,s) is the di-
rection of an edge or extremal ray of the polyhedron incident at the vertex
Dictionary(2:d+1,sD2) under consideration. Can we distinguish between
an edge and a ray? We are considering a ray by definition iff we could in-
crease xs indefinitely and yet always select x2:d+1 within P. We see that this
is true if and only if Dictionary(2:d+1,s)≤ 0d−1. In the above example 2.4
this is not the case for any s ∈ Nbasis since the perturbed cube does not al-
low extremal rays; but we also see that to the possible values of s correspond
three directions that are roughly those incident at the vertex (−1, 1,−1) of
the origin-centered axes-parallel unit cube with sides 2. Call a vertex of a
d− dimensional polytope simple if it is contained in exactly d facets; or
equivalently if it is incident with exactly d 1-dimensional faces (=edges or
extreme rays). A given dictionary can always exhibit only d such faces; and a
non-simple vertex allows more than one associated dictionary. Simple poly-
topes are those that (like the cube) have only simple vertices. We hope these
observations neatly illustrate [A, p183c-8] and other explanations in section
1 of [A]. �
Our next major aim is to explain the implementation of the simplex algo-
rithm for the reason that it contains many ingredients also occuring in the
more complicated lrs-algorithm. In accordance with figure 2.1, the necessary
files will be explained in the logical order lmv.m, lxminrat.m, slctpivo.m,
simplex.m.

lmv.m correctness proof:
If M is an empty matrix or a matrix with only one row, then the lines 2-
4-while-loop is never entered and the output is either I = ∅ or I = {1}

16 A. KOVAČEC AND B. RIBEIRO

respectively, and hence correct. Now assume M to be m × n with m ≥ 2.
Then the while-loop is entered. Consider initiating its body with any set
I ⊆ I0 = {1, . . . ,m}, I �= ∅. Then in line 3, m holds the minimum value of
column j of matrix M(I,:); and sI holds the position of indices of entries
equal to m within the ordered set I. So we find ∅ �= I(sI) ⊆ I is such that
M(I(sI),j) is a subcolumn of M(I,j), all whose entries are equal to m, while
all other entries (if any) of M(I,j) are strictly larger than m. We also note
that if |I| = 1, then I(sI)=I. Let Ij be the value of I after j ≥ 1 executions
of the while’s body. Clearly the while loop is executed a total of e ≤ n times.
The arguments just given and a look at the termination condition for the
while loop permit us to say this: we have a. I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Ie �= ∅;
b. e ≥ 1 and |Ie| = 1 or e = n; c. For any j = 1, . . . , e: M(Ij, j) is a

subcolumn of M(Ij−1, j) all whose entries are equal a certain mj, while all the
entries in M(Ij−1 \ Ij, j) (if any) are> mj. d. The program with the while’s
entering condition simplified to just j ≤ n would yield the same output (but
take possibly longer). We can and will now assume the simplified enter
condition mentioned in d, and hence have e = n. Since by a, In ⊆ Ij, we find
that M(In, j) = mj , for j = 1, . . . , n. So M(In, :) consists of |In| rows, each
equal to m̂ = [m1, . . . ,mn]. Let r̂ = [r1, . . . , rn] be any of the rows of M. By c,
m1 ≤ r1. If m1 < r1, then m̂ <lex r̂. If m1 = r1, then r̂ is by c part of M(I1, :).
By c, m2 ≤any entry in M(I1, 2). Hence m2 ≤ r2. If m2 < r2, then m̂ <lex r̂.
If m2 = r2, then r̂ is part of M(I2, :). Repeating this argument, we see that
the outputted I, being equal to In, is as claimed. �
lxminrat.m correctness proof:
As usual, line 1 guarantees the function has access to the current dictionary,
basis, and cobasis, while line 2 determines the sizes of these objects. So
because of [A, p184c-4 to p185c2], line 6 defines the matrix D there referred;
and line 3 yields Avis’ a = A−1

B As (see observation 2.3viii). Next, in line
4, the set of candidate indices i of [A, p185c8] are determined. The added
term lNb+1 is necessary since otherwise we would get the indices relative to
the short column a(lNb+2:sD1). If I is empty, then [A, p185c-8] tells us to
return with r=0. This is done in line 5. The discussion also shows that I is
empty iff s represents a ray. So control flow encounters line 7 if and only if
I �= ∅. In this case matrix Dtilde collects the rows referred in [A, p185c8].
Since D has full row rank, the set defined by i defined in line 8 consists of
only one element. Note that i is relative to the number of rows os Dtilde.
But t=I(i) will give index t such that Dt/at is lexicographically minimum in

CONVEX HULL CALCULATIONS 17

Avis’ p185c7 sense. Finally, line 9 tells us the basis element at the position
t; i.o.w. Dictionary(:,r) is the t-th standard vector. Note also that Basis
does not contain 0. We can conclude that the output r is 0 iff s represents a
ray. �
slctpivo.m correctness proof:
Line 1 opens access to Dictionary, Basis, and Nbasis. Assuming for a
moment Dictionary nonoptimal, its first row has negative elements; see [A,
p186c8] and the explanations to simplex.m below. In this case line 2 will de-
fine a natural s≤sD2-1. Since by observation 2.3 iv, Dictionary(1,Basis)=
[1, 0m], we find s ∈ Nbasis. Hence j in line 3 takes an integer value so that
Nbasis(j)=s, and hence Dictionary(1, Nbasis(j)) is among the nega-
tive reals occuring in the dictionary’s first row, the leftmost one. The line
5 assures return of the value of r desired by the specifications [A, p191c6&
185c10]. If the dictionary is optimal, then s,j are [],[]. So the return in
line 4 will assure we exit with r=0, j=[]. �
As mentioned, lrs uses ideas of the simplex method. Indeed, as a byproduct
of the files we had to write for lrs, all essential elements for implementing
the simplex-algorithm with the lexicographic pivot-rule are available. For
this reason we decided to add that algorithm itself as a benefit. The reader
unfamiliar with the theory behind the simplex method should consult first,
e.g., Schrijver [Sch] pages 129-131c5, followed by p132-133c5. He should read
those explanations without assuming in his equation (11) that x ≥ 0. Equa-
tion (12) is not of real importance either. This means to assume his matrix[−I

A

]
as an object used for referencing in (13). Also, the matrices Ck there

used, are always submatrices of A. With this the conclusions concerning
uk in [Sch, p133c3] remain valid. The explanations on p133 concerning the
simplex tableau remain valid if one begins in the origin as Schrijver does in
his phase II where he supposes b ≥ 0. In our more general case however,
the origin will usually not be a vertex of P and hence we have to assume
the usually nonzero value u(sD2-sD1) in the right upper entry of the initial
Dictionary; see explanations that follow.

simplex.m correctness proof:
Line 1 declares Dictionary, Basis, and Nbasis to be global in order the
functions pivot and slctpivo have access to these ‘variables’ after they

18 A. KOVAČEC AND B. RIBEIRO

have been produced by a call to tratodic.m in line 2. Recall that Avis’ x0 is
our x1. Assume we have to maximize x1 = c1x2 + . . . + cdxd+1 = cx2:d+1. Re-
call that the initial dictionary as delivered by tratodic.m has the form [Im+1
|Dictionary(:,sD1+1:sD2-1) |b]. We need to modify its row 1, the ob-
jective row, in accordance with the c given. Dictionary encodes in rows 2
to d + 1 the equations x2:d+1+Dictionary(2:d+1,sD1+1:sD2-1)xm+1:m+d =
b2:d+1. Multiplying the corresponding matrix equation from the left with
the row c and keeping the note after observation 2.3 in mind, we obtain
x1+c*Dictionary(2:lNb+1,sD1+1:sD2-1)xm+1:m+d = cb2:d+1. Now, at the
initial vertex xm+1:m+d = 0. So, having defined u as in line 4, x1 = cx2:d+1 =
cb2:d+1 =
c*Dictionary(2:d+1,sD2)=u(sD2-sD1), and we see that the correct ob-
jective row is now given as defined in line 5. Next we select in line 6 a
pair [r,j] according to the lexicographic pivot rule. The specifications of
slctpivo.m tell us that j=[] iff there is no negative value in the first row. In
this case simplex-theory says that the right upper corner entry of Dictionary
is the optimum. Consider now we obtain a nonempty j. Then s=Nbasis(j)

makes sense. If the column a =Dictionary(:,s) has from the d+1-st entry
onwards only nonpositive values, we get r = 0 and know by the discussion
in Avis p182c-7 and p185c13, and observation 2.5, that we have an extreme
ray. Moving along that away from its origin, by the pivot rule, we obtain
arbitrary large objective values. Otherwise, r �= 0, and we can do a pivot to
obtain a value of the objective function not smaller than the previous one.
The reason is that in [A, p185c-4] we have D̄0 = D0−a0D̄

t, a0 < 0 and due to
the lex-positivity of the bases in lex-positive pivoting, we add a nonnegative
quantity to the uppermost entry of the last column of the dictionary. We
do this via the while-loop of lines 7 to 11 various times. The theory of the
simplex algorithm guarantees that we will either exit simplex.m via line 8 or
obtain in the upper right corner of Dictionary the maximum value maxim

of the objective function on the polytope. Lines 13 and 12 will give us that
value and a vertex at which it is obtained. �
Observation 2.6 We review rapidly the philosophy of lrs. Let x0 be a fixed
vertex of P and let B∗ = {1, 2, . . . ,m + 1}. Then there exists a dictionary
exhibiting x0 as initial vertex, B∗ as basis, and encoding in its first row
an objective function that assumes in x0 its maximum: indeed, provided
initv is encodes x0, tratodic(H,b,initv) produces this dictionary. Con-
sider the family of all dictionaries equivalent to this one and associated with

CONVEX HULL CALCULATIONS 19

lex-positive basis. As Avis theorem p187c8 explains, these dictionaries cover
all vertices of P and if we apply the simplex algorithm to any one of these,
that is if we would run the code piece lines 6 to 13 of simplex.m, we generate
finite paths of lex-positive dictionaries. The union of these paths evidently
defines a tree whose nodes are lex-positive dictionaries equivalent to its root,
the dictionary initially chosen for x0 as common end point.

Upon demanding x(Nbasis)=0, we can see any sequence of triples

(Dictionary, Basis, Nbasis)

as a sequence of visits to vertices and certain of the edges or extreme rays
incident at it. Geometrically explained, lrs visits vertices by running in a
depth-first manner through that tree, beginning at the vertex determined by
the initial dictionary as its root. To do so, half of the steps in lrs are done
in the directions that are exactly the reverse ones the simplex algorithm
would do. We prove the correctness of the file reverse.m choosing these
steps. Note that the corresponding proposition 6.1 [A, p192c-3] is marred
by a number of mistakes: the corrected pieces should read as follows: ... for
any t = 0, 1, ...,m let ... and only if (i) w0

v > 0, ... by the pivot formula
w̄u = −w0

v/ai... ... ratio test for each positive coefficient ... �
reverse.m correctness proof:
The correctness proof is based on the definition of reverse as given on [A,
p191c-6] and its equivalent characterization established in (corrected) propo-
sition 6.1. What 6.1 precisely says is that we should get brev=1 iff there
hold 6.1i, 6.1ii, i.e. u=lexminrat(v) = 0 (i.e. v represents an edge, not a
ray), and, for the then existing i with u=Basis(i), also 6.1iii. Further, in
case brev=1 this u should be returned. We establish that precisely this is the
outcome of the function.

Indeed if 6.1ii does not hold then the lines 2,3 will guarantee that brev=0

is returned and no more lines are executed. In the opposite case 6.1ii holds.
Under this assumption we have to show that brev=1 or brev=0 is delivered
according to whether or not 6.1i&iii is satisfied. Indeed if 6.1ii holds, line 2
delivers an u in Basis. For such an u, u�= 0. So line 3 is skipped, and line 4
will be successfully executed. Consider what happens in line 7 and the two
lines preceding it. Evidently wbar is precisely the w̄ of 6.1iii. Set J of line 8
holds all elements j of Nbasis with j < u. By 6.1iii we have to check whether
all entries of wbar indexed by elements j ∈ J are ≥ 0. If J is empty this is

20 A. KOVAČEC AND B. RIBEIRO

trivially true and we have nothing to check: the boolean variable wbarg0 in
line 9 is put equal to 1. If J �= ∅, then wbar(J)>=-10*eps is a meaningful
expression involving a relational operator >=. It is a {0, 1}-row with 1s in
all entries where wbar(J) has entries in practice≥ 0 and 0s where the values
are < 0. Hence wbarg0 has value 1/0 according to whether/not the condition
6.1iii holds. We see from lines 9,10 that brev=1 and the correct u will be
returned iff condition 6.1i&iii is satisfied. �
The final ingredients before proving the correctness of lrs proper is a proof
of the correctness of lexmin.m determining the cases in which a vertex or a
ray should be outputted: recall p189c-0, according to which there exists a
1-1 correspondence in general not between the bases and vertices and rays,
but between the lex-min bases and these objects.

lexmin.m correctness proof:
Upon leaving line 2, we have in b the last column of Dictionary, and
boolean=1. Upon calling lexmin(0), one wishes to decide whether the cur-
rent Basis is lex-minimal for the current basic feasible solution (associated
to the vertex, see [Sch, p134c-3]). boolean=1/0 is to be outputted according
to if/not Basis is lex-minimal. Evidently lines 3 to 7 are executed. Accord-
ing to [A, proposition 5.1, p187], we have to put boolean=0 iff we can find
r∈Basis, s∈Nbasis, with r > s such that the current basic feasible solution
exhibits xr = 0, and (with subindex corrected to t), (A−1

B As)t �= 0. (The
idea of that proof is that if such objects exist, a pivot(r,s) would yield the
same vertex, but a smaller basis.) Now a pair (r, s) = (Basis(t), s), as mea-
sured after line 5, satisfies evidently r > s. Recall that ‘to be at the vertex’
means putting x(Nbasis)= 0. In view of Dictionary(:,Basis)= Im+1, say-
ing xr = 0, is seen to be equivalent to saying that b(t)= 0. From observation
2.3viii it is now clear that line 6 puts boolean=0 iff it should do so. Upon
calling lexmin(v) from lrs.m, we call it with v∈Nbasis representing a ray,
and want to decide whether the basis is lex-minimal for this ray. This time
we should put boolean=0 iff conditions i to iv of proposition 5.4 on p189 are
satisfied. Evidently, we execute this time lines 8 to 12. The similarity of this
proposition with 5.1 and 5.4 is reflected in that of the code. It needs no more
explanation except saying that the additional condition in line 11, namely
Dictionary(t,v)=0, implements condition 5.4iv. �

CONVEX HULL CALCULATIONS 21

Note: the comparisons with exact 0 (in Dictionary(t,v)==0, etc.) should
not cause trouble because of the numerical noise eliminations in tratodic.m

and pivot.m. Other functions do not alter dictionary entries.

lrs.m correctness proof:
Line 1 clears global variables that might have survived from previous uses
of lrs. Line 2 declares Dictionary, Basis, Nbasis global, in order to make
them accessible to functions invoked by lrs.m, without formal transference.
Line 3 determines the format of Dictionary, puts j=1, and uses the note
after observation 2.3, according to which |Nbasis|=lNb.

The remainder of the code is encapsulated in the line 4 to 22 while 1 ...

end loop. This loop is begun by the lines 5 to 17 while j<=lNb ... end

loop, which is certainly entered. Since upon entering, 1≤j≤lNb, line 6 will
always give a well-defined result for v∈Nbasis. In turn we get in line 7 a
well defined tuple [brev,u]∈ {0, 1} × ({0}∪Basis).
A look at lines 8,12 shows that either the code piece lines 9, 10 or the code
piece lines 13, 14, 15 will be tried to for execution.

Claim: The lines 5 to 17 while loop will terminate. �> Since we augment
j whenever brev = 0, nontermination implies that we have infinitely often
brev = 1, and hence do infinitely many pivots at line 13. Since there are
only finitely many bases, this means that we cycle. But by line 7 the pivots
are done always such that they could be reversed via the lexicographic pivot
rule: applying to a basis B the sequence of commands written in lines 7,13,
yields a new basis to which applying lines 18,20 would yield B again. We see
that cycling would allow the same for pivoting via the lexicographic pivot
rule. But this rule is known to render cycling impossible [A, p186c-7]. Hence
the claim. �<
Consider ‘measuring’ the sequence of pairs (brev,j) between lines 16 and
17. This sequence will have the following form (0, 2), (0, 3), . . . , (0, j0), (1, 1),
(0, 2), . . . , (0, j1), (1, 1), (0, 2),, (0, j2), ..., (1, 1), (0, 2), ..., (0, jk) = (0,lNb+1),
whereupon we leave the 5-17-loop. Some of the sequences (0, 2), . . . , (0, js)
may be missing. Associated with each (1, 1) is a pivot yielding a dictionary
that was not encountered before within the loop. Every such pivot corre-
sponds to a step deeper into the tree, approaching a leaf. Note that we have
done k pivots and so k base changes.

22 A. KOVAČEC AND B. RIBEIRO

Let B,B ′ = B − u + v be the (k − 1)-st and k-th bases. We see

B’=pivot(u,Nbasis(jk−1)).

As we exit with a certain dictionary and (brev,j)= (0, jk) at line 17, line
18 gives us a pair [r,j] such that: either j=[], which means that we are
inspecting the optimal dictionary and line 19 will guarantee that we return to
the function calling lrs; or: we do in line 20 a pivot returning to the (k−1)-st
of the bases produced above. In that case line 18 yielded [r,j]==[r,jk−1] as
follows from proposition 4.1b, p185. Line 21 guarantees that upon entering
line 5, we will examine the Dictionary associated to B from a column not
yet examined onwards.

Although vertices, as indicated by various dictionaries, are usually revisited,
it will be clear by now that a pair Dictionary/column Nbasis(j), once
examined, is never revisited. Furthermore, as the lexicographic rule leads
from lex-positive to lex-positive dictionaries, only lex-positive dictionaries
are visited.

Claim: All lex-positive dictionaries are visited. �> If we are given any lex-
positive dictionary D, the simplex algorithm with lexicographic pivot selec-
tion and adequate objective row ‘climbs’ from D to the, by proposition [A,
p187c1] unique, lex-positive dictionary with basis B∗ in x0. This means that
there is also a way back to D which along the run of lrs is indicated by
reverse.m. �<
The claim just proved, and the facts that lex-minimal dictionaries are lex-
positive, [A, p188c1&c-7], guarantee that we visit all lex-minimal dictionaries.
Since all vertices and rays have lex-min representations, the specifications of
reverse.m and lines 9 and 14 guarantee that all vertices and all origin/ray
pairs are outputted exactly once. �
The last pieces missing are the correctness proofs for the input output rou-
tines htovr.m and vrtoh.m.

htovr.m correctness proof:
The correctness of this two lines code follows directly from the specifications
of tratodic.m, lrs.m, and initvert.m. �
The explanation for file vrtoh.m needs some preparatory remarks.

Recall that lrs is at heart a method for solving H-to-VR-problems: given
an H-representation of a pointed polyhedron, it finds a VR-representation.

CONVEX HULL CALCULATIONS 23

Just as often however we need to go in the inverse direction. So assume a
polyhedron P is given by a nonempty set V of vertices and rays R, that is,
P is given in VR-representation, and we want to find its H-representation.
This VR-to-H-problem can be solved by solving a related H-to-VR-problem,
and therefore falls within the realm of lrs. The ideas are as follows.

Let P be d-dimensional. We lift it first to a cone: each vertex (a1, . . . , ad)
is lifted to a point (1, a1, . . . , ad) in (d + 1)-space, identifiable with a ray, as
shown by the figure borrowed from [Z, p31], also showing the cone C(P)
generated by these.

If P is unbounded then, in addition
to vertices, we have rays in P itself.
A ray in P with direction (a1, . . . , ad)
is naturally identified with the ray
(0, a1, . . . , ad) in C(P). The cone
C(P) and its polar C(P)∆ = {c :
cx ≤ 0 for all x ∈ C(P)} determine
each other. Each ray (1, a1, . . . , ad) of
C(P) defines its perpendicular plane
through the origin; the halfspace it
delimits is given by the inequality
−x1 − a1x2 − . . . − adxd+1 ≤ 0 which
determines a facet of C(P)∆. Simi-
larly to ray directions (0, a1, . . . , ad)
of P there correspond the inequali-
ties −a1x2 − . . .− adxd+1 ≤ 0. In this
way we have obtained from the VR-
description of P a H-description of
C(P)∆.

Applying lrs to this H-description of C(P)∆, we get a VR-description of
C(P)∆; of course with the only vertex 0. The rays of C(P)∆ correspond to
facets in C(P) = (C(P)∆)∆; see [Z, p64c7& p62c4].

These remarks and the proof below will suffice to illuminate the correspon-
dences mentioned in in [A, p194c-2 to 195c7] and used in the file vrtoh.m.
Note that Avis’ P̄ = C(P)∆ above.

vrtoh.m correctness proof:
V and R are given as columns. Line 1 generates a matrix E with columns

24 A. KOVAČEC AND B. RIBEIRO

consisting of the vectors from vertex in column 1 to other vertices. To avoid
column 1 of E becoming the zero column it is skipped via E(:,1)=[] and
the rays are added. In other words, [E,R] represents the polytope+char.cone
description mentioned in Schrijver p106c-2. The rank of E therefore is equal
to the affine dimension of the convex polyhedron generated by V and R. An
appropriate error message is issued in lines 2 to 4, if the polyhedron is not
full dimensional and further processing is aborted.

Otherwise the polyhedron is full dimensional and lines 5, 6, 7 do the trans-
lations described in [A, p195c1to3] to a system of linear inequalities Ax ≤ 0
in one higher dimension: a H-description of pointed cone P̄ . Hence it makes
sense to search for a quadratic submatrix A0 of A of rank equal to the num-
ber, say n of columns of A. This is done via the initv=initvert(A,b) in
line 8. The fact that we deal with a cone having the origin 0n as (the only)
vertex implies that the vertex search is actually equivalent to finding A0,
for A0n ≤ 0 is trivially satisfied. It is here that the probabilistic phase in
initvert finds an appropriate A0 sometimes much faster than the determin-
istic does. With this the input is prepared for invoking tratodic.m in the
next line 9, whose output is in turn transferred to be processed with lrs. The
output of this is a vertex-ray representation of P̄ . P̄ being a pointed cone,
again V consists of the origin only. The translation of the rays has to be done.
Recall that the R in line 10 obtained as output of running lrs gives us geo-
metric information on the starting point of the rays in the form origin/ray,
origin/ray, etc. The fact that only the even column indices of R are in our
case of interest is recognized via the collection of rays given in line 11. In the
last line the column collection of rays is transformed in a row collection and
into a system of inequalities Hx ≤ b of the original dimension, as prescribed
by [A, p195c4]: to a ray (z1, . . . , zd+1) of P̄ there corresponds the inequality
−z2x1 − . . . − zd+1xd ≤ z1. �

3. Some Matlab basics

Here are some specifics of the Matlab programming language, in order
to facilitate understanding the code for those having no experience with
Matlab. Since things are tried to be kept simple and brief, the explanations
are necessarily somewhat superficial.

Our Matlab routines are functions, saved as usual in so-called M-files with
the extension .m, called precisely via the name of the function:

CONVEX HULL CALCULATIONS 25

function m=addone(n)

m=n+1;

A file, say addone.m, with the content on the left
can be called from within another function writing
a line like k=addone(7), yielding k = 8.

The fundamental object in Matlab are matrices with complex or real en-
tries. Rows or columns, as vectors, are to be considered 1×n or n×1 matrices
respectively; scalars as 1× 1 matrices. Matrices A,B of appropriate sizes can
be added, subtracted, multiplied, or entrywise multiplied by commands A+B,
A-B, A*B, A.*B, respectively. If r is a scalar, then r+B adds r to each entry
of B, while r*B multiplies each entry of B by r. Transposition of A is given
by A’.

A=[1 -7 5 13

-2 4 3 7

-19 11 8 2];

I=[2 2 1]; J=[3 4];
yields
A(I,J)=3 7

3 7

5 13.

Matlab variables have no type declarations. Matri-
ces can be entered as on the left, or in fashions like
A=[2 1; 4 -5]; . The ‘;’ within the brackets sep-
arates the rows, so we created a 2×2 matrix A; the
second ‘;’ supresses printing of A. Let A be an m×n
matrix. Assume I, J are rows or columns consist-
ing entirely of integers selected from {1, 2, . . . ,m}
and {1, 2, . . . , n}. Then A(I,J) is an |I| × |J | ma-
trix containing the rows and columns of A in the
order and number they appear in I and J. See the
example at the left.

Writing 3:7 isolatedly is the same as [3 4 5 6 7], while 7:-2:1 is [7 5 3

1], but be careful with precedences: j+k:l+m is the same as (j+k):(l+m),
so 1+2:4 is [3 4], while 1+[2:4] or 1+(2:4) is [3 4 5]. Genuine subma-
trices can also be indicated via characteristic vectors. Thus A(1:2, 2:4)

is the same as A([1 1 0], [0 1 1 1]). Commands like A(:,J) or A(I,:)
indicate that all rows or columns respectively have to be included; so if A is
m × n, they mean the same as A(1:m,J), A(I,1:n).

Relational operators <,<=,>,>=,==, =, perform element-by-element com-
parison between two matrices of the same size or with a scalar, yielding 0
or 1 according to whether the relation is false or true. The result of A==-19
using the matrix above is a 3 × 4 matrix with a single 1 in position (3, 1),
and 0es elsewhere. Logical operators &, |, ~ represent and, or, negation,
respectively. They work element-wise on matrices of same size, or if one of
these is a scalar. A 0 at input of a logical expression represents false, anything

26 A. KOVAČEC AND B. RIBEIRO

nonzero represents true. The output of a logical expression is a {0, 1}-matrix
of appropriate size.

Structures such as if condition ... end, while condition ... end, for vari-
able=expression ... end work largely as elsewhere; Matlab allows conve-
niences. For example for j=[1:3 5:-1:3] ... end means we wish to
take j the values 1,2,3, 5,4,3, in this order. In a syntactically valid con-
struct if condition statements end, the condition evaluates to a matrix. If the
real parts of that matrix are all nonzero the statements are executed, oth-
erwise not. For example the command within if [1 0 1] j=7; end is not
executed, but in if [.1 1 -5] j=7; end it is executed. Similar behaviour
holds for the while.

We explain briefly the standard Matlab functions we used. In the following
paragraph A,B represent matrices, x a vector.

The command [m,n]=size(A) yields the size of A as m × n, rank(A) its
rank; inv(A) is the inverse of A, and abs(A) the matrix obtained by taking
the absolute values of matrix A. To solve an equation Ax = b for x, given
appropriately sized A, b, type x=A\b. Commands ones(m,n) and zeros(m,n)

yield the m × n matrices consisting entirely of ones and zeros respectively,
while eye(m) is the m × m identity matrix. Command isempty(A) yields
1 or 0 according to if or not A is an empty matrix. 1./A is a matrix of the
same size having at address (i,j) the entry 1/A(i,j), showing the infinity
symbol Inf wherever A(i, j) = 0. The command diag(x) creates a square
matrix having x in the diagonal; the command length(x) yields the number
of entries of x; max(x) the maximum element of x, find(x) yields the indices
of the nonzero entries of x, all(x) returns 1 if all of the elements of a vector x
are nonzero, sum(x) is the sum of the elements of x, randperm(m) generates
a random permutation on 1, . . . , m.

function foo

j=0; disp(’Here I am’);

disp(’Now I am here’);

while j<100000 j=j+1; end

The command disp(’text’) can be used
to display a string text. While developing
the program, we used it at points to know
which function is executed at a given mo-
ment. We had to discover, it can deceive:
in a file like at the left the second string Now

I am here would not be displayed until af-
ter the while is processed.

CONVEX HULL CALCULATIONS 27

This phenomenon can give at times the wrong impression of a suspended
execution. A pause(1) before the disp seems to resolve such problems.

A return causes a normal return to the invoking function or keyboard, a
clear or a clear global clears all or only all global variables: such a com-
mand in a function avoids that a global variable D created in previous of
its uses is unintentionally used; e.g. extended in constructions like D=[D,d],
etc. Variables not declared global are as usual only locally accessible to
the function where they are created. To be accessible to a function called
by another one, a variable has to be declared global in both of the functions.

References

[A] D. Avis, A Revised Implementation of the Reverse Search Vertex Enu-
meration Algorithm, in [KZ, 177-197].

[D] S. W. Drury, A Counterexample to a Question of Merkikoski and
Virtanen on the Compounds of Unitary Matrices, Linear Algebra Appl.
168:251-257(1992).

[K] A. Kovacec, The Marcus-de Oliveira conjecture, bilinear forms, and
cones, Linear Algebra Appl. 289:243-259(1999).

[KZ] G. Kalai, G. Ziegler (ed.): Polytopes - Combinatorics and Computa-
tion, DMV Seminar 29, Birkhäuser, 2000. ISBN 3-7643-6351-7.

[M] N. Myhrvold (Vice-president of Microsoft): ‘Software is a gas; it ex-
pands to fill its container. After all, if we hadn’t brought your pro-
cessor to its knees, why else would you get a new one?’, Scientific
American, July 1997, page 69, bottom.

[Mat] Matlab 3.1, The MathWorks, Inc. 1992.

[Z] G. M. Ziegler: Lectures on Polytopes, GTM 152, Springer 1998.

NOTE: Matlab-code next pages.

28 A. KOVAČEC AND B. RIBEIRO

4. Matlab -Code

This section collects the code of the 13 M-files, alphabetically ordered; for
use delete the line numbers 1., 2., etc. and put each function in a separate
M-file preferentially in the same directory of the Matlab path.

function [V,R]=htovr(H,b,initv)

% [V,R]=htovr(H,b,initv)

% in: matrices H,b, and vertex-information as produced by

% initv=initvert(H,b).

% out: a collection of vertices and rays with information about

% their origin.

1. [Dictionary, Basis, Nbasis]=tratodic(H,b,initv);

2. [V,R]=lrs(Dictionary, Basis, Nbasis);

function initv=initvert(H,b)

% initv=initvert(H,b) in: an mxn-matrix H and an m-column b.

% out: if exists, a pair initv=[x0,I] of vertex x0 of the

% polyhedron Hx<=b; and a n-tuple I of positive integers

% so that H(I,:) has rank n and H(I,:)*x0=b; otherwise

% x0=[], I=[], and appropriate messages.

1. [m,n]=size(H); x0=[]; I=[];

2. if rank(H)<n disp(’polyhedron Hx<=b has no vertex’); return; end

3. cnt=1; cl=10;

4. while 1

5. if cnt<=cl p=randperm(m); p=p(1:n); z=zeros(1,m);

6. z(p)=ones(1,n); cnt=cnt+1; end

7. if cnt==cl+1 z=[ones(1,n), zeros(1,m-n)]; cnt=cl+2;

8. disp(’Systematic vertex search begins. This may take time.’);

9. end

10. T=H(z,:);

11. if rank(T)==n

12. x=T\(b(z)); u=b-H*x; f=(u>=-10*eps);

13. if all(f) x0=x; I=z; disp(’vertex found’);

14. initv=[x0, (find(I))’]; return; end

CONVEX HULL CALCULATIONS 29

15. end

16. if cnt==cl+2

17. if z(m-n+1:m)==1 disp(’polyhedron Hx<=b is empty’);

18. return; end

19. z=nextset(z);

20. end

21. end

function boolean=lexmin(v)

% boolean=lexmin: in: v=0 or v in Nbasis. out: boolean=0 or boolean=1.

% if v=0: boolean=1 iff Basis is lexmin for a basic feasible solution.

% if v in Nbasis: boolean=1 iff Basis is lexmin for a geometric ray

% represented by v.

1. global Dictionary Basis Nbasis

2. [sD1,sD2]=size(Dictionary); b=Dictionary(:,sD2); boolean=1;

3. if v==0

4. for s=Nbasis

5. for t=find(Basis>s)

6. if b(t)==0 & Dictionary(t,s)~=0 boolean=0; return;

7. end, end, end, end

8. if ~(v==0)

9. for s=Nbasis

10. for t=find(Basis>s)

11. if b(t)==0 & Dictionary(t,s)~=0 & Dictionary(t,v)==0

12. boolean=0; return;

13. end, end, end, end

function I=lmv(M)

% I=lmv(M) finds, given a real matrix M indices of rows that are

% lexicographically smallest.

1. j=1; I=1:size(M,1); n=size(M,2);

2. while (length(I)>=2)&(j<=n)

30 A. KOVAČEC AND B. RIBEIRO

3. col=M(I,j); m=min(col); sI=find(col==m); I=I(sI); j=j+1;

4. end

function [vertices, rays]=lrs(Dictionary,Basis,Nbasis)

% [vertices, rays]=lrs(Dictionary,Basis,Nbasis): given a valid

% triple (D,B,N) as input, as obtained from tratodic.m, returns

% all vertices and extreme rays of associated polytope in

% ‘vertices’ and ‘rays’ in form ‘origin ray origin ray ... ’.

1. clear global

2. global Dictionary Basis Nbasis

3. [sD1,sD2]=size(Dictionary); j=1; lNb=sD2-sD1-1;

4. while 1

5. while j<=lNb

6. v=Nbasis(j);

7. [brev, u]=reverse(v);

8. if ~brev

9. if u==0&lexmin(v) rays=[rays, Dictionary(2:lNb+1,sD2)

10. -Dictionary(2:lNb+1, v)]; end

11. j=j+1;

12. end

13. if brev

14. pivot(u,v);

15. if lexmin(0) vertices=[vertices, Dictionary(2:lNb+1,sD2)];

16. end

17. j=1;

18. end

19. end

20. [r,j]=slctpivo;

21. if isempty(j) vertices=[vertices,Dictionary(2:lNb+1,sD2)];

22. return; end

CONVEX HULL CALCULATIONS 31

23. pivot(r,Nbasis(j));

24. j=j+1;

25. end

function r=lxminrat(s)

% r=lxminrat(s): given s in Nbasis and lexpositive Basis calculates

% integer r=lexminratio(Basis,s) in sense of [A, p185c6...11].

% in particular r==0 iff s represents a ray, an r in Basis otherwise.

1. global Dictionary Basis Nbasis

2. [sD1, sD2]=size(Dictionary); lNb=sD2-sD1-1;

3. a=Dictionary(:,s);

4. I=find(a(lNb+2:sD1)>0)+(lNb+1);

5. if isempty(I) r=0; return; end

6. D=Dictionary(:,[sD2, 1:sD1]);

7. Dtilde=diag(1./a(I))*D(I,:);

8. i=lmv(Dtilde); t=I(i);

9. r=Basis(t);

function nextx=nextset(x)

%input: a {0,1}-n-tuple x i.e. characteristic vector of

% subset of 1...n

%output: lexicographically next n-tuple with same number

% of ones as x; x itself if x is lexicographically

% last element.

1. lengthx=length(x);

2. last0=max(find(x==0)); xinit=x(1:last0-1);

3. xfin1s=x(last0+1:lengthx);

4. j=max(find(xinit==1));

5. if isempty(j) nextx=x; return; end

6. nextx=x; nextx([j,j+1])=[0 1]; nextx=[nextx(1:j+1),xfin1s];

7. nextx=[nextx, zeros(1,lengthx-length(nextx))];

32 A. KOVAČEC AND B. RIBEIRO

function pivot(r,s)

% pivot(r,s) given r in Basis and s in Nbasis, pivots Dictionary

% for Basis to that for new basis Basis-r+s according to

% [A, p183c-1]; updates Basis and Nbasis

1. global Dictionary Basis Nbasis

2. sD1=size(Dictionary,1);

3. a=Dictionary(:,s);

4. t=find(Basis==r); tn=find(Nbasis==s);

5. rowt=Dictionary(t,:)/a(t); Dictionary(t,:)=rowt;

6. for i=[1:t-1,t+1:sD1]

7. Dictionary(i,:)=Dictionary(i,:)-a(i)*rowt;

8. end

9. Basis(t)=s; Nbasis(tn)=r;

10. Dictionary=Dictionary.*(abs(Dictionary)>100*eps);

11. Dictionary(:,s)=zeros(sD1,1); Dictionary(t,s)=1;

function [brev,u]=reverse(v)

% u=reverse(v)

% in: v in Nbasis. out: u=lxminrat(v) and brev\in {0,1}.

% brev==1: if v represents an edge and the lexicographic pivot

% rule applied to B-u+v generates a pivot back to B.

% brev==0: in all other cases.

1. global Dictionary Basis Nbasis

2. u=lxminrat(v);

3. if u==0 brev=0; return, end

4. i=find(Basis==u);

5. a=Dictionary(:,v); a0=a(1); ai=a(i);

6. w0=Dictionary(1,:); wi=Dictionary(i,:);

7. wbar=w0-(a0*wi/ai);

8. J=Nbasis(Nbasis<u);

9. if isempty(J) wbarg0=1; else, wbarg0=all(wbar(J)>=-10*eps); end

CONVEX HULL CALCULATIONS 33

10. if (w0(v)>0 & wbarg0) brev=1; else, brev=0; end

function [xk,maxim]=simplex(c,H,b,initv)

% [xk,maxim]=simplex(c,H,b,initv)

% in: d-row c, mxd-matrix H, m-column b, dx2-column

% initv=initvert(H,b), so that P={x: Hx<=b} is a polytope

% having initv(:,1) as a vertex.

% out: vertex xk of P and real maxim=c*xk=max{cx: Hx<=b}

% or a message informing about the unboundedness of

% the problem.

1. global Dictionary Basis Nbasis

2. [Dictionary, Basis, Nbasis]=tratodic(H,b,initv);

3. [sD1,sD2]=size(Dictionary); lNb=sD2-sD1-1;

4. u=c*Dictionary(2:lNb+1,sD1+1:sD2);

5. Dictionary(1,:)=[1 zeros(1,sD1-1), u(1:lNb), u(sD2-sD1)];

6. [r,j]=slctpivo;

7. while ~isempty(j)

8. if r==0 disp(’The problem is unbounded’); return; end

9. pivot(r,Nbasis(j));

10. [r,j]=slctpivo;

11. end

12. xk=Dictionary(2:lNb+1,sD2)

13. maxim=Dictionary(1, sD2);

function [r,j]=slctpivo

% [r,j]=slctpivo: if measuring a non-optimal Dictionary, positive

% indices r in Basis and j are returned so that r,s=Nbasis(j)

% reflect the lex pivot selection. A Dictionary is optimal

% iff j=[] is returned.

1. global Dictionary Basis Nbasis

34 A. KOVAČEC AND B. RIBEIRO

2. s=min(find(Dictionary(1,:)<0));

3. j=find(Nbasis==s);

4. if isempty(j) r=0; return, end

5. r=lxminrat(s);

function [Dictionary, Basis,Nbasis]=tratodic(H,b,initv)

%[Dictionary, Basis,Nbasis]=tratodic(H,b,initv).

%in: real mxd-matrix H, m-column b, and dx2-matrix initv=[v,I],

% with I a column, of d distinct positive integers so that

% Hx<=b defines a nonempty polyhedron having v as a vertex,

% H(I,:) has rank d, and H(I,:)*v=b(I).

% If existing, initv can be produced by initvert.m

% out: a dictionary digestible by lrs-function in lrs.m

1. [m,d]=size(H);

2. I=zeros(m,1); I(initv(:,2))=ones(d,1);

H=[H(1-I,:); H(I,:)]; b=[b(1-I,:); b(I)];

3. Hupp=H(1:m-d,:); bupp=b(1:m-d); Hlow=H(m-d+1:m,:);

4. blow=b(m-d+1:m); invHlow=inv(Hlow);

5. Dictionary=[eye(d) zeros(d,m-d) invHlow invHlow*blow

zeros(m-d,d) eye(m-d) -Hupp*invHlow bupp-Hupp*invHlow*blow];

6. Dictionary=[1 zeros(1,m) ones(1,d) 0

zeros(m,1) Dictionary];

7. Dictionary=Dictionary.*(abs(Dictionary)>100*eps);

8. Basis=1:(m+1); Nbasis=m+2:m+d+1;

function [H,b]=vrtoh(V,R)

% [H,b]=vrtoh(V,R) in: vertices as columns of V, ray(directions)

% as columns in R

% out: IF vertices define a full dimensional body then a

% H-description Hx<=b of the polyhedron. Otherwise

% an error maessage.

1. E=V-V(:,1)*ones(1,size(V,2)); E(:,1)=[]; E=[E,R];

2. if rank(E)<size(E,1)

CONVEX HULL CALCULATIONS 35

3. error(’VR-representation is not full dimensional’); end

4. V=-V’; m=size(V,1); V=[-ones(m,1),V];

5. R=-R’; m=size(R,1); R=[zeros(m,1),R];

6. A=[V;R]; b=zeros(size(A,1),1);

7. initv=initvert(A,b);

8. [Dictionary, Basis, Nbasis]=tratodic(A,b,initv);

9. [V,R]=lrs(Dictionary, Basis, Nbasis);

10. Rays=R(:,2:2:size(R,2));

11. Rays=Rays’; H=-Rays(:,2:size(Rays,2)); b=Rays(:,1);

References: at end of section 3.

Alexander Kovačec
Dep. Matemática, Univ. Coimbra, 3001 - 454 Coimbra, Portugal
E-mail address: kovacec@mat.uc.ptt

Bernardete Ribeiro
Dep. Eng. Infor., Univ. Coimbra, 3030-290 Coimbra, Portugal
E-mail address: bribeiro@dei.uc.pt

