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Abstract

A new methodology, based on the asymptotic separation of probability laws, was
introduced by Gongalves, Jacob and Mendes-Lopes (2000) in the development of the sta-
tistical inference of bilinear models, namely in the construction of a consistent decision
procedure for the simple bilinear ones.

This paper presents a generalisation of that study by introducing in the procedure a
smoother decision statistics.

The aim of this decision method is to discriminate between an error process and a
simple bilinear model. So, we use it as a consistent test and its consistence is obtained
by establishing the asymptotic separation of the sequences of probability laws defined by
each hypothesis.

The convergence rate of the procedure is studied under the truthfulness of the error
process hypothesis. An exponential decay is obtained.
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1 Introduction

In Gongalves, Jacob and Mendes-Lopes (2000) a new methodology of statistical
decision to discriminate between an error process and a diagonal simple bilinear
model was presented. This methodology was inspired in an asymptotic separation
result obtained, in 1976, by Geffroy, which appeared particularly useful to construct



consistent tests and estimators for detecting a signal in a white noise (Pieczinsky,
1986, Moché, 1989).

Let X = (X;,t € Z) be a real stochastic process with a law which belongs to
a set of parametric laws (FPp, 0 € O), with © = {6, 6,} . Following Geffroy (1976),
we say that the two laws P, and P, are asymptotically separated if there exists a
sequence of Borel sets of RT, (Ap,T € N), such that

{ Py (Ar

where P) denotes the probability law of (X, Xo, ..., X7).

In this way, a consistent decision rule was defined and studied in Gongalves,
Jacob and Mendes-Lopes (2000) to separate the hypothesis ” Hy : X follows an error
process” against " Hy : X follows a diagonal bilinear model”.

With the aim of improving the rate of convergence of the decision procedure we
present, in this paper, a generalisation of that study in which a more smooth statis-
tics is considered in the definition of the sequence of acceptance regions (Ar)p .
In fact, unlike what we have considered in that pioneer study, the statistics here
considered is, in general, a continuous function of the sample.

2 General properties and hypotheses

Let us consider the diagonal bilinear model X = (X, ¢ € Z) defined by
Xi=pXi 161+ e, (1)

where ¢ is a real number and ¢ = (¢;,¢ € Z) a real stochastic process.

We are going to construct a decision procedure to discriminate between the
hypotheses Hy : ¢ = 0 against Hy : o =3 (8 > 0, fixed).

Let us denote the process X = (X, ¢ € Z) distribution and the corresponding
expectation by P, and E, respectively, when the parameter of the model is equal
to .

We suppose that

H1: e = (g4,t € Z) is a strictly stationary and ergodic process.
H2: E|loglei|| < oo and E(log |&:]) + log || < 0.

Under these conditions, model (1) has a strictly stationary and ergodic solution,
P, — a.s. unique, given by

+oo n—1
Xt =& + Z (,Onc‘:t_n H Et—1—j (CL.S.), teZ.
n=1 7=0
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If, in adition, we have
H3: E|log|X;|| < co. and E(log |X;|) + log|¢| < 0,

then model (1) is invertible and

+00 n—1
g =X, + Z (—)" X} 0 H Xi1-j (as.), teZ.
n=1

§=0

Under conditions H1, H2 and H3 we deduce, in view of the two equalities above,
that X, = ¢,, where X, and ¢, denote the o-fields generated by (X, X;_1,...) and
(et,€¢-1, .. .) respectively.

Hereafter we assume these general hypotheses concerning the stationarity, er-
godicity, and invertibility of model (1). We also define the process Y = (Y}, t € Z)

by )
Y, = X, <Xt +Y (=o)X ] thj) (a.s.).
n=1 7=0

This process is also strictly stationary and ergodic. We will denote it by Y; (¢), if
its dependence on the parameter ¢ is to be emphazised.

We note that X; = pY;_; + &4, according to (1). Otherwise, taking into account
that E|log ||| < +o0 and E|log|X;|| < 400, we have Y; () # 0, a.e., V.

3 A consistent test

We are going to construct a decision procedure to distinguish, in model (1), the
hypotheses
Hy: o =0against H: o= (f>0)

from T observations of the process X, denoted by x1,xs,...,z7.

The procedure we are proposing is based on the notion of asymptotic separation
of two families of probability laws (Geffroy (1980), Moché (1989)) and it generalises
recent works (Gongalves, Jacob, Mendes-Lopes (2000), Gongalves, Martins, Mendes-
Lopes (2001)).

First of all, we establish the asymptotic separation of the families of probability
laws associated to the hypotheses in study by presenting a sequence of Borel sets of
R”, (A7, T € N), called separation regions, such that

fgjL4T)TC;inl
f§WL4T) — 0

T—>+00



where Pg denotes the probability law of (X7, ..., X7) when the parameter is equal
to .

We will accept Hy : ¢ = 0 against Hy : o = 5 > 0 if (21, ...,x7) € Ar.

The separation regions that we are going to propose are inspired in previous
works. In those papers the set

D = {(u,v)€R2:u>0,v<§u}U{(u,v)€R2:u<0,v>§u}

- {(u,v)e]R2 :u<§u—v> >0}

is very important in the construction of a convergent test for the same hypothe-
ses. The test takes into account the number of times that u (gu — v) > 0 when
(w,v) = (Y41, ), yr denoting the particular value of Y;, t =1,...,T.
The generalization here studied presents a test statistic with the same basical
idea but defined through a more smooth function, eventually a continuous one.
From the definition of D we have

(ye—1,m¢) € D <= (y—1 > 0, gyt—1 — x> 0) or (y—1 <O, %yt_l — 1 <0).
So, if we consider a distribution function F' of a symmetrical law we have
r>0= F(z)>3.

Then,
(ye1,71) € D = (2F (yp—1) — 1 > 0,2F (%yt_l — ;) —1>0) or
(2F (Y1) —1<0,2F (ng - xt) —-1< 0)
= [2F (y—1) — 1] [2F (Sypmr — ) — 1] > 0.

The study here presented takes into account this product. Moreover, a great

degree of generality is achieved as the distribution function considered in the first
factor may be different from that appearing in the second one.

3.1 Acceptation regions definition: notation, hypotheses
We define

g(u,v) =[2G (u) — 1] [2F (Su —v) — 1], (u,v) € R?,



where F' and G are distribution functions of symmetrical laws with decreasing den-
sities on RT.
Let us consider the following regions
T
Ap = {($1,$2,---,$T) eR" : 9(Wi-1(B), 7¢) 20}-
=2

t

In what follows, we take g; = g(y; 1 (B) ,x¢) and G = %23:2 g; and we assume
the hypothesis:

H,: the law of £; given £;,_; is symmetrical.
We have the following result:

Lemma 1. (i) Under the hypothesis ¢ = 0, lz'%n gr = Eo (g2) > 0.
(ii) Under the hypothesis ¢ = § > 0, lijm gr = Es(g2) <0.

Proof. By the ergodic theorem we have

lijm gr = E, (92) , a.e.

with
B, (9:) = B, (9 (V1 (8), X2)) = B, (2G (V1 (8)) = 1] [2F (§%1 (B) — X2) — 1]).

Let us now study the sign of the limit under each one of the hypotheses Hy and
H;. In what follows, we take Y7 (3) = Y7.
Under ¢ = 0 we have Xy, = £5 and so

o (- (31-2) -]

o (- (31-) - )

B (2600 - Uln 2o { [or (i -2) —1] s} ) +
+5 (126 00) - U £ { |27 (53— 22) -1) /2. })

When Y7 > 0, we have 2G' (Y7) — 1 > 0 and EO{[QF (ng —52) — 1] /gl} >0
taking into account the symmetry of the law of -, given ¢, ;; if Y; < 0 then
2G (Y1) — 1 < 0 and By {[2F (8Y; —5) — 1] /e, } < 0.

Ey (g2)
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SO, EU (92) > 0.

Under ¢ = 8 > 0 we have Y; = X;¢1, Xy = X161 + £, and then

Es(g) = Ejg ([2(: (X161) — 1] {QF (gxlgl — BXie1 — g2> - 1])

N S PR 8

= 5 (6 (i) - Uleon B { 27 (-2 - 2) -1 /2, })
+85 (26 (Xi20) ~ UlpsicnBa { |2 (<5 Xz =) =1] fz } )

As previously, 2G (X,e,) —1 > 0 and Ej { [2F (—%Xlel — 52) — 1] /gl} <0
when Xje; > 0; on the other hand, 2G (X)) — 1 < 0 and
Es {[2F (-£X,e1 —e5) — 1] /&, } > 0, when X, < 0.

Then Ejg (g2) < 0.

We immediately deduce, by the bounded convergence theorem, the following
result:

Corollary. (i) If p =0, Py (g, > 0) — 1, as T — +o0.
(i) Ifp=5>0,Ps(gp>0) — 0, as T — +o0.

Taking into account the definition of regions Ar, we conclude that the probability
laws of process (X;,t € Z) defined by the hypotheses Hy : ¢ =0and H; : ¢ =3 >0
are asymptotically separated.

So, Ar is the acceptance region of a consistent test for these hypotheses.

4 Convergence rate of the decision procedure

The convergence rate of the decision procedure, presented in the previous para-
graph as a test, may be evaluated when we consider, in the acceptance regions Ar,
the true value of Y}, i.e., Y; (), and we assume that the null hypothesis is true. Let
us denote these borelians by Ar (¢).

This convergence rate study has been developped under the hypothesis of abso-
lute continuity and symmetry of the distribution laws involved. So, in a previous
paragraph we establish several lemmas concerning distribution functions of symmet-
rical densities.



4.1 Preliminary results

Lemma 1. Let f be a symmetrical density decreasing on R* with distribution
function F'. Let a and b be fixed real numbers, with ¢ > 0. Then the function G
defined by

G (v) = fj;o F(av —bu) f (u) du
is the distribution function of a law with symmetrical density g decreasing on R*.

Proof. As we can derivate under the [,we obtain

LG () = [T af (av — bu) f (u) du.

Then, as f is symmetrical,

ié(—v) = /ooaf(—av—bu)f(u)du

dv o
+00

= / af (av + bu) f (u) du

o0

_ /_+Ooaf (av — by) £ () dy

oo

_ /_+Ooaf(av—bu)f(u)du

oo

d ~
= %G(v).

enotin —~:g,gisasymme rical function. Let us prove that ¢ is a density
Denoting 4G trical function. Let that densit

function and G the distribution function of density g.
,From Fubini, we obtain

[ dv [*2af (av — bu) £ (u)du = [ f(u) ( [+ af (av — bu) dv) du.
But
[ 2af (av —bu)ydv = [T af (2) 1dz = 1.
Then

fj;o dv ff;o af (av —bu) f (u) du = 1.



On the other hand, again from Fubini,

/lg(v)dv _ /oo (/::oaf(av—bu)du> v

_ +oof(u) [/ af (av — bu) dv] du

— 00 —00

Y [ /_ ) 2dz] du

—0o0 o

_ /jm F (az — bu) f(u)du

o0

= G(v).

JFrom the definition of ¢ and as f is decreasing on R*, it is obvious that g is
decreasing on R*.

Lemma 2. Let h(z) = ¢[2R (a — dz) — 1],z € R, where ¢, a, d are positive numbers
and R is the distribution function of a symmetrical and decreasing on R density,
T.

Let H(z) = e "*). Then H(x)+ H(—x) is increasing on R*.

Proof. We have

d d —h(z —h(—z
S [H(z) + H(=2)] = @[e @ 4 e=h(=D)]
= [~ (2)e™™® 4 B! (—z)e )]

= 2cdr (a — dx) e @) _ 2¢dr (a+ dx) e~ h(-2)

Let us show that this derivative is non negative.
As c and d are positive, it is enough to show that

r(a—dz)>r(a+dr), Ye>0
e M) > e=h(=2) Ve >0 °

As a >0 and d > 0 and r is decreasing on RY, we have r (a — dz) > r (a + dz),
for every x > 0 such that a — dx > 0.
But, as r is symmetrical, r is increasing on R™ and if a — dx < 0 we have

r(a—dx)=r(dx—a)>r(a+dr),



as 0 <dr —a < dzx—+a.
Moreover, as r is a symmetrical density, the function

2R(x) —1=R(zx) — R(—x)

is odd and obviously increasing on R*.
As ¢ and d are positive we can conclude, by an analogous way, that for every
x>0

c2R(a —dz) —1] < c¢[2R (a + dx) — 1]

that is

and, in consequence,

Lemma 3. Let ¢ and f be two symmetrical densities and a > 0 such that ¢ > f on
[0,a] and ¢ < f on ]a, +o0].
Let T be a positive and increasing function, defined on R*. Then

[0 @) T (@)de < [ f(2) T (z) da.
Proof. We have
/0 Tle@) - f@)T (@) da = /[0 loo) - ST ) do s
) — f(x)|T (z)dx
o @ s@ITE)
< T(a) o P @)~ F@Ndr
T (a* x)— f(x)]|dx
) [ e )
as T is an increasing function and where T (a~) denotes the left limit and T (a™)

the right limit on a.
As the first quantity is positive, we have

Jo Tl @) = f @) T (@) de < T(a¥) f ool (2) = f ()] dz =0,
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taking into account that ¢ and f are symmetrical densities.
Lemma 4. Let h be the function of lemma 2, ¢ and f the probability densities of

lemma 3 and Y and Z real random variables with densities f and ¢, respectively.
Then

Proof. We have

+oo
= / e "Dy (—2)dz
ol
= e "=V (u) du
= E[e*h(*z)]
Then, with H (z) = e @),
+00 +00
| H@ewe = [ HEDe@
to g H (-
_ () A,

T H (z) + H (—x)
0 2

(x) dx +

_ /Oo H (x) —|-2H (—x)gp o () da

-/ "l (@) 4 H (1)) o (2) d,

as ¢ is symmetrical.
In the same way, we have

E[e?M] = [*°[H (v) + H (—2)] f (v) du.

0

As, by lemma 2, the function H (x) + H (—z) is increasing on R, we can apply
lemma 3 to obtain

Jo = @ (@)[H (2) + H (~a)]dz < [§ f (2) [H (2) + H (~2)] dz,

that’s to say,

10



E [e‘h(z)] < E [e‘h(y)] )

Lemma 5. Let g be a symmetrical function, increasing on R, equal to zero in
the origin and bounded. Let Y be a real random variable with a symmetrical and
decreasing on RT density f. Let h be the function of lemma 2. Then

E [0~ < E [e=90)] E [eh0)] .

Proof. Let us take

We note that b > 1, as e7? < 1 almost everywhere.
We consider

p(2) = be 9 f (x).

Then ¢ is a symmetrical density.
On the other hand, as b > 1 and g (0) = 0, we obtain

 (0) =be 9O f (0) > f(0).
Moreover
o () = f () <= be 9@ = 1.

As g is monotone increasing, there is a unique root a > 0 such that ¢ > f in
[0,a] and ¢ < f in Ja, +oof.
Let Z be a real random variable with density ¢. From lemma 4 we have

B[] < E[e"M] & [T7ep(2) do < [T e f () da.
As ¢ (z) = be 9@ f (1), we obtain

b fj;o e M@= 9@) f (1) dw < [T f (2) da

—0o0
or, using the b definition,

[T e h@e=9@) f (1) de < [T @) f () da [T eI f (2) da

o0

which is equivalent to



4.2 Evaluation of the (R) convergence rate

We are going to evaluate the convergence rate of P, (ZT (cp)) .

We have

Py (Ar(p)) = P (i g < 0)

A
&

Let us study Ejy [gt/gt_l] ,t € Z.

Eo [g/ei1] = [2G (20) = 1] {280 [F (5511 — =) Jea] - 1}

Let us suppose that ¢ verifies the following condition, denoted by Hs:

gt = M—1Zp,t €L

where

n; is a measurable and strictly positive function of &;,&; 1,... with

0<m < < M;

. (Z;,t € Z) is a sequence of independent and identically distributed real random
variables, with distribution function F' and density f that we suppose symmetrical
and decreasing on R*. We also assume that Z; is independent of g;,_;.

Let us analyse Ey [F (th_l — &) [es] -

Ey {F <§6?1 - 5t> /étl] = Ep {F 5371 - 77t—IZt> /§t1:|

+o00o
-/

Let ’s choose the following function
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G (v) = [T2F (Sv — Mu) f(u)du.

By lemma 1, GG is the distribution function of a law with a symmetrical density,
decreasing on R™. Moreover, we obtained

Eo[F (el —¢) [er 1] > G (1)
and so
Eo [9i/21] > [2G (e7-1) — 1]2'
From Hoeffding inequality (Hoeffding (1953)),

Eyle%/e,.,] < o~ Folor/zi_i |+ [26 (e, ) 1)’

< em3lo(e)-]

Then
P () < E {exp (_ i: gt) exp {_% (26 (2,) - 1)2} }
= FEy {eXp (— j:: gt> Eq {exp (—gr—1) exp {—% (2G (e7)) — 1)2] /§T—2:| } :

From lemma 5 we have the following inequality, for every ¢ € Z,

Ey {GXP (—g1—1) exp [—% (2G (5371) - 1)2] /§t—2} <

< B [op (<00 fz o) Bo o |3 GG (L) - 0| 2] @)

In fact,

i) given g, 5, g1 = [QG’ (5%_2) — 1} [2F (gsf_Q —xt,l) — 1] has the form of
the function h(z) = ¢[2R (a — dx) — 1] with ¢, a,d positives, and R the distribu-
tion function of a symmetrical density decreasing on R, presented in lemma 2, as
Ti—1 = M—2Z4—1 under Hy and ¢ =2G (¢2.) =1 >0, R=F, a= 52 | (> 0), and
d= TNt—2 (> 0) .

ii) On the other hand, 1 [2G (¢*2?) — 1] = 1[G (2?) — G (—d?2?))" is a sym-

metrical function, increasing on RT, null in the origin and bounded. So, is the
function considered on lemma 5.
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As 7, 4 is independent of g,_,, the inequality (2) takes the form

Eo [exp (=h (Zi-1) = g (Z1-1))] < Eo[exp (=h (Z,-1))] Eo [exp (=g (Ze-1))]-

We can then write
Py (Ar
< Ey {exp ( Z gt> Ey [exp (—gr-1) /er_s] Eo [eXp [_% (2G (2_,) — 1)2] /ETQ]}
{EO [exp( tZQ 9u/er_ 2> exp [_% (2,) - 1)2] /ET_QH}

o|
< Ey {Eo {GXP ( f: t/§Tz> Eq [GXP [—% (m*Z3_,) — 1)2] /§T2H } :

But By |exp | -1 (2G (m2Z2_,) — 1)?| /2,_,| is constant as Z,_; is independent
3 T-1 A

of ep_,,Vt € Z.
So,
T—1
exp (— gt/§T2>] :
t=2
Using recursively the procedure conducive to
T T—1
o )]t 50)
t=2 t=2

PG (o) < B[ [-L e i) -1y }

where Z is a random variable with the same law of Z,.

Py (Ar () < Eo {exp {_% (26 (m?22.)) — 1)2H B,

Ey < cky

we obtain

Finally, we may state the following result:
Theorem. Let X = (X;,t € Z) be a real stochastic process satisfying the model (1)
subject to the general conditions H1, H2 and H3.

If the error process satisfies condition H; and the function G is defined by
G (v f+°° F ( v — Mu) f(u)du then the proposed decision rule satisfies

Py (Ar (¢)) 21— {Eo [exp {—% (2G (m*Z?) — 1)2” }Tl ,Vt e N.
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