ON FUNCTORS WHICH ARE LAX EPIMORPHISMS

JIR{ ADAMEK, ROBERT EL BASHIR, MANUELA SOBRAL, JIR{ VELEBIL

ABSTRACT. We show that lax epimorphisms in the category Cat are precisely the
functors P : € — B for which the functor P* : [B, Set] — [, Set] of composition with
P is fully faithful. We present two other characterizations. Firstly, they are precisely the
“absolutely dense” functors, i.e., functors P such that every object B of B is an absolute
colimit of all arrows P(E) — B for E in €. Secondly, lax epimorphisms are precisely
the functors P such that for every morphism f of B the category of all factorizations
through objects of P[€] is connected.

A relationship between pseudoepimorphisms and lax epimorphisms is discussed.

1. Introduction

What are the epimorphisms of Cat, the category of small categories and functors? No
simple answer is known, and the present paper indicates that this may be a “wrong ques-
tion”, disregarding the 2-categorical character of Cat. Anyway, with strong epimorphisms
we have more luck: as proved in [2], they are precisely those functors P : € — B such
that every morphism of B is a composite of morphisms in P[€].

Our paper is devoted to lax epimorphisms in the 2-category Cat. We follow the
concept of pseudoepimorphism (and pseudomonomorphism) as presented in [3]: a functor
P : & — B is called a laz epimorphism provided that for every pair (Q1,Q2 : B — C
of functors and every natural transformation u : @Q; - P — ()5 - P there exists a unique
natural transformation v : 1 — )2 with u = vP. Briefly, P is a lax epimorphism iff
the functor

(-)-P:[B,C] — [£,C]

is fully faithful, for every small category C.
Our first observation is that, instead of all small categories €, one can simply take Set.
That is, P is a lax epimorphism iff

P =(_)-P:[B,Set] —s [€, Set]

is fully faithful. This is what Peter Johnstone called “connected functors” in his lecture
at the Cambridge PSSL meeting in November 2000. He has asked for a characterization
of conected functors, which has inspired the present paper. We provide two characteri-
zations. Recall from [9] that a functor P : € — B is called dense if every object B of
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B is a colimit of the diagram of all arrows P(E) — B (more precisely, B is a canonical
colimit of the diagram P/B — B forgetting the codomain). Let us call a functor P
absolutely dense if every object B of B is an absolute colimit of the diagram of all arrows
P(E) — B. The following conditions of a functor P : € — B between small categories
will be proved equivalent:

(i) P is a lax epimorphism,
(ii) P is absolutely dense,

(iii) every morphism f of B has the property that the category f / P of all factorizations
of f through objects of P[€] is connected.

In (iii) above, the objects of f / P are all triples (E, ¢, m) where E is an object of € and

B ! B
N A
P(E)

is a commutative triangle in B. Morphisms of f / P from (FE,q,m) to (E,q,m) are all
morphisms e : E — E of € such that the following diagram

commutes.

For the special case of f = idp we call the category idp /| P a splitting fibre of B.
(Recall that a fibre of B is the category of all E'in € with P(E) = B. Now a splitting fibre
is the category of all split subobjects B — P(E) for E in £.) We conclude that every
lax epimorphism has all splitting fibres connected. In his PSSL lecture, P. Johnstone an-
nounced that every extremal epimorphism with connected splitting fibres is “connected”,
i.e., is a lax epimorphism. We show a simple example demonstrating that this sufficient
condition is not necessary.

How is our concept related to other epimorphism concepts? We will see easy examples
demonstrating that

regular epimorphism #- lax epimorphism % epimorphism

and so there seems to be no connection to the “strict” concepts. Next, every lax epimor-
phism is a pseudoepimorphism (defined as above, except that the natural transformation
u: Q- P — Q- P issupposed to be a natural isomorphism — and then so is v).



1.1. OPEN PROBLEM. Is every pseudoepimorphism a lax epimorphism?

1.2. REMARK. For functors between preorders we prove in Proposition 3.1 that the an-
swer is affirmative.

2. A Characterization of Lax Epimorphisms

2.1. THEOREM. For a functor P : E — B between small categories the following con-
ditions are equivalent:

1. P is a lax eptmorphism.

2. The functor P* = (_)- P :[B,Set] — [E, Set] is fully faithful.
3. All the categories f || P for morphisms f of B are connected.
4. P is absolutely dense.

2.2. REMARK. A category C is called connected iff the graph whose nodes are the objects
and whose arrows are the pairs C', C' of objects with C(C,C") # () is connected (i.e., has
precisely one component — thus, it is nonempty and every pair of nodes can be connected
by a non-directed path).

Proof. 1.=2. This is trivial: given functors @,Q> : B — Set, let € be a small full
subcategory of Set containing both images so that we have codomain-restrictions @, Q% :
B — €. By 1., for every natural transformation v’ : @} - P — @, - P there is a
unique v' : Q) — Q5 with ' = ¢'P. This is equivalent to having, for every natural
transformation u : Q1 - P — Q2 - P a unique v : )1 — @2 with u = vP.

2.<3. The functor P* = (_) - P has a left adjoint, viz, the functor
L :[E,Set] — [B, Set]
of left Kan extension along P. Therefore, P* is full and faithful iff the counit
e:L-P"—1Id

of the adjunction L 4 P* is a natural isomorphism.

Since every object of [B, Set] is a colimit of hom-functors, and since L - P* preserves
colimits, it follows that ¢ is a (pointwise) isomorphism iff the component of ¢ at every
B(B, _), for B an object of B, is an isomorphism.

This component can be described as follows: we express

P*(B(B, -)) =B(B,P.): £ — Set

as a colimit of representable functors E(F, _) indexed by all pairs (E,m) with E in &
and m : B — P(E) in B. Then G = L - P*(B(B, _)) is a colimit of the corresponding
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diagram of all hom-functors B(P(FE), _) in [B, Set]. We can describe G : B — Set as
follows: to every object X it assigns the set GX of all triples (E, g, m) where E is an

object of € and
B-"~P(E)—>X

are morphisms of B, modulo the smallest equivalence ~ merging (£, m,q) and (£, m, q)
whenever there exists e : F — F such that the following diagram

commutes. With this description of GG, the counit
EB(B,_) - G — B(B, _)
is defined by assigning to the equivalence class of
B> P(E)—>Xx
the composite ¢-m : B — X. We see that eg(p,_) is a natural isomorphism iff for every
morphism f : B — X there is a triple (E, ¢, m) in GX with f = ¢-m, unique up to the
above equivalence. This is precisely when the category f / P is connected.
3.=4. Firstly note that the assumption in 3. is “self-dual”, i.e., we deduce from 2.<3.
that the functor
(_)- P :[B? Set] — [EP, Set]
is full and faithful. Thus, the composite

(-)-Por

B —L> [BP, Set] (€7 Set]

of (_) - P°? with the Yoneda embedding Y is full and faithful. This means that P is
dense, and this implies that every object B of B can be expressed as a colimit of a
diagram P : &€ — B weighted by B(P _, B) : £ — Set (see Theorem 5.1 of [8]). To
prove that P is absolutely dense, we verify that every functor F': B — X (with X small)
preserves the weighted colimits B = B(P _, B) * P. In fact, recall that (_) - P is full
and faithful and use B(P _, B) = B(_, B) - P’ to deduce the following isomorphisms

DC(B(P_,B)*F-P,X) = [EOP,Set](B(P_,B),DC(F-P_,X)>
> [gor Set](B _,B). P DC(F_,X)-POP)

> [P Set(B . B),X(F_ X))
=~ X(FB,X)



natural in every object X in X.

4.=1. Since we assume that P is absolutely dense, this means that a left Kan extension
LanpP 22 Idg of P along itself is preserved by any functor F' : B — X. Thus, for every
pair F,G : B — X we have isomorphisms

[B,X](F,G) =2 [B,X](Lanp(F - P),G)
= [E,X|(F-PG-P)
where the last isomorphism is induced by precomposing with P. But this means precisely
that P is a lax epimorphism. [
2.3. ExaAMPLES. The following are examples of lax epimorphisms:
1. Coinserters: recall that a functor P : € — B, together with a natural transforma-

tion a : P- F — P -G is called a coinserter in Cat of the pair F,G : ¢ — & iff
the following two conditions are satisfied:

(a) For every natural transformation §: Q- F — @ - G with @ : € — D there
is a unique functor H : B — D such that H - P = @ and Ha = .

(b) For every pair Hy, Hy : B — D of functors and every natural transformation
v : Hy - P — H, - P satistying (Hya)(vF) = (yG)(H,«) there is a unique
natural transformation 6 : H; — H, with 0P = 7.

Thus, every coinserter is a lax epimorphism, since the second condition above is
satisfied by every natural transformation v: H; - P — H, - P.

2. The folllowing functor between preordered sets is a lax epimorphism which is not a

coinserter:
o]

3. Categories of fractions: given a set ¥ of morphisms in a small category €, then the
canonical functor

Py: & — E[X7]
into the category of fractions is a lax epimorphism (see, e.g., Lemma 1.2 of [4]).
4. Epimorphisms of small categories, which are one-to-one on objects, are lax epi-

morphisms. This is due to the second equivalent condition of Theorem 2.1 and
Corollary 2.2 in [5].

A regular epimorphism in Cat need not be a lax epimorphism:

HElo

(See [2] for characterization of regular epimorphisms as precisely those functors P : € —
B which are surjective on objects and such that every morphism in B is a composite of
morphisms in P[E].)



3. Pseudoepimorphisms

3.1. PROPOSITION. For functors P : & — B where B is a preordered set we have:
P is a pseudoepimorphism iff it is a lax epimorphism.

Proof. Let P be a pseudoepimorphism. For every x < y in B we prove that the category
C = (¢ < y) // P, which is the full subcategory of € on all E with z < P(E) < y, is
connected.

Define a functor F' : B — Set on objects by

141, ife<b<y
Fb= 1, ife<b<Ly
(0, otherwise

and on morphisms by setting F'f = id for every morphism f : b < b with F'b = F'.

The category € is nonempty because otherwise we would have two natural isomor-
phisms 1,0y : F — F with 31 # (s and 1P = id = (2P (1 = id and (3, is the
transposition of 1 + 1), in contradiction to P being a pseudoepimorphism.

Let Gy be a connected component of C, we will prove that €, = €. We have a natural
isomorphism

a:F-P—F: P

whose components are
id, if E is not in G
ap = . ..
t, if Fisin Gy

where ¢t : 1 +1 — 1 + 1 swaps the two copies of 1. The naturality squares

FP(FE) £~ FP(E)

FPhl lFPh

FP(E')—— FP(E')

commute for all h : E — E’: this is obvious except for the case that F is in €y and
E'is in €\ Gy, or vice versa, but that case does not happen because €y is a connected
component of C.

There exists a natural isomorphism §: F' — F' with a = fP. The component [, is
t because choosing any F in @y, the following square

14120141
id:F(:v—>P(E))l lid:F(:p—)P(E))

1+1tWE1+1

commutes. This proves that € = Cy: by choosing any E € €\ €, we would obtain,
analogously, 3, = id, which is impossible. [
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3.2. REMARK. Given a functor P : € — B and an object B of B we can form a splitting
fibre of B: it is the category whose objects are all pairs of morphisms

m

B P(E) withq¢-m=1id
q

where F is an object of €. And morphisms into

B___p(E)
q

are those morphisms e : E — E in & for which the following diagram

commutes.
Every lax epimorphism has all splitting fibres connected. In fact, these are just the
categories idp | P.

3.3. PROPOSITION. Let P : & — B have connected splitting fibres and let
(x) all morphisms in B be composites of isomorphisms and morphisms in P|[E].

Then P is a lax epimorphism.

Proof. The functor P* : [B,Set] — [E,Set] is faithful. In fact, for distinct natural
transformations «, § : ' — G (where F,G are functors in [B, Set]) we find an object B
with ap # (g, and we choose an object

B P(E)

-
q

in the splitting fibre of B. Then (aP)g # (6P)g. In fact: assuming the contrary, we get
a contradiction:

ap=ag-Fq-Fm=Gq-ag-Fm=Gq- (- Fm = 3.

The functor P* is full: consider functors F,G : B — Set and a natural transformation
a = FP — GP. Define, for every object B of B, the morphism Gz : FB — GB as
follows: choose

B___P(E)
q



in the splitting fibre and put
ﬁB:Gq-aE-Fm.

This is independent of the choice: to show this, we use the connectedness of the splitting
fibre and verify only that given a morphism as in 3.2, then Gq-ag - Fm = Gq-ap - Fm:

FP(E)-22~GP(E)
e 2
FB  FP(e GP(e)  GB

k Gq

Consequently,

Bpp) = ap for each E in €

because we choose ¢ = m = id. To show that (g is natural in B, it is sufficient — due
to (¥) — to consider all isomorphisms and all morphisms in P[€].
Let h: B — B’ be an isomorphism. Given

in the splitting fibre of B, then

lies in the splitting fibre of B’, thus,
B =Gh-q)-ag-F(m-h1)

which implies
GhﬂB:GthaEFm:ﬂB/ - Fh.

Let h : B — B’ have the form h = P(k) for k: E — E' in €. Since P(F) = B and
P(E'") = B, we conclude

Gh-Bg =GP(k) - ag = ag - FP(k) = 8 - Fh.

Thus, [ is natural. [
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3.4. PROPOSITION. For a functor P : € — B between finite preorders the following
conditions are equivalent:

1. P is a lax epimorphism.
2. P has connected splitting fibres and satisfies condition (%) of Proposition 3.3.

Proof. 1.=2. Every morphism in B is, since B is a finite preorder, a composite of
isomorphism and coverings g — o (i-e., 9 < yo and no x in B fulfils 5 < z < yp).
Thus, it is sufficient to prove condition () of Proposition 3.3 for every covering zo — yp.

Assuming the contrary, we extend B to a category € by adding, for every pair of
objects r = xy and y = yo a new morphism

Tay 1 T — Y.

The composition in € extends that of B by the following rules: given = =2 x, and y =2 y,
then for every z < x put

Tw, 2=
Toy (2 —> ) = :
wy ) { 2 — vy, otherwise

and for every y > z put

Ty, fy=z
(y—>2) 1oy = { x — z, otherwise
Since g —> yo (thus, x — y) is not a composite of isomorphisms and morphisms in
PI€], we have a well-defined functor @); : B — € with Q(x — y) = ry, for all z = z,
y = 1o and otherwise (Q; is the identity function. Let ()2 : B — € denote the inclusion
functor. Then @); - P = ()2 - P. But there exists no natural transformation v : 1 — Q)2
because the square

Zo il Zo
xo—)yol \Lrwoyo
Yo=—="Y0
does not commute.
2.=-1. This follows from Proposition 3.3. [

3.5. REMARK. The above condition (%) together with surjectivity characterizes finite
quotients (i.e., regular epimorphisms) in the category Top, of topological Ty spaces. More
precisely, if we identify a finite topological space with the induced order (z < y iff z lies
in the closure of y), then continuous functions are precisely the functors. And quotients
are precisely the surjective functors satisfying (x), as proved in [6] and [7].
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3.6. ExamMPLE. We show a lax epimorphism P : € — B between posets which does
not satisfy condition (x) of Proposition 3.3.

We define a set X = (J, ., X» with two partial orderings (<) C (C) on it, where
(<) = Upew(Zn) and (B) = U, ., (En), by induction. The first three steps are illustrated
below (where < is indicated by full lines and C by dotted lines).

o Jand

FIrRST STEP. Xy = {0,1}, <, is discrete, Cq is the chain 0 C¢ 1.

INDUCTION STEP. Let @, be the set of all C,-coverings (i.e., pairs z C, y with no
element z satisfying x C,, z C,, y) which are not related by <,,. Let X,,;; be obtained by
adding to X,, elements a(z,y) and b(z,y) for each (z,y) € Q,. Then <,,;; is the reflective
and transitive closure of <, extended by

x §n+1 CL(ZU, y) and b(ZU, y) §n+1 Y and b(l’, y) §n+1 CL(ZU, y)

for all (z,y) € @,. And C,,,; is the transitive closure of (C,) U (<,41) extended by

a(x7y) <ppy and oz <,y b(x,y)

for all (z,y) € Q.

CrLAM. id : (X, <) — (X,C) is a lax epimorphism.

That is, given a pair  C y in X, then the subposet V of (X, <) of all z withx C 2z C y
is connected. We prove this by induction on n with z,y € X,,. If n = 0, the only interesting
case is x =0,y =1 and V = X. The poset (X, <) is indeed connected, see Theorem 2.1
because (X7, <;) is connected, and every new element added to Xy, £ > 0, is connected
by <; to some element of X;. For the induction case, observe that since (X,,,C,) is a
finite poset, every morphism is a composite of coverings. And the elements we add at
any stage later are only added in between coverings. (More precisely, given z € Xy, for
k > n, with © Ty z T y there exists a covering 2’ T, ' with x C,, 2’ Ty 2 Ty v/ &, y.)
Thus, it is sufficient to prove that (V, <) is connected assuming that x C,, y is a covering.
If <,y then V = {x,y} is connected. If (z,y) € Q,, the argument is as for 0, 1 at the
beginning: V N X, 11 = {z,y,a(x,y),b(z,y)} is connected, and every new element added
to VN Xky1, £ > n, is connected by <j to some element of V' N Xj.

CrAM. The morphism 0 — 1 of (X, C) is not a composite of isomorphisms and mor-
phisms in P[€] — in other words, 0 £ 1. This is clear.
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4. Faithfulness of P*

4.1. PROPOSITION. For every functor P : € — B between small categories the following
conditions are equivalent:

1. P* is faithful.

2. P* is conservative (i.e., reflects isomorphisms).

3. P* is monadic.

4. Every object of B is a retract of an object in P[E].
Proof. 1.=2. Since P* is a right adjoint of L : [E,Set] — [B, Set] (the functor of
left Kan extension), faithfulness means that the counit is an epimorphism in [B, Set];

and since epimorphisms in [B, Set| are regular, we conclude that the comparison functor
K : [€,Set] — [B, Set]” of the monad T of that adjunction

€, Set] K [B, Set]”

[B, Set]

is full and faithful, thus, conservative. Since the forgetful functor U : [B, Set]T — [B, Set]
is conservative, it follows that so is P* =U - K.

2.=3. This is clear from Beck’s Theorem: P* preserves coequalizers (in fact, colimits)
and has a left adjoint.

3.=4. This is analogous to the proof of 2.<3. in Theorem 2.1: here ¢ is an epitrans-
formation (because P* is faithful) and we conclude that idp : B — B has a preimage
under eg(p,_), i.e., there are

B-"~P(E)—+B
with ¢ - m = idp.

4.=1. Let o, : FF — G be different morphisms of [B, Set]. We are to prove aP # (P.
Given an object B with ag # (g, find

B—-P(E)—-B

with ¢ - m = idp. Since F'q is a split epimorphism, we conclude that ap - F'q # (g - Fq,
or, equivalently, Gq - ap) # Gq - Bpk), thus (aP)g # (BP)E. u
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4.2. REMARK. If P is a pseudoepimorphism, then P* is obviously faithful. But the
converse does not hold, e.g., for the embedding

ol
P —
0

1

*—>0

0

which is certainly no pseudoepimorphism, P* is faithful.

4.3. REMARK.

(a) Recall that P* is fully faithful iff each of the categories f / P is connected, i.e., iff
every morphism f of B has a factorization through some object of P[€] unique up
to the equivalence =~ of Theorem 2.1:

(E,m,q) = (E,m,q) iff m=P(e)-m, q=q- P(e) for some morphism e in €.

Now P* is faithful iff each of the categories f / P is nonempty, i.e., iff every
morphism of B has a factorization through some object of P[E]. In fact, given
f: B — B, choose a retraction ¢ : P(E) — B then, given m : B — P(F) with
q - m = id, we factorize

f=B-"-pPE)L%p
(b) We can also characterize functors such that P* is full. These are precisely the

functors P : € — B such that for every object B in B there exists an object Fj in
€ and morphisms

B mo P(EO) q0 B
with the following property: given morphisms
B—2-P(E)—>Xx
in B then
(E,m,q) ~ (E(]aman m- qO)

In fact, in the adjunction L 4 P* we have P* full iff € is componentwise a split
monomorphism (see 19.4 in [1]). This is the case iff the components

EB(B,_) - G — B(B, _)

(see the proof of Theorem 2.1) are, for all objects B in B, split monomorphisms.
To give a natural transformation a : B(B, -) — G with « - £n(p,_) = id means
precisely to give (Ey, mg, qo) = ap(idp) as above.
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