
A first-order ε-approximation algorithm for large linear

programs

João Soares∗

December 19, 2000

Abstract

This report presents an algorithm that finds an ε-feasible solution relatively to some
constraints of a linear program. The algorithm is a first-order feasible directions method
with constant stepsize that attempts to find the minimizer of an exponential penalty func-
tion. When embedded with bisection search, the algorithm allows for the approximated
solution of linear programs. The running time of our algorithm depends polynomially on
1/ε and a parameter width introduced by Plotkin, Shmoys and Tardos in [3] and it is es-
pecially interesting when the direction finding (linear) subproblem is considered easy and
amenable to reoptimization. We present applications of this framework to the Held and
Karp bound on the traveling salesman problem and to a class of hard 0-1 linear programs.
Computational results are expected to complement this report in the forthcoming revised
version.

1 Introduction

Some linear programs arising from real-world applications have such a large number of vari-
ables and/or constraints that they can’t be dealt with simplex-type methods, or even interior-
point methods. This is the case with most of the fractional set-covering, -partitioning and
-packing models, that usually have a abnormally large number of variables. Models like these
arise in applications like crew scheduling (trains, buses or airplanes), political districting,
protection of microdata, information retrieval, etc. Tipically these models are suboptimally
solved by heuristics because an optimization framework (usually of the branch-and-price type)
has to be rather specialized, if feasible at all. Moreover, a branch-and-price framework re-
quires the solution of large linear programs at every node of the branch-and-price tree and
these linear programs may take a long time and storage to be solved to optimality.

Our framework attempts to find reasonable approximate solutions to those models quickly
and without too much storage, along the lines of Lagrangian relaxation. The approximation
obtained may serve the purpose of speeding-up the optimal basis identification. We will be

∗Mathematics Department, University of Coimbra, 3000 Coimbra, Portugal. Email: jsoares@mat.uc.pt

1

looking for an approximated solution of a linear program in the following form

z∗ ≡ min cx
s.t. Ax ≥ b,

x ∈ P,
(1)

where A ∈ IRm×n, b ∈ IRm and P ⊆ IRn is a set (possibly, a lattice) over which optimizing
linear programs is considered ”easy”. For example, in a set covering model the matrix A is
a matrix of zeros and ones, the vector b is a vector of all-ones, and the set P is the lattice
{0, 1}n, or the hypercube [0, 1]n in the fractional version. If P includes a budget constraint
then P becomes the feasible region of a knapsack problem or a continuous knapsack problem,
respectively.

We focus on obtaining a reasonable approximation to the optimal solution of (1) by an
ε-feasible solution. A point x ∈ P is ε-feasible relatively to the constraints Ax ≥ b if

λ(x) ≡ max
i=1,...,m

bi − aix ≤ ε ⇐⇒ b−Ax ≤ εe,

where ai denotes the ith row of the matrix A and e denotes a column vector of all-ones. To
achieve this, we propose a first-order feasible directions method with constant stepsize that
attempts to solve the nonlinear program

Φ(α, z) = min φ(x) ≡
m∑

i=0

exp(α (bi − aix))

s.t. x ∈ P ′ ≡ P ∩ {x: cx ≤ z}
(2)

for given values of the parameters α and z, where exp(·) denotes the exponential function.
The scalar α is a penalty parameter and z is a guess for the value of z∗. The running time
of our algorithm depends polynomially on 1/ε and the width of the set P ′ relatively to the
constraints Ax ≥ b. Significantly, the running time does not depend explicitly on n and,
hence, it can be applied when n is exponentially large, assuming that, for a given row vector
y, there exists a polynomial subroutine to optimize yAx over P ′.

All the problems in our framework are known to be solvable in polynomial time, but the
amount of computer storage can be so high that the complexity may not be observable in
practice. Thus, our interest is in proposing an algorithm that obtains an ε-approximation to
the optimal solution through solving a sequence of linear programs that are easy while, for a
fixed ε, guaranteeing a pseudo-polynomial complexity in the worst case.

2 The algorithm

We assume that the feasible region of program (2) is nonempty and bounded for any z of
interest so that, at least, an optimal solution exists. We say that x̄ is ε-optimal if x̄ ∈ P ′ and
φ(x̄) ≤ (1 + ε)Φ(α, z).

If x is feasible in (1) then φ(x) ≤ m, while if x is simply ε-feasible then φ(x) ≤ m exp(αε).
On the other hand, if x is not ε-feasible then exp(αε) < φ(x). Clearly, if x̄ is ε-optimal with
φ(x̄) > (1 + ε)m then there is no feasible solution x in (1) with cx ≤ z. We will choose α so

2

that it may be possible to assert whether x̄ is ε-feasible from the value of φ(x̄), as formally
stated in the next proposition.

Lemma 1 Assume that α ≥ ln((1 + ε)m)/ε. Then,

1. If there is no ε-feasible solution in (1) such that cx ≤ z then Φ(α, z) > (1 + ε)m.

2. If x̄ is feasible in (2) and φ(x̄) ≤ (1 + ε)m then x̄ is ε-feasible with cx̄ ≤ z.

Proof: Use ε < ε′ ≡ min{λ(x):x ∈ P, cx ≤ z} to prove the first assertion. If φ(x̄) ≤ (1 + ε)m
then, for any i = 0, . . . ,m, exp(α (bi − aix̄)) ≤ (1 + ε)m, or equivalently, bi − aix̄ ≤ ln((1 +
ε)m)/α ≤ ε. 2

Thus, keeping the value of α fixed, we may use bisection to search for the minimum value
of z that produces a feasible solution x in (1) with cx ≤ z. The bisection search maintains
an interval [za, zb] such that there is no feasible solution x in (1) with cx ≤ za and there is a
known ε-feasible solution x in (1) with cx ≤ zb. The search is interrupted when zb− za ≤ εzb.
This does not imply any bound on how much zb differs from z∗. It may be possible that zb is
much less than z∗ though very unlikely for α large, as our next result shows.

Proposition 1 Let the sequence {αk} be such that limk αk = +∞ and yk = [αk exp(αk(bi −
aix

k))]i, where xk is optimal in Φ(αk, z∗). Then, every accumulation point (x̄, ȳ) of the
sequence {(xk, yk)} is such that ȳ ≥ 0, Ax̄ ≤ b and

(c− ȳA) (x− x̄) ≥ 0, (3)

for every x ∈ P , i.e., x̄ is optimal for program (1).

Proof: Assume limk∈K(xk, yk) = (x̄, ȳ). By continuity, we have that x̄ ∈ P, ȳ ≥ 0 and
(−ȳA) (x− x̄) ≥ 0, for every x ∈ P ∩{x: cx ≤ z∗}. From the definition of ȳi we conclude that
aix̄ ≤ bi, for every i, and that ȳi must be zero whenever aix̄ < bi. Thus, Ax̄ ≤ b, which implies
that x̄ is optimum for program (1), and ȳ(Ax̄− b) = 0. From this it is easy to conclude that
(3) holds for any x that is optimal for program (1). When x be feasible for program (1) but
nonoptimal, we have that ȳA(x−x̄) ≤ 0 and c(x−x̄) > 0 so that (c− ȳA)(x−x̄) > 0, also. 2

If we assume a unique correspondence between α and ε then Proposition 1 induces the fol-
lowing practical modification to the bisection search described before. Let [zk

a , zk
b] be the last

bisection interval of the search for a given εk, thus, satisfying zk
b − zk

a ≤ εkz
k
b . Then, restart

the bisection search with [zk
b , zb] for some εk+1 < εk, for example, εk+1 = εk/2. Note that εk-

feasible solutions are known at both extremes of the new initial interval (and possibly in many
others in between) and, thus, the initial solutions for the minimization of φ when ε = εk+1

will not overflow the exponential functions evaluation by too much. From Proposition 1, zk
b

goes to z∗ as εk goes to zero.

3

Our algorithm for solving (2) is a first-order iterative procedure. The algorithm coincides
with the algorithm Improve-Packing proposed in [3] but the stepsize and the stopping criterion
are different. Starting from x0 ∈ P ′, at a generic iterate x̄ that is not ε-feasible the direction
of movement is determined from solving the linear program

min m1(x) ≡ φ(x̄) +∇φ(x̄)(x− x̄)
s.t. x ∈ P ′ = P ∩ {x: cx ≤ z} (4)

Then, we reset x̄ to x̄ + σ̂(x̂− x̄), for some fixed stepsize σ̂ ∈ (0, 1], and proceed analogously
to the next iteration. The algorithm is halted when φ(x̄) ≤ m(1 + ε) or a maximum number
of iterations is reached.

Theorem 1 below presents one particular choice for the stepsize that depends on the
following quantity, introduced as the width of P relatively to the constraints Ax ≥ b in [3],

ρ ≡ max
i=1,2,...,m

(
max | aix− aiy |
s.t. x, y ∈ conv (ext P ′)

)
, (5)

where conv (·) denotes convex hull and ext P ′ denotes the set of extreme points of conv (P ′).
Hence, conv (ext P ′) is always a polytope and ρ is well defined. In [3] ρ is defined differently
depending when whether the matrix A is such that Ax ≥ 0, for every x ∈ P , or not. If yes
then the two definitions coincide with ρ = maxi maxx∈P aix. If not then our definition of ρ is
half of the ρ that is proposed in [3]. We also recall that the stepsize proposed in [3], which is
ε/(4ρα), is much smaller than the stepsize that we propose in the following theorem.

Theorem 1 Assume that z∗ ≤ z, x̄ ∈ conv (ext P ′) is not ε-feasible, ε ∈ (0, 1), x̂ ∈ ext P ′ is
optimal for program (4), ρ is given by (5) and

α ≥ max
(

ln(m(3 + ε))
ε

,
1

ρ ln 2

)
. (6)

Then, for σ̂ = 1/(αρ)2 we have that

φ (x̄ + σ̂(x̂− x̄)) <

(
1− 1

4(αρ)2
1 + ε

3 + ε

)
φ(x̄).

Proof: Let g(σ) ≡ φ (x̄ + σ(x̂− x̄)), for σ ∈ (0, 1]. From the second-order Taylor expansion
of g, there exists ξ ∈ (0, σ] such that

g(σ) = g(0) + σg′(0) +
σ2

2
g′′(ξ), (7)

where g(0) = φ(x̄), g′(0) = ∇φ(x̄)T (x̂ − x̄) and σ2g′′(ξ)/2 =
∑m

i=1 (σαai (x̂− x̄))2 exp(ri),
where ri lies between α(bi − aix̄) and α(bi − aix̄) + σαai(x̂− x̄). If | σαai(x̂− x̄) |≤ δ then,
from the second-order Taylor expansion of the exponential,

exp(ri) ≤ exp(α(bi − aix̄))

[
1 + ασai(x̂− x̄) +

δ2 exp(δ)
2

+ δ

]

4

which implies that

σ2

2
g′′(ξ) ≤ δ2

2

m∑
i=1

exp(α(bi − aix̄))

[
1 + ασai(x̂− x̄) +

δ2 exp(δ)
2

+ δ

]

=
δ2

2

(
1 +

δ2 exp(δ)
2

+ δ

)
φ(x̄) + σ

δ2

2
∇φ(x̄)(x̂− x̄)

Thus, from (7),

g(σ) ≤
[
1 +

δ2

2

(
1 +

δ2 exp(δ)
2

+ δ

)]
φ(x̄) + σ

(
1 +

δ2

2

)
∇φ(x̄)(x̂− x̄). (8)

Since z∗ ≤ z, there exists x∗ feasible in (1) that is also feasible in (4). Then, using the fact
that x̄ is not ε-feasible,

φ(x∗) ≤ m

exp(αε)
exp(αε) ≤ m

exp(αε)
φ(x̄) ≤ 1

3 + ε
φ(x̄).

Now, from the convexity of φ, we have that

∇φ(x̄)(x̂− x̄) ≤ ∇φ(x̄)(x∗ − x̄) ≤ −φ(x̄) + φ(x∗) ≤ −2 + ε

3 + ε
φ(x̄). (9)

By plugging (9) into (8), we obtain

g(σ) ≤
[
1 +

δ2

2

(
1 +

δ2 exp(δ)
2

+ δ

)
− σ

(
1 +

δ2

2

)(
2 + ε

3 + ε

)]
φ(x̄).

Now, if we choose σ to satisfy ασρ ≤ δ (i.e., σ = δ/(αρ)) then g(σ) ≤ ∆(δ)φ(x̄), where

∆(σ) ≡ 1 +
δ2

2

(
1 +

δ2 exp(δ)
2

+ δ

)
− δ

αρ

(
1 +

δ2

2

)
2 + ε

3 + ε

We need to choose δ such that ∆(δ) < 1 and as small as possible. If we restrict our attention
to δ such that 1 < exp(δ) ≤ 2 (i.e., 0 < δ ≤ ln 2) then

∆(δ) ≤ 1 +
δ2

2

(
1 + δ2 + δ

)
− δ

αρ

(
1 +

δ2

2

)
2 + ε

3 + ε

= 1 +
δ2

2

(
1 + δ2

)
− δ

αρ

(
1 + δ2

) 2 + ε

3 + ε
+

δ3

2αρ

2 + ε

3 + ε
+

δ3

2
.

At δ̂ = 1/(αρ) we have that

∆(δ̂) ≤ 1 +
1

(αρ)2

(
1 +

1
(αρ)2

)(
1
2
− 2 + ε

3 + ε

)
+

1
2(αρ)4

2 + ε

3 + ε
+

1
2(αρ)3

= 1− 1
2(αρ)2

1 + ε

3 + ε
+

1
2(αρ)3

+
1

2(αρ)4
2 + ε

3 + ε
< 1− 1

4(αρ)2
1 + ε

3 + ε
.

2

5

In summary, assuming that z∗ ≤ z, if the first k iterates are not ε-feasible then

φ(xk+1) <

(
1− 1

4(αρ)2
1 + ε

3 + ε

)k

φ(x0),

where we note that the right hand side goes to zero. The following corollary states a worst-case
complexity bound on the number of iterations of the algorithm.

Corolary 1 If α satisfies (6) and ε ∈ (0, 1) then our algorithm, using σ̂ = 1/(αρ)2 and
starting from x0 ∈ P such that cx ≤ z, terminates after

ln(m) + ln(1 + ε)− lnφ(x0)

ln
(
1− 1

4(αρ)2
1+ε
3+ε

) < 16α3ρ2λ(x0) (10)

iterations, with an ε-feasible solution or, otherwise, with the proof that no feasible solution for
program (1) such that cx ≤ z exists.

Proof: If z∗ ≤ z then the left-hand-side of (10) is an upper bound on the number of iterations
k such that φ(xk+1) < m(1+ε). When this is the case then, from Lemma 1, xk+1 is ε-feasible.
If, still after that many iterations, no ε-feasible solution was found then, from Theorem 1,
z < z∗. By using the fact that −1/ ln(1− x) < 1/x, for any x ∈ (0, 1), we have that

ln(m) + ln(1 + ε)− lnφ(x0)

ln
(
1− 1

4(αρ)2
1+ε
3+ε

) <
(
αλ(x0)− ln(m)− ln(1 + ε)

)
4(αρ)2

3 + ε

1 + ε
,

from where (10) easily follows. 2

We remark that the right hand side of (10) is O(ln3(m)ε−3ρ2λ(x0)). If λ(x0) = O(ε) then
only O

(
ln3(m)ε−2ρ2

)
= Õ

(
ε−2ρ2

)
iterations are required. This complexity result is related

to Karger and Plotkin’s [2, Theorem 2.5] (Õ
(
ε−3ρ

)
) and Plotkin, Shmoys and Tardos’ [3,

Theorem 2.12] (Õ(ε−2ρ ln ε−1)). The result of Karger and Plotkin is valid even if the budget
constraint is included in the objective function of (2) without counting in the definition of
ρ. We recall that a function f(n) is said to be Õ(g(n)) if there exists a constant c such that
f(n) lnc(n) ≥ O(g(n)).

3 Applications

In this section, we show how to apply the algorithm presented in the previous section to find
an ε-approximation to a variety of optimization problems.

3.1 Held and Karp lower bound on the TSP

The Held and Karp lower bound is a lower bound on the value of a minimum length traveling
salesman tour on an undirected graph G = (V,E), where V denotes the node set and E

6

denotes the edge set. We assume an instance of costs ce, for e ∈ E, that are positive and
satisfy the triangle inequality.

Held and Karp [?] showed that the lower bound, denoted z∗, can be obtained through a
subgradient algorithm. They have also showed that z∗ is the optimal value over the subtour
elimination polytope, i.e., following closely the explanation given in [3],

z∗ = min
∑
e∈E

ceye

s.t.
∑

e∈E∩Si

ye ≥ 2, i = 1, 2, . . . , s

ye ≥ 0, e ∈ E

where {Si, i = 1, 2, . . . , s} denotes the family of all the cuts on the graph G. In this formu-
lation, variables correspond to edges and there is a constraint for each cut. We shall instead
focus on the dual of this linear program:

z∗ = max 2
s∑

j=1

xj

s.t.
s∑

j=1

(
δej

ce

)
xj ≤ 1, e ∈ E

xj ≥ 0, j = 1, 2, . . . , s

where δej = 1 if cut Sj separates the two ends of the edge e. In this formulation, variables
correspond to cuts and there is a constraint for each edge.

Let P ′ = {x:
∑s

j=1 xj ≥ z/2, x ≥ 0} and the system Ax ≥ b be given by the remaining
constraints. Since b = e, x ∈ P is ε-feasible if Ax ≤ (1+ ε)b. It is well known that, due to the
triangle inequality, z∗ ∈ [C1T , 2C1T], where C1T is the weight of a minimum weight 1-tree on
the graph G then the width for this formulation satisfies

ρ =
C1T

mine∈E ce
≥ z

2 mine∈E ce
= max

e∈E


max

s∑
j=1

(
δej

ce

)
xj

s.t.
s∑

j=1

xj =
z

2

xj ≥ 0, j = 1, 2, . . . , s


.

Construct an initial point x0 ∈ P ′ for the optimization of (2) in the following way:
(z/2) at the component correspondent to some cut S on the graph G and 0 anywhere
else. The cut S separates the set V in two disjoint sets of vertices V1 and V2 and so,
λ(x0) = z/(2 mine∈δ(V1) ce) ≤ ρ. From Corollary 1, if we use α = ln(|E|(3 + ε))/ε then
the number of iterations required by our algorithm to find an ε-feasible solution or to show
that no feasible solution exists is O(ln3 | E | ε−3ρ3). The subprograms that are required to be
solved at each iteration of our algorithm are min-cut problems and can be solved in O(| V |3).

The bisection search can be initialized with the interval [za, zb] = [C1T , 2C1T] and ends
when the amplitude of the interval [za, zb] is such that zb−za ≤ εza. At this point, it is known
a solution x̄ ∈ P ′, in particular

∑
j x̄j ≥ (za/2), with Ax̄ ≤ (1 + ε)b, and no feasible x ∈ P

7

exists, in particular
∑

j xj ≥ (zb/2), such that Ax ≤ b. The latter part of this implies that
the Held and Karp bound is at most za(1 + ε). The former part implies that x̄/(1 + ε) is a
feasible solution to of value at least za/(1 + ε). Therefore, za/(1 + ε) ≤ z∗ ≤ za(1 + ε), which
implies that za/(1 + ε) is a valid lower bound on the TSP that is within a factor of (1 + ε)2

of the Held and Karp bound. The complexity of the overall algorithm in terms of calls to the
linear subprograms is O(ln3 | E | ε−3 ln(1/ε)ρ3).

3.2 A class of hard small 0-1 programs

Cornuéjols and Dawandee proposed at the IPCO VI conference, later published in [1], a set of
0-1 linear programming instances that proved to be very hard to solve by traditional methods,
and in particular by linear programming based branch-and-bound. This class of problems can
be summarised as follows: Find a point x ∈ {0, 1}n in the intersection of m hyperplanes in
IRn that minimizes a linear function cx. Mathematically,

z∗ = min
n∑

j=1

cjxj = min
n∑

j=1

cjxj

s.t.
n∑

j=1

dijxj = pi, i = 1, . . . ,m s.t.
s∑

j=1

(
dij

pi

)
xj = 1, i = 1, . . . ,m

xj ∈ {0, 1}, j = 1, . . . , n, xj ∈ {0, 1}, j = 1, . . . , n,

where D = [dij] ≥ 0, p = [pi] > 0, c = [cj] > 0 and dij < pi, for every i, j. All scalars are
integer numbers. We will assume, without loss of generality, that p is a vector of all-ones and
that D is a matrix of real nonnegative numbers satisfying dij < 1, for any i, j.

Let P ′ = {x ∈ {0, 1}n:
∑n

j=1 cjxj ≤ z} and the system Ax ≥ b, where A ∈ IR2m×n and
b ∈ IR2m, be given by the remaining constraints Dx ≥ e and −Dx ≥ −e. Thus, x ∈ P ′ is
ε-feasible if (1 − ε)e ≤ Dx ≤ (1 + ε)e. Since Dx ≥ 0, for any x ∈ P ′, the width for this
formulation satisfies

ρ = n ≥ max
i=1,2,...m


max

n∑
j=1

dijxj

s.t.
n∑

j=1

cjxj ≤ z

xj ∈ {0, 1}, j = 1, 2, . . . , n


. (11)

Note that, if di denotes the ith row of the matrix D then the objective function in (2) is given
by

φ(x) ≡
m∑

i=1

exp(α(1− dix)) + exp(α(dix− 1)).

Let x0 ∈ P ′ be any starting point for the optimization of (2). Since λ(x0) ≤ n, if we
use α = ln(2m(3 + ε))/ε then the number of iterations required by our algorithm to find
an ε-feasible solution or to show that no feasible solution exists is O(ln3(2m)ε−3n3). The
subprograms that are required to be solved at each iteration of our algorithm are knapsack
problems and can be solved in O(nz) operations by a dynamic programming algorithm.

8

The bisection search can be initialized with the interval [za, zb] = [z, z̄], where z̄ is the
optimal value of the linear programming relaxation of (11) and z̄ ≤

∑n
j=1 cj is a known upper

bound on the value of z∗. The bisection search ends when the interval [za, zb] is such that
zb − za ≤ εzb. At this point, it is known a solution x̄ ∈ P such that (1− ε)e ≤ Dx̄ ≤ (1 + ε)b
and

∑
j cj x̄j ≤ zb, and no x ∈ P satisfying Ax = b exists such that

∑
j cjxj ≤ za.

This report will be complemented with computational results on the Cornuéjols-Dawandee
instances.

References

[1] G. Cornuéjols and M. Dawandee, A class of hard small 0-1 programs, INFORMS Journal
on Computing 11 (1999), 205–210.

[2] D. Karger and S. Plotkin, Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows, Proceedings of the 27th Annual ACM
Symposium on Theory of of Computing, 1995.

[3] S. Plotkin, D. Shmoys, and E. Tardos, Fast approximation algorithms for fractional pack-
ing and covering problems, Mathematics of Operations Research 20 (1995), 257–301.

9

