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Abstract

Characterizations of eigenvalues of normal matrices using the lexicographical

order in C are presented, with some applications.

1 Introduction

The classes of Hermitian and unitary matrices have a rich structure and
much is known about the eigenvalues of these types of matrices. The more
general class of normal (i.e. unitarily diagonalizable) complex matrices is less
well understood. And not much is known about spectral problems involving
normal matrices, even with their eigenvalues being described in terms of
those of their Hermitian and skew-Hermitian parts.

The difference between Hermitian and general normal matrices is that
the latter can have as eigenvalues arbitrary complex numbers. C, of course,
is not an ordered field. But it turns out that the simple fact that C can be
totally ordered as a vector space over the reals is enough to obtain useful
information on spectra of normal matrices using Hermitian matrices as an

inspiration. This is the object of the present note.

2 Total orders in C

A total order in C compatible with addition of complex numbers and mul-
tiplication by positive reals is the lexicographic order. It is characterized by
its positive cone H = {a+ib:a >0 or,if a =0, b > 0}.
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Compatibility with addition means H + H C H, and compatibility with
multiplication by positive reals means AH C H for A > 0. The order being
total means H U —H = C\ {0}.

The lexicographic order is not Archimedian and, apart from rotations of
the positive cone, is the only total order in C compatible with the above
mentioned operations. We shall use the notation <'** for it, and, for real 6,

we use <X for the total order with positive cone e H.

3 Eigenvalues of normal matrices

Let A be an n x n complex normal matrix. Let aq,..., a, be its eigenvalues,
ordered so that oy > ... > o, and let v1,...,v, be corresponding
orthonormal eigenvectors of A. For j = 1,...,n denote by F; and E; the
subspaces of C" spanned by vq,...,v; and vj, ..., vy, respectively.

Applying the argument used to obtain the corresponding result for Her-

mitian matrices, we get:

Theorem 1. For j =1,...,n we have
aj= min Az = max z"Az.
z€E;, ||z]|=1 z€E], ||lz||=1

In addition, we have

a; = max min z'Azx = min max z"Azx.
dim H=j z€H,||z||=1 dim H=n—j+1 zecH,|z||=1

(Here max and min are used in the lexicographic sense.)

Analogous characterizations hold for any order of the type <{™, either

using the same proof or applying the theorem to the normal matrix e % A.

Note how these results make immediately visible the fact that the nume-
rical range W(A) = {2*Ax : ||z|| = 1} of a normal matrix A is the convex
hull of its eigenvalues: any straight line moving in the plane parallel to itself
must touch W (A) first at an eigenvalue of A.



From the above theorem we immediately obtain, again repeating the Her-

mitian argument, a result concerning principal normal submatrices of normal

matrices:
Theorem 2. Let A be an n X n normal matriz with eigenvalues
a; >ex o>l o If B is a principal k x k normal submatriz of A with

eigenvalues By > ... > 3, we have
lex lex .
Ot]Z /8]2 Ojin—k ]_laak

An analogous result holds for any order of the type <\ .

For other interlacing results in this setting see [2], [1].

The result in [2] shows that for a n x n normal matrix to have a principal
(n—1) x (n— 1) normal principal submatrix is a highly restrictive condition,
essentially forcing the matrix, apart from a rotation and a translation, to
be Hermitian. It seems plausible that one can obtain this from Theorem 2
above (this is easy to see for small values of n).

In [1] an interlacing result is presented for the arguments of eigenvalues of
a normal matrix and a normal principal submatrix: a relation with Theorem
2 above is unclear.

And then there is the general interlacing theorem for singular values [11],
which for normal matrix and submatrix yields a statement whose relation
with the above result is again unclear.

Note also that Theorem 2 does not follow directly from the interlacing
theorem for Hermitian matrices applied to the Hermitian and skew-Hermitian
parts of A and B.

4 Sums of normal matrices

A generalization of the first part of Theorem 1 can be obtained by mimicking
the corresponding result for Hermitian matrices [5]. To present it we need

some notation.



Take a sequence V' = (Vi ..., V},) of subspaces of C" with V} C ... C V,
and dim(V;) = i, for i = 1,...,n. Given a sequence I = (i, ...,i,), with
1< <... <1 <n, the Schubert variety associated to V' and I is

Q;(V) = {L subspace of C" : dim(L) =r, dim(LNV;,) >d, d=1,...r}.

Keep the notation of the previous section and write E = (Fj, ..., Ey,),
E'=(E,.,E). Putalsol'=(n—i,+1,...,n—i +1).

If L is a subspace of dimension r and x4, ..., z, is an orthonormal basis of
L, the Rayleigh trace of A with respect to L is

tr(ApL) = Z x Az, .
d=1

(This does not depend on the basis.)

Theorem 3. If the eigenvalues of a normal matriz A are aq > ... > @,
one has

o, +...+a;, = min tr(4;) = max tr(A;)
LEQ](E) LGQII(E,)

where again max and min are used in the lexicographic sense.

This characterization (of course also valid for any order of the type <i)
can be applied to obtaining inequalities for the eigenvalues of a sum of two

normal matrices if this sum is itself normal.

Let A and B be nxn normal matrices with eigenvalues o;; > ... >
and f; > ... >lex 3 respectively. Suppose that A + B is normal, with
eigenvalues v, > ... >l v Let B, E', F,F' and G,G' be sequences of
subspaces built from the eigenvectors of A, B and A + B, as before. Let I,

J and K be sequences of r indices:
:(ila---air)a 1§Z1<<Z7‘§n7

(Giseesdr) s 1< <o <jr <m,
(kla'--akr), 1§k1<<k,«§n

1
J
K
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Then, using the characterizations of Theorem 3, it is easy to see that:

Theorem 4. If
Qx(G) N Qpr(E) N Qu(F) #0,

then
")/kl—|—...—|—’}/kT SleXOéil+...+Oéir+ﬁjl+...ﬂﬁ.

For the Hermitian case this appears in [7], [4].

So a geometric condition (nonempty intersection of the three Schubert
varieties) implies a linear inequality between the eigenvalues of the three

normal matrices A, B and A + B. We abreviate this inequality to

Sy < Sap + T4

For the Hermitian case, a recent paper by Klyachko [8] has shown that
the inequalities arising from all such geometric conditions actually yield a
complete list of restrictions for the eigenvalues of a sum of two Hermitian

matrices in terms of the eigenvalues of the summands. For recent surveys on
this see [3], [9].

Klyachko’s results, coupled with the combinatorial work of Knutson and
Tao [10], imply the classical Horn conjecture [6] on eigenvalues of Hermitian

matrices, which we now recall.

For two real ordered spectra a and (3, denote by F(«, ) the set of all
possible ordered spectra of sums of two Hermitian matrices with spectra «
and (. For each r-tuple I = (iy,...,4,) with 1 <i; < ... <4, <n define

p([) = (ir—r,...,i2—2,i1—1).



Then Horn’s conjecture, now proved, can be presented as the following

recursive description of the set F:
Ela,f)={y: ¥y =Xa + X and

Yyx < Yoy + X3y whenever p(K) € E[p(I),p(J)], 1 <r<n}.

By the Schubert calculus (see for example [4]), the geometric condition
Qr(G) N Qp(E") N Qp(F") # 0 is equivalent to p(K) € LR[p(I),p(J)],
meaning that the r-tuple p(K’) can be obtained from p(I) and p(.J) using the
combinatorial Littlewood-Richardson rule. From the results in [8] and [10] it
turns out that it is also equivalent to p(K) € E[p(I), p(J)].

Return now to normal matrices A with spectrum «, B with spectrum [
and A + B with spectrum -, with notations as above. As we have seen, the
condition Qg (G) N Qp(E') N Qu(F") # 0 implies Xy < Ya; + ¥ 3;.

Therefore, bearing in mind the results quoted, we can now state:

Theorem 5. For 1 < r < n, whenever one has p(K) € E[p(I),p(J)], the
inequality
Sk < Ta; + X6

holds for the eigenvalues of the normal matrices A, B and A + B.

And the same, of course, for any order of the type <k*.
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