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Abstract. We lay down the foundations for a pointfree theory of Pervin spaces. A
Pervin space is a set equipped with a bounded sublattice of its powerset, and it is
known that these objects characterize those quasi-uniform spaces that are transitive
and totally bounded. The pointfree notion of a Pervin space, which we call Frith
frame, consists of a frame equipped with a generating bounded sublattice. In this
paper we introduce and study the category of Frith frames and show that the classical
dual adjunction between topological spaces and frames extends to a dual adjunction
between Pervin spaces and Frith frames. Unlike what happens for Pervin spaces, we
do not have an equivalence between the categories of transitive and totally bounded
quasi-uniform frames and of Frith frames, but we show that the latter is a full
coreflective subcategory of the former. We also explore the notion of completeness
of Frith frames inherited from quasi-uniform frames, providing a characterization
of those Frith frames that are complete and a description of the completion of an
arbitrary Frith frame.
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Key words: Pervin space, Frith frame, Firth quasi-uniformity, transitive and totally
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1. Introduction. Pervin quasi-uniformities were introduced to answer the ques-
tion of whether a given topology is induced by some quasi-uniformity. Pervin [20]
showed that, if τ is a topology on X, then τ is the topology induced by the quasi-
uniformity generated by the entourages of the form

EU := (X × U) ∪ (U c ×X),
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for U ∈ τ . Abstracting this idea, we may consider on a set X the quasi-uniformity
EF generated by {EU | U ∈ F}, for an arbitrary family F ⊆ P(X), and the
quasi-uniform spaces obtained in this way are known as Pervin spaces. In [9,
Proposition 2.1] it is shown that the quasi-uniform spaces (X, Eτ ) when τ is a
topology on X are transitive and totally bounded, but the same argument works
for every space (X, EF ). Actually, more can be said: every transitive and totally
bounded quasi-uniformity on a set X is of the form EF for some family F ⊆ P(X).
To the best of our knowledge, this result is due to Gehrke, Grigorieff, and Pin in
unpublished work (see also [25]), and at the present date, a proof can be found in
the Goubault-Larrecq’s blog [13]. Another interesting aspect of Pervin spaces is
that the bounded sublattice of P(X) generated by some family F can be recovered
from the quasi-uniform space (X, EF ): it consists of the subsets U ⊆ P(X) such
that EU ∈ EF (see [12, Theorem 5.1] for a proof). For that reason, Pervin spaces
may be elegantly represented by pairs (X,S), where X is a set and S is a bounded
sublattice of P(X).

The main contribution of this paper is the development of a pointfree theory
of Pervin spaces. The central object of study are the pairs of the form (L, S),
where L is a frame and S is a join-dense bounded sublattice. We name such pairs
of Frith frames. This choice is justified by the fact that the pointfree version of
Pervin’s construction is known as the Frith quasi-uniformity [10] on a congruence
frame. The correctness of our notion is evidenced by the existence of a Pervin-Frith
dual adjunction extending the classical dual adjunction between topological spaces
and frames (cf. Proposition 4.3). One major difference in the pointfree setting is
the lack of an equivalence between the categories of Frith frames and of transitive
and totally bounded quasi-uniform frames, although Frith frames do form a full
coreflective subcategory of transitive and totally bounded quasi-uniform frames
(cf. Theorem 5.12). The picture is different when we restrict to symmetric Frith
frames (that is, those Frith frames (L, S) where S is a Boolean algebra) on the
one hand, and to transitive and totally bounded uniform frames on the other (cf.
Corollary 6.2). We show that every Frith frame admits a symmetrization, which
defines a reflection of Frith frames onto the symmetric ones (cf. Proposition 6.5).
Moreover, the symmetrization of a Frith frame is shown to be, on the one hand,
a restriction of the usual uniform reflection of quasi-uniform frames (cf. Proposi-
tion 6.6) and, on the other hand, a pointfree version of the symmetrization of a
Pervin space (cf. Proposition 3.4 and Theorem 6.8). Finally, we explore the notion
of complete Frith frame, which is naturally inherited from the homonymous no-
tion for quasi-uniform frames (cf. Proposition 7.2), both from the point of view of
dense extremal epimorphisms and of Cauchy maps. In particular, we characterize
the complete Frith frames as those (L, S) such that L is coherent and S consists
of compact elements of L (cf. Theorem 7.7).

The paper is organized as follows. Section 2 is a preliminary section, where we
present the background needed and establish the notation used in the rest of the
paper. In Section 3 we give an overview of the theory of Pervin spaces. While we
did not intend to go very deep in our exposition, we tried to provide enough details
to allow the reader to compare the known results with our pointfree approach. In
Section 4 we introduce the category of Frith frames and discuss some of its general
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properties. In particular, we show the existence of a dual adjunction between
Pervin spaces and Frith frames (Section 4.1), we discuss compactness, coherence
and zero-dimensionality of Frith frames (Section 4.2), we show that the category of
Frith frames is complete and cocomplete (Section 4.3), and we characterize some
special morphisms (Sections 4.4 and 4.5). In Section 5 we show how to assign
a transitive and totally bounded quasi-uniform frame to each Frith frame and
show that this assignment defines a full coreflective embedding. In Section 6 we
consider the special case of symmetric Frith frames and of (transitive and totally
bounded) uniform frames. In particular, we show that the category of symmetric
Frith frames is equivalent to the category of transitive and totally bounded uniform
frames, and we show that the symmetric Frith frames form a full reflective and
coreflective subcategory of the category of Frith frames. Section 7 is devoted to
the characterization of complete Frith frames and of the completion of a Frith
frame. More precisely, in Section 7.1 we discuss completion using dense extremal
epimorphisms, while in Section 7.2 we characterize complete Frith frames using
Cauchy maps. Finally, in Section 8, we discuss possible connections with existing
literature on frames with bases.

2. Preliminaries. In this section we state the basic results and set up the
notation that will be used in the rest of the paper. The reader is assumed to have
basic knowledge of category theory, as well as some acquaintance with general topics
from pointfree topology. For more on category theory, the reader is referred to [17].
For further reading on frame theory, including uniform and quasi-uniform frames,
we refer to [23]. Although not strictly needed, some background on quasi-uniform
spaces may also be useful. For this topic, we refer to [9].

2.1. The category of frames and the Top - Frm dual adjunction. A frame
is a complete lattice (L,

∨
,
∧
, 0, 1) such that for every a ∈ L and {bi}i∈I ⊆ L the

following equality holds:

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi).

A frame homomorphism is a map h : L → M that preserves finite meets and ar-
bitrary joins (including empty meets and empty joins). We denote by Frm the
category of frames and frame homomorphisms. It is well-known that in Frm the
one-to-one homomorphisms are precisely the monomorphisms, while the onto ho-
momorphisms are the extremal epimorphisms.1 Extremal epimorphisms of frames
will be simply called surjections. A frame homomorphism h : L → M is dense
provided h(a) = 0 implies a = 0.

The frame distributive law guarantees that, for every element a ∈ L, there is a
greatest element a∗, called the pseudocomplement of a, satisfying a∧ a∗ = 0. That
is, a∗ is defined by the following property:

∀x ∈ L, x ∧ a = 0 ⇐⇒ x ≤ a∗. (1)

1In a category C, an epimorphism e is extremal if whenever e = m◦g with m a monomorphism
we have that m is an isomorphism.
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When a ∨ a∗ = 1, we have that a is complemented and a∗ is the complement of a.
Because the two finitary distributive laws are duals of each other, every frame

is a bounded distributive lattice. The category of bounded distributive lattices and
lattice homomorphisms will be denoted by DLat. We will only consider lattices
that are distributive and have empty meets and empty joins (that is, a top and
a bottom element). Therefore we will sometimes omit the words “bounded” and
“distributive” when referring to a lattice. For a frame L and a subset R ⊆ L, we
denote as ⟨R⟩DLat the sublattice of L generated by R. The expression ⟨R⟩Frm
denotes the subframe of L generated by R.

Finally, we denote by Top the category of topological spaces and continu-
ous functions. At the base of pointfree topology is the classical adjunction Ω :
Top ⇆ Frmop : pt between the category of topological spaces and (the dual of
the) category of frames [15, 23]. Points of a frame L will be seen as frame homo-
morphisms p : L → 2 where 2 := {0 < 1} denotes the two-element frame. The
basic open sets that generate the topology on pt(L) will be denoted by

â := {p ∈ pt(L) | p(a) = 1},

for each a ∈ L.

2.2. The congruence frame. Frame surjections may be characterized, up to
isomorphism, via frame congruences: if h : L ↠ M is a surjection, then its kernel
ker(h) := {(x, y) | h(x) = h(y)} is a frame congruence, and conversely, every
frame congruence θ induces a frame surjection L ↠ L/θ. These two assignments
are mutually inverse. Congruences are closed under arbitrary intersections, and
because of this they form a closure system within the poset of all binary relations
on a frame. For a frame L, we say that the congruence generated by a relation
ρ ⊆ L×L is the smallest congruence containing ρ, and we denote it by ρ. The set
CL of all frame congruences of a frame L is naturally ordered by inclusion, which
endows CL with a frame structure given by∧

i∈I

θi =
⋂
i∈I

θi and
∨
i∈I

θi =
⋃
i∈I

θi =
⋂

{θ ∈ CL |
⋃
i∈I

θi ⊆ θ}

for every family of congruences {θi}i∈I . There are two types of distinguished
congruences: the so-called closed ones, and the so-called open ones. These are,
respectively, the congruences ∇a generated by an element of the form (0, a), and
the congruences ∆a generated by an element of the form (a, 1), for some a ∈ L. It
is not hard to see that

∇a = {(x, y) | x ∨ a = y ∨ a} and ∆a = {(x, y) | x ∧ a = y ∧ a}.

We have the following basic results about open and closed congruences, where idL
denotes the identity congruence {(a, a) | a ∈ L} on L.

Lemma 2.1. For a frame L, and elements a, b, ai ∈ L (i ∈ I), the following holds:

◦ ∆0 = L× L and ∆1 = idL.

2290



A pointfree theory of Pervin spaces

◦ ∇0 = idL and ∇1 = L× L.

◦ ∆a ∨∆b = ∆a∧b and
⋂

i∈I ∆ai
= ∆∨

i∈I ai
.

◦
∨

i∈I ∇ai
= ∇∨

i∈I ai
and ∇a ∧∇b = ∇a∧b.

Open and closed congruences suffice to generate CL, meaning that if we close the
collection {∆a,∇a | a ∈ L} under finite meets and the resulting set under arbitrary
joins we get the whole congruence frame CL. In this paper, some subframes of CL
will be particularly relevant, namely those generated by a set of the form {∇a |
a ∈ L}∪ {∆s | s ∈ S}, and denoted CSL, for some subset S ⊆ L. We note that the
assignment a 7→ ∇a defines a frame embedding ∇ : L ↪→ CSL. For that reason, we
will often treat L as a subframe of CSL. The following generalizes a well-known
property of the congruence frame:

Proposition 2.2. ([26, Theorem 16.2]) Let L and M be frames and S ⊆ L
be a subset. Then, every frame homomorphism h : L → M such that h(s) is
complemented for all s ∈ S may be uniquely extended to a frame homomorphism
h̃ : CSL→M , so that the following diagram commutes:

L CSL

M

∇

h̃
h

In particular, we have the following:

Corollary 2.3. Let h : L → M be a frame homomorphism, and let S ⊆ L and
T ⊆ M be subsets such that h[S] ⊆ T . Then, h may be uniquely extended to a
frame homomorphism h : CSL → CTM . Moreover, for every a ∈ L and s ∈ S, the
following equalities hold:

h(∇a) = ∇h(a) and h(∆s) = ∆h(s).

2.3. Compact, coherent, and zero-dimensional frames. Let L be a frame.
Recall that an element a ∈ L is compact if whenever a ≤

∨
i∈I ai there exists a

finite subset F ⊆ I such that a ≤
∨

i∈F ai, and L is compact if its top element is
compact. We denote by K(L) the set of compact elements of a frame L. If K(L) is
a join-dense sublattice of L, then we say that L is coherent. We denote by CohFrm
the subcategory of Frm whose objects are the coherent frames, and morphisms are
those frame homomorphisms that preserve compact elements. Coherent frames will
be a central concept in this paper.

Given a bounded distributive lattice S, we denote by Idl(S) its ideal completion.
We will often see S as a sublattice of Idl(S), by identifying an element s ∈ S with
the principal ideal ↓s it generates. The assignment S 7→ Idl(S) is part of a functor
Idl(−) : DLat → Frm which is an equivalence of categories when co-restricted to
CohFrm.
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Proposition 2.4. ([16, pages 59 and 65]) The category Frm of frames is a re-
flective subcategory of the category DLat of bounded distributive lattices. The
reflector Idl(−) : DLat → Frm sends a lattice S to its ideal completion Idl(S) and
a lattice homomorphism h : S → T to

Idl(h) : Idl(S) → Idl(T ), J 7→ ⟨h[J ]⟩Idl = ↓h[J ].

Moreover, the corestriction of Idl(−) to CohFrm induces an equivalence of cat-
egories whose inverse K(−) : CohFrm → DLat sends a coherent frame to its
sublattice of compact elements, and a morphism to its suitable restriction and
co-restriction.

Corollary 2.5. Every lattice homomorphism h : S → L, with L a frame,
uniquely extends to a frame homomorphism ĥ : Idl(S) → L defined by ĥ(J) :=∨
h[J ].

By definition of coherent frame homomorphism, it is not hard to verify that
K(−) : CohFrm → DLat is both a right and a left adjoint of Idl(−) : DLat →
CohFrm. By suitably composing the adjunctions CohFrm ⇆ DLat and
DLat ⇆ Frm, and using the equivalence CohFrm ∼= DLat, we obtain the fol-
lowing (see [3, Proposition 1] for a direct proof):

Proposition 2.6. The category CohFrm of coherent frames and coherent frame
homomorphisms is a coreflective subcategory of the category Frm of frames and
frame homomorphisms. The coreflector is the restriction and co-restriction Idl(−) :
Frm → CohFrm of the functor Idl(−).

Finally, we say that a frame L is zero-dimensional if the sublattice B(L) of its
complemented elements join-generates the frame.

Proposition 2.7. Let L be a frame. Then,

(a) if L is compact, then every complemented element is compact;

(b) if L is zero-dimensional, then every compact element is complemented.

In particular, every compact and zero-dimensional frame is coherent.

2.4. Uniform and quasi-uniform frames. We will introduce (quasi-)uni-
formities on a frame L using entourages. Entourages on L are nothing but cer-
tain elements of the coproduct L ⊕ L, whose construction we recall now (see [16,
page 60] or [23, Chapter IV, Section 5]).

Definition 2.8. 2 Let L be a frame. We will call C-ideal of L to a subset A ⊆
L× L that satisfies the following properties:

(J.1) A is a down-set.

2This is a slight abuse of terminology because C-ideals are originally defined as depending on
a parameter C [16, page 58]. The notion of C-ideal adopted here is also known as coproduct ideal
or cp-ideal (see, for instance, [24])
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(J.2) If {(ai, b)}i∈I ⊆ A, then (
∨

i∈I ai, b) ∈ A.

(J.3) If {(a, bi)}i∈I ⊆ A, then (a,
∨

i∈I bi) ∈ A.

Given (a, b) ∈ L× L, we denote by a⊕ b the smallest C-ideal containing (a, b),
that is, a⊕ b = ↓(a, b) ∪ (L× {0}) ∪ ({0} × L).

Proposition 2.9. The coproduct L⊕L is isomorphic to the set of all C-ideals of
L ordered by inclusion. The coproduct maps are injections, and they are given by

(ι1 : L ↪→ L⊕ L, a 7→ a⊕ 1) and (ι2 : L ↪→ L⊕ L, b 7→ 1⊕ b).

Let L and M be frames. If fi : L → M (i = 1, 2) are frame homomorphisms,
then we denote by f1⊕f2 the unique frame homomorphism L⊕L→M ⊕M given
by the universal property of coproducts.

Any pair of C-ideals A,B ∈ L⊕ L may be composed as follows:

A ◦B :=
∨

{a⊕ b | ∃c ̸= 0: (a, c) ∈ A, (c, b) ∈ B},

and for every set J ⊆ L⊕ L of C-ideals, we have the following relations on L:

b◁J
1 a ⇐⇒ A ◦ (b⊕ b) ⊆ (a⊕ a) for some A ∈ J ,

and
b◁J

2 a ⇐⇒ (b⊕ b) ◦A ⊆ (a⊕ a) for some A ∈ J .

When J is clear from the context, we may simply write ◁i instead of ◁J
i . Given

i ∈ {1, 2}, we denote

Li(J ) := {a ∈ L | a =
∨

{b | b◁ia}}.

It is well-known that, if J is a filter basis, then each Li(J ) is a subframe of L.
We can now introduce quasi-uniform frames. We follow the approach in [21]

and [22]. A (Weil) entourage on L is a C-ideal E ⊆ L⊕ L that satisfies∨
{a | (a, a) ∈ E} = 1.

It can be shown that every entourage E is contained in E ◦ E. If the equality
E = E ◦ E holds, then E is said to be transitive. An entourage E is finite if it
contains some finite join

∨n
i=1 ai ⊕ ai, with a1 ∨ · · · ∨ an = 1. Notice that every

finite intersection of transitive and finite entourages is again transitive and finite.
Also notice that, if E is an entourage, then so is E−1 := {(b, a) | (a, b) ∈ E}. An
entourage E is symmetric if E = E−1.

Definition 2.10. A quasi-uniformity on L is a subset E ⊆ L ⊕ L of entourages
on L such that

(QU.1) E is a filter,

(QU.2) for every E ∈ E , there exists some F ∈ E such that F ◦ F ⊆ E,
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(QU.3) L is the frame generated by L1(E) ∪ L2(E).

The set E is called a uniformity if it further satisfies

(QU.4) if E ∈ E , then E−1 ∈ E .

A (quasi-)uniform frame is a pair (L, E), where L is a frame and E is a
(quasi-)uniformity on L.

If E ′ ⊆ L⊕L is a filter (sub)basis of entourages that satisfies (QU.2) and (QU.3),
then we say that E ′ is a (sub)basis for a quasi-uniformity on L. In that case, the
filter generated by E ′ is a quasi-uniformity. If E ′ consists of symmetric entourages,
then the quasi-uniformity it generates is actually a uniformity. For every quasi-
uniform frame (L, E), the set {E ∩E−1 | E ∈ E} is a basis consisting of symmetric
entourages, and it generates the coarsest uniformity E on L that contains E . Finally,
a quasi-uniform frame (L, E) is transitive if it has a basis of transitive entourages,
and totally bounded if it has a basis of finite entourages.

A (quasi-)uniform homomorphism h : (L, E) → (M,F) is a frame homomor-
phism h : L → M such that for every E ∈ E we have (h ⊕ h)(E) ∈ F . We
denote by QUniFrm the category of quasi-uniform frames and quasi-uniform ho-
momorphisms, and by UniFrm the category of uniform frames and uniform frame
morphisms. The following proposition is proven in [8], in which the authors use an
alternative definition of quasi-uniform frame. This definition is shown in [21] to be
equivalent to the one we use.

Proposition 2.11. ([8, Corollary 4.7]) Uniform frames form a full reflective sub-
category of quasi-uniform frames. The reflector SymQUniFrm : QUniFrm →
UniFrm maps a quasi-uniform frame (L, E) to (L, E), and a morphism to itself.

A (quasi-)uniform homomorphism h : (L, E) → (M,F) is an extremal epi-
morphism if and only if it is onto and F is the quasi-uniformity generated by
(h ⊕ h)[E ]. A (quasi-)uniform frame (M,F) is said to be complete provided ev-
ery dense extremal epimorphism (L, E) ↠ (M,F), with (L, E) a (quasi-)uniform
frame, is an isomorphism. A completion of a (quasi-)uniform frame (L, E) is a com-
plete (quasi-)uniform frame (M,F) together with a dense extremal epimorphism
(M,F) ↠ (L, E). The next two results will be needed in the sequel.

Proposition 2.12. ([11, Proposition 3.3]) A quasi-uniform frame (L, E) is com-
plete if and only if so is its uniform reflection (L, E).

Proposition 2.13. ([23, Chapter VII, Proposition 2.2.2]) Let h : (L, E) ↠
(M,F) be a dense extremal epimorphism of uniform frames. If M is compact,
then h is an isomorphism.

Completions of quasi-uniform frames may also be characterized in terms of the
so-called Cauchy maps. These can be thought of as analogues of Cauchy filters for
quasi-uniform spaces. If L and M are semilattices with top and bottom elements,
then a map ϕ : L → M is called a bounded meet homomorphism provided it
preserves the bottom element and all finite meets (including the empty one).
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Definition 2.14. Let (L, E) be a quasi-uniform frame and M be any frame. A
Cauchy map ϕ : (L, E) →M is a function ϕ : L→M such that

(a) ϕ is a bounded meet homomorphism,

(b) for every a ∈ L, ϕ(a) ≤
∨
{ϕ(b) | b◁1a or b◁2a},

(c) for every E ∈ E , 1 =
∨
{ϕ(a) | (a, a) ∈ E}.

Theorem 2.15. ([24, Theorem 6.5]) Let (L, E) be a quasi-uniform frame. Then
(L, E) is complete if and only if each Cauchy map (L, E) → M is a frame homo-
morphism.

3. Pervin spaces. In what follows, a Pervin space will be a pair (X,S) such
that X is a set and S ⊆ P(X) is a bounded sublattice. A morphism of Pervin
spaces f : (X,S) → (Y, T ) is a function f : X → Y such that whenever T ∈ T we
also have f−1(T ) ∈ S. The category of Pervin spaces and corresponding morphisms
will be denoted by Pervin. As mentioned in the introduction, each Pervin space
uniquely determines a transitive and totally bounded quasi-uniform space, and every
such space arises from a Pervin space. Actually, one can show that there is an
equivalence between the categories of Pervin spaces and of transitive and totally
bounded quasi-uniform spaces. However, since quasi-uniform spaces are not the
subject of this paper, but rather its pointfree counterpart, we will not provide
further details on this matter. We refer the reader to [20, 9, 25] for further reading.

We start by noticing that Top may be seen as a full subcategory of Pervin,
with a topological space (X, τ) being identified with the Pervin space (X, τ). Con-
versely, if (X,S) is a Pervin space, then we may consider on X the topology ΩS(X)
generated by S.3 It is easily seen that this assignment is part of a forgetful functor
U : Pervin → Top which is right adjoint to the embedding Top ↪→ Pervin. Thus,
Top a full coreflective subcategory of Pervin.

Next, we will characterize the extremal monomorphisms of Pervin spaces. For
that, we first need to describe the epimorphisms.

Lemma 3.1. Let e : (X,S) → (Y, T ) be a morphism of Pervin spaces. Then, e is
an epimorphism if and only if the set map e : X → Y is surjective.

Proof. The argument to show that every surjection is an epimorphism is analogous
to the set-theoretical one. For the converse, let e : (X,S) → (Y, T ) be an epimor-
phism. We consider the two-point Pervin space (Z,U) := ({0, 1}, {∅, {0, 1}}), and
we let f1, f2 : Y → Z be defined by f1(y) = 1 if and only if y ∈ e[X], and by
f2(y) = 1 for all y ∈ Y . Then, f1 and f2 induce morphisms of Pervin spaces
(Y, T ) → (Z,U) satisfying f1 ◦ e = f2 ◦ e. Since e is an epimorphism, we must have
f1 = f2. But this implies e[X] = Y , that is, e is a surjection. 2

3The reader interested in the connections between Pervin and quasi-uniform spaces may notice
that, if (X, ES) is the quasi-uniform space defined by (X,S), then ΩS(X) is precisely the topology
induced by ES .
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Proposition 3.2. A map m : (X,S) → (Y, T ) of Pervin spaces is an extremal
monomorphism if and only if the set map m : X → Y is injective and every S ∈ S
is of the form m−1(T ) for some T ∈ T .

Proof. Given an extremal monomorphism m : (X,S) → (Y, T ), we let Z := m[X],
and U be the bounded sublattice of P(Z) consisting of the subsets of the form
T ∩ m[X] for some T ∈ T , so that we have a Pervin space (Z,U). Then, the
direct image factorization of m : X → Y induces morphisms of Pervin spaces
e : (X,S) ↠ (Z,U) and g : (Z,U) ↪→ (Y, T ) satisfying m = g ◦ e. By Lemma 3.1,
e is an epimorphism and thus, an isomorphism. In particular, the underlying
set-theoretical map of e is a bijection and, since m = g ◦ e, it follows that m is
injective. It remains to show that m−1(T ) = S. For that, we let n be the inverse
of e and we pick S ∈ S. Since n is a morphism of Pervin spaces, we have that
n−1[S] = e[S] = m[S] belongs to U . Therefore, there exists T ∈ T such that
m[S] = T ∩m[X]. But since m is injective, this implies S = m−1(T ) as required.

Conversely, suppose that m : (X,S) ↪→ (Y, T ) is injective and satisfies S =
m−1(T ). Consider a factorization m = g ◦ e, where e : (Z,U) → (Y, T ) is an
epimorphism. By Lemma 3.1, e is a surjection, and it is also injective by injectivity
of m. We let n be the set-theoretical inverse of e and we show that n is a morphism
of Pervin spaces. Given S ∈ S, there is, by hypothesis, an element T ∈ T such
that S = m−1(T ). Then, since g is a morphism of Pervin spaces, we have that

n−1(S) = (mn)−1(T ) = g−1(T )

belongs to U . Thus, n is an isomorphism in Pervin. 2

We will say that (Y, T ) is a subspace of (X,S) if there exists an extremal
monomorphism (Y, T ) ↪→ (X,S). We remark that subspaces of (X,S) are, up
to isomorphism, in a bijection with the subsets of X. We also note that every
extremal monomorphism m : (X,S) ↪→ (Y, T ) is regular. To see this, we consider
the two-point Pervin space (Z,U) := ({0, 1}, {∅, {0, 1}}). Then, m is the equalizer
of the morphisms of Pervin spaces f1, f2 : (Y, T ) → (Z,U) defined by f1(y) = 1 for
every y ∈ Y and by f2(y) = 1 if and only if y ∈ m[X].

Since every epimorphism which is also an extremal monomorphisms is an iso-
morphism (cf. [7, Proposition 4.3.7]), we obtain the following:

Corollary 3.3. Isomorphisms in Pervin are the bijections f : (X,S) → (Y, T )
such that f [S] belongs to T , for every S ∈ S.

Proof. By Lemma 3.1 and Proposition 3.2, we know that a morphism of Pervin
spaces f : (X,S) → (Y, T ) is an isomorphism if and only if it is bijective and
satisfies S = f−1(T ). Thus, the claim follows from having that, if f is a bijection,
then f [S] ⊆ T ⇐⇒ S ⊆ f−1[T ]. 2

We finally consider the full subcategory Pervinsym of Pervin whose objects
are those Pervin spaces (X,B) such that B a Boolean algebra. In the setting of
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Pervin quasi-uniform spaces, this is a relevant subcategory because it corresponds
to the uniform spaces. In our paper, it will play a role when the pointfree version
of this fact is discussed (cf. Section 6, namely Theorem 6.8).

An important property of Pervinsym is that of being coreflective in Pervin
as we will see now (see Proposition 5.9 for the pointfree version of this result).
We define a functor SymPerv : Pervin → Pervinsym as follows. For an object
(X,S), we let SymPerv(X,S) be the Pervin space (X,S), where S is the Boolean
subalgebra of the powerset P(X) generated by the elements of S. On morphisms,
we simply map a function to itself. Notice that, since a map of Pervin spaces
f : (X,S) → (Y, T ) is such that the preimage of a complement of an element in T
is the complement of an element in S, this assignment is well-defined on morphisms.
Clearly, SymPerv is a functor. We show now that SymPerv is right adjoint to the
embedding Pervinsym ↪→ Pervin.

Proposition 3.4. The category of symmetric Pervin spaces is a full coreflective
subcategory of that of Pervin spaces. More precisely, the functor SymPerv is right
adjoint to the embedding Pervinsym ↪→ Pervin.

Proof. We first notice that, for every Pervin space (X,S), the identity function
on X induces a morphism of Pervin spaces idX : (X,S) → (X,S). Thus, we only
need to show that, for every morphism of Pervin spaces f : (Y,B) → (X,S), with
B a Boolean algebra, there is a unique Pervin map f̃ : (Y,B) → (X,S) satisfying

f = idX ◦ f̃ . Of course, this holds if and only if f also induces a morphism of
Pervin spaces f : (Y,B) → (X,S). This is indeed the case because S is generated,
as a lattice, by S together with the complements in P(X) of the elements of S
and, since B is a Boolean subalgebra of P(Y ), it follows that f−1(Sc) = (f−1(S))c

belongs to B for every S ∈ S. 2

Recall that the Skula topology on a given topological space (X, τ) is the topology
generated by τ together with the complements of its elements. Therefore, if (X,S)
is a Pervin space, then the topology ΩS(X) on X defined by its symmetrization is
precisely the Skula topology on the topological space (X,ΩS(X)) defined by (X,S).
For that reason, we will say that ΩS(X) is the Skula topology on X induced by
(X,S).

4. Frith frames as a pointfree version of Pervin spaces.

4.1. The category of Frith frames and the Pervin - Frith dual adjunction.
A Frith frame is a pair (L, S) where L is a frame and S ⊆ L is a bounded sublattice
such that all elements in L are joins of elements in S. A morphism h : (L, S) →
(M,T ) of Frith frames is a frame homomorphism h : L → M such that whenever
s ∈ S we have h(s) ∈ T . We denote the category of Frith frames and corresponding
morphisms by Frith. By identifying a frame L with the Frith frame (L,L), we may
see Frm as a full reflective subcategory of Frith. Indeed, we have the following:
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Proposition 4.1. The category of frames is a full reflective subcategory of that
of Frith frames. More precisely, the forgetful functor Frith → Frm is left adjoint
to the embedding Frm ↪→ Frith.

Proof. Let U : Frith → Frm denote the forgetful functor and F : Frm ↪→ Frith
the embedding identifying a frame L with the Frith frame (L,L). We only need
to observe that for every Frith frame (L, S) and every frame M , every frame ho-
momorphism L → M induces a morphism of Frith frames (L, S) → (M,M), and
thus, we have a natural isomorphism Frm(U−,−) ∼= Frith(−, F−). 2

Next, we will see that Frith frames may indeed be considered the pointfree ana-
logues of Pervin spaces, by showing that the classical adjunction Ω :Top ⇆ Frmop :
pt extends to an adjunction Ω : Pervin ⇆ Frithop : pt between the categories of
Pervin spaces and of Frith frames, so that the following diagram commutes:

Top Pervin

Frmop Frithop

ΩΩ ptpt

Let us define the open set functor Ω : Pervin → Frithop. Given a Pervin space
(X,S) we set Ω(X,S) := (ΩS(X),S), where ΩS(X) denotes the topology on X
generated by S (recall Section 3). If f : (X,S) → (Y, T ) is a morphism of Pervin
spaces then taking preimages under f defines a morphism of Frith frames Ω(f) :=
f−1 : (ΩT (Y ), T ) → (ΩS(X),S). It is easily seen that this assignment yields a
functor Ω : Pervin → Frithop. In turn, the spectrum functor pt : Frithop →
Pervin is defined on objects by pt(L, S) := (pt(L), Ŝ) for every Frith frame (L, S),

where Ŝ := {ŝ | s ∈ S}. Finally, if h : (L, S) → (M,T ) is a morphism of Frith
frames, then pt(h) := (− ◦ h) is given by precomposition with h. The following

lemma shows that pt(h) defines a morphism between the Pervin spaces (pt(M), T̂ )

and (pt(L), Ŝ).

Lemma 4.2. Let h : (L, S) → (M,T ) be a morphism of Frith frames. Then, for

every s ∈ S, the equality (pt(h))−1(ŝ) = ĥ(s) holds. In particular, pt(h) induces a

morphism of Pervin spaces pt(h) : (pt(M), T̂ ) → (pt(L), Ŝ).

Proof. Let s ∈ S and p : M → 2 be a point. The claim is a consequence of the
following computation:

p ∈ (pt(h))−1(ŝ) ⇐⇒ pt(h)(p) ∈ ŝ ⇐⇒ p(h(s)) = 1 ⇐⇒ p ∈ ĥ(s). 2

We may now prove that the functors just defined form an adjunction.

Proposition 4.3. There is an adjunction Ω : Pervin ⇆ Frithop : pt, which
extends the classical adjunction Ω : Top ⇆ Frmop : pt.

2298



A pointfree theory of Pervin spaces

Proof. Let (L, S) be a Frith frame and (X,S) be a Pervin space. Let also
φ : L→ Ω◦pt(L) and ψ : X → pt◦ΩS(X) be, respectively, the components at L and
at (X,ΩS(X)) of the unit and counit of the classical adjunction Ω : Top ⇆ Frmop :
pt. It suffices to show that φ and ψ induce, respectively, morphisms (L, S) →
(ΩŜ(pt(L)), Ŝ) and (X,S) → (pt(ΩS(X)), Ŝ) in the suitable categories.

First notice that, since S join-generates L, we have ΩŜ(pt(L)) = Ω(pt(S)).
Thus, it follows from its definition that φ induces a morphism (L, S) →
(ΩŜ(pt(L)), Ŝ) of Frith frames. To see that ψ induces a morphism (X,S) →
(pt(ΩS(X)), Ŝ) of Pervin spaces, it suffices to observe that ψ−1(Ŝ) = S, for ev-
ery S ∈ S. 2

We finish this section by remarking that a Pervin space (X,S) is a fixpoint of
this adjunction if and only if the topological space (X,ΩS(X)) it defines is sober; we
call such Pervin spaces sober. A Frith frame (L, S) is a fixpoint of the adjunction
above if and only if its underlying frame L is spatial; we call such Frith frames
spatial. Indeed, this can be easily seen from the description of the unit and counit
of the adjunction Ω : Pervin ⇆ Frithop : pt, together with the characterization
of the isomorphisms in the categories of Pervin spaces (cf. Corollary 3.3) and of
Frith frames that we will shortly provide (cf. Corollary 4.18).

4.2. Compact, coherent, and zero-dimensional Frith frames. In this sec-
tion we discuss the appropriate notions of compactness, coherence, and zero-
dimensionality for Frith frames. Let L be a frame and S ⊆ L. We say that
an element a ∈ L is S-compact if whenever a ≤

∨
i∈I si for some {si}i∈I ⊆ S, there

exists F ⊆ I finite so that a ≤
∨

i∈F si, and we say that L is S-compact if its top
element is S-compact. Clearly, every compact element of L is also S-compact. If
we further assume that S is join-dense in L (which is the case when (L, S) is a
Frith frame), then we also have the converse:

Lemma 4.4. Let L be a frame, S ⊆ L be a join-dense subset, and a ∈ L. Then, a
is S-compact if and only if a is compact. In particular, L is S-compact if and only
if it is compact.

Proof. Let a be an S-compact element and suppose that a ≤
∨

i∈I ai for some
i ∈ I. Since S is join-dense in L, we may write each ai as a join of elements
in S. Thus, since a is S-compact, there exists a finite subset F ⊆ I satisfying
a ≤

∨
i∈F ai. 2

We will say that a Frith frame (L, S) is compact if its frame component L is
compact, and we say that (L, S) is coherent if S consists of compact elements of L.
We call CohFrith the full subcategory of Frith determined by the coherent Frith
frames. Since S is, by definition of Frith frame, a bounded sublattice of L, we have
that every coherent Frith frame is compact. Also, every coherent frame L gives
rise to a coherent Frith frame (L,K(L)). We now show that every coherent Frith
frame is of this form.
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Lemma 4.5. Let (L, S) be a Frith frame. Then, the following are equivalent:

(a) S consists of compact elements.

(b) S is the set of all compact elements of L.

In particular, (L, S) is a coherent Frith frame if and only if L is coherent and
S = K(L).

Proof. The implication (b) =⇒ (a) is trivial. Conversely, suppose that S ⊆ K(L),
and let a ∈ K(L). Since (L, S) is a Frith frame, we have that S is join-dense in L,
and thus we may write a =

∨
i∈I si for some subset {si}i∈I ⊆ S. But compactness

of a yields the existence of a finite subset F ⊆ I satisfying a =
∨

i∈F si. Since S is
closed under finite joins, it follows that a belongs to S. 2

A consequence of Lemma 4.5 is that, if (L, S) and (M,T ) are coherent Frith
frames, then a frame homomorphism h : L → M induces a morphism between
the corresponding Frith frames if and only if it is coherent. Thus, the categories
CohFrm of coherent frames and CohFrith of coherent Frith frames are isomor-
phic. In particular, since DLat and CohFrm are equivalent categories, we also
have and equivalence DLat ∼= CohFrith. More generally, we have the following
analogue of Proposition 2.4:

Proposition 4.6. There is an adjunction Idl(−) ⊣ U , where U : Frith → DLat
is the forgetful functor and Idl(−) : DLat → Frith is defined by

Idl(S) := (Idl(S), S) and Idl(h : S → T ) := (Idl(h) : (Idl(S), S) → (Idl(T ), T )).

Moreover, the corestriction of Idl(−) to CohFrith induces an equivalence of cate-
gories whose inverse is the suitable restriction of U .

Proof. It is clear that Idl(−) is a well-defined functor. The fact that Idl(−) is left
adjoint to U follows from the existence of a natural isomorphism Frith(Idl(−),−) ∼=
DLat(−, U−), which is a straightforward consequence of Proposition 2.4.

Now, again by Proposition 2.4, the functors Idl(−) : DLat → CohFrm and
K(−) : CohFrm → DLat are mutually inverse, up to natural isomorphism. Com-
posing these with the isomorphism CohFrm ≡ CohFrith, we obtain the equiva-
lence described in the last statement. 2

Just like for frames, we also have in this setting that U : CohFrm → DLat is
both a left and a right adjoint of Idl(−) : DLat → CohFrm. Therefore, we have
the following version of Proposition 2.6:

Proposition 4.7. The category CohFrith is a full coreflective subcategory of
Frith. The coreflector is the functor Idl(−) ◦ U : Frith → CohFrith.

On the other hand, unlike what happens for the frame ideal completion Idl(−) :
Frm → CohFrm, the functor Idl(−) ◦ U : Frith → CohFrith is idempotent.
Indeed, that may be seen as a consequence of having a full embeddingCohFrith ↪→
Frith:

2300



A pointfree theory of Pervin spaces

Proposition 4.8. ([7, Proposition 3.4.1]) Let F : D → C and G : C → D be two
functors, and suppose that F is the left adjoint of G. Then, F is full and faithful
if and only if the unit of F ⊣ G is a natural isomorphism.

We finally define what is a zero-dimensional Frith frame. First observe that, if
S ⊆ B(L) and (L, S) is a Frith frame, then the frame L is zero-dimensional. Thus,
we will say that (L, S) is zero-dimensional provided S consists of complemented
elements, and we have that L is a zero-dimensional frame if and only if (L,B(L)) is a
zero-dimensional Frith frame. Let us analyze the relationship between compactness,
coherence, and zero-dimensionality of Frith frames. If (L, S) is compact and zero-
dimensional then, L is compact and zero-dimensional, too, and, by Proposition 2.7,
we have B(L) = K(L). Therefore, S consists of compact elements and thus, (L, S)
is coherent. Hence, we have the following analogue of Proposition 2.7:

Lemma 4.9. Let (L, S) be a Frith frame. If (L, S) is compact and zero-dimensional,
then it is coherent.

4.3. Limits and colimits. In this section we show that the category of Frith
frames has all (co)products and (co)equalizers, and provide their description. In
particular, it follows that Frith is a complete and cocomplete category.

Let us start with products and equalizers. By Proposition 4.6, the forgetful
functor Frith → DLat is a right adjoint. Since right adjoints preserve limits, we
automatically know how to compute the lattice component of every existing limit
in Frith. With this in mind, we may easily prove the following characterizations:

Proposition 4.10. Let {(Li, Si)}i∈I be a family of Frith frames. Then, the prod-
uct

∏
i∈I(Li, Si) in the category of Frith frames is (

∏
i∈I Li,

∏
i∈I Si), and the

product map πi : (
∏

i∈I Li,
∏

i∈I Si) → (Li, Si) is the i-th projection.

Proposition 4.11. Given two morphisms h1, h2 : (L, S) → (M,T ) in the category
of Frith frames, let Sh1=h2

denote the sublattice {s ∈ S | h1(s) = h2(s)} of S, and
K be the subframe of L generated by Sh1=h2

. Then, the equalizer of h1 and h2 is
the subframe inclusion e : (K,Sh1=h2

) ↪→ (L, S).

Colimits in Frith are also computed as expected. Note that, by Proposition 4.1,
the forgetful functor Frith → Frm is a left adjoint. Thus, it preserves existing
colimits.

Proposition 4.12. Let {(Li, Si)}i∈I be a family of Frith frames, and {ιi : Li ↪→⊕
i∈I Li}i∈I be the coproduct injections in Frm. The coproduct

⊕
i∈I(Li, Si) of

Frith frames in Frith is (
⊕

i∈I Li, S), where S is the sublattice of the coproduct⊕
i∈I Li generated by

⋃
i ιi[Si]. Moreover, the i-th coproduct map is the morphism

of Frith frames ιi : (Li, Si) → (
⊕

i∈I Li, S) defined by ιi.

Proposition 4.13. Let h1, h2 : (L, S) → (M,T ) be two morphisms of Frith
frames. Then, their coequalizer is q : (M,T ) → (K,R), where q : M ↠ K is
the coequalizer of the frame homomorphisms h1, h2 in Frm and R = q[T ].

As a consequence of Propositions 4.10, 4.11, 4.12, and 4.13, we have:

Corollary 4.14. The category Frith is complete and cocomplete.
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4.4. Special morphisms. This section is devoted to the study of some special
morphisms in the category of Frith frames. More precisely, we will start by charac-
terizing the monomorphisms, the extremal epimorphisms, and the isomorphisms.
In the setting of frames, extremal epimorphisms are relevant because they are the
pointfree notion of subspace embedding. We will show a Pervin-Frith analogue of
this. We will also see that, unlike what happens for frames, not every extremal
epimorphism is regular.

Using standard arguments, we may show the following:

Lemma 4.15. A morphism m : (L, S) → (M,T ) of Frith frames is a monomor-
phism if and only if the map m : L→M is injective.

Proposition 4.16. A morphism e : (L, S) → (M,T ) of Frith frames is an ex-
tremal epimorphism if and only if it satisfies e[S] = T . In particular, all extremal
epimorphisms are surjective.

We will say that (M,T ) is a quotient of (L, S) if there is an extremal epimor-
phism e : (L, S) ↠ (M,T ). Notice that quotients of (L, S) are, up to isomorphism,
in a one-to-one correspondence with the congruences on L. The characterization
of Proposition 4.16, together with that of the extremal monomorphisms in Pervin
made in Proposition 3.2, allows us to conclude that the extremal epimorphisms in
Frith are indeed the pointfree version of embeddings of Pervin spaces. We will say
that a Pervin space is T0 provided so is the topological space it defines.

Corollary 4.17. Let (X,S) and (Y, T ) be Pervin spaces. If m : (X,S) ↪→ (Y, T )
is an extremal monomorphism in Pervin then Ω(m) : (ΩT (Y ), T ) ↠ (ΩS(X),S)
is an extremal epimorphism in Frith. The converse holds provided (X,S) is T0.

Proof. By Propositions 3.2 and 4.16, the only non-trivial part is to show that if
Ω(m) is an extremal epimorphism then m is injective. Let x1, x2 ∈ X be two
distinct points. Since (X,S) is T0, there exists some U ∈ ΩS(X) such that
x1 ∈ U and x2 /∈ U . By Proposition 4.16, there exists some V ∈ ΩT (Y ) such
that Ω(m)(V ) = m−1(V ) = U . But then, m(x1) ∈ V and m(x2) /∈ V and thus,
m(x1) ̸= m(x2) as we intended to show. 2

Since every morphism which is both a monomorphism and an extremal epimor-
phism is an isomorphism (cf. [7, Proposition 4.3.7]), we may also conclude the
following:

Corollary 4.18. Let h : (L, S) → (M,T ) be a morphism of Frith frames. Then,
h is an isomorphism if and only if h is one-to-one and satisfies h[S] = T .

We finish this section by exploring the relationship between extremal and reg-
ular epimorphisms. Recall that every regular epimorphism is extremal (cf. [7,
Proposition 4.3.3]). In order to state the conditions under which the converse
holds, we will need the following notion of Frith congruence:

Definition 4.19. A Frith congruence on a Frith frame (L, S) is a frame congru-
ence on L generated by a relation ρ ⊆ S × S.
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Lemma 4.20. Let (L, S) be a Frith frame. Then, a congruence on L is a Frith
congruence if and only if it is generated by its restriction to S × S.

Proof. The backwards direction of the implication is trivial. For the converse,
suppose that θ is a Frith congruence. Let ρ ⊆ S × S be such that ρ = θ. We have
that θ ∩ (S × S) ⊆ θ and since closure operators are monotone and idempotent
this implies θ ∩ (S × S) ⊆ θ. For the reverse inclusion, since θ extends ρ we have
ρ ⊆ θ∩(S×S), and since closures are monotone we have θ = ρ ⊆ θ ∩ (S × S). 2

In the example below we show that not every congruence on L is a Frith con-
gruence.

Example 4.21. Let L be the frame whose underlying poset is the ordinal ω + 2,
and let S be the sublattice L\{ω} of L. Since ω =

∨
{n | n ∈ ω} is the join of

elements in S, the pair (L, S) is a Frith frame. Then, the open congruence ∆ω is
not a Frith congruence. Indeed, since ∆ω = {(x, y) ∈ L × L | x ∧ ω = y ∧ ω} =
{(x, y) ∈ L × L | x = y or x, y ≥ ω} does not identify any two distinct elements
of S, if it were a Frith congruence and thus generated by its restriction to S × S,
then it had to be the identity. But that is not the case as it contains, for instance,
the element (ω, ω + 1).

In fact, we have the following:

Proposition 4.22. Let (L, S) be a Frith frame and θ ⊆ L × L be a congruence
on L. Then, θ is a Frith congruence if and only if it belongs to CSL.

Proof. Note that the congruence generated by a relation ρ ⊆ L×L is
∨
{∇a∧∆b |

(a, b) ∈ ρ}. Thus, by definition of Frith congruence, it suffices to observe that the
fact that ∇ preserves arbitrary joins and S is join-dense in L implies that CSL is
generated by the set {∇s, ∆s | s ∈ S}. 2

We may now characterize those extremal epimorphisms that are regular.

Proposition 4.23. Let q : (L, S) ↠ (M,T ) be an extremal epimorphism of Frith
frames. Then, q is a regular epimorphism if and only if ker(q) is a Frith congruence.

Proof. Suppose that q : (L, S) ↠ (M,T ) is a regular epimorphism, let us say that
q is the coequalizer of h1, h2 : (K,R) → (L, S). It follows from Proposition 4.13
that ker(q) is the congruence generated by the subframe {(h1(a), h2(a)) | a ∈ K}
of L×L. Since R is join dense in K, this subframe is generated by {(h1(r), h2(r)) |
r ∈ R} and thus, ker(q) is generated by {(h1(r), h2(r)) | r ∈ R}. Since h1 and h2
are morphisms of Frith frames, the set {(h1(r), h2(r)) | r ∈ R} is a relation on S.
Thus, ker(q) is a Frith congruence.

Conversely, suppose that ker(q) is a Frith congruence, and letK be the subframe
of L × L generated by R := ker(q) ∩ (S × S). Clearly, the pair (K,R) is a Frith
frame, and the two projection maps K → L induce morphisms of Frith frames
π1, π2 : (K,R) → (L, S). We claim that q is the coequalizer of π1 and π2. By
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Proposition 4.13 and using the fact that q is an extremal epimorphism, it suffices
to show that ker(q) = ρ, where ρ := {(π1(x, y), π2(x, y)) | (x, y) ∈ K}. We observe
that ρ = K and, since R generatesK as a frame, it follows that ρ and R generate the
same congruence on L. Finally, since ker(q) is a Frith congruence, by Lemma 4.20,
we may then conclude that

ker(q) = ker(q) ∩ (S × S) = R = ρ,

as required. 2

A Frith quotient of (L, S) is then a Frith frame (M,T ) for which there is a
regular epimorphism q : (L, S) ↠ (M,T ). By Propositions 4.22 and 4.23, there is a
bijection between Frith quotients of (L, S), up to isomorphism, and the congruences
of CSL. We finally show that an analogue of Corollary 4.17 does not hold with
respect to regular morphisms, even if we restrict to sober spaces.

Example 4.24. Consider the set X := ω+1, equipped with the lattice S ⊆ P(X)
consisting of the downsets of X. Since the topology ΩS(X) on X has as open
subsets the elements of S together with ω, we have Ω(X,S) = (ω+2, (ω+2)\{ω}).
We let (Y, T ) be the Pervin subspace of (X,S) defined by the subset Y := ω ⊆ X
and we let m : (Y, T ) ↪→ (X,S) be the corresponding subspace embedding. Then,

ker(Ω(m)) = {(U1, U2) | U1, U2 ∈ ΩS(X), m−1(U1) = m−1(U2)}
= {(x, y) | x, y ∈ ω + 2, x ∧ ω = y ∧ ω} = ∆ω

is the congruence described in Example 4.21, which is not a Frith congruence.
Therefore, by Proposition 4.23, Ω(m) is not a regular epimorphism. Finally, we
argue that the topological space (X,ΩS(X)) defined by (X,S) is sober. For a
subset Q ⊆ X, we let pQ : ω+2 → 2 be the unique function satisfying p−1

Q (1) = Q.
Clearly, if pQ is a point of ω + 2, that is, a frame homomorphism, then Q must
be an upset. Also, it is not hard to verify that, among the upsets of ω + 2, all
but {ω, ω + 1} give rise to a point (p{ω,ω+1} is not a point because ω =

∨
n∈ω n).

Therefore, the points of ω + 2 may be identified with the elements of ω + 1, via
the correspondence p↑n 7→ n and p{ω+2} 7→ ω. Under this correspondence the open
subsets of pt(ω + 2) are precisely the downsets of ω + 1, that is, (X,ΩS(X)) is
isomorphic to the space pt(ω + 2) and thus, it is sober.

4.5. Frith quotients and the TD axiom for Pervin spaces. Recall that a
topological space X is TD if for every x ∈ X there exists an open subset U ⊆ X
containing x such that U\{x} is open. In the classical topological setting, every
subspace of X induces, via Ω, a quotient of Ω(X), and we have that X is TD if
and only if different subspaces of X induce different quotients of Ω(X). For Pervin
spaces, this may be translated as follows: by Corollary 4.17, every subspace of a
Pervin space (X,S) induces, via Ω, a quotient of (ΩS(X),S), and we have that
different subspaces of (X,S) induce different quotients on (ΩS(X),S) if and only if
the topology ΩS(X) on X is TD. In this section we will state and prove a version
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of this result where quotient is replaced by Frith quotient. Actually, we will show
a version of the following:

Proposition 4.25. ([23, Chapter I, Section 1]) Let X be a topological space.
The following are equivalent:

(a) The space X is TD.

(b) Different subspaces of X induce different quotients of Ω(X).

(c) For no x ∈ X does the subspace inclusion X\{x} ↪→ X induce an isomorphism
Ω(X\{x}) ∼= Ω(X).

(d) The Skula topology on X is discrete.

We have seen in the previous section that, unlike what happens for frames,
the extremal epimorphisms in Frith do not coincide with the regular ones (cf.
Proposition 4.23), and Example 4.24 shows that, in general, the functor Ω does not
map subspaces of a Pervin space (X,S) to Frith quotients of (ΩS(X),S). There
is however a natural way to assign to each subspace of (X,S) a Frith quotient
of (ΩS(X),S): given a subset Y ⊆ X, we consider the Frith quotient defined by
the Frith congruence θY generated by ker(Ω(m)) ∩ (S × S) = {(S1, S2) ∈ S × S |
S1∩Y = S2∩Y }, wherem : (Y, T ) ↪→ (X,S) is the subspace embedding determined
by Y . Note that, since ker(Ω(m)) is a frame congruence on ΩS(X), we have
θY ∩ (S × S) = ker(Ω(m)) ∩ (S × S). The following property will be useful later:

Lemma 4.26. Let (X,S) be a Pervin space and x ∈ X. If θX and θX\{x} are
distinct, then there are S1, S2 ∈ S such that {x} = S1\S2.

Proof. Clearly, θX is the identity relation on ΩS(X). Therefore, since θX\{x} is,
by definition, a Frith congruence, there exists some (S1, S2) ∈ θX\{x} ∩ (S × S)
such that S1 ̸= S2, say S1 ⊈ S2 without loss of generality. By definition of θX\{x},
we have S1\{x} = S2\{x}. Thus, since S1 ⊈ S2, it follows that {x} = S1\S2 as
required. 2

We say that a Pervin space (X,S) is Pervin-TD if for every x ∈ X there is some
S ∈ S that contains x and such that S\{x} ∈ S. We first show that in a Pervin-TD
space (X,S) any two different subspaces of (X,S) induce different Frith quotients
of (ΩS(X),S).

Lemma 4.27. If (X,S) is a Pervin-TD space, then different subspaces of (X,S)
induce different Frith quotients of (ΩS(X),S).

Proof. Let (X,S) be a Pervin-TD space, and let Y,Z ⊆ X be two distinct subsets
of X. We need to show that θY ̸= θZ . Without loss of generality, we may assume
that there exists some x ∈ Y \Z. Since (X,S) is Pervin-TD, we can take S ∈ S
such that x ∈ S and S\{x} ∈ S. Then, as x belongs to Y but not to Z, we have

S ∩ Y ̸= (S\{x}) ∩ Y and S ∩ Z = (S\{x}) ∩ Z.
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Finally, using that (S, S\{x}) ∈ S × S and θY ∩ (S × S) = {(S1, S2) ∈ S × S |
S1 ∩ Y = S2 ∩ Y }, we may conclude that (S, S\{x}) ∈ θZ\θY . Thus, θY ̸= θZ as
required. 2

We have now all the ingredients to show the main result of this section.

Proposition 4.28. Let (X,S) be a Pervin space. The following are equivalent.

(a) The space (X,S) is Pervin-TD.

(b) Different subspaces of (X,S) induce different Frith quotients of (ΩS(X),S).

(c) For no x ∈ X do we have that θX\{x} is trivial.

(d) The Skula topology on X induced by (X,S) is discrete.

Proof. The fact that (a) implies (b) is the content of Lemma 4.27, that (b) im-
plies (c) is trivial, and that (c) implies (d) follows easily from Lemma 4.26. It
remains to show that (d) implies (a). Let x ∈ X. Since the Skula topology on X
induced by (X,S) is, by definition, generated by the elements of S and their com-
plements, there exist S1, S2 ∈ S such that {x} = S1\S2. In turn, this implies that
S1 is the disjoint union of {x} and S1 ∩ S2. Therefore, S1 is such that x ∈ S1 and
S1\{x} = S1 ∩ S2 belongs to S. This shows that (X,S) is Pervin-TD as intended.

2

5. Frith frames as quasi-uniform frames. In this section we show that
the category of Frith frames may be seen as a coreflective full subcategory of the
category of transitive and totally bounded quasi-uniform frames.

If K is a frame and r ∈ K, then we denote

Er := (r ⊕ 1) ∨ (1⊕ r∗).

Note that the set (r⊕1)∪(1⊕r∗) is already a C-ideal, thus it equals Er. It is shown
in [14, Proposition 5.2] that Er ◦ Er = Er, and in [14, Proposition 5.3] that Er

is an entourage if and only if r is complemented. Moreover, if r is complemented,
then {r, r∗} is a cover of K and, since (r ⊕ r) ∨ (r∗ ⊕ r∗) ⊆ Er, it follows that Er

is a finite entourage.
For a subset R ⊆ K of complemented elements, we denote R∗ := {r∗ | r ∈ R},

and we let ER be the filter generated by {Er | r ∈ R}. We start by establishing an
important property of the relations ◁1 and ◁2 for the filter ER.

Lemma 5.1. Let K be a frame and R ⊆ K be a subset of complemented elements.
For every x, a ∈ K,

(a) if x◁1a, then there exists some r ∈ ⟨R⟩DLat such that x ≤ r ≤ a,

(b) if x◁2a, then there exists some r ∈ ⟨R∗⟩DLat such that x ≤ r ≤ a.
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Proof. We will only prove (a), as the proof of (b) is similar. By definition, if
x◁1a, then there are some r1, . . . , rn ∈ R such that (

⋂n
i=1Eri) ◦ (x⊕ x) ⊆ (a⊕ a).

We let [n] denote the set {1, . . . , n}, and for every P ⊆ [n] we set rP :=
∧

i∈P ri
and rP :=

∧
i/∈P r

∗
i . Since each ri is complemented, we have

1 =
n∧

i=1

(ri ∨ r∗i ) =
∨

{rP ∧ rP | P ⊆ [n]}.

Therefore,

x =
∨

{rP ∧ rP ∧ x | P ⊆ [n]} ≤
∨

{rP | P ⊆ [n], rP ∧ x ̸= 0}.

Thus, it suffices to show that the element
∨
{rP | P ⊆ [n], rP ∧ x ̸= 0}, which

belongs to the sublattice of K generated by R, is smaller than or equal to a.
We let P ⊆ [n] satisfy rP ∧ x ̸= 0. Then, we have (rP , rP ∧ x) ∈

⋂n
i=1Eri

and (rP ∧ x, x) ∈ (x ⊕ x). Since rP ∧ x ̸= 0, it follows that (rP , x) belongs to
(
⋂n

i=1Eri) ◦ (x⊕ x) which, by hypothesis, is contained in (a⊕ a). In particular, it
follows that rP ≤ a, as required. 2

The following is a slight variation of [14, Theorem 5.5] and the proof in there
may be easily adapted. For the sake of self-containment, we will use the previous
lemma to provide an alternative proof.

Theorem 5.2. Let K be a frame and R ⊆ K be a subset of complemented ele-
ments. Then, the filter ER generated by the set of entourages {Er | r ∈ R} is such
that L1(ER) = ⟨R⟩Frm and L2(ER) = ⟨R∗⟩Frm. In particular, if K is generated by
R ∪R∗, then ER is a transitive and totally bounded quasi-uniformity on K.

Proof. We first show that L1(ER) ⊆ ⟨R⟩Frm. We fix an element a ∈ L1(ER), and
for each x ∈ K satisfying x◁1a, we let rx ∈ ⟨R⟩DLat be such that x ≤ rx ≤ a, as
given by Lemma 5.1(a). Then, we have

a =
∨

{x ∈ K | x◁1a} ≤
∨

{rx | x ∈ K, x◁1a} ≤ a.

Thus, a =
∨
{rx | x ∈ K, x◁1a} is a frame combination of elements of R. Con-

versely, since ER is a filter and hence, L1(ER) is a frame, it suffices to show that
R ⊆ L1(ER). But that is a consequence of the inclusion Er ◦ (r⊕r) ⊆ (r⊕r) which
holds for every complemented element r ∈ K. 2

Let L be a frame. Then, for each a ∈ L, the congruence ∇a is complemented
in CL, and CL is generated, as a frame, by these congruences together with their
complements. Thus, by Theorem 5.2, the set {E∇a | a ∈ L} is a subbasis for a
transitive and totally bounded quasi-uniformity EL on CL. This is called the Frith
quasi-uniformity, and it is the pointfree counterpart of the Pervin quasi-uniformity,
in the sense that, for every frame L, the frame L1(EL) is isomorphic to L. More
generally, for every Frith frame (L, S), the set {E∇s

| s ∈ S} is a subbasis for
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a transitive and totally bounded quasi-uniformity ES on CSL. We will now see
that the assignment (L, S) 7→ (CSL, ES) extends to a full embedding E : Frith ↪→
QUniFrmtrans, tot bd, where QUniFrmtrans, tot bd denotes the full subcategory of
QUniFrm consisting of those quasi-uniform frames that are transitive and totally
bounded.

Before proceeding, we show a couple of technical results concerning C-ideals of
the form Er. The first one is a straightforward computation.

Lemma 5.3. Let h : K1 → K2 be a frame homomorphism. Then, for every r ∈ K1,
we have (h⊕ h)(Er) ⊆ Eh(r). The converse inclusion holds if r is complemented.

Lemma 5.4. Let K be a frame and r, r1, . . . , rn ∈ K be complemented elements.
If

⋂n
i=1Eri ⊆ Er, then r is a lattice combination of the elements of {r1, . . . , rn}.

Proof. As before, we use [n] to denote the set {1, . . . , n} and, for every P ⊆ [n]
we let rP :=

∧
i∈P ri and rP :=

∧
i/∈P r

∗
i . Since, for every P ⊆ [n], we have

(rP , rP ) ∈
⋂n

i=1Eri , it follows from the hypothesis that (rP , rP ) ∈ Er, that is,
rP ≤ r or rP ≤ r∗. Thus, by (1), for every P ⊆ [n], we have

rP ≤ r or rP ∧ r = 0. (2)

On the other hand, since each ri is complemented, we have

r = r ∧
n∧

i=1

(ri ∨ r∗i ) = r ∧
∨

{rP ∧ rP | P ⊆ [n]} =
∨

{r ∧ rP ∧ rP | P ⊆ [n]}.

Using (2), we may then conclude that r =
∨
{rP | P ⊆ [n], r ∧ rP ̸= 0}, that is, r

is a lattice combination of the elements of {r1, . . . , rn}. 2

Let us now define the functor E on the morphisms. If h : (L, S) → (M,T )
is a morphism of Frith frames then, by Corollary 2.3, h uniquely extends to a
frame homomorphism h : CSL → CTM . The fact that h defines a quasi-uniform
homomorphism h : (CSL, ES) → (CTM, ET ) is a consequence of the following more
general result, which can be proved using Lemmas 5.3 and 5.4.

Proposition 5.5. Let K,N be two frames, and R ⊆ K and U ⊆ N be sublattices
of complemented elements. Let also g : K → N be a frame homomorphism. Then,

(a) g[R] ⊆ U if and only if (g ⊕ g)[ER] ⊆ EU ;

(b) U ⊆ g[R] if and only if EU is contained in the filter generated by (g ⊕ g)[ER].

As a consequence, we have an embedding E : Frith ↪→ QUniFrmtrans, tot bd

defined by E(L, S) = (CSL, ES) and E(h) = h. In fact, Proposition 5.5 also implies
that E is full.

Proposition 5.6. There is a full embedding E : Frith ↪→ QUniFrmtrans, tot bd.
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Our next goal is to show that the embedding E : Frith ↪→ QUniFrmtrans, tot bd

is a coreflection (cf. Theorem 5.12). We will need the following technical result:

Lemma 5.7. Let K be a frame, and R1, R2 ⊆ K be subsets of complemented
elements. Then, ER1

= ER2
if and only if ⟨R1⟩DLat = ⟨R2⟩DLat.

Proof. For i = 1, 2, we let R′
i denote the lattice generated by Ri. We first argue

that ERi
= ER′

i
, which implies that ER1

= ER2
whenever R1 and R2 generate the

same sublattice of K. Since Ri ⊆ R′
i, we clearly have ERi

⊆ ER′
i
. For the reverse

inclusion, it suffices to observe that for every r, r′ ∈ Ri, the entourage Er ∩ Er′

is contained both in Er∧r′ and in Er∨r′ . Let us prove the converse implication.
We suppose that ER1 = ER2 and we let r ∈ R1. Then, Er ∈ ER1 and so, there
are some r1, . . . , rn ∈ R2 such that Er ⊇ Er1 ∩ · · · ∩ Ern . By Lemma 5.4, this
yields r ∈ ⟨R2⟩DLat and thus, ⟨R1⟩DLat ⊆ ⟨R2⟩DLat. By symmetry, we have
⟨R1⟩DLat = ⟨R2⟩DLat as required. 2

We now show that every transitive and totally bounded quasi-uniformity E on a
frame K is of the form ER for a suitable bounded sublattice R of K. We introduce
the following notation:

Definition 5.8. Given a transitive and totally bounded quasi-uniform frame
(K, E), we will denote by R(K, E) the set of all complemented elements r of K
such that Er ∈ E .

The proof of the next result is inspired by the proof of an unpublished result
for Pervin spaces, which is due to Gehrke, Grigorieff, and Pin.

Proposition 5.9. Let (K, E) be a transitive and totally bounded quasi-uniform
frame. Then, R(K, E) is a sublattice of K satisfying E = ER(K, E)

.

Proof. Let (K, E) be a transitive and totally bounded quasi-uniform frame. By
Lemma 5.7, we have that R(K, E) is a sublattice of K, and by definition of R(K, E),
we also have ER(K, E)

⊆ E . Since E is a transitive quasi-uniformity, in order to show
the converse inclusion, it suffices to show that ER(K, E)

contains every transitive
entourage of E .

Let us fix a transitive entourage E ∈ E . Since E is totally bounded, there exists
a finite cover C of K such that

∨
x∈C x ⊕ x ⊆ E. Moreover, since E is transitive,

we may assume without loss of generality that C is a partition. Indeed, suppose
otherwise, say x ∧ y ̸= 0 for some distinct x, y ∈ C. Then, since (x, x), (y, y) ∈ E
implies, by (J.1), that (x, x ∧ y), (x ∧ y, y) ∈ E, by transitivity of E, we have that
(x, y) belongs to E, and by (J.3), it follows that (x, x ∨ y) ∈ E. Similarly, we can
show that (x ∨ y, x) ∈ E. Using again transitivity of E, we may conclude that
(x ∨ y, x ∨ y) belongs to E. Now, for each x ∈ C, let us denote

rx :=
∨

{y ∈ C | (x, y) /∈ E}. (3)

Since C is a partition of M , each rx is complemented with complement given by

r∗x =
∨

{z ∈ C | (x, z) ∈ E}. (4)
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We now show the following equality:

E =
⋂

{Erx | x ∈ C} (5)

Let (a, b) ∈ K×K be such that a and b are both non-zero, or else, (a, b) belongs to
both sides of (5). Suppose that (a, b) ∈ E and let x ∈ C. There are two cases: (a)
a ≤ rx and (b) a ≰ rx. In the first case, a is trivially in Erx . Let us assume that
a ≰ rx. Then, for showing (a, b) ∈ Erx , we need to show that b ≤ r∗x. Since rx is
complemented, by (1), having a ≰ rx is equivalent to having a∧ r∗x ̸= 0. Therefore,
by (4), there exists some z ∈ C such that a ∧ z ̸= 0 and (x, z) ∈ E. On the other
hand, again by (1), b ≤ r∗x if and only if b ∧ rx = 0 and, by (3), b ∧ rx = 0 if and
only if (x, y) ∈ E for every y ∈ C satisfying b ∧ y ̸= 0. So, we let y ∈ C be such
that b ∧ y ̸= 0. Since (x, z), (a, b), and (y, y) belong to E and E is a downset, we
have that (x, a ∧ z), (a ∧ z, b ∧ y), and (b ∧ y, y) also belong to E. By transitivity
of E, and since a ∧ z, b ∧ y ̸= 0, it follows that (x, y) ∈ E. This shows that b ≤ r∗x
as required. Conversely, suppose that (a, b) belongs to Erx , for every x ∈ C. Since
C is a partition of K, we have a =

∨
{a ∧ x | x ∈ C} and b =

∨
{b ∧ y | y ∈ C}.

Therefore, by (J.2) and (J.3), in order to show that (a, b) ∈ E, it suffices to show
that (a ∧ x, b ∧ y) ∈ E for every x, y ∈ C satisfying a ∧ x ̸= 0 and b ∧ y ̸= 0. Since
x ≤ r∗x, if a∧x ̸= 0 then we also have a∧r∗x ̸= 0, that is, a ≰ rx. Since (a, b) ∈ Erx ,
this implies b ≤ r∗x, that is, b∧ rx = 0. Finally, by (3), if b∧ rx = 0, then (x, y) ∈ E
whenever b ∧ y ̸= 0. Since E is a downset, we have (a ∧ x, b ∧ y) ∈ E and this
finishes the proof of (5).

Finally, (5) implies, on the one hand, that each rx belongs to R(K,E) (because rx
is complemented, E ∈ E and E =

⋂
x∈C Erx ⊆ Erx) and, on the other hand, that

E ∈ ER(K,E)
(because E =

⋂
x∈C Erx and each rx belongs to R(K,E)). Therefore,

E = ER(K,E)
as required. 2

In particular, using Theorem 5.2, we have the following:

Corollary 5.10. Every frame admitting a transitive and totally bounded quasi-
uniformity is zero-dimensional.

Proposition 5.11. Given a transitive and totally bounded quasi-uniform frame
(K, E), we let L be the subframe of K generated by R(K, E) and we let e : L ↪→ K
be the corresponding embedding, so that we have a Frith frame (L, S), where S
is such that e[S] = R(K, E). Then, the embedding e extends to a dense extremal
epimorphism γ(K, E) : (CSL, ES) ↠ (K, E) of quasi-uniform frames.

Proof. Since the elements of e[S] = R(K, E) are complemented in K, by Propo-
sition 2.2, the embedding e : L ↪→ K uniquely extends to a frame homomorphism
γ(K, E) : CSL → K. Moreover, γ(K, E) is surjective: since frame homomorphisms
preserve complemented elements, we have R(K, E) ∪R∗

(K, E) = γ(K, E) [{∇s,∆s}s∈S ]
and, by Theorem 5.2 and Proposition 5.9, it follows that

K = ⟨R(K, E) ∪R∗
(K, E)⟩Frm = γ(K, E)[CSL].
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Since, by Lemma 5.3, we have (γ(K, E)⊕γ(K, E))(E∇s
) = Eγ(K, E)(s) = Ee(s) for every

s ∈ S, and by Proposition 5.9, E = ER(K, E)
, we may conclude that γ(K, E) induces

a quasi-uniform homomorphism γ(K, E) : (CSL, ES) ↠ (M, E), which is an extremal
epimorphism. It remains to show that γ(K, E) is dense. Let s1, s2 ∈ S be such that
γ(K, E)(∇s1 ∧∆s2) = 0, or equivalently, e(s1) ∧ e(s2)∗ = 0. Since e(s2) ∈ R(K, E) is
complemented, by (1), it follows that e(s1) ≤ e(s2). Since e is an embedding, we
have s1 ≤ s2 and we obtain ∇s1 ∧∆s2 = 0 as required. 2

Finally, we may use Proposition 5.11 to show that

E : Frith ↪→ QUniFrmtrans, tot bd

is a coreflection.

Theorem 5.12. The category of Frith frames is coreflective in the category of
transitive and totally bounded quasi-uniform frames.

Proof. For a transitive and totally bounded quasi-uniform frame (K, E), we let
γ(K,E) : (CSL, ES) ↠ (K, E) be the dense extremal epimorphism of Proposition 5.11,
and e : L ↪→ K denote the embedding of L into K. To show that E : Frith ↪→
QUniFrmtrans, tot bd is a coreflection, it suffices to show that, for every Frith frame
(M,T ) and every quasi-uniform homomorphism h : (CTM, ET ) → (K, E), there ex-
ists a unique morphism of Frith frames g : (M,T ) → (L, S) such that the following
diagram commutes:

(CSL, ES) (K, E)

(CTM, ET )

γ(K,E)

h
Eg =: g

If such a morphism g exists then, in particular, we must have γ(K,E)◦g(∇a) = h(∇a)
for every a ∈ M . Since g and γ(K,E) are extensions of g and e, respectively, this
amounts to having e ◦ g(a) = h(∇a) for every a ∈M . Since by Proposition 5.5(a),
we have h[T ] ⊆ R(K,E) and thus, h[M ] ⊆ ⟨R(K,E)⟩Frm = e[L] and e is an embedding,
there is a unique morphism of Frith frames g : (M,T ) → (L, S) satisfying e◦g(a) =
h(∇a) for every a ∈M . Finally, to see that g makes the above diagram commute,
it suffices to observe that, for every t ∈ T , the following equalities hold:

γ(K,E) ◦ g(∆t) = γ(K,E)(∆g(t))
(∗)
= (e ◦ g(t))∗ = h(∇t)

∗ = h(∆t),

where the equality marked by (∗) holds because g(t) belongs to S. 2

Note that, unlike what happens in the point-set framework, where we have
an equivalence between Pervin spaces and transitive and totally bounded quasi-
uniform spaces (see [25]), the categories of Frith frames and of transitive and totally
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bounded quasi-uniform frames are not equivalent. This is because, in general, the
dense extremal epimorphism γ(K, E) : (CSL, ES) ↠ (K, E) from Proposition 5.11 is
not an isomorphism.

Example 5.13. Let X be a topological space such that the congruence frame
of its frame of opens is not spatial (see [19, Theorem 3.4] for a characterization
of the frames whose congruence frame is not spatial). We let R be the frame of
opens of X and K be the frame of opens of its Skula topology (that is, the topology
generated by the elements of R and their complements). Then, the underlying map
of γ(K, ER) : (CR, ER) ↠ (K, E) is the unique frame homomorphism extending R ↪→
K. This cannot be an isomorphism because K is spatial and CR is not. A concrete
example is given by taking for X the real line R equipped with the Euclidean
topology: since the Booleanization of Ω(R) is a pointless nontrivial sublocale, by
the characterization of [19], its congruence frame is not spatial. Note that this
example illustrates a wider class of transitive and totally bounded quasi-uniform
frames that are not in the image of E, namely, those of the form (K, ER) where
K and R as in Theorem 5.2 are such that R is a subframe of K and K is not
isomorphic to the congruence frame of R (see [18] for a characterization of those).4

On the other hand, in the case where (K, E) is such that the elements of
S = R(K, E) are complemented in L, one may easily check that γ(K, E) is an isomor-
phism. As we shall see in the next section, this happens if E is a uniformity (cf.
Proposition 6.1) and so, the category of transitive and totally bounded uniform
frames may be nicely represented by a suitable full subcategory of Frith frames (cf.
Corollary 6.2). A similar conclusion may be taken if we restrict to those transitive
and totally bounded quasi-uniform frames that are complete (cf. Corollary 7.3): if
(K, E) is complete, then γ(K,E) has to be an isomorphism.

6. Symmetric Frith frames and uniform frames. We say that a Frith
frame (L,B) is symmetric if B is a Boolean algebra, and we let Frithsym denote
the full subcategory of Frith whose objects are the symmetric Frith frames. The
relevance of symmetric Frith frames lies in the fact that they exactly capture those
transitive and totally bounded quasi-uniform frames that are actually uniform.

Proposition 6.1. Let (K, E) be a transitive and totally bounded quasi-uniform
frame. Then, E is a uniformity if and only if R(K, E) is a Boolean algebra. In
particular, for every Frith frame (L, S), we have that (L, S) is symmetric if and
only if (CSL, ES) is a uniform frame.

Proof. The first claim is a straightforward consequence of Proposition 5.9 and
of the equality E−1

r = Er∗ , which holds whenever r is complemented. For the
second statement, we only need to observe that, by Proposition 5.9, we have
ES = ER(CSL, ES)

and thus, by Lemma 5.4, we have R(CSL, ES) = {∇s | s ∈ S}
which, by Lemma 2.1, is a lattice isomorphic to S. Therefore, by the first claim,

4For the reader who is familiar with biframes, this is the same as saying that every strictly
0-dimensional biframe (K0,K1,K2) that is not the congruence biframe of its first part gives rise
to such an example.
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(CSL, ES) is a uniform frame if and only if S is a Boolean algebra. 2

In the following, we let UniFrmtrans, tot bd denote the full subcategory of
QUniFrm formed by the transitive and totally bounded uniform frames.

Corollary 6.2. The coreflection E : Frith ↪→ QUniFrmtrans, tot bd restricts and
co-restricts to an isomorphism E′ : Frithsym ↪→ UniFrmtrans, tot bd.

Proof. By Proposition 6.1, the functor E restricts and co-restricts to a func-
tor E′ : Frithsym ↪→ UniFrmtrans, tot bd. Let (K, E) be a transitive and totally
bounded uniform frame. By Proposition 6.1, R(K,E) is a Boolean algebra and so, by
Theorem 5.2 and Proposition 5.9, K is generated, as a frame, by R(K,E). Therefore,
the pair (K,R(K,E)) is a symmetric Frith frame. Moreover, by Propositions 5.5(a)
and 5.9, if h : (K, E) → (M,F) is a homomorphism of transitive and totally
bounded uniform frames, then h induces a morphism of (symmetric) Frith frames
h : (K,R(K,E)) → (M,R(M,F)). Hence, the assignment (K, E) 7→ (K,R(K,E)) yields
a well-defined functor γ′ : UniFrmtrans, tot bd → Frithsym. Finally, one can easily
show that E′ and γ′ are mutually inverse. 2

We will now show that the category Frithsym is both reflective and coreflective
in Frith. Let us start by coreflectivity.

Proposition 6.3. The category Frithsym is a full coreflective subcategory of
Frith.

Proof. Let (L, S) be a Frith frame. We consider the subset C ⊆ S consisting
of those elements having a complement in S, and we let N be the subframe of L
generated by C. Observe that C is a Boolean subalgebra of N , so that we have a
symmetric Frith frame b(L, S) := (N,C). Moreover, the embedding N ↪→ L defines
a homomorphism of Frith frames e(L,S) : b(L, S) ↪→ (L, S). To complete the proof,
we only need to show that, for every symmetric Frith frame (M,B) and for every

morphism h : (M,B) → (L, S) there is a unique morphism h̃ : (M,B) → b(L, S)
making the following diagram commute:

b(L, S) (L, S)

(M,B)

e(L,S)

h
h̃

That is, we need to show that h co-restricts to a morphism of Frith frames h̃ :
(M,B) → b(L, S). This is indeed the case because, since frame homomorphisms
preserve pairs of complemented elements, h[B] ⊆ S, and B is a Boolean algebra,
every element of h[B] is complemented in S, that is, we have h[B] ⊆ C. 2
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Combining Theorem 5.12, Corollary 6.2, and Proposition 6.3, we also have the
following:

Corollary 6.4. The category UniFrmtrans, tot bd is coreflective in
QUniFrmtrans, tot bd.

Let us now prove that UniFrmtrans, tot bd is reflective subcategory of
QUniFrmtrans, tot bd. Given a Frith frame (L, S), we let S denote the sublat-
tice of CSL generated by the elements of the form ∇s together with their com-
plements. As complemented elements of a frame are closed under finite meets
and finite joins, the lattice S is a Boolean algebra. Moreover, since L is gener-
ated by S, we have that CSL is generated by S and so (CSL, S) is a Frith frame.
We may then define a functor SymFrith : Frith → Frithsym as follows. For a
Frith frame (L, S) we set SymFrith(L, S) := (CSL, S); and for a morphism of Frith
frames h : (L, S) → (M,T ) we set SymFrith(h) := h, where h is the unique ex-
tension of h to a frame homomorphism h : CSL → CTM (recall Corollary 2.3).
In particular, we have h(∇s) = ∇h(s) and h(∆s) = ∆h(s) for every s ∈ S and

thus, h : (CSL, S) → (CTM,T ) is a morphism of Frith frames and SymFrith is a
well-defined functor. We shall refer to SymFrith(L, S) as the symmetrization of
(L, S).

Proposition 6.5. The full subcategory of symmetric Frith frames is reflective in
Frith.

Proof. We first observe that if (L, S) is a Frith frame, then it embeds in its
symmetrization via ∇ : L ↪→ CSL. Let (M,B) be a symmetric Frith frame, and
h : (L, S) → (M,B) be a morphism in Frith. We need to show that there is a

unique morphism h̃ : (CSL, S) → (M,B) making the following diagram commute:

(L, S) (CSL, S)

(M,B)

∇

h̃h

Since h[S] ⊆ B consists of complemented elements of M , by Proposition 2.2, there

is a unique frame map h̃ : CSL → M making the above triangle commute. Hence,
we only need to show that h̃[S ] ⊆ B. This is indeed the case because, for every

s ∈ S, we have h̃(∇s) = h(s) and h̃(∆s) = h(s)∗, and B is closed under taking
complements. 2

We now argue that SymFrith is a restriction of the usual reflection of QUniFrm
onto UniFrm.

Proposition 6.6. The following diagram commutes:
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Frith Frithsym

QUniFrm UniFrm

SymFrith

EE

SymQUniFrm

Proof. Let (L, S) be a Frith frame. By definition, we have

E ◦ SymFrith(L, S) = (CSL, ES) and SymQUniFrm ◦ E(L, S) = (CSL, ES),

where ES is the uniformity generated by {E∇s
, E−1

∇s
| s ∈ S}. Since E−1

∇s
= E∆s

,

by definition of S and by Lemma 5.7, ES and ES are both the (quasi-)uniformity
generated by {E∇s , E∆s | s ∈ S}. Commutativity at the level of morphisms is
trivial. 2

Finally, we will see that SymFrith is the pointfree analogue of SymPerv discussed
in Section 3.

Proposition 6.7. There is an isomorphism α(L,S) : SymPerv ◦ pt(L, S) ∼= pt ◦
SymFrith(L, S) for every Frith frame (L, S).

Proof. Let us define α(L,S) : pt(L) → pt(CSL) by p 7→ p̃, where for every
point p ∈ pt(L) the map p̃ is the unique morphism such that p̃ ◦∇ = p, as given by
Proposition 2.2. Since L is a subframe of CSL and thus, every point of CSL restricts
to a point of L, this assignment is a bijection. Let us show that α(L,S) defines an
isomorphism of Pervin spaces α(L,S) : SymPerv ◦ pt(L, S) → pt ◦ SymFrith(L, S).
By Corollary 3.3, we need to show that the preimages of the elements of the lattice
component of pt◦SymFrith(L, S) are exactly the elements of the lattice component
of SymPerv ◦ pt(L, S). Noting that the former lattice is generated by the elements

of the form ∇̂s and ∆̂s and the latter by those of the form ŝ and (ŝ)c (s ∈ S), that
is a consequence of having

α−1
(L,S)(∇̂s) = ŝ and α−1

(L,S)(∆̂s) = (ŝ)c,

for every s ∈ S. 2

Theorem 6.8. The following diagram commutes up to natural isomorphism.

Frithop Frithop
sym

Pervin Pervinsym

pt

SymPerv

pt

SymFrith
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Proof. We show that the family of isomorphisms {α(L,S) | (L, S) is a Frith frame}
defined in Proposition 6.7 induces a natural transformation SymPerv ◦ pt =⇒
pt ◦ SymFrith. Suppose that h : (M,T ) → (L, S) is a morphism of Frith frames,
that is, h is a morphism (L, S) → (M,T ) in Frithop. Then, naturality of α amounts
to commutativity of the following square:

pt(L) pt(CSL)

pt(M) pt(CTM)

α(L,S)

(−) ◦ h(−) ◦ h

α(M,T )

Let p ∈ pt(L). Since, by definition, α(M,T )(p ◦ h) is the unique point of pt(CTM)

extending p ◦ h, it suffices to show that α(L,S)(p) ◦ h extends p ◦ h. That is indeed
the case because, for every a ∈M , we have the following:

α(L,S)(p) ◦ h(∇a) = α(L,S)(p)(∇h(a))
(∗)
= p ◦ h(a),

where the equality (∗) follows from having that, by definition, α(L,S)(p) is the
unique extension of p to a point of CSL. 2

7. Completion of a Frith frame. As mentioned in Section 2, complete
(quasi-)uniform frames may be equivalently characterized via dense extremal epi-
morphisms or via Cauchy maps. Since the category of Frith frames fully embeds
into the category of quasi-uniform frames, there is a natural notion of completion
of a Frith frame. In this section we explore it, both from the point of view of
dense extremal epimorphisms and of Cauchy maps. As the reader will notice, in
this restricted subcategory of quasi-uniform frames, the concepts involved become
surprisingly simple.

7.1. Dense extremal epimorphisms. We say that a symmetric Frith frame
(L,B) is complete if every dense extremal epimorphism (M,C) ↠ (L,B) with
(M,C) symmetric is an isomorphism. More generally, a Frith frame (L, S) is com-
plete provided its symmetric reflection SymFrith(L, S) is complete. As the reader
may expect, completeness of a Frith frame (L, S) is equivalent to completeness
of the associated quasi-uniform frame (CSL, ES) (cf. Proposition 7.2). A comple-
tion of (L, S) is a complete Frith frame (M,T ) together with a dense extremal
epimorphism (M,T ) ↠ (L, S).

Given a Frith frame (L, S), by Corollary 2.5, there is a unique frame homo-
morphism Idl(S) → L extending the embedding S ↪→ L. Clearly, this frame
homomorphism induces a dense extremal epimorphism of Frith frames

c(L,S) : (Idl(S), S) ↠ (L, S), J 7→
∨
J. (6)

An immediate consequence of the definition of completeness is the following:
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Lemma 7.1. If (L, S) is complete, then c(CSL,S) : (Idl(S), S) → (CSL, S) is an
isomorphism.

Proof. This is simply because, by definition, (L, S) is complete if and only if so
is SymFrith(L, S) = (CSL, S) and c(CSL,S) is a dense extremal epimorphism. 2

In particular, if (L, S) is complete, then its symmetric reflection SymFrith(L, S)
is coherent. In turn, since SymFrith(L, S) is a zero-dimensional Frith frame, by
Lemma 4.9, being coherent is equivalent to being compact, and since L is a subframe
of CSL, we haveK(CSL)∩L ⊆ K(L). Now notice thatK(CSL) = S by coherence of
SymFrith(L, S) and Lemma 4.5, and thus S ⊆ K(CSL). Therefore, S ⊆ K(CSL)∩L
and this implies that S ⊆ K(L). This means that (L, S) is coherent, too. We have
just proved the following:

(L, S) complete =⇒ SymFrith(L, S) compact

⇐⇒ SymFrith(L, S) coherent =⇒ (L, S) coherent. (7)

From this, we may already show that our notion of completeness is consistent with
usual completeness for (quasi-)uniform frames:

Proposition 7.2. Let (L, S) be a Frith frame. Then, (L, S) is complete if and
only if (CSL, ES) is complete.

Proof. We first observe that it suffices to consider the case where (L, S) is
symmetric. Indeed, by definition, (L, S) is complete if and only if SymFrith(L, S) =
(CSL, S) is complete. On the other hand, by Proposition 2.12, (CSL, ES) is complete
if and only if (CSL, ES) is complete and, by Proposition 6.6, we have (CSL, ES) =
SymQUniFrm ◦ E(L, S) = E ◦ SymFrith(L, S) = (CSL, ES). Therefore, the claim
holds if and only if, for every Frith frame (L, S), completeness of SymFrith(L, S) =
(CSL, S) and of E ◦ SymFrith(L, S) = (CSL, ES) are equivalent notions.

Now, we let (L,B) be a symmetric Frith frame. Suppose that (L,B) is complete
and let h : (M, E) ↠ (L, EB) be a dense extremal epimorphism for some uniform
frame (M, E). Since (L,B) is complete, by (7), L is compact. Therefore, by Propo-
sition 2.13, h is an isomorphism. Conversely, suppose that (L, EB) is complete.
By Proposition 5.5, every dense extremal epimorphism h : (M,C) ↠ (L,B) of
symmetric Frith frames induces an extremal epimorphism h : (M, EC) ↠ (L, EB),
which is clearly dense. Since (L, EB) is complete, h is one-to-one and, by Corol-
lary 4.18, it is an isomorphism. Thus, (L,B) is complete as required. 2

Before proceeding, we remark that a consequence of Proposition 7.2 is that the
categories CFrith of complete Frith frames and CQUniFrmtrans, tot bd of complete
transitive and totally bounded quasi-uniform frames are equivalent.

Corollary 7.3. The coreflection E : Frith ↪→ QUniFrmtrans, tot bd restricts and
co-restricts to an equivalence of categories E′′ : CFrith → CQUniFrmtrans, tot bd.
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Proof. By Proposition 7.2, the functor E : Frith ↪→ QUniFrmtrans, tot bd re-
stricts and co-restricts to a functor E′′ : CFrith ↪→ CQUniFrmtrans, tot bd. Since
CFrith and CQUniFrmtrans, tot bd are, respectively, full subcategories of Frith
and of QUniFrmtrans, tot bd, by Proposition 5.6, E′′ is a full embedding. Finally,
let (K, E) be a transitive and totally bounded quasi-uniform frame. If (K, E) is
complete, then the dense extremal epimorphism γ(K,E) : (CSL, ES) ↠ (K, E) of
Proposition 5.11 has to be an isomorphism and, again by Proposition 7.2, (L, S)
is complete. Therefore, (K, E) ∼= E′′(L, S) and E′′ is an equivalence of categories.

2

Our next goal is to show that all the statements in (7) are in fact equivalent.
Since by Proposition 4.6 coherent Frith frames are those of the form (Idl(S), S), for
some lattice S, we only need to prove that (Idl(S), S) is always a complete Frith
frame. We will need the following lemma.

Lemma 7.4. If (L,B) and (M,C) are symmetric Frith frames, then any dense
extremal epimorphism h : (L,B) → (M,C) restricts and co-restricts to a Boolean
algebra isomorphism h′ : B → C.

Proof. Suppose that (L,B) and (M,C) are symmetric Frith frames, and let
h : (L,B) → (M,C) be a dense extremal epimorphism. By Proposition 4.16, we
have h[B] = C. So, we only need to show that the restriction of h to B is injective.
Let b1, b2 ∈ B and suppose that h(b1) ≤ h(b2). This implies that h(b1)∧h(b2)∗ = 0
and, since frame morphisms preserve complemented pairs, we have h(b1 ∧ b∗2) = 0.
By density, we may then conclude that b1 ∧ b∗2 = 0 and, since b2 is complemented,
this implies b1 ≤ b2. 2

Let c(L,S) : SymFrith(Idl(S), S) ↠ SymFrith(L, S) denote the symmetric reflec-

tion of c(L,S), that is, c(L,S) : (CSIdl(S), S) ↠ (CSL, S) is defined by c(L,S)(∇s) =
∇s and c(L,S)(∆s) = ∆s, for s ∈ S.

Proposition 7.5. Let (L, S), (M,C) be Frith frames with (M,C) symmetric and
let h : (M,C) → (CSL, S) be a dense extremal epimorphism. Then, there exists
a unique morphism g : (CSIdl(S), S) → (M,C) making the following diagram
commute:

(CSIdl(S), S) (M,C)

(CSL, S)

g

c(L,S)
h

Moreover, g is a dense extremal epimorphism.
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Proof. Since S is join-dense in CSIdl(S), frame homomorphisms preserve com-
plemented elements, and C is closed under taking complements, if g exists, then
its underlying frame homomorphism is the unique extension of a lattice homomor-
phism g′ : S → C such that h ◦ g′(s) = ∇s for every s ∈ S. We first argue that
the morphism g′ exists. Since h is a dense extremal epimorphism, by Lemma 7.4,
it restricts and co-restricts to a lattice isomorphism h′ : C → S. Let g′ be the
restriction to S of the inverse of h′. Clearly, g′ satisfies h ◦ g′(s) = ∇s for every
s ∈ S. The desired extension of g′ exists, too: we may first extend g′ to a frame
homomorphism Idl(S) →M , by Corollary 2.5, and then to a frame homomorphism
g : CSIdl(S) →M , by Proposition 2.2.

It remains to show that g is a dense extremal epimorphism. Observe that
g suitably restricted and co-restricted is the inverse of h′ : C → S. Therefore
g[S] = C and g is an extremal epimorphism. Finally, since CSIdl(S) is generated,
as a frame, by S, g is dense provided ∇s1 ∩∆s2 = 0 for every s1, s2 ∈ S satisfying
g(∇s1 ∩∆s2) = 0, and this also follows from having that g restricts and co-restricts
to a lattice isomorphism S → C. 2

Corollary 7.6. If (L, S) is a Frith frame, then (Idl(S), S) is complete and, there-
fore, c(L,S) : (Idl(S), S) ↠ (L, S) is a completion of (L, S).

Proof. By definition, (Idl(S), S) is complete if and only if so is SymFrith(Idl(S), S)
= (CSIdl(S), S). Let h : (M,C) ↠ (CSIdl(S), S) be a dense extremal epimorphism,
with (M,C) symmetric. Then, Proposition 7.5 applied to h gives the existence of a
dense extremal epimorphism g : (CSIdl(S), S) ↠ (M,C) satisfying h◦g = c(Idl(S),S).
Since, c(Idl(S),S) is the identity function, h is one-to-one, thus an isomorphism.

Thus, SymFrith(Idl(S), S) = (CSIdl(S), S) is complete as required. 2

We may now state the following pointfree analogue of [25, Theorem 4.1], which
is a straightforward consequence of (7) and of Corollary 7.6.

Theorem 7.7. For a Frith frame (L, S) the following are equivalent.

(a) The Frith frame (L, S) is complete.

(b) The Frith frame (L, S) is coherent.

(c) The Frith frame SymFrith(L, S) is coherent.

(d) The Frith frame SymFrith(L, S) is compact.

We finish this section by showing that completions are unique, up to isomor-
phism.

Proposition 7.8. Let (L, S) be a Frith frame. Then, for every morphism h :

(M,T ) → (L, S) with (M,T ) complete, there exists a unique morphism ĥ : (M,T )
→ (Idl(S), S) such that the following diagram commutes:

2319



C. Borlido and A.L. Suarez

(M,T ) (Idl(S), S)

(L, S)

ĥ

h
c(L,S)

Moreover, if h is dense (respectively, an extremal epimorphism) then ĥ is also dense
(respectively, an extremal epimorphism).

Proof. Since T is join-dense in M , if such a homomorphism ĥ exists, then it is
completely determined by its restriction to T . In particular, ĥ is unique because
we must have h(t) = c(L,S) ◦ ĥ(t) = ĥ(t), for every t ∈ T , that is, ĥ must be an
extension of the restriction and co-restriction h′ : T → S of h. By Corollary 2.5,
h′ uniquely extends to a frame homomorphism ĥ : Idl(T ) → Idl(S). Since, by
Theorem 7.7, (M,T ) is coherent and thus, by Proposition 4.6, M ∼= Idl(T ), it

follows that ĥ is the required homomorphism.
Now, suppose that h is dense. Since T is join-dense in M , ĥ is dense provided,

for every t ∈ T , we have t = 0 whenever ĥ(t) = 0. This is indeed the case because

ĥ(t) = h(t) for every t ∈ T . Finally, by the same reason, we also have that ĥ is an
extremal epimorphism if so is h. 2

Corollary 7.9. Each Frith frame has a unique, up to isomorphism, completion.

Proof. By Corollary 7.6 we already know that every Frith frame (L, S) has a com-
pletion c(L,S) : (Idl(S), S) ↠ (L, S). Let c : (M,T ) ↠ (L, S) be another completion
of (L, S). Since c is a dense extremal epimorphism, by Proposition 7.8, there exists
a dense extremal epimorphism ĉ : (M,T ) ↠ (Idl(S), S) satisfying c(L,S) ◦ ĉ = c.
Since (M,T ) is complete, ĉ has to be an isomorphism and so, the two completions
of (L, S) are isomorphic. 2

7.2. Cauchy maps. In this section we will show an analogue of Theorem 2.15.
We start by proving some properties of a Cauchy map ϕ : (L, E) →M , in the case
where E = EB , for some Boolean subalgebra B ⊆ L, that is, (L,B) is a symmetric
Frith frame (recall Theorem 5.2) and E(L,B) = (L, EB).

Lemma 7.10. Let (L,B) be a symmetric Frith frame, M be a frame, and ϕ :
(L, EB) →M be a Cauchy map. Then, the following statements hold:

◦ ϕ restricts to a lattice homomorphism with domain B.

◦ For every a ∈ L, the equality ϕ(a) =
∨
{ϕ(b) | b ∈ B, b ≤ a} holds.

◦ For every b ∈ B, ϕ(b) ∨ ϕ(b)∗ = 1.
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Proof. Let ϕ : (L, EB) →M be a Cauchy map, that is, ϕ satisfies conditions (a),
(b), and (c) of Definition 2.14. We start by observing that, for every b ∈ B we have
ϕ(b∗) = ϕ(b)∗. Indeed, since (a, a) ∈ Eb if and only if a ≤ b or a ≤ b∗, and, by (a),
ϕ is order-preserving, by (c), we have 1 = ϕ(b)∨ϕ(b∗). Since, by (a), ϕ(b)∧ϕ(b∗) =
ϕ(b∧ b∗) = ϕ(0) = 0, it follows that ϕ(b) is complemented with complement ϕ(b∗),
that is, ϕ(b∗) = ϕ(b)∗. In particular, we also have 1 = ϕ(b) ∨ ϕ(b)∗, which proves
the third statement. Now, we let b1, b2 ∈ B. By (a), the first statement holds
provided ϕ(b1 ∨ b2) ≤ ϕ(b1)∨ ϕ(b2). Since each ϕ(bi) is complemented, by (1), this
is equivalent to the equality ϕ(b1∨ b2)∧ϕ(b1)∗∧ϕ(b2)∗ = 0, which follows from (a)
together with the equality ϕ(b∗i ) = ϕ(bi)

∗ already proved. Finally, let us show that
the second statement is valid. We fix some a ∈ L. Since B is a Boolean algebra,
by Lemma 5.1, for every x ∈ L satisfying x◁1a or x◁2a, there is some bx ∈ B such
that x ≤ bx ≤ a. Then, using (b) and the fact that ϕ is order-preserving, we may
derive that

ϕ(a) ≤
∨

{ϕ(x) | x ∈ L, x◁1a or x◁2a} ≤
∨

{ϕ(bx) | x ∈ L, x◁1a or x◁2a}

≤
∨

{ϕ(b) | b ∈ B, b ≤ a} ≤ ϕ(a).
2

It is then natural to consider the following definition of Cauchy map.

Definition 7.11. Let (L, S) be a Frith frame and M any frame. A Cauchy map
ϕ : (L, S) →M is a function ϕ : L→M such that

(C.1) ϕ restricts to a lattice homomorphism with domain S,

(C.2) for every a ∈ L, the equality ϕ(a) =
∨
{ϕ(s) | s ∈ S, s ≤ a} holds,

(C.3) for every s ∈ S, ϕ(s) ∨ ϕ(s)∗ = 1.

By Lemma 7.10, we have that in the case where (L,B) is a symmetric Frith
frame, if ϕ : (L, EB) → M is a Cauchy map in the sense of Definition 2.14, then
ϕ : (L,B) → M is a Cauchy map in the sense of Definition 7.11. We will now
show that the converse is also true, so that our definition of Cauchy map agrees
with the classical one for transitive and totally bounded uniform frames (recall
Corollary 6.2).

Proposition 7.12. Let (L,B) be a symmetric Frith frame, M a frame, and ϕ :
L → M a function. Then, ϕ defines a Cauchy map ϕ : (L, EB) → M if and only if
it defines a Cauchy map ϕ : (L,B) →M .

Proof. The forward implication is the content of Lemma 7.10. Conversely, let
ϕ : (L,B) → M be a Cauchy map, where (L,B) is a symmetric Frith frame.
We first argue that ϕ is a bounded meet homomorphism. Since ϕ|B is a lattice
homomorphism, we have ϕ(0) = 0 and ϕ(1) = 1. Let a1, a2 ∈ L. Then, we may
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compute

ϕ(a1 ∧ a2)
(C.2)
=

∨
{ϕ(b) | b ∈ B, b ≤ a1 ∧ a2}

(C.1)
=

∨
{ϕ(b1) ∧ ϕ(b2) | b1, b2 ∈ B, b1 ≤ a1, b2 ≤ a2}

= (
∨

{ϕ(b1) | b1 ∈ B, b1 ≤ a1}) ∧ (
∨

{ϕ(b2) | b2 ∈ B, b2 ≤ a2})
(C.2)
= ϕ(a1) ∧ ϕ(a2).

Thus, ϕ also preserves binary meets and we have (a). Now, using (C.2), in order to
show (b), it suffices to observe that, for every b ∈ B, we have b◁1a whenever b ≤ a.
Indeed, that is a consequence of the inclusion Eb ◦ (b⊕ b) ⊆ (a⊕a) for every b ≤ a.
It remains to show (c). Let E ∈ EB , say E ⊇

⋂n
i=1Ebi for some b1, . . . , bn ∈ B.

Using (C.1) and the fact that each bi is complemented, we have

1 = ϕ(

n∧
i=1

(bi ∨ b∗i )) =
n∧

i=1

(ϕ(bi) ∨ ϕ(b∗i )) =
∨

{ϕ(bP ∧ bP ) | P ⊆ [n]},

where [n] := {1, . . . , n} and, for P ⊆ [n], we denote bP :=
∧

i∈P bi and bP :=∧
i/∈P b

∗
i . Since, for every P ⊆ [n], we have (bP ∧ bP , bP ∧ bP ) ∈

⋂n
i=1Ebi ⊆ E, it

then follows that

1 =
∨

{ϕ(bP ∧ bP ) | P ⊆ [n]} ≤
∨

{ϕ(x) | (x, x) ∈ E},

which proves (c). 2

In what follows, we fix a Frith frame (L, S) and a frame M . Recall from the
previous section that, for every Frith frame (L, S), there is a dense extremal epimor-
phism c : Idl(S) ↠ L defined by c(J) =

∨
J . Since this is a frame homomorphism,

it has a right adjoint c∗ : L ↪→ Idl(S) which is determined by the Galois connection

∀a ∈ L, J ∈ Idl(S), c(J) ≤ a ⇐⇒ J ⊆ c∗(a).

In particular, for every a ∈ L, we have

c∗(a) =
∨

{J ∈ Idl(S) |
∨
J ≤ a}. (8)

Lemma 7.13. For every a ∈ L, we have c∗(a) = ↓a ∩ S. In particular, the map c
is a right inverse of c∗, that is, c ◦ c∗ = id.

Proof. Let s ∈ S. By (8), we have that s ∈ c∗(a) if and only if there are
J1, . . . , Jn ∈ Idl(S), and si ∈ Ji (for i = 1, . . . , n) such that

∨
Ji ≤ a and s ≤

s1∨· · ·∨sn. Clearly, this holds if and only if s ≤ a and thus, we have c∗(a) = ↓a∩S.
Since S is join-dense in L, it then follows that c◦c∗(a) = c(↓a∩S) =

∨
(↓a∩S) = a.

2
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We now consider the function λ : L ↪→ CSIdl(S) obtained by composing the
injections c∗ : L ↪→ Idl(S) and ∇ : Idl(S) ↪→ CSIdl(S). Explicitly, λ sends the
element a ∈ L to the congruence ∇↓a∩S . Notice that λ defines a Cauchy map
λ : (L, S) → CSIdl(S). Indeed, since c∗(s) = ↓s ∩ S for every s ∈ S and ∇ is a
frame homomorphism, we have that λ restricts to a lattice homomorphism with
domain S, that is, (C.1) holds. Moreover, since ↓a ∩ S is the ideal generated by⋃
{↓s ∩ S | s ∈ S, s ≤ a}, we have (C.2). Finally, by definition, each λ(s) = ∇s is

complemented in CSIdl(S), and so, we have (C.3).

Theorem 7.14. For every Cauchy map ϕ : (L, S) → M , there exists a frame
homomorphism g : CSIdl(S) →M such that the following diagram commutes:

L CSIdl(S)

M

g
ϕ

λ

Proof. Since CSIdl(S) is generated, as a frame, by the set of congruences {∇s,∆s |
s ∈ S} and frame homomorphisms preserve pairs of complemented elements, if g
exists, then it is completely determined by its restriction to {∇s | s ∈ S}, which
must satisfy g(∇s) = g ◦ λ(s) = ϕ(s), for every s ∈ S. By (C.1), ϕ restricts to a
lattice homomorphism ϕ|S : S →M and, by Corollary 2.5, ϕ|S uniquely extends to

frame homomorphism ϕ̂|S : Idl(S) →M . Since, by (C.3), each ϕ(s), with s ∈ S, is
complemented in M , we may then use Proposition 2.2 to derive the existence of a
unique frame homomorphism g : CSIdl(S) →M satisfying g(∇s) = ϕ(s), for every
s ∈ S. To see that g makes the diagram commute, we may use (C.2) for λ and for
ϕ and the fact that g is a frame homomorphism to compute

g ◦ λ(a) = g(
∨

{λ(s) | s ∈ S, s ≤ a}) =
∨

{g ◦ λ(s) | s ∈ S, s ≤ a}

=
∨

{ϕ(s) | s ∈ S, s ≤ a} = ϕ(a),

for every a ∈ L. 2

Theorem 7.15. A Frith frame (L, S) is complete if and only if every Cauchy map
(L, S) →M is a frame homomorphism.

Proof. If (L, S) is complete, then c is an isomorphism and thus, c∗, hence λ,
is a frame homomorphism. Since by Theorem 7.14 every Cauchy map factors
through λ via a frame homomorphism, it follows that every Cauchy map is itself a
frame homomorphism.

Conversely, if every Cauchy map is a frame homomorphism then λ is a frame
homomorphism. In particular, λ induces a morphism of Frith frames λ : (L, S) →
(CSIdl(S), S). On the other hand, by Corollary 7.6 and by definition of com-
plete Frith frame, we have that (CSIdl(S), S) = SymFrith(Idl(S), S) is complete.
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Therefore, (L, S) is complete provided the symmetric reflection λ : (CSL, S) →
(CSIdl(S), S) of λ is a dense extremal epimorphism. That is the case because, for
every s ∈ S, we have λ(∇s) = ∇s and λ(∆s) = ∆s. 2

8. Notes on the existing literature. Join-dense subsets of a frame L are
usually called bases for L. Thus, a Frith frame (L, S) is nothing but a frame
equipped with a bounded sublattice base S. Frames with special bases had already
been considered in the literature, see for instance, [1] for frames with normal bases,
[5] for frames with cozero bases, and [2] for frames with Wallman bases. In all
these works, it is shown that a base of the appropriate type for a frame L induces
a strong inclusion on L. In our case, a non-symmetric version of this holds: given
a Frith frame (L, S), the relation ◁S ⊆ L× L defined by

a◁Sb ⇐⇒ ∃s ∈ S : a ≤ s ≤ b

is a proximity on L (in the sense of [6]) that satisfies the following additional
property: if a◁Sb then there is c ∈ L such that a◁Sc◁Sc◁Sb. Actually, every such
proximity ◁ is defined by a Frith frame: just take S = {a ∈ L | a◁a}. In the case
where S is a Boolean algebra, the relation ◁S is a strong inclusion on L, and S
is named a c-base of L in [5]. While strong inclusions on L are known to be in a
bijective correspondence with compactifications of L [4], proximities on L are in
a bijective correspondence with stable compactifications [6]. It is not hard to see
that the stable compactification associated with the proximity ◁S is precisely the
underlying frame homomorphism of c(L,S) defined in (6).

Despite this parallel, there are major differences in the spirit of our work when
compared to existing literature. On the one hand, to the best of our knowledge, a
functorial approach to frames with bases, where these are seen as the object part of
a suitable category, has not been undertaken. On the other hand, we regard a Frith
frame as a representation of a quasi-uniformity on a certain frame of congruences,
which is used for studying the latter.

Finally, we note that there are well-known connections between strong inclu-
sions and uniformities, namely, Frith [10] proved that frames equipped with strong
inclusions are part of a category isomorphic to that of totally bounded uniform
frames. In the case where (L,B) is a symmetric Frith frame, the frames L and
CBL are isomorphic and our (transitive and) totally bounded uniformity EB on
L is precisely the uniformity defined by ◁B under Frith’s correspondence. Ac-
cordingly, it would be worth investigating and characterize those totally bounded
uniform frames arising from a frame with a normal/Wallman/cozero base. In the
vein of [5], it would also be interesting to describe those frames L that are not gener-
ated by any proper bounded sublattice, being ω+1 an example of such. A solution
to the symmetric version of this question is the content of [5, Proposition 7].
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