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Abstract. The aim of this work is to investigate the behavior of equidivisibility
under coproduct in the category of pro-V semigroups, where V is a pseudovariety of
finite semigroups. Exploring the relationship with the two-sided Karnofsky–Rhodes
expansion, the notions of KR-cover and strong KR-cover for profinite semigroups
are introduced. The former is stronger than equidivisibility and the latter provides
a characterization of equidivisible profinite semigroups with an extra mild condi-
tion, so-called letter super-cancellativity. Furthermore, under the assumption that
V is closed under two-sided Karnofsky–Rhodes expansion, closure of some classes of
equidivisible pro-V semigroups under (finite) V-coproduct is established.
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1. Introduction. A semigroup is equidivisible if any two factorizations of every
element have a common refinement. The class of equidivisible semigroups was in-
troduced and studied in [10] as a natural common generalization of free semigroups
and completely simple semigroups. More recently, this property has appeared as a
useful tool in profinite semigroup theory, beginning with [3, 9], where it was noted,
independently, that for several important pseudovarieties of finite semigroups (like
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that of all finite semigroups, or that of all finite aperiodic semigroups), the cor-
responding finitely generated relatively free profinite semigroups are equidivisible.
Other recent papers where the equidivisibility of relatively free profinite semigroups
is applied or deserves some kind of attention include [6, 5, 20]. A complete char-
acterization of the pseudovarieties for which the corresponding finitely generated
relatively free profinite semigroups are equidivisible appears in [4].

As observed in [10], the class of equidivisible semigroups is closed under taking
free products, that is, coproducts in the category of semigroups. In this paper,
we investigate an analog for profinite semigroups. For that purpose, we introduce
V-coproducts of pro-V semigroups with respect to a pseudovariety of semigroups
V, extending what was done in [18] for the pseudovariety of finite groups. We give
simple conditions on V guaranteeing that the free product of pro-V semigroups
embeds naturally in their V-coproduct.

We introduce a restricted form of projectivity. The profinite semigroups with
this property are called KR-covers and turn out to be equidivisible semigroups.
We show that the class of pro-V KR-covers is closed under V-coproduct when
V is closed under two-sided Karnofsky–Rhodes expansion. This expansion is a
two-sided analog of the so-called Karnofsky–Rhodes expansion [8, 14], which has
recently found new applications beyond semigroup theory [12, 13].

One of the motivations for searching for new examples of equidivisible profinite
semigroups comes from the fact that several results in [5] were stated for equidi-
visible profinite semigroups, frequently with the additional requirement that they
satisfy a certain cancellation property. Semigroups satisfying this cancellation prop-
erty are called letter super-cancellative in [4] and finitely cancellable in [5]. They
include the finitely generated relatively free profinite semigroups that are equidivis-
ible but not completely simple. In this paper we provide a characterization of the
class of all finitely generated equidivisible letter super-cancellative profinite semi-
groups, involving the notion of strong KR-cover, which we introduce. We show
that the subclass consisting of pro-V semigroups is also closed under taking finite
V-coproducts when V is closed under two-sided Karnofsky–Rhodes expansion. We
also exhibit an element of the class that is not relatively free (the existence of such
an example was left open in [5]).

2. Preliminaries. The reader is referred to standard references for general
background on profinite semigroups and pseudovarieties [1, 2, 15]. For the remain-
der of the section, we introduce briefly specific notions and terminology needed in
the sequel.

For a semigroup S, let SI be the semigroup which is obtained by adjoining
a new identity element, denoted I, even if S is itself a monoid. The semigroup
S is equidivisible when, for every u, v, x, y ∈ S, the equality uv = xy implies the
existence of t ∈ SI such that x = ut and ty = v, or xt = u and y = tv. Equivalently,
any two factorizations of the same element of S have a common refinement.

A pseudovariety (of semigroups) is a class of finite semigroups closed under
taking homomorphic images, subsemigroups and finite direct products. For the
remainder of the paper, V denotes an arbitrary pseudovariety.

A topological semigroup is a semigroup S endowed with a topology such that
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the semigroup multiplication S×S → S is continuous. We then say that a mapping
ϕ : X → S, with X a nonempty set, is a generating mapping if ϕ(X) generates a
dense subsemigroup of S. When the generating mapping is understood, we may
simply say that S is X-generated. When no topology is mentioned, we consider
semigroups endowed with the discrete topology.

Throughout the paper, when we consider compact spaces, we assume that they
are Hausdorff. A pro-V semigroup is a compact semigroup which is residually V,
that is, a compact semigroup S such that for every two distinct elements x, y of S
there is a continuous homomorphism from S onto a semigroup from V satisfying
ϕ(x) 6= ϕ(y). A profinite semigroup is a pro-S semigroup for the pseudovariety
S of all finite semigroups. Since in a finite semigroup, for every element s the se-
quence (sn!)n converges, and the limit is idempotent, the same holds in an arbitrary
profinite semigroup; the limit of the sequence is denoted sω. More generally, the
sequence (sn!+k)n>|k| converges for every integer k and the limit is denoted sω+k.

Pro-V semigroups may be alternatively described as the inverse limits of inverse
systems of finite semigroups. Here, by an inverse system, we mean a family (Si)i∈I
of compact semigroups, where I is an upper directed set, together with continuous
homomorphisms ϕi,j : Si → Sj whenever i > j such that ϕi,i is the identity map-
ping and ϕj,k ◦ ϕi,j = ϕi,k whenever i > j > k. We say that the inverse system is
an inverse quotient system if every mapping ϕi is onto. The inverse limit lim←−i∈I Si
of the inverse system (Si)i∈I is the subsemigroup of the direct product

∏
i∈I Si

consisting of the elements (si)i∈I such that ϕi,j(si) = sj whenever i > j. The re-
striction to lim←−i∈I Si of the j-component projection is a continuous homomorphism

ϕj : lim←−i∈I Si → Sj . In case the Si are pro-V semigroups, so is lim←−i∈I Si. In the

case of an inverse quotient system, we also say that lim←−i∈I Si is an inverse quotient

limit ; in this case, the mappings ϕi are onto.

Given a nonempty set X, there is a free pro-V semigroup on X given by a
mapping ι : X → ΩXV with the following universal property: for every mapping
ϕ : X → S into a pro-V semigroup S, there is a unique continuous homomorphism
ϕ̂ : ΩXV → S such that ϕ̂ ◦ ι = ϕ. Such semigroups are well known to exist and
may be constructed as inverse limits of X-generated semigroups from V or, in the
case X is finite, as completions of the free semigroup X+ on X with respect to a
natural pseudometric. From the universal property of ΩXV it follows immediately
that ι is a generating mapping and, unless V is the trivial pseudovariety, consisting
only of singleton semigroups, the mapping ι is injective and we then identify each
element x ∈ X with its image ι(x).

A homomorphism ϕ : S → T of finite semigroups is said to be a V-morphism if
ϕ−1(e) ∈ V for every idempotent e of T . For pseudovarieties V and W, their Mal’cev
product is the pseudovariety V©m W generated by the class of all finite semigroups
S for which there is a V-morphism S → T with T ∈ W. For example, it is well
known that J = N©m Sl, where J, N and Sl are, respectively, the pseudovarieties
of all finite J -trivial semigroups nilpotent semigroups and semilattices (cf. [15,
Exercise 4.6.52]).
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3. Coproduct of profinite semigroups. Let V be a pseudovariety of fi-
nite semigroups. Given a nonempty family (Si)i∈I of pro-V semigroups, their
V-coproduct is a pro-V semigroup S together with a collection of continuous homo-
morphisms ϕi : Si → S such that the following universal property holds: for every
pro-V semigroup T and every collection of continuous homomorphisms ψi : Si → T ,
there is a unique continuous homomorphism ψ : S → T such that Diagram 3.1 com-
mutes for every i ∈ I.

Si
ϕi

��

ψi

��
S

ψ // T.

(3.1)

Note that if such a pro-V semigroup S exists, then it is unique up to isomor-
phism. It is then denoted

∐V
i∈I Si. In the case of a finite family (Si)i=1,...,n we also

write S1 qV · · · qV Sn to denote
∐V
i=1 Si.

3.1. Construction and basic properties of V-coproducts. The following
is the extension to arbitrary profinite semigroups of the special case of profinite
groups considered in [18, Proposition 9.1.2].

Proposition 3.1. Let (Si)i∈I be a nonempty family of pro-V semigroups. Then

the V-coproduct
∐V
i∈I Si exists.

In the proof of Proposition 3.1 we use the following alternative characterization
of the V-coproduct, consisting in replacing “pro-V semigroup T” by “semigroup T
from V” in the above definition of V-coproduct.

Proposition 3.2. Consider a nonempty family (Si)i∈I of pro-V semigroups. The
pro-V semigroup S, together with the collection of continuous homomorphisms ϕi :
Si → S, is the V-coproduct of the family (Si)i∈I if and only if for every semigroup
T from V and every collection of continuous homomorphisms ψi : Si → T , there is
a unique continuous homomorphism ψ : S → T such that Diagram (3.1) commutes
for every i ∈ I.

Proof. The “only if” part of the proposition is trivial.
Conversely, let us assume that the restricted version of the universal property

holds for S whenever T belongs to V. Take now an inverse limit T = lim←−λ∈Λ
Tλ of

semigroups Tλ from V. For each λ ∈ Λ, denote by πλ the associated projection T →
Tλ, and for µ, λ ∈ Λ such that λ 6 µ, let πµ,λ be the connecting homomorphism
Tµ → Tλ. Consider a collection of continuous homomorphisms ψi : Si → T . By
hypothesis, for each λ ∈ Λ, there is a continuous homomorphism ψλ : S → Tλ such
that Diagram 3.2 commutes for every i ∈ I.

Si

ϕi

��

πλ◦ψi

��
S

ψλ // Tλ.

(3.2)
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Given µ, λ ∈ Λ such that λ 6 µ, we have

πµ,λ ◦ ψµ ◦ ϕi = πµ,λ ◦ πµ ◦ ψi = πλ ◦ ψi

for every i ∈ I. Since ψλ is the unique continuous homomorphism for which
Diagram (3.2) commutes for all i ∈ I, we deduce that πµ,λ ◦ ψµ = ψλ. By the
definition of inverse limit, we conclude that there is a continuous homomorphism
ψ : S → T for which Diagram (3.3) commutes whenever µ, λ ∈ Λ satisfy µ 6 λ.

Tµ

��

πµ,λ

��
S

ψµ ++

ψ //

ψλ

33

T

πµ 88

πλ &&
Tλ

(3.3)

Let i ∈ I. Since for every λ ∈ Λ we have πλ ◦ (ψ ◦ ϕi) = ψλ ◦ ϕi = πλ ◦ ψi, we
conclude that ψ ◦ ϕi = ψi, thus establishing the proposition. 2

We may now proceed with the proof of Proposition 3.1. It is well known that
coproducts exist in the category of semigroups (see [11, Theorem I.13.5]). We
denote the coproduct, also known as free product, of a nonempty family (Si)i∈I of
semigroups by S = ∗i∈I Si.

Proof of Proposition 3.1. We start by taking the free product S = ∗i∈I Si in the
category of semigroups and the corresponding natural homomorphisms ϕ̃i : Si → S.
We consider the family C of all congruences θ on S such that S/θ ∈ V and, for
each i ∈ I, the congruence (ϕ̃i × ϕ̃i)

−1(θ) is a clopen subset of Si × Si. The
latter condition expresses that the composite of ϕ̃i followed by the natural quotient
mapping qθ : S → S/θ is continuous. Given θ, ρ ∈ C, note that θ ∩ ρ ∈ C since V is
closed under taking subsemigroups and finite direct products. Hence, the quotients
S/θ with θ ∈ C form an inverse system, for which we may consider the inverse limit,
which we denote SV. Thus, SV is a pro-V semigroup. Let ι : S → SV be the natural
homomorphism and let ϕi = ι ◦ ϕ̃i (i ∈ I).

For every θ ∈ C, the natural projection πθ : SV → S/θ satisfies πθ ◦ ι = qθ, and
so we have the equalities

πθ ◦ ϕi = πθ ◦ ι ◦ ϕ̃i = qθ ◦ ϕ̃i,

for which the reader may wish to refer to Diagram (3.4) below. Since, by the
definition of C, the mapping qθ ◦ ϕ̃i is continuous for every θ ∈ C, it follows that
each mapping ϕi is continuous.

Suppose that T ∈ V and (ψi)i∈I is a family of continuous homomorphisms
ψi : Si → T . By the universal property of the free product S, there exists a unique
homomorphism γ : S → T such that γ ◦ ϕ̃i = ψi (i ∈ I). Let θ be the kernel of γ.
Then θ ∈ C and there is a unique homomorphism β : S/θ → T such that β ◦qθ = γ,
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and so the non-dashed part of Diagram (3.4) is commutative.

Si
ϕ̃i

��

ψi

��
ϕi

��

S
γ //

ι

��

qθ

%%

T

SV
πθ //

ψ

99

S/θ

β

OO(3.4)

Therefore, for the continuous homomorphism ψ = β ◦ πθ, we have ψ ◦ ϕi = ψi, for
every i ∈ I.

Since the restriction to ι(S) of each πθ is onto, as so is qθ, and the preimages
of points under the πθ form a base of the topology of SV, we see that ι(S) is dense
in SV. On the other hand, S is generated by

⋃
i∈I ϕ̃i(Si). Thus, ψ is completely

determined by its restriction to the union
⋃
i∈I ϕi(Si), and so ψ is the unique

continuous homomorphism from SV to T such that, for every i ∈ I, the following
diagram commutes:

Si

ϕi

��

ψi

��
SV

ψ // T.

Since T is an arbitrary semigroup from V, it follows from Proposition 3.2 that the
profinite semigroup SV, together with the family of continuous homomorphisms
(ϕi)i∈I , provides a V-coproduct of the family (Si)i∈I . 2

Let k ∈ I. The continuous semigroup homomorphism ϕk : Sk →
∐V
i∈I Si

introduced in the definition of V-coproduct is said to be the natural mapping from
Sk into

∐V
i∈I Si.

Proposition 3.3. If (Si)i∈I is a nonempty family of pro-V semigroups then, for

every k ∈ I, the natural mapping ϕk : Sk →
∐V
i∈I Si is injective, whence an

embedding of topological semigroups.

Proof. Let k ∈ I. Since Sk is pro-V, in Diagram 3.1 we may take T = Sk, choose
ψk as the identity IdSk on Sk, and if i ∈ I \ {k}, we choose ψi as any constant
mapping from Si onto an idempotent of Sk. We may then consider the continuous
homomorphism ψ as in Diagram 3.1, for which we have in particular ψ◦ϕk = IdSk ,
and so the proposition holds. 2

In view of Proposition 3.3, we may henceforth see each Si as a closed subsemi-
group of

∐V
i∈I Si, with ϕi being the inclusion.

Let Sl denote the pseudovariety of all finite semilattices. The following technical
observation will be convenient later on.
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Lemma 3.4. Suppose that V contains Sl. Let (Si)i∈I be a nonempty family of
nontrivial pro-V semigroups. Let A be a generating subset of the V-coproduct∐V
i∈I Si as a topological semigroup. Then A ∩ Si generates Si as a topological

semigroup for every i ∈ I.

Proof. Let S = ∗i∈I Si and let SV =
∐V
i∈I Si. Note that

⋃
i∈I Si generates SV. We

should show that every element of Si is the limit of a net of products of elements
of A ∩ Si. With this aim, we first claim that there is a continuous homomorphism
ψV from SV to the two-element semilattice {0, 1} such that ψ−1

V (1) = Si. It follows
that SV \ Si = ψ−1

V (0) is an ideal of SV containing A \ Si. Hence, in a net of
products of elements of A converging to an element of Si all products from some
point on can only involve factors from A ∩ Si.

To establish the claim, we use the universal properties of S and SV to define a
homomorphism ψ and a continuous homomorphism ψV by considering the constant
homomorphisms ϕk on the Sk, with value 1 for k = i and value 0 for k ∈ I \ {i}.
More precisely, we have the following commutative diagram for each k ∈ I:

S

ψ

%%
ι

��

Sk?
_oo

ϕk

��
SV

ψV // {0, 1}.

Since ψV is continuous and ι(S) is dense in SV, we obtain the following formula:

ψ−1
V (1) = ι(ψ−1(1)) = ι(Si) = Si

which establishes the claim and completes the proof of the lemma. 2

Note that the hypothesis that V contains Sl may not be omitted in Lemma
3.4. For instance, if G is a cyclic group of order 2 with generator a and H is a
cyclic group of order 3 with generator b, then ab2 is a generator of GqAb H (since
(ab2)2 = b and (ab2)3 = a) but ab2 /∈ G ∪H.

The next couple of facts (that one should bear in mind, albeit not needed for the
sequel) may also be easily proved with the universal property of the V-coproduct:

1. The V-coproduct is associative: if the nonempty set I has a partition I =⊎
j∈J Ij , and (Si)i∈I is a family of pro-V semigroups, then we have an isomor-

phism ∐V
i∈I Si

∼=
∐V
j∈J(

∐V
i∈Ij Si)

of profinite semigroups.

2. For a subpseudovariety V, the V-coproduct of free pro-V semigroups is also free
pro-V.
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J. Almeida and A. Costa

3.2. On the injectivity of the mapping ι. It is natural to ask under what
conditions the natural mapping

ι : ∗
i∈I

Si →
V∐
i∈I

Si

is injective for pro-V semigroups Si (i ∈ I). A partial solution to the analogous
question for pseudovarieties of groups in the category of groups can be found in [18,
Proposition 9.1.8]. Note, that in, that category, the free product of trivial groups
is trivial, whereas the free product of more than one trivial semigroup (in every
category of semigroups containing semigroups with more than one idempotent)
is an infinite idempotent-generated semigroup. Our main result of this section
gives a sufficient condition for injectivity of the function ι. Our sufficient condition
holds for a large class of pseudovarieties considered in the remainder the paper,
namely equidivisible pseudovarieties containing Sl. We leave as an open problem
the complete characterization of the pseudovarieties for which the function ι is
injective.

We start by some simple observations.

Remark 3.5. Let ϕi : Si → Ti (i ∈ I) be continuous homomorphisms between
pro-V semigroups. By the universal property of V-coproducts, there is a unique
continuous homomorphism ϕV such that the following diagram commutes:

Si
ϕi //

� _

��

Ti� _

��∐V
i∈I Si

ϕV // ∐V
i∈I Ti.

Remark 3.6. Let X be a set and suppose that x and y are distinct elements of X
such that xω is a factor yω in the semigroup ΩXV. Then, V is contained in LG.
Indeed, it follows that, in every semigroup from V, all idempotents are factors of
each other, a property that characterizes membership in LG.

Lemma 3.7. Let V be a pseudovariety of semigroups containing J. Then the nat-
ural mapping ι : ∗i∈I Si → ∐V

i∈I Si is injective whenever the Si are trivial semi-
groups.

Proof. Let Si = {ei} (i ∈ I) and let I → X be a bijection given by i 7→ xi. By the
universal property of V-coproducts, there is a unique continuous homomorphism
ϕ :

∐V
i∈I{ei} → ΩXJ such that ϕ(ei) = xωi .

Given elements ei1ei2 · · · eim and ej1ej2 · · · ejn in ∗i∈I{ei} (with adjacent indices
distinct), suppose that their images under ι coincide. Then, their images under ϕ◦ι
also coincide, giving the equality

(3.5) xωi1x
ω
i2 · · ·x

ω
im = xωj1x

ω
j2 · · ·x

ω
jn .

Hence, it suffices to show that, for every equality in ΩXJ of the form (3.5), with
xk ∈ X for every index k, if all adjacent indices are distinct, then we must have

2250
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n = m and ik = jk for every k ∈ {1, . . . , n}. This is a special case of [1, Theo-
rem 8.2.8]. 2

Lemma 3.8. Let V be a pseudovariety of semigroups containing Sl such that N©m
V = V and let S be a member of V. Then, the natural mapping ι : S ∗{e} →
S qV {e} is injective.

Proof. Let u = s1es2e · · · esm and v = t1et2e · · · etn be distinct elements of S ∗{e},
where s2, . . . , sm−1, t2, . . . , tn−1 ∈ S and s1, sm, t1, tn ∈ SI . Consider the ideal
J =

⋃
k>max{m,n} S

Ie(Se)kSI of S ∗{e}. Since the elements u and v are not in J ,

they are distinguished in the Rees quotient T = S ∗{e}/J . Note that, since S is
finite, so is T . To complete the proof, it suffices to establish that T belongs to V,
since then the natural homomorphism S ∗{e} → T factors through ι.

Let K be the complement of S ∪ {e} in T . Then K is an ideal and a nilpo-
tent subsemigroup of T . Thus, if we show that T/K ∈ V, then it follows that
T ∈ N©m V = V. But, T/K is the zero sum of the semigroups S and {e}, which
is a quotient of the direct product S × U where U is the three-element semilat-
tice which is the zero sum of two trivial semigroups. This shows that indeed
T ∈ V. 2

Theorem 3.9. Let V be a pseudovariety of semigroups containing Sl such that
N©m V = V. Then the natural mapping ι : ∗i∈I Si →∐V

i∈I Si is injective whenever
the Si are pro-V semigroups.

Proof. Consider constant homomorphisms ϕi : Si → {ei}, the induced con-

tinuous homomorphism ϕV :
∐V
i∈I Si →

∐V
i∈I{ei} given by Remark 3.5, and an

analogous abstract homomorphism ϕ : ∗i∈I Si → ∗i∈I{ei}. We get the following
commutative diagram, where ι′ is the natural mapping:

∗i∈I Si ϕ //

ι

��

∗i∈I{ei}
ι′

��∐V
i∈I Si

ϕV // ∐V
i∈I{ei}.

Given elements u = si1si2 · · · sim and v = tj1tj2 · · · tjn of ∗i∈I Si, with si, ti ∈ Si
and no two adjacent indices equal, suppose that their images under ι coincide. As
J = N©m Sl ⊆ N©m V = V, we see that ι′ is injective by Lemma 3.7. Hence, the
images of u and v under ϕ must be equal, too. We conclude that m = n and
i1 = j1, . . . , im = jm.

It remains to show that sik = tik for k = 1, . . . ,m. Suppose, on the contrary,
that sj 6= tj for some j = ik with k ∈ {1, . . . ,m}. Since Sj is a pro-V semigroup,
there is a continuous homomorphism ψ : Sj → F into some F ∈ V such that
ψ(sj) 6= ψ(tj). We also consider the unique homomorphisms Si → {e} for each
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i ∈ I \ {j}. Together, these mappings induce the horizontal mappings in the
following commutative diagram:

∗i∈I Si ψ̄ //

ι

��

F ∗{e}
ι′

��∐V
i∈I Si

ψ̄V // F qV {e}

where ι′ is the natural mapping. As ι(u) = ι(v), we get ι′(ψ̄(u)) = ι′(ψ̄(v)). Since
ι′ is injective by Lemma 3.8, we conclude that ψ̄(u) = ψ̄(v), which implies that
ψ(sj) = ψ(tj), contradicting the choice of ψ. 2

4. The two-sided Karnofsky–Rhodes expansion. The two-sided
Karnofsky–Rhodes expansion plays a central role in [4] when studying equidivisible
relatively free profinite semigroups. We recall here this expansion.

We adopt the following notational conventions. Let S be a semigroup. Given a
mapping ϕ : A→ S, we may denote the unique homomorphism A+ → S extending
ϕ also by ϕ. Similarly, if S is a pro-V semigroup, then the unique continuous
homomorphism ΩAV → S extending ϕ : A → S may also be denoted by ϕ.
Conversely, given a homomorphism ϕ : A+ → S, or a continuous homomorphism
ϕ : ΩAV→ S, its restriction to A may also be denoted by ϕ, if no confusion arises.

Let ϕ be a homomorphism from A+ onto a semigroup S. We denote by Γϕ the
two-sided Cayley graph, whose set of vertices is SI × SI , and where an edge from
(s1, t1) to (s2, t2) is a triple ((s1, t1), a, (s2, t2)), with a ∈ A, such that s1ϕ(a) = s2

and t1 = ϕ(a)t2. We see Γϕ as a labeled directed graph, by labeling each edge
((s1, t1), a, (s2, t2)) with the letter a. By the label of a directed path in Γϕ we mean
the word obtained by concatenating the successive labels of its edges.

A transition edge of a directed graph is an edge x → y such that there is no
directed path from y to x. For each path p in the two-sided Cayley graph Γϕ, we
denote by T (p) the set of transition edges of Γϕ that occur in p. For each u ∈ A+,
let pu be the unique path of Γϕ from (I, ϕ(u)) to (ϕ(u), I) that is labeled by the
word u. Consider the binary relation ≡ϕ on A+ defined by u ≡ϕ v if ϕ(u) = ϕ(v)
and T (pu) = T (pv). Then one can easily check that ≡ϕ is a congruence, which
is of finite index if both S and A are finite. Consider the quotient semigroup
SKR
ϕ = A+/≡ϕ and the corresponding quotient homomorphism ϕKR : A+ → SKR

ϕ .

We also consider the unique homomorphism πϕ : SKR
ϕ → S such that the

following diagram commutes:

(4.1) A+

ϕ

��

ϕKR

||
SKR
ϕ πϕ

// S.
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Remark 4.1. Suppose that the homomorphism ϕ : A+ → S is such that A and
S are finite, so that so is SKR

ϕ . It is folklore that πϕ is an LI-morphism; in fact,

for W = Jxyz = xzK, it follows easily from the definition of SKR
ϕ that πϕ is a

W-morphism, and one clearly has W ⊆ LI.

The homomorphism ϕKR is the two-sided Karnofsky–Rhodes expansion of ϕ,
and SKR

ϕ is a two-sided Karnofsky–Rhodes expansion of S. The correspondence

(S, ϕ) 7→ (SKR, ϕKR) is an expansion cut to generators [14]. In fact, a more general
property holds, which we state in the next proposition.

Proposition 4.2. Let ϕ : A+ → S and ψ : B+ → T be two homomorphisms
from finitely generated free semigroups onto finite semigroups. Suppose that the
homomorphisms λ : S → T and α : A+ → B+ are such that λ ◦ ϕ = ψ ◦ α. Then,
there is a unique homomorphism Λ : SKR

ϕ → TKR
ψ such that the diagram

SKR
ϕ

πϕ

��

Λ // TKR
ψ

πψ

��

A+

ϕ

yy

α //

ϕKRdd

B+

ψ

%%

ψKR
::

S
λ // T

(4.2)

is commutative.

The analog of Proposition 4.2 in the category of monoids appears as part of [7,
Proposition 4.4] (see also [7, Proposition 4.10]). Since the original proof is some-
what indirect, for the sake of completeness we present here a direct proof for the
category of semigroups.

Proof of Proposition 4.2. Let u, v ∈ A+. Suppose that ϕKR(u) = ϕKR(v). We want
to show that ψKR(α(u)) = ψKR(α(v)). By the commutativity of the left triangle
and of the lower trapezoid in Diagram (4.2), we know that ψ(α(u)) = ψ(α(v)). We
need to show that the coterminal paths pα(u) and pα(v) of Γψ contain the same
transition edges of Γψ.

Suppose that τ is a transition edge of Γψ that occurs in the path pα(u). Then,
there are words w1, w2 ∈ B∗ and b ∈ B such that α(u) = w1bw2 and τ is the edge

τ : (ψ(w1), ψ(bw2))
b−→ (ψ(w1b), ψ(w2)).

Moreover, there are u1, u2 ∈ A∗, a ∈ A, and w′1, w
′
2 ∈ B∗ such that u = u1au2,

w1 = α(u1)w′1, α(a) = w′1bw
′
2 and w2 = w′2α(u2). The reader may wish to refer to

Figure 1.

Note that the edge τ ′ of Γϕ given by

τ ′ : (ϕ(u1), ϕ(au2))
a−→ (ϕ(u1a), ϕ(u2))
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α(u1) α(a) α(u2)

w1 b w2

w′1 w′2

Figure 1: Factorizations of α(u).

belongs to the path pu of Γϕ. We claim that τ ′ is a transition edge of Γϕ. Suppose
it is not. Then, there is some z ∈ A+ such that

ϕ(u1az) = ϕ(u1) and ϕ(u2) = ϕ(zau2).

By the commutativity of the lower trapezoid of Diagram (4.2), we get

ψ(α(u1az)) = ψ(α(u1)) and ψ(α(u2)) = ψ(α(zau2)).

Hence, we have

ψ(w1b · w′2α(z)w′1) = ψ(α(u1)w′1bw
′
2α(z)w′1)

= ψ(α(u1az)w
′
1)

= ψ(α(u1)w′1)

= ψ(w1),

and similarly

ψ(w2) = ψ(w′2α(z)w′1 · bw2).

Therefore, the graph Γψ contains the path

(ψ(w1b), ψ(w2))
w′2α(z)w′1−−−−−−→ (ψ(w1), ψ(bw2))

with contradicts τ being a transition edge of Γψ. To avoid the contradiction, the
edge τ ′ must be a transition edge of Γϕ. Since the paths pu and pv of Γϕ contain
the same transition edges of Γϕ, and in view of the commutativity of the lower
trapezoid in Diagram (4.2), we conclude that

(ψ(α(u1)), ψ(α(au2)))
α(a)−−−→ (ψ(α(u1a)), ψ(α(u2)))

is a path of Γψ contained in the path pα(v). But this path factorizes as

(ψ(α(u1)), ψ(α(au2)))
w′1−−→ (ψ(w1), ψ(bw2))

b−→ (ψ(w1b), ψ(w2))
w′2−−→ (ψ(α(u1a)), ψ(α(u2))),

thus having τ as one of its edges. This shows that every transition edge of Γψ that
belongs to pα(u) also belongs to pα(v). By symmetry, we conclude that ψKR(α(u)) =
ψKR(α(v)).

Since, for every u, v ∈ A+, the equality ϕKR(u) = ϕKR(v) implies the equality
ψKR(α(u)) = ψKR(α(v)), and since ϕKR is onto, we conclude that there exists a
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unique homomorphism Λ such that Diagram (4.2) commutes. 2

A pseudovariety of semigroups V is said to be closed under two-sided Karnofsky–
Rhodes expansion when S ∈ V implies SKR

ϕ ∈ V, for every onto homomorphism
A+ → S and every finite alphabet A. A proof of the following characterization of
such pseudovarieties may be found in [4], where one sees it as a direct consequence
of a deep result of Rhodes et al. [16, 17].

Theorem 4.3. A pseudovariety of semigroups V is closed under two-sided
Karnofsky–Rhodes expansion if and only if V = LI©m V.

5. KR-covers. We are now ready to introduce the following new definition,
playing a central role in this paper.

Definition 5.1. (KR-cover of a finite semigroup) Let S be a profinite semigroup,
and let T be a finite semigroup. We say that S is a KR-cover of T when T is a
continuous homomorphic image of S and for every continuous onto homomorphism
ϕ : S → T there is a generating mapping ψ : A → T , for some finite alphabet A
depending on ϕ, and a continuous homomorphism ϕψ : S → TKR

ψ such that the
following diagram commutes:

S

ϕ

��

ϕψ

||
TKR
ψ πψ

// T.

(5.1)

The generating mapping ψ that appears in Definition 5.1 may in fact be any
generating mapping of T , as shown next. Thus, S is in a sense more general than
all two-sided Karnofsky–Rhodes expansions of T .

Lemma 5.2. Suppose that the profinite semigroup S is a KR-cover of the finite
semigroup T . Let ϕ : S → T be a continuous homomorphism from S onto T . For
every finite alphabet A and generating mapping ψ : A → T , there is a continuous
homomorphism ϕψ : S → TKR

ψ such that Diagram (5.1) commutes.

Proof. Let ψ : A+ → T be any homomorphism from A+ onto T , defined on a
finite alphabet A. Because S is a KR-cover of T , there is an onto homomorphism
ζ : B+ → T , for some finite alphabet B, inducing a homomorphism ϕζ : S → TKR

ζ

such that the leftmost triangle of the following diagram is commutative:

TKR
ζ

πζ

��

Λ // TKR
ψ

πψ

��

S

ϕ $$

ϕζ
;;

B+

ζ

yy

α //

ζKRdd

A+

ψ

%%

ψKR
::

T
IdT

T.

(5.2)
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Since ψ is onto, there is a homomorphism α : B+ → A+ such that ζ = ψ ◦ α,
that is, such the lower trapezoid in Diagram (5.2) commutes. By Proposition 4.2,
there is a homomorphism Λ : TKR

ζ → TKR
ψ such that Diagram (5.2) commutes.

Therefore, if ϕψ is the homomorphism Λ◦ϕζ , then Diagram (5.1) commutes. 2

Letting T vary in Definition 5.1, we are led to the following stronger property.

Definition 5.3. (KR-cover) A profinite semigroup S is a KR-cover if it is a
KR-cover of each of its finite continuous homomorphic images.

The notion of KR-cover is reminiscent of that of profinite projective semigroup,
which we recall here. Consider a pseudovariety V of semigroups. A pro-V semigroup
S is said to be V-projective if, whenever T and R are pro-V semigroups and f :
S → T and g : R → T are continuous homomorphisms with g onto, there is some
continuous homomorphism f ′ : S → R such that the following diagram commutes:

S

f

��

f ′

~~
R

g
// T.

A profinite projective semigroup is just an S-projective semigroup, where S is the
pseudovariety of all finite semigroups (cf. [15, Remark 4.1.34]). Every free pro-V
semigroup is an example of a V-projective semigroup.

The next simple observation gives our first examples of KR-covers and provides
a more precise connection with projectivity.

Proposition 5.4. If V is a semigroup pseudovariety closed under two-sided
Karnofsky–Rhodes expansion, then every V-projective semigroup is a KR-cover.

Proof. Let S be a V-projective semigroup, and let ϕ be a continuous homomor-
phism from S onto a finite semigroup T . Note that T ∈ V (see, for instance, [2,
Proposition 3.7]). Consider any two-sided Karnofsky–Rhodes expansion TKR

ψ of T ,

with ψ : A → T a generating mapping with finite domain. Since TKR
ψ ∈ V and

S is V-projective, there is a continuous homomorphism ϕ′ : S → TKR
ψ such that

πψ ◦ ϕ′ = ϕ. 2

Proposition 5.4 is complemented by the next proposition.

Proposition 5.5. Every profinite completely simple semigroup is a KR-cover.

Proposition 5.5 follows easily (explicit details are given below) from a simple
property, expressed in the next lemma. Let A be the pseudovariety of all finite
aperiodic semigroups.
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Lemma 5.6. If π : S → T is an onto A-morphism of finite semigroups, and K is a
J -class of T which is a subsemigroup of T , then there is a subsemigroup K ′ of S
such that the restriction π : K ′ → K is an isomorphism.

Proof. As the J -class K is regular, there is a regular J -class J of S such that
π(J) = K and such that every element of π−1(K) is a factor of the elements of
J (cf. [15, Lemma 4.6.10]). Moreover, since K is a union of groups, J must be a
union of groups, and each maximal subgroup of S contained in J is mapped by π
onto a maximal subgroup of T contained in K.

Fix an idempotent e of K. Let X be the set of idempotents R-equivalent to e,
and let Y be the set of idempotents L-equivalent to e. Choose an idempotent γe in J
such that π(γe) = e. If f ∈ X\{e} then, since f = ef , we may choose an idempotent
γf ∈ J such that π(γf ) = f and γf = γeγf . Similarly, if f ∈ Y \ {e} then we may
choose an idempotent γf ∈ J such that π(γf ) = f and γf = γfγe. Note that
X ′ = {γf | f ∈ X} is contained in the R-class of γe, and that Y ′ = {γf | f ∈ Y }
is contained in the L-class of γe.

For each idempotent g ∈ X ′ ∪ Y ′, consider the H-class Hg of g. Let K ′ be the
subsemigroup of T generated by

⋃
g∈X′∪Y ′ Hg. Then K ′ is a completely semigroup

contained in J and such that π(K ′) ⊆ K. Moreover, each H-class H of K contains
an element of the form yx, with y ∈ Y and x ∈ X, and so if H ′ is the H-class of
γyγx ∈ K ′, then we have π(H ′) = H. Hence, we actually have π(K ′) = K.

Since K ′ has |X| = |X ′| R-classes and |Y | = |Y ′| L-classes, we know that K ′

has the same number of H-classes as K. On the other hand, the restriction of
an A-morphism to a regular H-class is injective (cf. [15, Lemma 4.4.4]). We then
conclude that π restricts to an isomorphism K ′ → K. 2

Proof of Proposition 5.5. Let S be a profinite completely simple semigroup, and
let ϕ : S → T be a continuous homomorphism onto a finite semigroup T . Then T is
a completely simple semigroup, and, for every generating mapping ψ : A→ T such
that A is a finite alphabet, the homomorphism πψ : TKR

ψ → T is an A-morphism
(cf. Remark 4.1). Applying Lemma 5.6, we deduce that there is a subsemigroup
T ′ of TKR

ψ such that the restriction πψ|T ′ : T ′ → T is an isomorphism, whose in-

verse we denote ρ. Then the continuous homomorphism ϕψ : S → TKR
ψ such that

ϕψ = ρ ◦ ϕ satisfies πψ ◦ ϕψ = ϕ. This establishes that S is a KR-cover. 2

By Proposition 5.4, the class of finite projective semigroups includes exam-
ples of finite KR-covers that are not among those provided by Proposition 5.5:
see [15, Lemma 4.1.39 and Exercise 4.1.43] for simple examples of such kind. For
a complete characterization of the finite projective semigroups, see [21]. All finite
projective semigroups are bands whose J -classes form a chain (for a proof of this
fact, alternative to [21] and implicitly using the equidivisibility of the free profinite
semigroup, see [19]).

The following gives a necessary and sufficient condition for a finite semigroup
to be a KR-cover.
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Proposition 5.7. A finite semigroup S is a KR-cover if and only if there are a
finite set A, a generating mapping ψ : A → S, and a homomorphism θ such that
the following diagram commutes:

S

Id
��

θ

{{
SKR
ψ πψ

// S.

(5.3)

Moreover, then the same property holds for every generating mapping ψ : A → S
with A finite.

Proof. The possibility of completing the diagram for every generating mapping
ψ : A → S with A finite follows directly from the assumption that S is a finite
semigroup and a KR-cover. Conversely, if the diagram can be completed for a
generating mapping ψ : A → S with A finite then, for every onto homomorphism
ϕ : S → T , we may consider the following commutative diagram, where θ is given
by hypothesis and ϕKR by Proposition 4.2:

S

Id

��

θ

{{
SKR
ψ πψ

//

ϕKR

��

S

ϕ

��
TKR
ψ◦ϕ

πϕ◦ψ // T.

Hence, S is a KR-cover. 2

An immediate consequence of Proposition 5.7 is that it is decidable whether a
finite semigroup is a KR-cover.

If S is a profinite semigroup, then the monoid SI is also a profinite semigroup,
where we endow SI with the sum topology of S with {I}.

Proposition 5.8. Let S be a profinite semigroup. If S is a KR-cover, then SI is
a KR-cover.

Proof. Given a profinite semigroup S which is a KR-cover, let Φ : SI → R be
a continuous homomorphism onto a finite semigroup R. Set T = Φ(S). Denote
ϕ the restriction of Φ to S, which is an onto continuous homomorphism S → T .
We may take a generating mapping ψ : A → T such that A is finite. Since S is a
KR-cover, there is a continuous homomorphism ρ : S → TKR

ψ such that ϕ = πψ ◦ρ.
Consider the alphabet B = A ∪ {b}, for some letter b not in A. Denote Ψ the

extension B → R of ψ such that

Ψ(b) = Φ(I).
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Then Ψ generates R. Since RKR
Ψ is finite, we may take a positive integer n such

that xn = xω for every x ∈ RKR
Ψ . Consider the homomorphism α : A+ → B+ such

that α(a) = bnabn for every a ∈ A. By Proposition 4.2, there is a homomorphism
Λ : TKR

ψ → RKR
Ψ such that Diagram (5.4) commutes.

TKR
ψ

πψ

��

Λ // RKR
Ψ

πΨ

��

A+

ψ

yy

α //

ψKRdd

B+

Ψ

%%

ΨKR

::

T �
� // R

(5.4)

For every a ∈ A+, we have ΨKR ◦ α(a) = ΨKR(b)ω · ΨKR(a) · ΨKR(b)ω and so the
image of ΨKR ◦ α is contained in the subsemigroup M of RKR

Ψ defined by

M = ΨKR(b)ω ·RKR
Ψ ·ΨKR(b)ω.

Since Λ◦ψKR = ΨKR◦α and ψKR is onto, it follows that the image of Λ is contained
in M . Let θ = Λ ◦ ρ. Note that M is a monoid, whose neutral element is ΨKR(b)n.
Therefore, the homomorphism θ : S → M extends to a monoid homomorphism
θ̃ : SI →M . The reader may wish to refer to Diagram (5.5).

S �
� //

θ
��

ρ

yy

SI

Φ

��

θ̃

yy
TKR
ψ

Λ // RKR
Ψ

πΨ // R

(5.5)

If s ∈ S, then in view of the commutativity of Diagram (5.4), we have

πΨ ◦ θ̃(s) = πΨ ◦ Λ ◦ ρ(s) = πψ ◦ ρ(s) = ϕ(s) = Φ(s).

On the other hand, we also have

πΨ ◦ θ̃(I) = πΨ(ΨKR(b)n) = Ψ(b)n = Φ(I)n = Φ(I).

Therefore, the equality πΨ ◦ θ̃ = Φ holds. This shows that Diagram (5.5) is com-
mutative and that SI is a KR-cover. 2

6. KR-covers are equidivisible. We highlight the following property of KR-
covers, to be shown below.

Theorem 6.1. Let S be a profinite semigroup. If S is a KR-cover, then it is
equidivisible.

Before the proof of Theorem 6.1, we formulate an improvement of the main the-
orem of [4]. Let CS be the pseudovariety of all finite completely simple semigroups,
that is, of all finite semigroups with only one (nonempty) ideal.
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Theorem 6.2. The following conditions are equivalent for a pseudovariety V not
contained in CS:

(1) for every finite alphabet A, ΩAV is equidivisible;

(2) for every alphabet A, ΩAV is equidivisible;

(3) the equality LI©m V = V holds;

(4) the pseudovariety V is closed under two-sided Karnofsky–Rhodes expansion.

Proof. The equivalence of (1) and (3) is the main result of [4], while the equiva-
lence of (3) and (4) is given by Theorem 4.3. To finish the proof, just note that (4)
implies (2) by Theorem 6.1 in view of Proposition 5.4, since free pro-V semigroups
are V-projective. 2

As in [4], we say that a pseudovariety V is equidivisible if it satisfies Property (1)
of Theorem 6.2.

The proof of Theorem 6.1 relies on the following lemma.

Lemma 6.3. Let T be a finite semigroup, and let ψ : A+ → T be an onto homo-
morphism, where A is a finite alphabet. Suppose that u, v, x, y ∈ TKR

ψ are such that

uv = xy. Then, there is t ∈ T I such that at least one of the following situations
occurs:

(1) πψ(u)t = πψ(x) and πψ(v) = tπψ(y);

(2) πψ(u) = πψ(x)t and tπψ(v) = πψ(y).

Proof. Along the proof, the reader may wish to refer to the following commutative
diagram:

A+

ψ

��

ψKR

||
TKR
ψ πψ

// T.

Let ū, v̄, x̄, ȳ ∈ A+ be such that ψKR(ū) = u, ψKR(v̄) = v, ψKR(x̄) = x and
ψKR(ȳ) = y. The equality

ψKR(ūv̄) = ψKR(x̄ȳ)

means that ψ(ūv̄) = ψ(x̄ȳ) and that, in the graph Γψ, the coterminal paths pūv̄
and px̄ȳ have the same transition edges. Since the pair (ψ(ū), ψ(v̄)) is a vertex in
the path pūv̄ and (ψ(x̄), ψ(ȳ)) is a vertex in the path px̄ȳ, we know that at least
one of the following situations occurs in the graph Γψ:

• there is a (possibly empty) path from vertex (ψ(ū), ψ(v̄)) to vertex
(ψ(x̄), ψ(ȳ));
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• there is a (possibly empty) path from vertex (ψ(x̄), ψ(ȳ)) to vertex
(ψ(ū), ψ(v̄)).

In the first case, we have ψ(ū)t = ψ(x̄) and ψ(v̄) = tψ(ȳ), for some t ∈ T I .
It then suffices to note that, since πψ ◦ ψKR = ψ, we get πψ(u)t = πψ(x) and
πψ(v) = tπψ(y). The second case is analogous. 2

We are now ready to establish Theorem 6.1.

Proof of Theorem 6.1. Let {ϕj,i : Sj → Si | i, j ∈ I, i 6 j} be an inverse system
of homomorphisms between finite semigroups such that S is its inverse limit. For
each i ∈ I, the canonical projection S → Si is denoted ϕi. Let u, v, x, y ∈ S be such
that uv = xy. Take i ∈ I. Since S is a KR-cover, there is a generating mapping
θ : A → Si, for some finite alphabet A, and a homomorphism (ϕi)θ : S → (Si)

KR
θ

such that the following diagram commutes:

S

ϕi

��

(ϕi)θ

yy
(Si)

KR
θ πθ

// Si.

Then, we have (ϕi)θ(uv) = (ϕi)θ(xy). By Lemma 6.3, there is ti ∈ SIi such that at
least one of the following situations occurs:

(1) ϕi(u)ti = ϕi(x) and ϕi(v) = tiϕi(y);

(2) ϕi(u) = ϕi(x)ti and tiϕi(v) = ϕi(y).

Let I1 (respectively, I2) be the subset of elements i of I for which the first (respec-
tively, second) situation occurs. Since I = I1 ∪ I2, at least one of the sets I1 or I2
is cofinal. Without loss of generality, suppose that I1 is cofinal (note that, since
the conjuction of i ∈ I1 and k 6 i implies k ∈ I1, we then actually have I1 = I).
By a standard compactness argument, we conclude that there is t ∈ SI such that
ut = x and v = ty. 2

The following result shows that the converse of Theorem 6.1 fails.

Proposition 6.4. Let G0 = G ] {0} be the semigroup obtained by adjoining a
zero to a finite group G. Then G0 is equidivisible, while G0 is a KR-cover if and
only if G is trivial.

Proof. It is easy to check that G0 satisfies the definition of equidivisible semigroup.
If G is trivial, then G0 is a two-element semilattice, which is well known to be
projective, whence a KR-cover (cf. [15, Lemma 4.1.39]).

The remainder of the proof consists in showing that S = G0 is not a KR-cover
when G is a finite nontrivial group. For that purpose we let ϕ : A ∪ {b} → S be a
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generating mapping, where ϕ(A) ⊆ G (so that ϕ(b) = 0). In view of Remark 4.1,
we know that π−1

ϕ (0) is a subsemigroup of SKR
ϕ satisfying the identity xyz = xz.

It follows that every element of π−1
ϕ (0) is of one of the forms

(6.1) ubv/≡ϕ or ubvbw/≡ϕ, where u, v, w ∈ A∗.

Moreover, in both cases, the occurrences of b label transition edges in the corre-
sponding paths from (I, 0) to (0, I): for instance for the first occurrence of b, the
corresponding edge is of the form (g, 0)→ (0, s) with g ∈ G and, therefore, it must
be a transition edge; the argument is similar for the last occurrence of b taking into
account instead the second component of the vertices. Hence, the idempotents in
π−1
ϕ (0) are the elements of the second form in (6.1).

Next, we show that ubvbwt ≡ϕ ubvbw with u, v, w ∈ A∗ and t ∈ A+ implies
ϕ(t) = 1. Indeed, as the paths pubvbwt and pubvbw use the same transition edges
and the b’s label such edges, comparing the second components of the end vertex
of the edge corresponding to the second b, we conclude that ϕ(wt) = ϕ(w). Hence,
ϕ(t) is equal to the identity element of the group G.

Suppose that there is a homomorphism θ : S → SKR
ϕ completing Diagram (5.3).

Let g ∈ G. As πϕ(θ(g)) = g 6= 0, there is some t ∈ A+ such that θ(g) = t/≡ϕ.
Moreover, we have θ(0)θ(g) = θ(0). Since θ(0) is an idempotent in π−1

ϕ (0), we
already know that it is of the form ubvbw/≡ϕ for some u, v, w ∈ A∗. It follows
from the previous paragraph that g = πϕ(θ(g)) = πϕ(t/≡ϕ) = ϕ(t) is the identity
of G. This shows that G is trivial. 2

It is routine to check that an inverse quotient limit of equidivisible compact
semigroups is equidivisible. In the context of this paper, it is worthy to record the
following similar fact.

Proposition 6.5. An inverse quotient limit of KR-covers is a KR-cover.

Proof. Let S = lim←−i∈I Si be an inverse quotient limit of the KR-covers Si. For

each i ∈ I, let pi be the canonical projection S → Si. Suppose that ϕ : S → T is
a continuous homomorphism onto a finite semigroup T . Then there is k ∈ I for
which there is a factorization ϕ = ϕk ◦ pk such that ϕk : Sk → T is a continuous
onto homomorphism (see, for instance, [15, Lemma 3.1.37]). As Sk is a KR-cover,
there is a finite alphabet A and a generating mapping ψ : A → T for which there
is a continuous homomorphism ρ : Sk → TKR

ψ satisfying ϕk = πψ ◦ ρ. Since the
continuous homomorphism ϕψ = ρ ◦ pk satisfies πψ ◦ ϕψ = ϕ, we conclude that S
is a KR-cover. The diagram

S
ϕ //

pk

��
ϕψ

''

T

Sk
ρ //

ϕk

77

TKR
ψ

πψ

OO

may help visualizing the various homomorphisms involved in this proof. 2
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To finish this section we observe that a profinite KR-cover may not be, up to
isomorphism, an inverse limit of finite KR-covers. Indeed, KR-covers are equidi-
visible by Theorem 6.1. Now, by [10, Theorem 1.9] (which is attributed to Rees),
elements of finite order of an equidivisible semigroup lie in groups; in particular,
finite KR-covers are unions of groups and, therefore, so are their inverse limits.
On the other hand, the semigroups ΩAV of Theorem 6.2 (that is, with V closed
under two-sided Karnofsky–Rhodes expansion) are KR-covers by Proposition 5.4
but they are never unions of groups since V contains LI.

7. Profinite coproducts of KR-covers. In combination with Theorem 6.1,
the following property provides a way of producing new examples of profinite equidi-
visible semigroups.

Theorem 7.1. For every pseudovariety of semigroups V closed under two-sided
Karnofsky–Rhodes expansion, the class of all pro-V KR-covers is closed under V-
coproducts.

Proof. Let (Si)i∈I be a family of pro-V KR-covers. Let S be their V-coproduct,
with associated continuous homomorphisms ϕi : Si → S.

Consider a continuous homomorphism ψ : S → T onto a finite semigroup T
and let ψi = ψ ◦ ϕi. Let Ti be the image of ψi. Since Si is a KR-cover, there are a
finite set Ai, a generating mapping δi : Ai → Ti, depending on Ti only (not on i),
and a continuous homomorphism βi such that the following diagram commutes:

Si
βi

yy
ψi

��

ϕi // S

ψ

��
(Ti)

KR
δi

πδi // Ti
� � // T.

(7.1)

We may assume that Ti 6= Tj implies Ai ∩ Aj = ∅, and we let A =
⋃
i∈I Ai. Since

T is finite, the set {Ti | i ∈ I} is finite; moreover, its union is T since the union of
the images of the ϕi generates a dense subsemigroup of S. The union δ =

⋃
i∈I δi

is then a generating mapping A→ T with finite domain.
By Proposition 4.2, there are homomorphisms ηi : (Ti)

KR
δi
→ TKR

δ , with ηi
depending only on Ti, such that the lower rectangle of the following diagram com-
mutes:

S

ψ

%%

β

��
Si

ϕi

99

βi
$$

TKR
δ

πδ // T

(Ti)
KR
δi

πδi //

ηi

OO

Ti.
?�

OO(7.2)
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Since T is a finite continuous homomorphic image of the pro-V semigroup S, we
know that T belongs to V (again, see, for instance, [2, Proposition 3.7]). And
since V is closed under two-sided Karnofsky–Rhodes expansion, TKR

δ also belongs
to V. Therefore, by the definition of V-coproduct, the homomorphisms ηi ◦ βi
(i ∈ I) induce a unique continuous homomorphism β : S → TKR

δ such that the left
triangle in Diagram (7.2) commutes for each i ∈ I. Then, taking also into account
the commutativity of Diagram (7.1), we deduce that for every i ∈ I and every
s ∈ Si, the following chain of equalities holds:

ψ ◦ ϕi(s) = ψi(s) = πδi ◦ βi(s) = πδ ◦ ηi ◦ βi(s) = πδ ◦ β ◦ ϕi(s).

Since
⋃
i∈I ϕi(Si) generates a dense subsemigroup of S, we conclude that ψ = πδ◦β

(that is, Diagram (7.2) commutes). This completes the proof that S is a KR-cover.
2

For a set A, one may consider the A-indexed V-coproduct
∐V
a∈A{1} of triv-

ial semigroups. Note that it is precisely the free object on A in the category of
idempotent-generated pro-V semigroups. By Theorem 7.1, such semigroups are
KR-covers whenever V is closed under two-sided Karnofsky–Rhodes expansion,
whence they are equidivisible by Theorem 6.1.

8. Letter super-cancellative equidivisible profinite semigroups. In this
section we completely characterize a class of equidivisible profinite semigroups,
defined by a cancellation property (Definition 8.1), that was considered in [4, 5].

8.1. Letter super-cancellative semigroups. In the following definition, we
adopt the terminology of [4].

Definition 8.1. (Letter super-cancellative semigroup) Let S be a compact semi-
group and suppose that S is generated, as a topological semigroup, by a finite
subset A. Say that S is letter super-cancellative (with respect to A) when, for
every a, b ∈ A and u, v ∈ SI , the following holds: if we have ua = vb or au = bv,
then we have a = b and u = v.

Remark 8.2. As observed in [5, Lemma 6.1], if S is letter super-cancellative with
respect to A and also with respect to B, then A = B. In [5], a letter super-
cancellative semigroup is called finitely cancellable.

Example 8.3. By [4, Proposition 6.3], for an equidivisible pseudovariety V not
contained in CS and a finite set A, ΩAV is letter super-cancellative. In view of
Theorem 6.2, this holds precisely when V is closed under two-sided Karnofsky–
Rhodes expansion.

An epigroup is a semigroup S such that every element x of S has some power xn

lying in a subgroup of S, with n a positive integer. For example, finite semigroups
and completely simple semigroups are epigroups. It is easy to see that no profi-
nite epigroup is letter super-cancellative. The argument extends to the following
proposition.
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Proposition 8.4. Let V be a pseudovariety containing Sl. If a nonempty family
of nontrivial pro-V semigroups includes some epigroup and the V-coproduct of the
family is finitely generated as a topological semigroup, then that V-coproduct is
not letter super-cancellative.

Proof. Consider a nonempty family (Si)i∈I of nontrivial semigroups. Let i0 ∈ I
be such that Si0 is an epigroup. Let A be a finite generating subset of the profinite

semigroup S =
∐V
i∈I Si. By Lemma 3.4 there is a ∈ A ∩ Si0 . Since Si0 is an

epigroup, there is a positive integer k such that ak = aω+k. Since ak · I = ak ·aω−k
but I 6= aω−k, we conclude that S is not letter super-cancellative with respect
to A. 2

8.2. Strong KR-covers. The following somewhat subtly strengthened version
of KR-cover is crucial in our main result of this section.

Definition 8.5. (Strong KR-cover) Consider a profinite semigroup with a gen-
erating mapping κ : A → S such that A is finite. Let T be a continuous finite
homomorphic image of S. We say that S is a strong KR-cover of T with respect
to κ if, for every continuous onto homomorphism ϕ : S → T , there is a continuous
homomorphism ϕκ : S → TKR

ϕ◦κ such that the following diagram commutes:

A
κ //

(ϕ◦κ)KR

��

S

ϕ

��

ϕκ

{{
TKR
ϕ◦κ πϕ◦κ

// T.

(8.1)

The profinite semigroup S is a strong KR-cover of T if it is a strong KR-cover of
T with respect to some such κ. Finally, S is a strong KR-cover if it is a strong
KR-cover of each of its finite continuous homomorphic images.

Remark 8.6. Every strong KR-cover (of a finite semigroup T ) is a KR-cover (of
T ).

The definition of strong KR-cover is motivated by the following link with the
property of being letter super-cancellative.

Proposition 8.7. Let S be a profinite semigroup with a generating mapping κ :
A → S, where A is a finite alphabet. If S is a strong KR-cover of the trivial
semigroup with respect to κ, then S is letter super-cancellative with respect to
κ(A).

Proof. Let x, y ∈ S and a, b ∈ A be such that x · κ(a) = y · κ(b). We want to
show that x = y and that κ(a) = κ(b). Since, by Theorem 6.1, the semigroup S is
equidivisible, we know that there is t ∈ SI such that xt = y and κ(a) = tκ(b), or
such that x = ty and κ(a)t = κ(b). Without loss generality, we assume that xt = y
and κ(a) = tκ(b).
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Arguing by contradiction, suppose t 6= I. Let ϕ : S → T be the continuous
homomorphism from S onto the trivial semigroup T . As S is a strong KR-cover of
T , there is a continuous onto homomorphism ϕκ : S → TKR

ϕ◦κ such that Diagram 8.1

commutes. Because t 6= I, we know that ϕκ(κ(a)) belongs to TKR
ϕ◦κ · ϕκ(κ(b)).

Therefore, and since ϕκ ◦ κ = (ϕ ◦ κ)KR, there are c ∈ A and u ∈ A∗ such that
(ϕ◦κ)KR(a) = (ϕ◦κ)KR(cub). The latter equality means that ϕ(κ(a)) = ϕ(κ(cub))
and that the coterminal paths pa and pcub of the two-sided Cayley graph Γϕ◦κ have
the same transition edges. But pa has length one, while pcub has at least two distinct
transition edges of Γϕ◦κ, namely the edges

(I, ϕ(κ(cub)))
c−→ (ϕ(κ(c)), ϕ(κ(ub)))

and
(ϕ(κ(cu)), ϕ(κ(b)))

b−→ (ϕ(κ(cub)), I).

We reached a contradiction, resulting from assuming that t 6= I. This shows that
indeed we have x = y and κ(a) = κ(b).

Symmetrically, if κ(a) · x = κ(b) · y holds, then x = y and κ(a) = κ(b). 2

Remark 8.8. In view of Proposition 8.7 and Remark 8.2, up to the name of gen-
erators, there can be only one injective generating mapping κ : A→ S with respect
to which the profinite semigroup S is a strong KR-cover.

Note that no finite semigroup is a strong KR-cover: indeed, finite semigroups are
epigroups and we already observed that epigroups are not letter super-cancellative,
while strong KR-covers of the trivial semigroup are letter super-cancellative by
Proposition 8.7. On the other hand, there are several examples of finite KR-covers
(see Section 5).

More generally, for every pseudovariety of semigroups V containing Sl and
closed under two-sided Karnofsky–Rhodes expansion, if S is the V-coproduct of
a nonempty finite family of finitely generated pro-V semigroups which are KR-
covers, with at least one being an epigroup, then S is a KR-cover which is not a
strong KR-cover, thanks to Theorem 7.1 and also Propositions 8.4 and 8.7.

Next is a complete characterization of the strong KR-covers.

Theorem 8.9. Let S be a finitely generated profinite semigroup. The following
conditions are equivalent:

(1) S is equidivisible and letter super-cancellative;

(2) S is a strong KR-cover;

(3) S is a KR-cover, and S is a strong KR-cover of the trivial semigroup.

The proof of Theorem 8.9, given in this section, is inspired by the proof of [4,
Theorem 8.3].

Note that, for an equidivisible pseudovariety V not contained in CS, Property (1)
of Theorem 8.9 holds for ΩAV whenever A is finite (cf. Example 8.3). Thus, strong
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KR-covers may be seen as a generalization of finitely generated free profinite semi-
groups over pseudovarieties closed under two-sided Karnofsky–Rhodes expansion.

We recall the following definition used in [4].

Definition 8.10. (Transition edge for a pseudoword) Let A be a finite alphabet
and u ∈ ΩAS. Consider a continuous homomorphism ϕ from ΩAS onto a finite
semigroup. Suppose that (un)n is a sequence of elements of A+ converging to u.
A transition edge for u in Γϕ is an edge of Γϕ which is a transition edge for un in
Γϕ for all sufficiently large n.

Moreover, a sequence of edges of Γϕ is said to be a sequence of transition edges
for u in Γϕ if it is the sequence of all transition edges of un for all sufficiently large
n, where (un)n is a sequence of elements of A+ such that un → u.

Since ϕKR(un)→ ϕKR(u), the property of being a transition edge (or of being
a sequence of transition edges) for u in Γϕ does not depend on the choice of the
sequence un, it only depends on ϕ and u.

For proving Theorem 8.9, we need the following property, contained in [4,
Lemma 8.1].

Lemma 8.11. Let ϕ be a continuous homomorphism from ΩAS onto a finite semi-
group, where A is a finite alphabet. Let u ∈ ΩAS. If ((s1, t1), a, (s2, t2)) is a
transition edge for u in Γϕ, then there is a factorization u = u1au2 of u, with
u1, u2 ∈ (ΩAS)I , such that ϕ(u1) = s1 and ϕ(u2) = t2.

Proof of Theorem 8.9. The implication (2) ⇒ (3) is trivial, and (3) ⇒ (1) follows
from Theorem 6.1 and Proposition 8.7. It remains to show (1)⇒ (2). Suppose
that S is letter super-cancellative with respect to the finite set A. Denote by κ the
continuous onto homomorphism ΩAS→ S extending the inclusion of A in S.

Let ϕ : S → T be a continuous homomorphism onto a finite semigroup. Let
Φ = ϕ◦κ. We then have the following diagram, where the outer square commutes.

ΩAS
κ //

ΦKR

��

S

ϕ

��

ϕκ

||
TKR

Φ πΦ

// T

(8.2)

Our aim is to show that there exists a continuous homomorphism ϕκ such that
the whole diagram commutes. For that purpose, take u, v ∈ ΩAS such that κ(u) =
κ(v). We claim that ΦKR(u) = ΦKR(v). Let (εi)i∈{1,...,n} and (δi)i∈{1,...,m} be the
sequences of transition edges in ΓΦ respectively for u and for v. Without loss of
generality, we may assume that n 6 m. For an edge ε of the graph ΓΦ, α(ε) and
ω(ε) denote the beginning and end vertices of ε, respectively.

Suppose that the set

(8.3) {i ∈ {1, . . . , n} | εi 6= δi}
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is nonempty, and let j be its minimum. By Lemma 8.11, there are factorizations

u = u1au2 and v = v1bv2

with a, b ∈ A and u1, u2, v1, v2 ∈ (ΩAS)I , such that

εj = ((Φ(u1),Φ(au2)), a, (Φ(u1a),Φ(u2))

and
δj = ((Φ(v1),Φ(bv2)), b, (Φ(v1b),Φ(v2)).

Note that α(εj) and α(δj) belong to the same strongly connected component of
ΓΦ, by the minimality of the index j.

If u1 = I, then j = 1, which in turn implies that v1 = I. We then have
κ(au2) = κ(u) = κ(v) = κ(bv2). Because S is finitely cancellable with respect
to A, we deduce that a = b and κ(u2) = κ(v2), and so we get that εj = δj , a
contradiction. Hence we have u1 6= I, and, analogously, v1 6= I.

Similarly, if u2 = v2 = I, then j = n = m and εj = δj , a contradiction.
Suppose that u2 = I and v2 6= I. We then have κ(u1a) = κ(v1bv2). Since S

is letter super-cancellative with respect to A, it follows that there is a pseudoword
v′2 ∈ (ΩAS)I such that v2 = v′2a and κ(u1) = κ(v1bv

′
2). This implies the existence

of a path in ΓΦ from ω(δj) = (Φ(v1b),Φ(v2)) to α(εj) = (Φ(v1bv
′
2),Φ(a)) labeled by

a word v′′2 of A∗ such that Φ(v′′2 ) = Φ(v′2). As α(εj) and α(δj) belong to the same
strongly connected component of ΓΦ, we deduce that there is in ΓΦ a path from
ω(δj) to α(δj), contradicting the fact that δj is a transition edge of ΓΦ. Therefore,
we must have u2 6= I.

Since S is equidivisible, and we have κ(u1a · u2) = κ(v1 · bv2) with none of
the elements κ(u1a), κ(u2), κ(v1), κ(bv2) being equal to I, we know that there is
t ∈ (ΩAS)I such that

(8.4) κ(u1at) = κ(v1) and κ(u2) = κ(tbv2),

or

(8.5) κ(v1t) = κ(u1a) and κ(bv2) = κ(tu2).

If Case (8.4) holds, then there is in ΓΦ a (possibly empty) path from ω(εj) to
α(δj), labeled by a word t0 ∈ A∗ such that Φ(t0) = Φ(t). But, since α(εj) and
α(δj) are in the same strongly connected component, we reach a contradiction with
the hypothesis that εj is a transition edge of ΓΦ.

Therefore, Case (8.5) holds with t 6= I. Since S is letter super-cancellative with
respect to A, there is t′ ∈ (ΩAS)I with t = t′a and

(8.6) κ(v1t
′) = κ(u1) and κ(bv2) = κ(t′au2).

Suppose that t′ 6= I. Again because S is letter super-cancellative with respect
to A, it follows from (8.6) that there is t′′ ∈ (ΩAS)I with t′ = bt′′ and

(8.7) κ(v1b · t′′) = κ(u1) and κ(v2) = κ(t′′ · au2).
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This implies the existence of a path in ΓΦ from ω(δj) to α(εj), which once more
contradicts the definition of a transition edge.

Therefore, we have t′ = I, and so, once again because S is letter super-
cancellative with respect to A, from (8.6) we get κ(v1) = κ(u1), a = b and
κ(v2) = κ(u2). This yields εj = δj , which contradicts the initial assumption.
Therefore, the set (8.3) is empty. In particular, εn = δn holds. Since εn is the last
transition edge for u, we have ω(δn) = (Φ(u), I), which means that δn is the last
transition edge for v, whence m = n and εi = δi for every i ∈ {1, . . . , n}.

We have therefore established the claim that ΦKR(u) = ΦKR(v) holds whenever
κ(u) = κ(v), and so there is a unique continuous homomorphism ϕκ : S → TKR

Φ

such that Diagram 8.2 commutes, thus showing that S is a strong KR-cover. 2

8.3. A strong KR-cover which is not relatively free. Let S be a finite
semigroup and let ϕ : A→ S be a generating mapping, where A is a finite alphabet.
We define the onto homomorphism ϕKRn : A+ → SKRn

ϕ recursively by

ϕKR0

= ϕ and ϕKRn+1

= (ϕKRn)KR (n > 0).

For m > n, let %m,n be the unique (onto) homomorphism SKRm

ϕ → SKRn

ϕ such that
the following diagram commutes:

A+

ϕKRm

��
ϕKRn

��
SKRn

ϕ SKRm

ϕ .
%m,n
oo

The family of homomorphisms {%m,n | m,n ∈ N,m > n} defines an inverse system
of A-generated semigroups. Consider its inverse limit, the profinite semigroup
SKRω

ϕ = lim←−S
KRn

ϕ , with generating mapping ϕKRω : A → SKRω

ϕ . The associated

projection SKRω

ϕ → SKRn

ϕ , denoted %n, is an onto continuous homomorphism, since
the connecting homomorphisms defining the inverse limit are onto (see, for instance,
[15, Lemma 3.1.26]).

Using results that can be found in [15] (namely, Corollary 5.3.22 and Theo-
rem 3.6.4), one may show that for an arbitrary pseudovariety V, the following
equality holds, where two-sided Karnofsky–Rhodes expansion needs to be extended
to profinite semigroups (as in [14]) when V is not locally finite:

(ΩAV)KRω = ΩA(LI©m V).

Proposition 8.12. Let S be a finite semigroup generated by ϕ : A → S, where
A is a finite alphabet. The profinite semigroup SKRω

ϕ is a strong KR-cover with

respect to the generating mapping ϕKRω : A→ SKRω

ϕ .

Proof. Let κ = ϕKRω and ψ be a continuous homomorphism from SKRω

ϕ onto
a finite semigroup T . Choose an integer n > 1 for which ψ has a factorization
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ψ = ψn ◦ %n for some homomorphism ψn : SKRn

ϕ → T (its existence being guar-
anteed, for instance, by [15, Lemma 3.1.37]). Observe that the non-dashed part of
Diagram (8.8) is commutative.

SKRn

ϕ

ψn

��

SKRn+1

ϕ

%n+1,noo

(ψn)KR

��

SKRω

ϕ
ψ

xx

%n

ff
%n+1

44

A+
κ

oo
ϕKRn+1

88

(ψ◦κ)KR

&&
T TKR

ψ◦κ
πψ◦κoo

(8.8)

Applying Proposition 4.2, we see that there is a unique homomorphism (ψn)KR :

SKRn+1

ϕ → TKR
ψ◦κ for which Diagram (8.9) commutes. Since the topmost triangle in

Diagram (8.9) is the rightmost triangle in Diagram (8.8), we deduce that the latter
is commutative.

SKRn+1

ϕ

%n+1,n

��

(ψn)KR

// TKR
ψ◦κ

πψ◦κ

��

A+

ϕKRn

yy

ϕKRn+1
ee

ψ◦κ

$$

(ψ◦κ)KR

::

SKRn

ϕ

ψn // T

(8.9)

Note that (ψn)KR is onto, as (ψ ◦ κ)KR is onto. Let ψκ be the onto continuous
homomorphism (ψn)KR ◦ %n+1. The commutativity of Diagram (8.8) entails in
particular that

(ψ ◦ κ)KR = (ψn)KR ◦ %n+1 ◦ κ = ψκ ◦ κ
and so Diagram (8.10) commutes.

A+

(ψ◦κ)KR

��

κ // SKRω

ϕ

ψκ

zz
ψ

��
TKR
ψ◦κ

πψ◦κ // T

(8.10)

This establishes that SKRω

ϕ is a strong KR-cover. 2

Example 8.13. Let S = {a, b} be the 2-element semilattice, where b is the min-
imum element. For the alphabet A = {a, b}, the description of S determines an
onto homomorphism ϕ : A+ → S. By Proposition 8.12, the profinite semigroup
T = SKRω

ϕ is a strong KR-cover with respect to the natural generating mapping

ϕKRω : {a, b} → T . Since ϕKRω (a) 6= ϕKRω (b), we see {a, b} as a subset of T .
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In [5], some properties of the equidivisible profinite semigroups which are letter
supper-cancellative were studied. But the question of whether such semigroups
may not be relatively free was left open (cf. [5, Section 9]). Example 8.13 provides
an answer to that question, as shown next.

Proposition 8.14. The semigroup T from Example (8.13) is an equidivisible
profinite semigroup which is letter super-cancellative but not a relatively free profi-
nite semigroup.

Proof. We already observed that T is a strong KR-cover. It then follows from
Theorem 8.9 that T is equidivisible and letter super-cancellative. We proceed to
show that T is not a relatively free profinite semigroup.

We claim that the idempotent ϕKRω (bω) ∈ T belongs to the minimum ideal of T .
To avoid overloaded notation, denote ϕKRn(v) by [v]n. We establish the claim by
proving that the idempotent [bω]n belongs to the minimum ideal of Tn = SKRn

ϕ ,
for every n > 0. We do this by showing inductively on n that

(8.11) [bωwbω]n = [bω]n for every w ∈ A∗.

The base case n = 0 is immediate, as ϕKR0

= ϕ. Assume that (8.11) holds for a
certain value of n > 0. Let k be an integer such that [bω]n+1 = [bk]n+1. Note that,

since ϕKRn = %n+1,n ◦ϕKRn+1

, we also have [bω]n = [bk]n. In the graph Γ = ΓϕKRn ,

the path pb2k is the concatenation of the path q from (I, [bk]n) to ([bk]n, [b
k]n)

labeled by bk, and the path q′ from the latter vertex to ([bk]n, I), which is also
labeled by bk. On the other hand, by the induction hypothesis, we know that, for
every w ∈ A∗, the path pb2kwb2k of Γ decomposes as qrq′ where r is the circuit
at the vertex ([bk]n, [b

k]n) labeled by bkwbk (see Figure 2). In particular, the two
coterminal paths pb2k and pb2kwb2k use the same transition edges of the graph Γ,
and so the equality [b2k]n+1 = [b2kwb2k]n+1 holds. That is, we have (8.11) for n+1
in the place of n. This concludes the inductive step of the proof, and shows that
bω belongs to the minimum ideal of T .

(I, [bk]n) ([bk]n, [b
k]n) ([bk]n, I)

bk bk
bkwbk

Figure 2: The path pb2kwb2k of the graph ΓϕKRn .

Arguing by contradiction, suppose that T is a relatively free profinite semigroup
ΩXV, for some semigroup pseudovariety V and alphabet X. As the semilattice
S = {a, b} is a continuous homomorphic image of T , the set X has at least two
elements and V contains the pseudovariety Sl (of all finite semilattices). Let π be
the unique continuous homomorphism ΩXV → ΩXSl mapping each generator to
itself. Then π(b) = π(bω) belongs to the minimum ideal K of ΩXSl by the claim,
and since {a, b} generates T = ΩXV, we conclude that ΩXSl\K ⊆ π(a∗) = {π(a)}.
But since X has at least two elements, which belong to the set ΩXSl \K, we reach
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a contradiction. To avoid the contradiction, the only possibility is that T is not a
relatively free profinite semigroup. 2

9. Profinite coproducts of letter super-cancellative equidivisible profi-
nite semigroups. The proof of the following proposition is an adaptation of the
proof of Theorem 7.1.

Proposition 9.1. If V is a semigroup pseudovariety containing LI, then the class
of all pro-V strong KR-covers of the trivial semigroup is closed under finite V-
coproducts.

Proof. We start by observing that, by Remark 4.1, V contains all two-sided
Karnofsky–Rhodes expansions of the trivial semigroup.

Let (Si)i∈I be a finite family of pro-V strong KR-covers of the trivial semigroup
T . Let S be their V-coproduct, with associated continuous homomorphisms ϕi :
Si → S. Consider the unique mapping ψ : S → T and let ψi = ψ ◦ϕi. Since Si is a
strong KR-cover of T , we know that there are a finite set Ai, a generating mapping
κi : Ai → Si, and a continuous homomorphism βi such that the diagram

A+
i

κi //

(ψi◦κi)KR

��

Si

ψi

��

βi

{{
TKR
ψi◦κi πψi◦κi

// T

commutes. We may assume that the sets Ai are pairwise disjoint. Let A =
⋃
i∈I Ai.

The union κ =
⋃
i∈I κi is then a generating mapping A→ S with finite domain.

Applying Proposition 4.2, we see that for each i ∈ I there is a homomorphism
ηi : TKR

ψi◦κi → TKR
ψ◦κ such that Diagram (9.1) commutes.

TKR
ψi◦κi

πψi◦κi

��

ηi // TKR
ψ◦κ

πψ◦κ

��

A+
i

ψi◦κi

zz

� � //

ψi◦κiKR

dd

A+

ψ◦κ

$$

(ψ◦κ)KR

;;

T
IdT

T

(9.1)
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Therefore, the non-dashed part of Diagram (9.2) commutes.

A+
i

κi

&&

(ψi◦κi)KR

��

� � // A+

(ψ◦κ)KR

��

κ

yy
Si

βi

��

ψi
��

ϕi // S

ψ
yy β

��

T

TKR
ψi◦κi

ηi //

πψi◦κi

88

TKR
ψ◦κ

πψ◦κ

jj

(9.2)

From the observation at the beginning of the proof, we know that TKR
ψ◦κ belongs

to V. Therefore, by the definition of V-coproduct, there is a unique continuous
homomorphism β : S → TKR

ψ◦κ such that β ◦ ϕi = ηi ◦ βi for each i ∈ I, thus
completing Diagram (9.2), which we next show to be commutative. Indeed, using
the already established commutativity of the non-dashed part of Diagram (9.2), we
see that for every i ∈ I and every a ∈ Ai, the following chain of equalities holds:

β ◦ κ(a) = β ◦ ϕi ◦ κi(a) = ηi ◦ βi ◦ κi(a) = ηi ◦ (ψi ◦ κi)KR(a) = (ψ ◦ κ)KR(a).

This shows that β ◦ κ = (ψ ◦ κ)KR. In particular, we conclude that Diagram (9.3)

A+ κ //

(ψ◦κ)KR

��

S

ψ

��

β

||
TKR
ψ◦κ πψ◦κ

// T

(9.3)

commutes, thereby completing the proof that S is a strong KR-cover of the trivial
semigroup T . 2

We are ready to deduce the following theorem.

Theorem 9.2. For every pseudovariety of semigroups V closed under two-sided
Karnofsky–Rhodes expansion, the class of letter super-cancellative equidivisible
finitely generated pro-V semigroups is closed under finite V-coproducts.

Proof. Let C be the class of all pro-V KR-covers, and let D be the class of all
pro-V strong KR-covers of the trivial semigroup. By Theorem 4.3, V contains LI.1

Both C and D are closed under taking finite V-coproducts, by Theorem 7.1 and

1In fact, we only need that V contains LI to invoke Proposition 9.1, where the proof starts by
observing that it follows that V contains all two-sided Karnofsky–Rhodes expansions of the trivial
semigroup. So, one could avoid applying Theorem 4.3 here. We preferred to keep the statement
of Proposition 9.1 the simplest possible.
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Proposition 9.1, respectively. By Theorem 8.9, the class of letter super-cancellative
equidivisible pro-V semigroups is the intersection C ∩ D. Combining these obser-
vations, we immediately obtain the theorem. 2

A natural question arising from Theorem 9.2 is the following problem, which
we leave open.

Problem 9.3. Suppose that V is a pseudovariety of semigroups closed under two-
sided Karnofsky–Rhodes expansion. Is it true that the class of all equidivisible
pro-V semigroups is closed under V-coproducts? A perhaps simpler question is the
following: is the class of all finitely generated equidivisible pro-V semigroups closed
under finite V-coproducts?

It would also be interesting to have a complete characterization of the KR-
covers, in the spirit of the characterization of the strong KR-covers, established in
Theorem 8.9.
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