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Abstract: Denote byσn the n-th Stirling polynomial in the sense of the well-known book ConcreteMathematics
by Graham, Knuth and Patashnik. We show that there exist developments xσ x j q j x2n j
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polynomials qj of degree j. We deduce from this the polynomial identities
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found in an attempt to find a simpler formula for the density function in a five-dimensional random flight
problem. We point out a probable connection to Riordan arrays.
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1 Introduction

In the context of research on a problem of random flights in dimension 5 – which we discuss briefly in
Section 4 – the second author conjectured the identities in the abstract, for which the authors could not find
many hints in the literature. The work on its proof led us to a (for us at least) surprising result about the
behaviour of the coefficients of sequences of Stirling polynomials. Let σ xn( ) be the nth Stirling polynomial in
the sense of [6]; the precise definition is given in Section 2, but see Table 1 for the coefficients of the first few

Stirling polynomials. The table tells us, for example, that xσ x x0 03( ) = + − x x .1
48

2 1
48

3
+

We agree to begin row and column indices both with 0 and then multiply the entries in column j of
Table 1 with j2j

!. We then get Table 2.
The first main result proven in the current article can be expressed as saying that the jth diagonal, i.e.,

the sequence of numbers in positions j j j, 0 , 1, 1 , 2, 2 ,( ) ( ) ( )+ + … of Table 2, gives the values of a poly-
nomial of degree j on the nonnegative integers.

Accept this for the moment and denote the sequence by q n .j n 0( ( ))
≥

As is well known, see almost any text
on numerical analysis, e.g. [2, p. 95ff], using j 1+ interpolation points of distinct abscissae, in our case
n 0, 1, 2,= … , one can compute a unique polynomial of degree j≤ whose graph passes through these points.
From Table 2, one finds, for example,
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The sequence of numbers in the jth diagonal of the original table is given by .q
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We can use its row n

to determine the polynomial xσ xn( ) for symbolic n. The leftmost coefficient is the beginning and hence at

position0of diagonaln.So, it has value .q 0
2 0
n
0
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The coefficient of x1 pertains to diagonaln 1.− It is at position 1

of that diagonal so has value .q 1
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− as claimed in the abstract.

As it happens, the fact q 0 0j( ) = for j 1≥ implies n q nj∣ ( ) so that n j q n j .j( )∣ ( )− − This means that by
putting q n q n n˜j j( ) ( )≔ / and using the polynomials q q q, ,0 1 2, and q3 computed above, we find
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Table 1: Coefficients of the first few polynomials ( )xσ xn

x 0 x1 x2 x3 x 4 x 5 x 6 x7 x 8

( )xσ x0 1

( )xσ x1 0 1
2

( )xσ x2 0 − 1
24

1
8

( )xσ x3 0 0 − 1
48

1
48

( )xσ x4 0 1
2880

1
1152 − 1

192
1

384

( )xσ x5 0 0 1
5760

1
2304 − 1

1152
1

3840

( )xσ x6 0 − 1
181440 − 1

69120
13

414720
1

9216 − 1
9216

1
46080

( )xσ x7 0 0 − 1
362880 − 1

138240
1

829440
1

55296 − 1
92160

1
645120

( )xσ x8 0 1
9676800

101
348364800 − 1

2580480 − 67
39813120

− 1
1658880

1
442368 − 1

1105920
1

10321920

Table 2: Result of multiplying column j of Table 1 with 2j j!

0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 0 − 1

12
1

3 0 0 − 1
6

1

4 0 1
1440

1
144 − 1

4
1

5 0 0 1
720

1
48 − 1

3
1

6 0 − 1
90720 − 1

8640
13

8640
1

24 − 5
12

1

7 0 0 − 1
45360 − 1

2880
1

2160
5

72 − 1
2

1

8 0 1
4838400

101
43545600 − 1

53760 − 67
103680

− 1
432

5
48 − 7

12
1
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which shows that we could also write xσ x j q n x2 1 ˆn j
n j
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for certain polynomials
q nˆl( ) of degree l in n. A “really simple closed” expression f j n,( ) such that xσ x f j n x,n j

n n j
0( ) ( )= ∑

=

− for all
j n, 0�∈

≥
probably does not exist because it would, for example, via the identity B m m σ 0m m( )= − ! , imply a

simple formula for the Bernoulli numbers.
In Section 2, we collect a number of results on Stirling numbers and Stirling polynomials. In Section 3,

weassume the representation xσ x a x1n k
n k

n k
n k

0 ,( ) ( )= ∑ −

=

− andprove that the sequence n n k a2k
n k

n k,� ( )∋ ↦ − !
≥

−

is polynomial of degree k; a fact equivalent to the representation claimed for xσ xn( ) given in the abstract. The
latter should have some importance for refined asymptotic analyses of the Stirling numbers of the second kind.
To obtain that result, we have to solve a first-order difference equation with polynomial coefficients.

In Section 4, we deduce the identities mentioned in the abstract. In Section 5, we provide reasons to
conjecture that the second of the tables shown above is actually an example of a Riordan array and indicate
other possibilities for perhaps further fruitful work.

More important than the particular polynomial identity, which we derive, might be the methods which
we employ. They should be applicable in a number of similarly looking identities. But we admit that it
would be desirable to first simplify our proof significantly. In this vein, we also note that by introducing the
notation x x kk k[ ]

≔ / !, the identities assume a more convenient form.

2 Stirling numbers, Stirling polynomials, and some known
auxiliary facts

We collect here facts on Stirling numbers and Stirling polynomials. Our main sources are an article by
Gessel and Stanley [5] and the book by Graham et al. [6, pp. 257–272]. An informative article with histori-
cally interesting remarks on Stirling numbers of the second kind is the article by Boyadzhiev [1]. Some more
recent articles introducing generalisations are mentioned further.

Stirling polynomials are born from investigations into Stirling numbers. Stirling numbers, in a notation
proposed by Jovan Karamata and promoted by [6], are defined for integers n k, 0≥ and come in two kinds.

Stirling numbers of the first kind are denoted by
n
k⎡

⎣
⎤
⎦
, and verbalised by “n cycle k .” They count the number

of partitions of n n1, 2, ,[ ] { }= … into k nonempty cycles. Stirling numbers of the second kind are denoted by
n
k{ }

and verbalised by “n subset k .” Classically, n
k{ }

is defined as the number of partitions of n n1, 2, ,[ ] { }= …

into k nonempty subsets; but Stirling numbers of the second kind also crop up quite differently. Assume
that a and a+ are operators satisfying aa a a 1,− =

+ + then these Stirling numbers occur as coefficients when
we write aa k( )+ as a linear combination of the powers a al l( )+ , l k0, 1, 2, ,= … , namely one has aa k( ) =

+

k
l

a a .l
k l l

0 ( )
{ }

∑

=

+ The a and a+ notations come from physics where they denote creation and annihilation

operators in quantummechanics, but, e.g. a xd d= / and a x=

+ . i.e., multiplication with x allow interpreta-
tion as operators on polynomial space. See Kim and Kim [10,11] for this and generalisations of Stirling
numbers of the both kinds. On the other hand, Stirling polynomials σ xn( ) have a close relation to Bernoulli

polynomials. The article by Choi [4] mentions generalised Bernoulli polynomials B xn
α ( )( ) given through the

development z e e B x1 .z α xz
n n
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n0

n
( ( )) ( )( )

/ − = ∑

=
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The classical Bernoulli polynomials are given as follows:

B x B x .n n
1( ) ( )( )

= One finds then for the Stirling polynomials that σ x .n
B x
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x
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Jekuthiel Ginsburg discovered in 1928 that there is a way to meaningfully define, for n 0≥ , x
x n⎡

⎣
⎤
⎦−

, and

x
x n{ }

−

as polynomials in x of degree n2 (so that whenever x is an integer n> there occur the usual Stirling

numbers). This is explained in [6], where it is also observed that when x n0, 1, 2, ,{ }∈ … , then these
polynomials are zero, and hence, we find that with the exception of the case n 0,= the expressions

σ x x
x n x x x x n1 2n( ) ⎡

⎣
⎤
⎦

( )( ) ( )=

−

/ − − ⋯ −

are polynomials, called Stirling polynomials. The exception is σ x x1 .0( ) = / We have σ x ndeg 1.n( ) = −

The authors of [5] approach the topic of Stirling polynomials differently. They are interested in the

sequences f n S n k n,n k1� ( ) ( )↦ ≔ +
≥

, where S n k n
k,( )

{ }
= , not so much for its own sake but for giving a

combinatorial interpretation to the coefficients of the power series x f n x1 .k
k k

n2 1
0( ) ( )− ∑

+

≥

In this context,

they establish that the functions fk are polynomial of degree k2 with leading coefficient k2 ,k 1( )! − a fact
attributed to C. Jordan’ s book on difference equations which is not available to us. For k 0= , the claim is
clear since f n S n n, 1.0( ) ( )= = The general case is done by induction on k. It is observed, with the not
completely trivial proof left to the reader, that the recursion for the second kind Stirling numbers can be
recast into the equation f n n f nΔ 1 1 ,k k 1( )( ) ( ) ( )= + +

−
valid for all n k ,0�≥ ∈

>
where Δ is the forward

difference operator. Using the elementary fact that a sequence f nΔ n 0{( )( )}
≥

is polynomial of degree d if
and only if the sequence f n n 0{ ( )}

≥
is polynomial of degree d 1+ and that when the corresponding leading

coefficients stand in the relation f f flc Δ deg lc( ) ( )= ⋅ , one obtains the claim.
Once one has that the map n f nk ( )↦ coincides on the infinitely many points constituting 1�

≥
with the

values of a polynomial of degree k2 , the authors can define f xk ( ) as being this polynomial. Observing that
the difference equation f x f x x f x1 1 1k k k 1( ) ( ) ( ) ( )+ − = + +

−
holds for all x and supposing f f0 1k k1 1( ) ( )= − =

− −

f k1 0k 1( )⋯ − =
−

and f 0 0k ( ) = one derives successively 0 = f f f f k0 1 2 .k k k k( ) ( ) ( ) ( )= − = − = ⋯= − From this,
in turn, it follows that f x x x x k k k1 a monic polynomial of degree 1 1 2k

k( ) ( ) ( ) ( )= + ⋯ + ⋅ ( − )⋅ / ! . In [5], it is
the f xk ( ) that are called Stirling polynomials.

The “Stirling polynomials” of [6] and the “Stirling polynomials” of [5] are not the same but they are

easily transformed to each other. By [6, p. 267], for all k n, �∈ ,
n
k

k
n⎡

⎣
⎤
⎦ { }

=

−

−

. It follows, first for integer x

and then, by the usual polynomial argument on the formal level, that

f x x n
x

x
x n

σ x x x x n
σ x x x x n

1
1 1 .

n

n

n
n 1

( ) ⎡
⎣

⎤
⎦

( ) ( )( ) ( )

( )( ) ( ) ( )

{ }
=

+

=

−

− −

= − ⋅ − − − ⋯ − −

= − − + ⋯ +

+

(We should mention that we learned of at least two other notions of Stirling polynomials, which have a
loose connection to the polynomials f xk ( ) or σ xm( ).)

We shall need the following recursion formula for the σ ,n mentioned in [6, Exercise 6.18].

Lemma 1. For n 1,≥ one has

x σ x x n σ x xσ x1 1 .n n n 1( ) ( ) ( ) ( ) ( )+ + = − +
−

Proof. Substituting, for the left- and right-hand sides of this equation, respectively, the definitions of the σn,
we obtain

x
x n x x x n

x
x n x x x n x

x n x x n

lhs 1
1 1 1 ,

rhs 1 1 1 1 1 .

⎡
⎣

⎤
⎦

( ) ( )

⎡
⎣

⎤
⎦

( ) ( ) ⎡
⎣

⎤
⎦

( ) ( )

=

+

+ −

− ⋯ + −

=

−

− ⋯ + − +

+ −

− ⋯ + −

Multiplying everything with x x x n1 1( ) ( )− ⋯ + − , we obtain that the claim is equivalent to

x
x n

x
x n x x

x n
1

1 1 .⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

+

+ −

=

−

+

+ −

Now, this is simply an instance of the recursion formula for Stirling polynomials of the first kind. □
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In Section 4, we will also use the following known facts.

Proposition 2. Let a a x a xj j
j

0( )= = ∑

≥

be any polynomial and let p x x σ x1 .n
n

n( ) ( ) ( ) ( )≔ − − − Then,
(a) One has the following equivalent identities of finite sums

k m k
a k a j

m k l
a k a j

m
1 1 ; 1 .

k

k
m

j
j

k l m

l

j
j

0 0 0

( )

( )
( ) ( )

( )
( )

{ } { }
∑ ∑ ∑ ∑

−

! − !

= −

−

! !

=

≥ ≥ + = ≥

(b) For n and k nonnegative integers, there holds

n k
k

n k
k

p k .n
( )

( )
{ }

+

=

+ !

!

Proof. (a) The sums are finite because the aj for j adeg> are 0 and because for a negative integer s, one has
s1 0./ ! = The left formula is then essentially mentioned for polynomials a x( ) that are of the form xl as [6,

formula (6.19)], namely,

m n
m

m
k

k 1 .
k

n m k⎛
⎝

⎞
⎠

( )
{ } ∑! = −

−

The formula given follows as any polynomial is a linear combination of monomials. The right formula
follows by multiplying both sides with 1 m( )− and using that 1 1 .m k m k( ) ( )− = −

+ −

(b) From the relation mentioned before Lemma 1, we see that n k
k

σ k k k k n1 1n
n 1( )( ) ( ) ( )

{ }

+

= − − + ⋯ +

+ .

Use the definition of pn to conclude the proof. □

Remark. In part (a) of the proposition, note that if a mdeg < , then in the equalities of sums, the ones at the
right-hand sides, and hence at the left-hand sides, are 0. In addition, if a x xl( ) = , then the right-hand sides

reduce to l
m1 m( )

{ }
− and l

m{ }
, respectively. The identities in part (a) are usually proved by applying the

forward difference operator. A multivariate generalisation based on completely different reasoning can be
found in [17].

The following two lemmas will be necessary only in the first part of Section 4.

Lemma 3. If κ n0 ≤ ≤ and l 0≥ are integers, then

a b c d
a b

a c
l
ν

a ν
n κ

1 1 .
a c κ

b d n κ

d
l

a c κ ν

l
l ν

0

( )
( ) ⎛

⎝
⎞
⎠

{ }∑ ∑ ∑

−

! ! ! !

+ =

! !
−

+ =

+ = −

+ = =

−

Proof. Using Proposition 2(a), we find

a c b d
l
ν

a b

a c
l
ν

a
b d

b

lhs 1 1

1 1 rhs.

a c κ b d n κ

d

ν

l
l ν ν

a c κ ν

l
l ν

b d n κ

d
ν

0

0

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

∑ ∑ ∑

∑ ∑ ∑

=

! !

−

! !

=

! !

−

! !

=

+ = + = − =

−

+ = =

−

+ = −

□

From the proof, it follows that here 0 ,0 occurring as a special case of a ,l ν− has to be interpreted as 1,
because only with this understanding is the use of the binomial theorem correct.

In accordance with the notation used in [6], in the following lemma we use for integer i 0≥ the notation
x x x 1i ( )= − x i 1( )⋯ − + for falling factorials.

Representing the Stirling polynomials  5



Lemma 4. If n and k are nonnegative integers, then

n
l

l k
i

n or equivalently
l h

l k
i n i

2 2 , , , 1 2 .
l
n k n

i

k
i i

l h n

k

i

k n i

0
0 0

⎛
⎝

⎞
⎠ ( ){ } { }

∑ ∑ ∑ ∑=

! !

=

− !
=

=

−

+ = =

−

Proof. It is known that l k
i

l ,k
i

i
{ }

= ∑ see [6, equation (6.10)]. Hence, the left equality can be deduced as
follows:

k
i

n
l

l k
i

n n i
l i

k
i

nlhs 2 rhs.
i

k

l

n
i

i

k

l

n
i

i

k
i n i

0 0 0 0 0

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

{ } { } { }
∑ ∑ ∑ ∑ ∑= =

−

−

= =

= = = = =

−

The right equality follows by dividing by n!. □

3 The main result on the diagonals of the modified coefficient table
of Stirling polynomials

We transform the recursion of Lemma 1 into a matrix equation for the coefficients.

Proposition 5. Writing

σ x a x and xσ x b x n, 2, 3, 4 ,n
j

n

j
j

n
j

n

j
j

0

1

1
0

1
( ) ( )∑ ∑= = = …

=

−

−

=

−

there holds the following n n1 1( ) ( )− × − matrix equation:

n n

n n

n n

n n
n
n

a
a
a

a

b n a

b n a

b n a

b n
n

a

1 2
0

3
0

4
0

1
0

2 3
1

4
1

1
1

3 4
2

1
2

2 2 1
3

2 1

0

1

2

2

.

n

n

n

n

n n

0
1
2

2

0 1

1 1

2 1

2 1

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜⎜
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⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟⎟

⎛

⎝

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
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⎟

⎟

⎟

⎟

⎟

⎟

⎟⎟

+ …

−

+ …

−

+ …

−

⋱ ⋮

−

−

−

−

⋮

=

−

−

−

⋮

−

−

−

−

−

−

− −

Proof. With the understanding that a a 0n1 = =
−

, we have

x σ x a x a j
l

x

a j
l

x a x

a j
l

a x

x n σ x a na x

1 1 1 1

1

1 ;

,

n
j

n

j
j

j

n

j
l

j
l

l

n

j l

n

j
l

j

n

j
j

l

n

j l

n

j l
l

n
l

n

l l
l

0

1
1

0

1

0

1

0

1 1

0

1
1

0

1

1

0
1

( ) ( ) ( ) ⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟

( ) ( ) ( )

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑

+ + = + =

+

=

+

+

=

+

+

− = −

=

−

+

=

−

=

+

=

−

=

−

=

−

+

= =

−

−

=

−

and hence, since below the expression within the large parentheses is 0 if evaluated for l n= ,
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x σ x x n σ x a j
l

na x1 1 1 .n n
l

n

j l

n

j l
l

0

1 1
( ) ( ) ( ) ( )

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟∑ ∑+ + − − =

+

+

=

−

=

−

By Lemma 1, we have that a na bj l
n

j
j

l l l
1 1

( )
∑ + =

=

− + for l n0, 1, , 1.= … − It is easy to see that these equations

can be encoded in the above matrix equation: for example, for l n 2= − we obtain a an
n
n n

n
n2

1
2 1 2( ) ( )

+ +
−

−

−

−

−

na bn n2 2=
− −

, which is equivalent to the last encoded equation. (The case l n 1= − need not be encoded since
it expresses na b2 n n1 1=

− −
, which is a consequence of the known fact that the leading coefficients for σn and

σn 1−
are, as mentioned earlier, a n1 2n

n
1 ( )= / !

−
and σ x x σ x b nlc lc 1 2 1 .n n n

n
1 1 1

1( ( )) ( ( )) ( )= ⋅ = = / − !
− − −

− ) □

In this proposition, σn was fixed and an k−
is the coefficient of xn k− in σn and hence the coefficient of

x xn k n k1 1( )
=

+ − − − of xσ x .n( ) Similarly, bn k−
is the coefficient of xn k− in xσ x .n 1( )

−
Since we have to consider the

dependence on n as well in the sequel, we define

a x xσ x1 coefficient of of .n k
k n k

n, ( ) ( )≔ − ⋅

−

The matrix equation of the previous proposition says that, for k n2, 3, , ,= …

n k a n k
n k

a n k
n k

a n
n k

a b n
n k

a2 1 2 3 1 .n k n k n k n n k n1 2 2 1( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− + +

− +

−

+

− +

−

+ ⋯+

−

−

= −

−

− − + − + − − −

Doing the proper replacements according to a a1n k
k

n k
1

, 1( )→ −
−

−

−
and b a1n k

k
n k

1
1, 1( )→ −

−

−

− −
, we obtain, after

a rearrangement, the following equation that is valid for k n2, ,= … :

n k a a n j
n k

a2 1 1 1 .n k n k
k

j

k
j

n j, 1 1, 1
0

2

,( ) ( ) ( ) ⎛
⎝

⎞
⎠

∑− + − = − −

−

−

− − −

=

−

The last two lines in the following formula being clear and writing now k for k 1− , this can also be
written as follows:

a n k
a n j

n k
a n k n k

n k k
n k

1
2

1 1
1

for 0 or 0

0 for or 0
1 for 0.

n k

n k
k

j

k
j

n j

,

1,
1

0

1

,
⎧

⎨

⎪

⎩
⎪

( ( ) ( ) ⎛
⎝

⎞
⎠

)∑

=

−

+ − −

−

− −

≥ > > =

< <

= =

−

+

=

−

The main line is valid at first for k n1, , 1= … − but as it happens it is also valid for k 0;= in which case, it
reproduces that a n1 2 .n

n
,0 ( )= / ! By systematically checking the nine cases nε k1 and kε 02 for ε ε, , ,1 2 { }∈ < = >

one finds that any n k, 2�( ) ∈ satisfies exactly one of the three conditions given by the “for...”; and begin-
ning with any n and k, the base of the recursion will satisfy the second or third condition. Thus, the
recursion is well defined.

The recursion serves well if one would desire a rapid computation of the polynomials σn or f x x 1n( ) ( )/ +

x n .( )⋯ + The following MATHEMATICA
© code can be used to define an k, (as a[n, k]). Then, e.g. 1 3( )− a[5, 3] gives

the coefficient of x2 in xσ x .5( )

Alternatively, one may also use generating function approaches like the identity [6, (6.50)], which
reads ze e xσ x z1z z x

n n
n(( ) ( )) ( )/ − = ∑ and the Series[...] command to obtain the polynomials σ .n

Recall that one of our main goals is to show that the sequence

n f n k a2k n k
n k

n k, ,� ( )∋ ↦ ≔ − !
≥

−

Representing the Stirling polynomials  7



is the sequence of values at the integers larger or equal k of a polynomial of degree k. Motivated by this, one
may feel that it is simpler to work with a recursion for fn k, instead of a .n k,

Multiplying the main line of the recursion above with n k2 ,n k( )− !

− the replacements a fn j n j, ,→ /

n j2n j( ( ) )− !

− and simplification yield

f n k
n k

f
n k n k

n j
n k

n k
n j

f

n k
n k

f
n k

n j
n k

f
n k n j

2
2 2 1

1
2

1
1

2
2

2
2

1
2

1
1 2 1

.

n k
n k n k

n k
j

k
k j

n k

n j n j

n k
j

k
k j n j

k j

,
1,

1
0

1
1

,

1,
0

1
1 ,

( )

( )
( ) ⎛

⎝
⎞
⎠

( )

( )

( )
( ) ⎛

⎝
⎞
⎠ ( ) ( )

∑

∑

=

− !

−

⋅

− − !

+

−

−

−

− −

⋅

− !

− !

=

−

−

+

−

−

−

− − − + ⋯ −

−

−

− −

=

−

+ +

−

−

−

=

−

+ +

−

One more simplification now yields:

Corollary 6. The numbers fn k, satisfy the following recursion:

f

n k
n k

f
f

k j
for n k or n k

for n k or k
for n k

2
2 1 2

1
0 0

0 0
1 0.

n k

n k
j

k
k j n j

,

1,
0

1
,⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

⎛

⎝
⎜

( )
( )

⎞

⎠
⎟∑

=

−

−

− − /

+ − !

≥ > > =

< <

= =

−

=

−

−

Our guiding principle for proving the theorem below was the following observation.

OBSERVATION. Assume p11 and p12 are two polynomials of degree 1 with the same leading coefficient and
assume that q is a polynomial of degree k. Then, “in general” there will exist a particular solution

n fn0� ( )∋ ↦
≥

for the difference equation p n f p n f q nn n11 12 1( ) ( ) ( )= +
−

, which is a polynomial of degree k.
The “proof” for this goes as follows: assume say, p n a bn11( ) = + and p n c bn,12 ( ) = + then the equation

can be written as a bn f f a c f q n .n n n1 1( )( ) ( ) ( )+ − + − =
− −

Up to names of variables, this is a special case of
the equation q x u q x u q x u q xΔ Δn

n
n

n
1

1
0( ) ( ) ( ) ( )+ + ⋯+ =

−

− in [14, p. 377]. Here, q xi( ) is supposed to be a
polynomial of degree i≤ , i n0, 1, ,= … ; q x( ) is a polynomial of degree m; and Δ is the forward difference
operator. In this case, the book says, we can “in general find a particular solution by assuming that

u x bl
m

l
x
l0( )

( )
= ∑

=

and equating coefficients.” This is true, but one needs to prove that the linear forms in

the bi for the coefficients of the powers of x obtained on the left-hand side by substituting the mentioned
ansatz are sufficiently generic to have a solvable linear system of equations. This is what we do next in our
specific case.

Theorem 7. Let k be a nonnegative integer. Then, the sequence

n fk n k,� ∋ ↦
≥

is polynomial of degree k.

Proof. The main line of the recursion for the fn k, can be rewritten as follows:

n k f n k f n k k j f: 2 2 2 2 2 1 .n k n k
j

k
k j

n j1 , 1,
0

1
1 1

,( ) ( ) ( ) (( ) ( ) )∑∗ − − − = − − + − !
−

=

−

+ − −

This is a necessary condition that the f ,n k, uniquely and well defined by the recursion, must satisfy.
We know that a n2 ,n

n
,0

1( )= !

− and so by definitions, f 1n,0 = for all n. (This can also be deduced from the
recursion that reduces for the case k 0= to f fn n,0 1,0=

−
and uses f 1.0,0 = ) So, fn,0 is a polynomial of degree

0. We now fix k 0> and assume that, for j k0, 1, 2, , 1,= … − the sequences n fj n j,� ∋ ↦
≥

are polynomial of
degree j. The right-hand side of the recursion shown is then a polynomial, and it must be of degree k since
there exists only one polynomial sequence of degree k 1− in the sum, namely n f ,k n k1 , 1� ∋ ↦

≥ − −
and all
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other sequences fn j, occurring have lower degree. We will denote the polynomial (sequence) defining the

right-hand side by q n c nj
k

j
j

0( ) = ∑

=

and have c 0.k ≠

Now, we make the ansatz

f a a n a n ,n k k
k

, 0 1= + + ⋯+

and (again) with the understanding that a a 0k1 1= =
− +

and recalling 0, 0j k
k1 1( )( )

= =

− +

, we find that

n k f n k a n a ka n

n k f n k a n

n k a j
i

n

n k a j
i

n

a j
i

n ka j
i

n

a j
i

ka j
i

n

a a j
i

k j
i

n

2 2 2 ;

2 2 2 2 1

2 2 1

2 2 1

2 1 2 1

2
1

1 2 1

2 2 1
1

.

n k
i

k

i
i

i

k

i i
i

n k
j

k

j
j

j

k

j
i

j
i j i

i

k

j i

k

j
j i i

i

k

j i

k

j
j i i

i

k

j i

k

j
j i i

i

k

j i

k

j
j i

j i

k

j
j i i

i

k

i
j i

k

j
j i i

,
0 0

1

1

1,
0

0 0

0

0

1

0

0

1

1

1
1

0

1

1

1

⎜ ⎟

⎜ ⎟

( ) ( ) ( )

( ) ( ) ( )

( )
⎛

⎝

⎛
⎝

⎞
⎠

( )
⎞

⎠

( )
⎛

⎝
⎜

⎛
⎝

⎞
⎠

( )
⎞

⎠
⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

( )
⎞

⎠
⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

( )
⎞

⎠
⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

( )
⎞

⎠
⎟

⎛

⎝
⎜

( ) ⎛

⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎞

⎠
⎟

∑ ∑

∑

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

− = − = −

− = − −

= − −

= − −

= − − −

=

−

− − −

= − −

−

+

= =

+

−

−

=

= =

−

= =

−

= =

− +

= =

−

=

+

= −

− +

=

+

−

=

+

−

=

+

−

Thus, the left-hand side of the recursion 1∗ is

n k f n k f a j
i

k j
i

ka n

a i k j
i

k j
i

a n

2 2 2 2 1
1

2 2 1
1

,

n k n k
i

k

j i

k

j
j i

i
i

i

k

i
j i

k
j i

j
i

, 1,
0

1 1

0 1

⎜ ⎟

⎜ ⎟

( ) ( )
⎛

⎝
⎜

( ) ⎛

⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎞

⎠
⎟

⎛

⎝
⎜

( ) ( ) ⎛

⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎞

⎠
⎟

∑ ∑

∑ ∑

− − − = −

−

+ −

= + + −

−

+

−

=

+

=

+

−

= = +

−

and so we have to solve, for a a a, , , ,k0 1 … the system

l a a i k j
i

k j
i

a c i k2 2 1
1

, 0, 1, , .i k i
j i

k
j i

j i0:
1

⎜ ⎟( ) ( ) ( ) ⎛

⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
∑≔ + + −

−

+ = = …

= +

−

Solvability is obvious because the linear form li actually depends only on a a, ,i k… , and the coefficient of ai is
i k2 0.( )+ ≠ So, in matrix form, the system would be upper triangular k k1 1+ × + without zeros on the

diagonal.
So far, we have shown that the equation 1∗ at the beginning of the proof allows for a polynomial

solution of degree k. As yet our reasoning did not take into account the hypothesis n k≥ of any initial

values. The general solution to the equation is obtained as the family of all sequences f ḟ ,n k n n, �( )+
∈

where

fn k, is the polynomial sequence obtained above and ḟn n �( )
∈

is any solution to the homogeneous equation

n k f n k f2 ˙ 2 2 ˙ 0.n n 1( ) ( )− − − =
−

Now, at n k= , this equation degenerates to kḟ 0k = so that ḟ 0.k = But then

we see by that ḟ 0n = by putting successively n k k1, 2,= + + … . Therefore, the only solution to the equa-
tion 1∗ possible for n k≥ is the polynomial solution found. By putting n k= in that equation, we obtain

k k f2 0,k k,( )− = i.e. f 0.k k, = It so happens that the recursion of Corollary 6 tells us f 0k k, = for the k 1.≥

Therefore, the sequence n fk n k,� ∋ ↦
≥

coincides indeedwith the polynomial sequence of degree k found for .1∗ □
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Recall that in Proposition 2, we introduced the polynomials p x x σ x1n
n

n( ) ( ) ( ) ( )= − − − , and after
Proposition 5, we introduced a x xσ x1 coefficient of inn k

k n k
n, ( ) ( )= − ⋅ ( )

− .

Lemma 8. Let m n μ, , , and ν be integers for which n m n0 2 1< ≤ ≤ − and μ ν m n0 .≤ ≤ ≤ − Then,

p i p n i
i n i

a n i μ1 2 0.
i

n
i m n ν μ i

n i ν ν μ
0

,( )
( ) ( )

( )
( )∑ −

−

! − !

− + ! =

=

− −

−

− + −

Proof. The sequence n i a n i μ0, 1, 2, , 2 i
n i ν ν μ,{ } ( )… ∋ ↦ − + !

−

− + −
is well defined and nontrivial in the sense

that for the i used, the subindices of a occurring are nonnegative and that the first one is larger than or
equal to the second one and the factorial occurring is also nonnegative. By Theorem 7, the sequence

n f n ν μ a2ν μ n ν μ
n ν μ

n ν μ, ,� ( )∋ ↦ = − + !
≥ − −

− +

−
is a polynomial of degree ν μ− . If we replace in a polynomial

p p n( )= with coefficients in � the n by n ν i+ − we obtain a polynomial expression p n ν i( )+ − which we
may view as a polynomial in i. Its leading coefficient as a polynomial in i will be a real number equal to± its
leading coefficient as a polynomial in n. In particular, its degree in i will be equal to its degree in n. Thus, in
particular, the sequence n ν i f0, 1, , n i ν ν μ,{ }… + ∋ ↦

− + −
and, for that matter, the sequence on n0, ,{ }…

above defined at the beginning of the proof will be polynomial of degree ν μ.− The sum of the lemma is

of the form q ii
n

i n i0
1 i

( )
( )

( )
∑

=

−

! − !

, where q is a polynomials of degree m n ν μ ν μ m n n( ) ( )≤ − − + + − = − < , and

therefore, 0 as follows from the remark to Proposition 2. □

Lemma 9. If m n n n, 1, ,2 1{ }∈ + … − and ν m n0, 1, , ,{ }∈ … − then

p i
i

p k
k n i k

2 1 0.
i

n
i m n ν

k

n i
k n i ν

0 0

( )
( )

( )

( )
∑ ∑

!

−

! − − !

=

=

−
− −

=

−

− +

Proof. It is sufficient to establish the claimby substituting the polynomial p kn i ν ( )
− +

of degree n i ν≤ − + in the
sumby any term of this polynomial. By the definitions ofan l, and pn, we have p x a x .n l

n
n l

n l
0 ,( ) = ∑

=

− So, we find

that a typical term in p kn i ν ( )
− +

is given by a kn i ν l
n i ν l

,− +

− + − , l n i ν0, 1, , ,= … − + or, introducing μ ν l,= − it is

given by a kn i ν ν μ
n i μ

,− + −

− + with μ ν.≤ In addition, note ν m n n 1.≤ − ≤ − Thus, we have the computation

p i
i

a k
k n i k

p i
i

a k
k n i k

p i
i

a n i μ
n i

p i
i

a n i μ
n i

p n i

p i p n i
i n i

a n i μ

2 1

2 1

2 1

2 1

1 1 2 0,

i

n
i m n ν

k

n i
k n i ν ν μ

n i μ

i

n
m n ν i

n i ν ν μ
k

n i
k

n i μ

i

n
m n ν i

n i ν ν μ
n i

i

n
m n ν i

n i ν ν μ
n i

μ

n

i

n
i m n ν μ i

n i ν ν μ

0 0

,

0
,

0

0
,

0
,

0
,

( )
( )

( )

( )
( )

( )

( )
( )

⎧

⎨
⎩

⎫

⎬
⎭

( )
( )

( )

( )
( )

( ) ( )
( ) ( )

( )
( )

∑ ∑

∑ ∑

∑

∑

∑

!

−

! − − !

=

!

−

! − − !

=

!

−

− +

−

=

!

−

− + !

− !

−

= − −

−

! − !

− + ! =

=

−
− −

=

−

− + −

− +

=

− −
−

− + −

=

−
− +

=

− −
−

− + −

−

=

− −
−

− + −

−

=

− −

−

− + −

where in the second and third equality we used Proposition 2(a) (with m n i= − and a k kn i μ( ) =

− + ) and (b)
(replacing there n by μ, k by n i− ), and in the last equality we used Lemma 8. So we have what
we wanted. □

A trivial, but at the end important, corollary is as follows:

Theorem 10. If m n n n, 1, ,2 1 ,{ }∈ + … − then

p i
i

p k
k n i k

2 1 0.
i

n
i

ν

m n
m n ν

k

n i
k n i ν

0 0 0

( )
( )

( )

( )
∑ ∑ ∑

!

−

! − − !

=

=

−

=

−

− −

=

−

− +
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Proof. Take the sum over all ν m n0, 1, ,{ }∈ … − of the expression above and interchange the two outer
sums obtained. □

4 Origin, proof, and impact of the zero identities

Our research originated in a new approach to the odd-dimensional uniform random flight problem: assume
a particle at instant 0 at the origin of an odd dimensional Euclidean space jumps exactly one unit from its
current position in a random direction at each tick of the clock. (Here, the directions are defined as position
vectors to uniformly distributed points on the origin-centred unit sphere.) Question: What is – as a function
of r – the probability to encounter the particle after exactly n random jumps within the 0-centred ball
B B r0,( )= of radius r? This question was solved by García-Pelayo [7] using advanced analytical tools like
Fourier analysis and the Abel transform. The article [16] shows the main result that the mentioned prob-
abilities are piecewise polynomial by more elementary means. Based on [7], Borwein and Sinnamon [8]
gave explicit formulas but these are quite complicated.

In particular, in an attempt to find an alternative formula for the case of dimension 5, the second author
was led to conjecture that, putting

c n
μ l μ t μ μ n l t

1 1
, , ,t l

l

μ

μ
, ⎜ ⎟( ) ( ) ⎛

⎝

⎞

⎠
∑= − −

− − + − −

with t l, ,�∈ the finite sum

c
n t

x n l
1

3 1
2

t l

t
t l n t

,
, 3 1( )

( )
( )∑

−

− − !

+ −

− −

(certainly a polynomial in x of degree n3 1≤ − ) should be actually 0.

Here, the notation n
a b c d, , ,( )

stands for the multinomial coefficient n
a b c d

!

! ! ! !

if a b c d n,+ + + = and 0

otherwise.
Let us cast the formulation of this proposition into a more manageable form. First, note that the sum is

actually finite. Assume the expression for ct l, incorporated in the second sum. Then, we can speak of an
outer and an inner sum. Recall that k 0�∈

<
, which implies k1 0./ ! = Assume, we choose in the outer sum

t n.> Then n t 0− < and so at least one of l μ μ n l t,− + − − is negative. Hence, by the definition of
multinomial coefficients, each of the multinomial coefficients associated with the inner sum is 0. Thus,
since the roles of l and t are symmetrical we can limit the outer sum and assume it is written as t l n0 ,∑ …

≤ ≤

. It

follows that the inner sum can also be limited as μ t l n
l tmin ,

( )

{ }
∑ …

= + −

+ . So, the sum is finite, and under these

conditions the four lower indices of the multinomial coefficients are nonnegative and define a composition
of n, i.e., their sum is n. Now, assume that four nonnegative integers a b c, , , and d define a composition of
n. Then, let μ a l a b t a c, , ;= = + = + we also have n a b c d.= + + + Then clearly t l n, 0, 1, ,{ }∈ … ,

μ t l0 min , ,{ }≤ ≤ and t l n a b c n a d a μ2 .+ − = + + − = − ≤ = So, using the notation s smax , 0 ,{ }=

+

we have t l n μ t lmin , .( ) { }+ − ≤ ≤

+ This entails that within the double sum t l n μ t l n
l t

0 ,
min ,

( )

{ }
∑ ∑ …

≤ ≤ = + −

+ , the quad-
ruple μ l μ t μ μ n l t, , ,( )− − + − − ranges precisely over the compositions a b c d, , ,( ) of n. What concerns

the power 1 1 1t l μ a b c n d3( ) ( ) ( )− = − = −

+ + + + − occurring in the double sum, in the context of what we wish to
prove, it can evidently be replaced by 1 .d( )− Finally, we may also replace x n+ by x in the proposition
above, and after dividing by n! we see that the conjecture can be rewritten as claiming the following
theorem.

Theorem 11. Let n be an integer larger than 1. Then, there holds the identity

Representing the Stirling polynomials  11



x a b
a b c d n a c

1 2 2
3 1

0.
a b c d n

d
n a c3 1

( )
( )

( )
∑ −

− −

! ! ! ! − − − !

=

+ + + =

− − −

The rest of this section is dedicated to a proof of this theorem.

Clearly, the expression above is a polynomial in x of degree at most n3 1.− It is 0 as claimed if and only
if all its coefficients are 0. The claim in the abstract is obtained simply by taking the s 1( )− -st derivative of
the identity shown. So, we focus on the identity shown here, which corresponds to the case s 1.=

Now, for any positive integer λ, we have that

x x a b

λ t
λ t

λ
t λ t

a b λ t
coefficient of of 2 2

0 if
1 if

2 if .
t λ

λ t
λ t

( )

⎧

⎨

⎪

⎩
⎪

( )

( )
( )

− − =

<

=

! −

! − !

+ >

−

−

We use this for λ λ a c n a c, 3 1( )= = − − − , which in the dynamic environment of the above sum is always
n2 1 0.≥ − > It can happen, though, that a b 0+ = , and at the same time, λ a c t, 0( ) − ≤ . In this case, we

obtain, within the sum, undefined terms of form 0 1 0⋅ / or 0 .0 The latter has to be interpreted as 1 for
reasons mentioned after Lemma 3. To steer clear from any interpretation problems, we argue using the
given case distinction. Having chosen any t n0, 1, 2, ,3 1 ,{ }∈ … − we wish to show that the following
expression is 0:

a b c d λ a c
x x a b

a b c d λ a c a b c d λ a c
λ a c

t λ a c t
a b

t a b c d a b c d λ a c t
a b

1 1
,

coefficient of of 2 2

0 1
,

1 1
,

, 2
,

1 1 1 2
,

.

a b c d n

d
d

t λ a c

a b c d n
λ a c t

a b c d n
λ a c t

a b c d n
λ a c t

a b c d n
λ a c t

d

a b c d n
λ a c t

d λ a c t
λ a c t

a b c d n
λ a c t

d

S t

a b c d n
λ a c t

d λ a c t
λ a c t

S t

,

, , ,

, ,

,
,

, ,

,
,

1 2

     

( )
( )

( )
( )

( )

( )

( )

( )

( ) ( )

( ( ) )
( )

⎛

⎝

⎜

⎜

⎜

⎜
⎜

( ) ( ) ( )

( ( ) )
( )

⎞

⎠

⎟

⎟

⎟

⎟
⎟

( )

( ) ( ) ( )

( ) ( )

( )
( )

( )

( )

( )

( )
( )

( )

∑

∑ ∑ ∑

∑ ∑

∑ ∑

−

−

! ! ! ! !

⋅ − −

= … + … + …

= +

−

! ! ! ! !

⋅ +

−

! ! ! ! !

! −

! − !

+

=

!

−

! ! ! !

+

− −

! ! ! ! − !

+

+ + + =

+ + + =

<

+ + + =

=

+ + + =

>

+ + + =

=

+ + + =

>

−

−

+ + + =

=

+ + + =

>

−

−

Since λ a c t,( ) = iff a c n t3 1 ,+ = − − the restrictions in the first sum S t1( ) impose b d n t1 2+ = − + and so
n t n2 1 3 1.− ≤ ≤ − Otherwise, by nonnegativity of a b c, , , and d, the sum is empty and hence 0. Assuming
now n t n2 1 3 1− ≤ ≤ − satisfied, via the binomial theorem applied to powers of 1 1 ,( )± the first sum is

S t
a c b d a c

δ
n

δ1 1 1 2 ,
a c n t b d t n

d

a c n t
t n

n
t n1

3 1 2 1 3 1
,2 1 ,2 1( )

( )

( )

∑ ∑ ∑=

! !

−

! !

=

! !

=

!

+ = − − + = − − + = − −

− −

and as we have seen, this formula holds true for all t n0, 1, 2, , 3 1.= … −

For simplified writing of the further arguments, we introduce t n t3 1 .new = − − We have λ a c t,( ) = ⇔

t a cnew = + and λ a c t t a c, .new( ) > ⇔ > + Accordingly, we find,

S t
a b c d

S t
a b c d t a c

a b1 and 1 2 .
a b c d n

a c t

d

a b c d n
a c t

d t a c
t a c

1 new 2 new
new

new new

new
new( )

( )
( )

( ) ( )

( )
( )∑ ∑=

−

! ! ! !

=

− −

! ! ! ! − − !

+

+ + + =

+ =

+ + + =

+ <

− −

− −

Hence, we write t for tnew and have to prove S t S t 0,1 2( ) ( )+ = i.e., δ S t 0n t n
2

, 2
n

( )+ =

!

for all t 0, 1, ,= …

n3 1.−
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Now,

S t
a b c d t a c

a b

a b c d t κ
a b

t κ a b c d
a b

l t κ

t κ a c
t κ

ν
a ν

n κ

ν n k ν
n κ t κ

a c
a

ν t κ ν
ν

n κ

1 2

1 2

2 1 .

Using Lemma 3 with , we obtain
2 1 .

If , then 0. We may also cancel . Thus ,

2 1 .

a b c d n
a c t

d t a c
t a c

κ

t n

a c κ
b d n κ

d t κ
t κ

κ

t n t κ

a c κ
b d n κ

d
t κ

κ

t n t κ

a c κ ν

t κ
t κ ν

κ

t n
t κ

a c κ ν n κ

t κ t κ ν

2

0

min 1,

0

min 1,

0

min 1,

0

0

min 1,

( )
( ) ( )

( )
( )

( ) ( )

( )
( )

( )

( )

( )
( )

( )

( )
⎛
⎝

⎞
⎠

( )

( )
( )

{ }

{ }

{ }

{ }

{ }

{ }

{ }

∑

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

=

− −

! ! ! ! − − !

+

=

− −

! ! ! ! − !

+

=

−

− !

−

! ! ! !

+

= −

=

−

− ! ! !

−

−

< −

−

= − !

= −

! ! ! − − !
−

+ + + =

+ <

− −

− −

=

−

+ =

+ = −

−

−

=

−
−

+ =

+ = −

−

=

−
−

+ = =

−

− −

=

−

−

+ = = −

−
− −

If t n< , then the inner sum is empty, so the whole sum is 0, hence S t S t 0.1 2( ) ( )+ = Furthermore, we have

S n
a c

a
n κ κ n κ κ n κ n n

2 1 2 2 2 1 2 0 1 2 .
κ

n
n κ

a c κ κ

n
n κ

κ
n

κ

n n κ
n

n
2

0

1 0

0

1

0

1
( ) ( )

( )
( )

( )

( )

( )
( )∑ ∑ ∑ ∑= −

! ! − !

= −

! − !

=

−

! − !

= −

!

= −

!

=

−

−

+ = =

−

−

=

−
−

So, it follows that S n S n 0,1 2( ) ( )+ = and we have demonstrated the conjecture for t n0, 1, 2, ,= … and now
we must demonstrate that for t n n1, , 3 1= + … − , S t 02( ) = . Now for these t we can write the expression we
obtained for S2(t) as

S t
ν

n κ
ν t κ ν

a
a c

2 .
κ

n
t κ

ν n κ

t κ

a c κ

t κ ν
2

0
( ) ( )

( )

{ }

∑ ∑ ∑= −

−

! − − ! ! !

=

−

= −

−

+ =

− −

The next steps show that this sum is 0 by virtue of Theorem 10. By intending to avoid a long chain of
equalities with complicated expressions, we leave the guided check of some details concerning the various
equivalent descriptions of sets K and K′ below to the reader. There letters n and t have the fixed meaning
given to them above, but the values of k ν, and i may vary (similarly as, say, the sets k k: 0 3{ }≤ ≤ and
k k2 : 2 1{ }+ − ≤ ≤ are the same, but the values of k in one set are not the same as in the other set).

First, we define the function f and the set K by

f κ ν i
ν

n κ
ν t κ ν

t κ ν
i

κ i
K κ ν i κ n n κ ν t κ i t κ ν

, , 2 1
2

,

, , : 0 , , 0 .

t t κ
i( ) ( )

( ) ( )

{( ) }

{ }{ }

= −

−

! − − !

− −

− !

= ≤ ≤ − ≤ ≤ − ≤ ≤ − −

−

Next, we replace in Lemma, 4 n by κ, h by c, l bya, and k by t κ ν− − and note 2 2 1 2 .t κ κ i t κ t i( ) ( )− = −

− − − − Then,
we find that S t f κ ν i, , .κ ν i K2 , ,( ) ( )

( )
= ∑

∈

Putting m t n,= − we can represent K as follows:

K n k ν k i n k n k ν k m k i m ν
n k n k

n k ν k i k n ν m i m ν
n k ν k i ν m i m ν k n i

i n

n k ν k i i n ν m i k n i
ν ν i n

n k ν k n i i i n i n ν m n k n i K

, , : 0 , , 0
saying ranges through 0, 1, , is saying the same for ; thus

, , : 0 , 0 , 0
, , : 0 , 0 , 0 .

The second and third inequalities here occurring imply, e.g. 0 , in the next line .
Similarly, show the other inequalities below; and conversely, to obtain

, , : 0 , 0 , 0
For next line, replace by

, , : 0 , , 0

{( ) }

{( ) }

{( ) }

{( ) }

{( ) }

= − + ≤ − ≤ ≤ + ≤ + ≤ ≤ −

− …

= − + ≤ ≤ ≤ ≤ ≤ ≤ −

⊇ − + ≤ ≤ ≤ ≤ − ≤ ≤ −

≤ ≤

= − + ≤ ≤ ≤ ≤ − ≤ ≤ −

− +

= − + + − ≤ ≤ − ≤ ≤ − ≤ ≤ − ≕ ′
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Note that the expression κ i1 ( )/ − ! occurring as a multiplicative factor in f κ ν i, ,( ) transforms in
f n k ν k n i i, ,( )− + + − into n k i1 .( )/ − − ! If here k n i> − , then this factor is 0. In other words, summing
over all values f κ ν i, ,( ), where ν κ, , and i are defined by the inequalities in the original representation of
K is the same thing as summing over the values f n k ν k n i i, ,( )− + + − , where ν k, , and i are defined by

the inequalities in K′. Thus, using in the second step below that, by Proposition 2(b), a
b a p b ba b( )

{ }
/ ! = / !

−
,

we have

S t f n k ν k n i i i n i n ν m n k n i

p i
i

p k
k n i k

, , : 0 , , 0

2 1 2 1 .t m

i

n
i

ν i n

m n
m ν n

k

n i
k n i ν

2

0 0

( ) { ( ) }

( )
( )

( )
( )

( )

∑

∑ ∑ ∑

= − + + − ≤ ≤ − ≤ ≤ − ≤ ≤ −

= −

!

−

! − − !

=

−

= −

−

− −

=

−

− +

Now, if ν 0< , then the degree of pn i ν− +
is smaller than n i− , which means that the rightmost sum is 0 by

Proposition 2a and the remarks following it. Hence, ν i n
m n

∑

= −

− can be replaced by ν
m n

0∑

=

− , and Theorem 10 implies
that S t 0.2( ) = Theorem 11 is proved.

With this result established, we hope to publish a note soon with the more natural formula for a
uniform random flight in dimension 5 than the one given in [8]. We also should mention that we have
another conjecture similar (but even more complicated) than Theorem 1, which would yield probably a
simplification of the formula in [8] for random flights in dimension 7 but for this conjecture to be estab-
lished maybe it is worthwhile to first work towards a more transparent proof of Theorem 1.

5 Concluding remarks and open problems

After having finished the bulk of this article, we decided to comb once more through the combinatorial
literature for results possibly related to ours. From this search arise some remarks and questions.

(a) There is a probable connection with Riordan arrays. Proper Riordan arrays can be characterised as
those infinite lower triangular tables of complex numbers dn k n k, , 0( )

≥
(with k n> implying d 0n k, = ) for which

there exists a sequence A a a a0, , ,0 1 2( )= ≠ … such that for all n k, 0�∈
≥

there holds d a d ;n k j j n k j1, 1 0 ,= ∑
+ +

=

∞

+

see, e.g. He and Sprugnoli [9, Theorem 2.1] for a proof of this discovery attributed to D. G. Rogers in 1978.
Numerical experiments very soon, and somewhat surprisingly, revealed that Table 2 seems to be a Riordan

array with the sequence A a 1, , , , , , , , .0
1

12
1

144
1

2160
1

103680
11

2177280
43

29030400
1

3483648( )= = − − − − … One obtains

these numbers by using the following scheme, which is a consequence of above equations and triangularity
of the array:

d a d
d a d a d

d a d a d a d
d a d a d a d a d

n n n n

n n n n n n

n n n n n n n n

n n n n n n n n n n

1, 1 0 ,

1, 0 , 1 1 ,

1, 1 0 , 2 1 , 1 2 ,

1, 2 0 , 3 1 , 2 2 , 1 3 ,

=

= +

= + +

= + + +

⋮ ⋮ ⋮

+ +

+ −

+ − − −

+ − − − −

Since Table 2 shows d 1n n, = for all n, we have a 10 = . Choosing n 5,= we find d d a d15
12 6,5 5,4 1 5,5− = = + = =

a 11
3 1− + ⋅ and thusa 5 12 1 3 1 121 = − / + / = − / . Next,a d a d a d 1 24 1 48 1 12 1 32 6,4 0 5,3 1 5,4 ( )( )= − − = / − / − − / − / =

1 144− / , etc.
(The explicit Riordan arrays published in the literature we have seen seem to be almost all integer

tables and mostly serve purposes in enumerative combinatorics.) We then tried to prove that our array is
indeed Riordan using the above characterisation. Although this might not be too hard, it seems not quite
trivial. Perhaps one of the other characterisations given in [13] can help. Another way to approach the topic
of Riordanicity of our array might be to have a characterisation of the Riordan arrays for which for each k
the sequence dn k n n, 0( )

+ ≥
is polynomial of degree k. Interestingly, as is not hard to see that if the A-sequence

14  Alexander Kovačec and Pedro Barata de Tovar Sá



of a Riordan array with constant diagonal 0≠ satisfies a 0,1 ≠ then its kth diagonal is necessarily a poly-
nomial of degree k. But the converse is false.

(b) Note that an array
n
k n k, 0

⎛
⎝

⎞
⎠

{ }
≥

of Stirling numbers of the second kind is an infinite triangular array

with 1s on the diagonal. By the cited fact from [5], its kth diagonal is a sequence that is polynomial of degree
k2 . Is there any close connection between this fact and the fact that the diagonals of our modified coefficient
table are polynomials of degree k? An article by Carlitz [3] made us think so for a short while, but in the
authors hands, it did not pan out. The question intends to spur an effort to find an “immediate” proof of
Theorem 3.3 using some facts from the immense body of already known results on Stirling numbers or
polynomials.

(c) The online encyclopaedia for integer sequences [15] tells us that the sequence of integers 1, 12, 288,
51,840, which the reader can see in the denominators of polynomials q q q, ,0 1 2, and q3 in Section 2 actually
also occurs as the sequence of denominators of an asymptotic series of the Gamma function. Indeed, see,
e.g. [14, Exercise 17, p. 269]. So the full story concerning the qi has yet to be discovered.

(d) The polynomials xσ xn( ) occur in the series development of ze e 1z z x(( ) ( ))/ − mentioned after the
MATHEMATICA code in Section 3. In the study by Koparal et al. [12, Section 1 and Theorem 3], we learn that the

numbers ρ n k,( ) definable by xn
ρ n k

n
n x

e
k

0
,

1 x
( )

( )
∑ =

≥
! −

−

are, for n k≥ , equal to n kσ kn( )! and that these same

numbers and the (signed) Stirling numbers of the first kind s n k n
k, 1 n k( ) ( ) ⎡

⎣
⎤
⎦

= −

− are related to the Daehee

numbers of order m, via the equality s n k ρ k m D1 , , .k
n k

n
m

0( ) ( ) ( )∑ − =

=

A database search easily convinces that
Daehee numbers figure prominently in recent articles.

May these questions and remarks spur further research!
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