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Abstract Higgs decay using an effective Higgs–Yang-
Mills interaction in terms of a dimension five operator as
well as usual QCD interactions is revisited in the context of
Implicit Regularization (IReg) and compared with conven-
tional dimensional regularization (CDR), four dimensional
helicity (FDH) and dimensional reduction (DRED) schemes.
The decay rate for H → gg(g) is calculated in this strictly
four-dimensional set-up to α3

s order in the strong coupling.
Moreover we include joint processes that contribute at the
same perturbative order in the real emission channels consist-
ing of 3 gluons as well as gluon quark–antiquark final states
with light (zero mass) quarks. Unambiguous identification
and separation of UV from IR divergences is achieved putting
at work the renormalization group scale relation inherent
to the method. UV singularities are removed as usual by
renormalization, the IR divergences are cancelled due to the
method’s compliance with the Kinoshita–Lee–Nauenberg
(KLN) theorem. Most importantly, we verify that no evanes-
cent fields such as ε-scalars need be introduced as required
by some mixed regularizations that operate partially in the
physical dimension.
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1 Introduction

The Standard Model of Particle Physics (SM) is a good
description of the physics at and below the electroweak scale,
the discovery of the Higgs boson at the Large Hadron Collider
(LHC) being the confirmation of this framework [1,2]. It is
also clear that the SM does not provide a complete descrip-
tion of particle interactions. Phenomena such as dark matter
and dark energy, a consistent quantum theory of gravity, the
stability of the electroweak vacuum up to the Planck scale
and the hierarchy problem, to name a few, motivated the
development of models beyond the SM (BSM).

The Future Circular Collider aims at reaching collision
energies of around 100 TeV demanding higher precision
in theoretical computations for Standard Model phenom-
ena and electroweak pseudo-observables (EWPOs). New cal-
culational methods have been developed through computer
algebraic algorithms for analytical and numerical methods.
At a given loop order, the complexity is measured by the num-
ber of virtual massive particles in the evaluation of Feynman
integrals. On the other hand, a theoretical library for per-
turbation theory calculations of Feynman integrals in closed
form beyond one loop does not exist [3]. While numerical
integration methods seem to be the main tool to address those
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problems, analytical techniques play an important role to sys-
tematically and unambiguously remove infrared and ultravi-
olet divergences from physical observables.

Regularization frameworks that operate partially or entirely
in the physical dimension can bring some advantages and
simplifications in the evaluation of Feynman amplitudes,
whereupon extensions such as the dimensional reduction
(DRED), the Four Dimensional Helicity scheme (FDH), and
the Implicit Regularization (IReg), among others [4] have
been constructed:

• CDR (Conventional Dimensional Regularization): inter-
nal and external gluons are all treated as d-dimensional.

• HV (’t Hooft Veltman scheme): internal gluons are d-
dimensional and external ones are strictly 4-dimensional.

• DRED (Dimensional Reduction): internal and external
gluons are all treated as quasi-4-dimensional.

• FDH (Four-Dimensional Helicity): internal gluons are
treated as quasi 4-dimensional and external ones are
treated as strictly 4-dimensional.

• IReg (Implicit Regularization): all fields as well as inter-
nal momenta are defined in the physical dimension.

Therefore IReg acts directly on the dimension of the the-
ory and can be systematically implemented to all orders in
perturbation theory [5,6], in consonance with Bogoliubov’s
recursion formula. From the point of view of applications,
IReg has been used to obtain the two-loop gauge coupling
beta function of abelian and non-abelian theories [7,8], also
in the context of supersymmetry [9–11]. In all cases, com-
pliance with gauge (and supersymmetry) was established,
with an all-order proof for abelian gauge symmetry already
developed [12,13].

CDR relies on the assumption that the quantities of inter-
est depend smoothly on the spacetime dimensionality. Such
an assumption leads to well known problems for dimension
specific theories, such as supersymmetric and chiral theories,
as discussed for example in the review [14], covering issues
related to the γ5 matrix1. The history of dimensional methods
and schemes to handle the chiral anomaly and preserve gauge
invariance and renormalizability in the Standard Model is
vast and to date in frank development, see [18–20] for recent
works. Mostly this is effected through the construction of
appropriate counterterms (CT) imposed by Ward–Takahashi
and Slavnov–Taylor identities order by order in perturbation
theory, which can be carried out consistently in the Breiten-
lohner – Maison scheme [21]. A method that dispenses CT,
as it preserves the BRST symmetry at all loop-orders has
been advocated in [22,23]

In mixed regularization schemes that operate partially in
the physical dimension such as DRED or FDH, an auxil-

1 For recent analysis in the framework of IREG, see [13,15–17].

iary space which has the characteristics of a 4-dimensional
space, Q4S, is introduced. Such a quasi-4-dimensional space
is decomposed as Q4S = QdS ⊕ QnεS, where QdS is for-
mally d-dimensional and its complement QnεS has dimen-
sion nε = 4 − d [24]. The metric tensor for the original
4-dimensional space 4S is denoted by ḡμ

ν whereas the metric
tensor of the spaces Q4S, QdS and QnεS are respectively
written as gμ

ν , ĝμ
ν and g̃μ

ν . They satisfy

gμ
ν = ĝμ

ν + g̃μ
ν , gμν g̃ρ

ν = g̃μρ,

gμν ĝρ
ν = ĝμρ, ĝμρ ḡν

ρ = ḡμν, ĝμν g̃ρ
ν = 0, (1.1)

with

gμ
μ = 4, g̃μ

μ = nε = 2ε and ĝμ
μ = d. (1.2)

Furthermore, mathematical consistency and d-dimensional
gauge invariance require that Q4S ⊃ QDS ⊃ 4S and forbid
to identify gμν as ḡμν [25].

Due to the decomposition of Q4S, the gauge field is
aligned as Aa

μ = Âa
μ+εaμ, where Âa

μ ∈ QdS and εaμ ∈ QnεS.
The ε-dimensional field εaμ is a scalar under d-dimensional
Lorentz transformations and transforms in the adjoint repre-
sentation. Due to this decomposition, the Lagrangian is mod-
ified to incorporate ε-scalars, giving rise to extra Feynman
diagrams with ε-scalars, which contribute additional finite
terms to divergent loop amplitudes [26].2

Ideally a fully mathematical consistent regularization
scheme that prevents the emergence of symmetry breaking
terms or spurious anomalies and that is valid to arbitrary
higher order is necessary. IReg is advantageous in the sense
that gauge symmetry breaking terms are linked to momentum
routing violation in Feynman diagram loops. Such symmetry
breaking terms accompany surface terms whose structure is
built to arbitrary loop order, in a regularization independent
fashion. Ultraviolet renormalization is constructed by sub-
tracting loop integrals which need not be explicitly evaluated
to define renormalization group functions. On the other hand
an invariant regularization scheme must comply with infrared
finiteness as stated by the Kinoshita–Lee–Nauenberg theo-
rem [28,29]. The KLN theorem, in a nutshell, states that in
gauge theories the infrared divergences coming from loop
integrals are canceled by the IR divergences coming from
phase space integrals. As a result it is of theoretical inter-
est to test the applicability of IReg in a practical calculation
involving IR divergences that only cancel at the level of cross
sections or decay rates, verifying the KLN theorem.

The H → gg decay described by an effective model
in which the top quark is integrated out, provides a sim-
ple and reliable model to test this regularization scheme, as

2 Interestingly in [27], ε-scalars are integrated out in the language of
effective field theories. In the limit ε → 0 this effectively results in a
change of the regularization scheme from DRED to CDR.
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shown in [30]. Such a model has been used in [31] to test
the four-dimensional regularization/renormalization (FDR)
method, while in [32] it was studied in the context of the
four-dimensional-unsubtraction method (FDU).

The main goal of this work is the computation of the total
decay rate of this process in IReg to NLO to show that, con-
trarily to regularization schemes that work partially in the
physical dimension, no modification of the Lagrangian such
as through the inclusion of ε-fields is required. This amounts
to a significant simplification which we expect to prevail in
calculations beyond NLO. We compute the one-loop virtual
diagrams that arise from this effective model and apply IReg
to extract the UV divergences which are absorbed in the
process of renormalization, using the remaining UV finite
amplitudes to obtain the regularized virtual decay rate. Then
we apply the spinor-helicity formalism to compute the real
diagrams of the process and obtain the real decay rate. It
is expected that the IR divergences cancel after combining
these decay rates, leading to a finite final result.

Our work is organized as follows: in Sect. 2 we briefly
review the IReg method, which is applied in Sect. 3 to the
decay H −→ gg at NLO. Section 4 is devoted to a com-
parison of our results to dimensional schemes. Finally, we
conclude in Sect. 5.

2 The IReg method: UV/IR identification and UV
renormalization

IReg is a regularization method that operates on the momen-
tum space and was shown to respect unitarity, locality and
Lorentz invariance [6]. This procedure operates on the spe-
cific physical dimension of the theory, therefore we do not
need to extend the space-time dimensions. IReg also does not
require any changes to the Lagrangian and can be applica-
ble to arbitrary n-loop calculations, making it an alternative
to dimensional schemes. In this work we will be concerned
with one-loop examples only, a recent review of the method
applicable to n-loop amplitudes can be found in [33].

The main idea of IReg is to use an algebraic identity at
integrand level recursively until the UV divergent behav-
ior is only present in irreducible loop integrals that depend
on internal momentum. In this way, the UV finite content
of the amplitude (that may still be IR divergent) will con-
tain denominators with dependence on physical parameters
(external momenta and masses). To be concrete, we illus-
trate the method with the following massless toy integral in
Minkowsky momentum space, with p denoting an arbitrary
external 4-momentum

∫
k

1

k2(k − p)2 ,

∫
k

≡
∫

d4k

(2π)4 . (2.1)

We start3 by introducing an infrared regulator μ in the
denominator like

lim
μ→0

∫
k

1

(k2 − μ2)[(k − p)2 − μ2] . (2.2)

In the case of IR safe integrals, the regulator μ is needed to
avoid spurious IR divergences in the course of the evaluation.
It will cancel in the end result. In the case of IR divergent
integrals, the μ will survive and parameterize the IR diver-
gences.

By power counting, we notice that as k −→ ∞ this inte-
gral diverges, but there is a dependence both on internal and
external momenta. We want to isolate the UV divergent con-
tent in an integral that is solely dependent on the internal
momentum k. We notice that this is possible by rewriting the
portion of the integrand that depends on external momentum
as

1

(k − p)2 − μ2 = 1

k2 − μ2 + 2k · p − p2

(k2 − μ2)((k − p)2 − μ2)
,

(2.3)

where on the right hand side the second term diminishes the
divergence of the integral by one order and the first term leads
to an integral that depends only on the internal momentum.
The procedure exemplified above works in general, by repet-
itive usage of Eq. (2.3).

Following the separation of the divergences of the ampli-
tude, the UV divergent content of the amplitude can be
expressed by integrals with denominators that depend only
on the internal momentum k. These integrals are classified
as Basic Divergent Integrals (BDI’s) and they can take either
logarithmic or quadratic forms which are respectively

I ν1...ν2r
log (μ2) =

∫
k

kν1 ...kν2r

(k2 − μ2)r+2 , and

I ν1...ν2r
quad (μ2) =

∫
k

kν1 ...kν2r

(k2 − μ2)r+1 . (2.4)

Here ν1...ν2r represent Lorentz indices, there are as many
momenta in the numerator as the number of integers com-
prised in the interval 1, ...2r , counted in unit steps for r ≥ 1.
The case r = 0 corresponds to no momenta in the numer-
ator. Any BDI with odd power of k in the numerator is
automatically zero once the integral goes over the entire 4-
momentum space and all the denominators have even powers
of k. The BDI’s are written in terms of Lorenz indices and can
be rewritten as scalar integrals, multiplying metric tensors,
after setting surface terms (ST) to zero, as we will explain

3 If Dirac matrices and/or Lorentz structures are present, one must per-
form their algebra before introducing the μ regulator. This is necessary
to define a normal form that complies with gauge invariance, see [33]
for a pedagogical discussion.
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shortly. Scalar logarithmic and quadratic divergent integrals
are finally given as

Ilog(μ
2) =

∫
k

1

(k2 − μ2)2 , and

Iquad(μ
2) =

∫
k

1

(k2 − μ2)
. (2.5)

The ultraviolet renormalization using IReg has been
shown to comply with Lorentz and gauge symmetry by
restraining local and momentum routing dependent ST to
zero. IReg can be systematized order by order in the loop
expansion in such a way that renormalization constants are
given in terms of loop integrals defining a local renormaliza-
tion scheme, [6,12,13]. In the method, symmetry breaking
terms can be expressed as a well defined difference between
divergent integrals with the same superficial degree of free-
dom. These are called ST and they are not originally fixed,
which indicates that they are related to momentum routing
invariance in Feynman diagrams (the possibility to perform
a shift in the integration variables). As their value is associ-
ated with symmetry breaking terms, they play a critical role
in IReg for the preservation of the symmetries of the system
and we must carefully choose a value that allows the symme-
tries of the underlying theory to be preserved. Nonetheless,
in a constrained version of IReg, it has been proven that these
regularization dependent ST may be set to zero, complying
with gauge invariance, [7,34]. This will actually allow us to
reduce the BDI’s with Lorenz indices ν1...ν2r to linear com-
binations of scalar integrals with the same degree of diver-
gence (multiplied by metric tensor combinations), plus well
defined ST. Generally in the four dimensional Minkowskian
space-time a ST of order i can be written as

�
ν1...ν j
i =

∫
k

∂

∂kν1

kν2 ...kν j

(k2 − μ2)(2+ j−i)/2
, (2.6)

with j ≥ 2 and μ the infrared regulator introduced earlier.
The general formula allows for the computation of ST that
appear in any order of perturbation theory. For instance, with
the subscript i = 0, 1, 2 are designated the ST that involve
differences of divergent integrals of logarithmic, linear or
quadratic order respectively. As an example, one obtains

�
ν1ν2
0 =

∫
k

∂

∂kν1

kν2

(k2 − μ2)2

= 4
(gν1ν2

4
Ilog(μ

2) − I ν1ν2
log (μ2)

)
= 0 (2.7)

Finally, when considering IR-safe integrals, one must still
take the limit in which the infrared regulator μ is set to zero.
In this case, one rewrites the BDI’s in terms of a positive
arbitrary constant λ which will play the role of the renor-
malization group scale. It is achieved by using the equation

below

Ilog(μ
2) = Ilog(λ

2) + b ln
( λ2

μ2

)
, b = i

(4π)2 . (2.8)

It is worth noticing that a minimal subtraction renormaliza-
tion scheme emerges naturally from this formalism, in which
the infinite divergences that depend only on the internal
momentum are subtracted from the theory. This means that
the Ilog(λ2) will be subtracted via renormalization whereas
the IR divergent part ln(μ2) will cancel in the final amplitude
for infrared safe processes and in the cross section/decay rate,
which are IR-safe observables.

3 NLO corrections to H → gg in the large top mass
limit

As discussed in the introduction, we will use the decay
H → gg as a working example to test the method of IReg
in the presence of both UV/IR divergences using an effective
non-abelian field theory approach. Our objective is twofold:
(a) the renormalization of an effective field theory is highly
non-trivial, in particular, when considering alternatives to
CDR [24,30]. Thus, it is essential to understand how IReg
can be applied in this context. (b) The presence of both UV/IR
divergences requires a precise match between virtual and real
contributions in order that a finite and regularization inde-
pendent result occurs. Thus, it is a stringent test for any reg-
ularization scheme. Finally, the decay H → gg has served
as a benchmark for other regularization methods, allowing
for a clear comparison among methods [24,30,31].

As usual, since the decay we consider is mainly due to the
top quark loop, it is reliable to consider the limit in which
its mass is infinite. Thus, we add the following term to the
massless QCD Lagrangian [35–37]

Lef f = 1

4
AHGa

μνG
a,μν, (3.1)

where H represents the Higgs boson field, Ga
μν is the field

strength tensor of the SU (3) gluon field given by

Ga
μν = ∂μA

a
ν − ∂ν A

a
μ + gs f

abc Ab
μA

c
ν (3.2)

and f abc are the anti-symmetric SU (3) structure constants.
The effective coupling A can be obtained by performing the
matching of the full theory to its effective version, so that
[38–40],

A = αs

3πv

(
1 + 11

4

αs

π

)
, (3.3)

123



Eur. Phys. J. C (2023) 83 :73 Page 5 of 14 73

with αs = g2
s

4π
denoting the strong coupling and v the

electroweak vacuum expectation value, v2 = (G f
√

2)−1

with G f the Fermi constant. The Feynman rules can be
straightforwardly obtained, [37]. For the diagrams involv-
ing only gluons the Feynman rules are given by the Yang
Mills Lagrangian.

Once the model is defined, we present in the next subsec-
tions its UV renormalization at one-loop level, as well as the
calculation of the virtual and real contributions for the decay
H → gg.

3.1 UV renormalization

As usual we adopt multiplicative renormalization, rewriting
the effective Lagrangian as

(Lef f )ren = 1

4
Zαs Z A AHGμνG

μν, (3.4)

where ZA and Zαs are the renormalization constants for the
gluon-field and coupling constant respectively. Notice that
we do not renormalize the Higgs field, since it can only appear
as an external leg in the process we consider. The part of the
Lagrangian corresponding to massless QCD is renormalized
in the standard way, implying that ZA and Zαs are already
known. In the framework of IReg, they are given in [41]. At
first order in αs , ZA and Zαs are given by

ZA = 1+αs
1

(4π)

1

b
Ilog(μ

2)
[(13

6
− ζ

2

)
CA − 4

3
TF NF

]
+ O(α2

s )

(3.5)

Zαs = 1 − αs
1

(4π)

1

b
Ilog(λ

2)
[11

6
CA − 2

3
TF NF

]
+ O(α2

s )

(3.6)

where ζ is the gauge parameter, NF is the number of light
quarks flavours, TF = 1

2 results from the trace over colour
matrices and CA = 3 is a color factor. Notice that, while for
Zαs we have the UV divergence expressed as Ilog(λ2) as usual
(minimal subtraction scheme), for ZA we have Ilog(μ2).
This happens because we are considering on-shell gluons,
μ2 playing the role of their fictitious mass.

Finally, by considering the terms just discussed, the coun-
terterm to be added to our process is (we adopt Feynman
Gauge, ζ = 1)

Vcount = αs

bπ

[
CA

( 5

12
Ilog(μ

2) − 11

12
Ilog(λ

2)
)

−1

3
TF NF

(
Ilog(λ

2) − Ilog(μ
2)

)]
V0 , (3.7)

where V0 corresponds to the tree-level amplitude for H →
gg, given below

V0 = i AδabHμν Hμν(p1, p2) = −pν
1 p

μ
2 + gμν p1 · p2 .

(3.8)

Notice that V0 has an implicit dependence on color and
Lorentz indexes, which we suppress for simplicity. The same
argument holds for all amplitudes Vi to be defined in the next
section.

3.2 Virtual contributions

We can now compute the one-loop virtual diagrams. There
are 5 diagrams that contribute to the one-loop order correc-
tion, which are represented in Fig. 14

For all the diagrams we choose the external momenta of
the two gluons to be p1 and p2, the momentum of the Higgs
boson to be q, and the internal momentum of the loop to be k.
All the external momenta are inwards, therefore we can write
the equation of momentum–energy conservation as p1+ p2+
q = 0. We apply the on-shell conditions by imposing p2

1 =
p2

2 = 0. The results for the integrals evaluated in this section
can be found in Appendix A.

We begin with the diagram V1 whose amplitude is given
by

V1 = −Ag2CAδab

×
(
I4g

μν + 2I α1α2gμν(pα1
1 pα2

1 + pα1
2 pα2

2 ) + 11Iμν
2

− I ν
2 (6pμ

1 + pμ
2 ) + Iμ

2 (p1 + 6p2)
ν

− I (p1 · p2)(4p
μ
2 pν

1 + pμ
1 pν

2 − 4(p1 · p2)g
μν)

+ I2(−9(p1 · p2)g
μν + 9pμ

2 pν
1 − 3pμ

1 pν
2 + pμ

2 pν
2)

+ 10I α1μν(p1 + p2)
α1 + I α1μ(−2pα1

1 pν
1

− 6pα1
1 pν

2 − 6pα1
2 pν

1 + pα1
2 pν

2)

+ I α1ν(−6pα1
2 pμ

1 − 2pα1
2 pμ

2

+ pα1
1 pμ

1 − 6pα1
1 pμ

2 )

+ I α1(−6pα1
1 pμ

2 pν
1 + pα1

1 pμ
1 pν

2 − 3pα1
1 pμ

2 pν
2

+ 3pα1
2 pμ

1 pν
1 + 6pα1

2 pμ
2 pν

1 − pα1
2 pμ

1 pν
2

+ 6p1 · p2g
μν(pα1

1 − pα1
2 )) + 3I α1

2 gμν(−pα1
1

+ pα1
2 ) − (p1 · p2)p

μ
1 I

ν + Iμ(p1 · p2)p
ν
2

)

(3.9)

We have already applied the on-shell conditions, p2
i = 0,

i = 1, 2, and we adopted the following convention for the

4 The diagrams were depicted using FeynArts [42].
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Fig. 1 Virtual diagrams
contribution to the decay rate
H −→ gg(g). From left to right
they are respectively
V1,V2,V3,V4,V5. The dashed line
represents the Higgs field, the
curly lines represent the gluon
field

integrals

I α1···αn =
∫
k

kα1 · · · kαn

k2(k − p1)2(k + p2)2 (3.10)

I α1···αn
2 =

∫
k

k2kα1 · · · kαn

k2(k − p1)2(k + p2)2 (3.11)

I α1···αn
4 =

∫
k

k4kα1 · · · kαn

k2(k − p1)2(k + p2)2 (3.12)

After using the results collected in Appendix A, the final
result reads

V1 = Ag2CAδab
[
(−Iquad(μ

2)

(
13

2
gμν

)

− Ilog(μ
2)

(
− 43

6
p1 · p2g

μν + 1

4
pμ

1 pν
1 − 1

6
pμ

1 pν
2

+ 29

6
pν

1 p
μ
2 + 1

4
pμ

2 pν
2

)

+ 1

12
ln(−μ0)

(
− 2pν

1 p
μ
2 − 13

2
p1 · p2g

μν

)

+ ln(−μ0)
2(−pν

1 p
μ
2 + p1 · p2g

μν)

− 5

18
(pν

1 p
μ
2 + 4p1 · p2g

μν)
]

(3.13)

where μ0 = μ2/m2
H .

For the diagram V2 we obtain

V2 = Ag2CAδab
1

2

∫
k

1

k2(k − p1 − p2)2

×
(

4k2gμν − 4k · (p1 + p2)g
μν

+ 2kμkν − kμ(pν
1 + pν

2) − kν(pμ
1 + pμ

2 )
)

(3.14)

and the regularized amplitude is

V2 = Ag2CAδab
[
Iquad(μ

2)

(
5

2
gμν

)

+ 1

2
Ilog(μ

2)

(
− 13

3
p1 · p2g

μν − 1

3
pμ

1 pν
1

− 1

3
pμ

1 pν
2 − 1

3
pν

1 p
μ
2 − 1

3
pμ

2 pν
2

)

+ 1

12
ln(−μ0)

(
2pν

1 p
μ
2 − 13

2
p1 · p2g

μν

)

+ 5

18
(pν

1 p
μ
2 + 4p1 · p2g

μν)
]
. (3.15)

For the diagram V3 we obtain

V3 = 1

2
Ag2CAδab

∫
k

1

k2(k − p2)2

(
2k2gμν − 2k · p2g

μν

−3p1 · p2g
μν + 2p2

2g
μν + 10kμkν − 5kν pμ

2

−5kμ pν
2 + 3pν

1 p
μ
2 + pμ

2 pν
2

)
(3.16)

and are evaluated in IReg as

V3 = Ag2CAδab
[
(Iquad(μ

2)

(
7

2
gμν

)

+ 1

2
Ilog(μ

2)

(
3pν

1 p
μ
2 − 3p1 · p2g

μν − 2

3
pμ

2 pν
2

)]
.

(3.17)

The diagram V4 can be obtained from the result of V3 by
substituting p1 ↔ p2, μ ↔ ν

V4 = Ag2CAδab
[
(Iquad(μ

2)

(
7

2
gμν

)

+ 1

2
Ilog(μ

2)

(
3pν

1 p
μ
2 − 3p1 · p2g

μν − 2

3
pμ

1 pν
1

)]
.

(3.18)

123
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Finally, the regularized amplitude of diagram V5 is given
by

V5 = Ag2CAδab
∫
k

−3gμν

k2 − μ2 = −3Ag2CAδab Iquad (μ2)gμν.

(3.19)

Once all amplitudes are regularized, we obtain an UV
divergent part given by

Vdiv = αs

π
CA

[
Ilog(μ2)

2b

]
V0 , (3.20)

in terms of the tree level amplitude, Eq. (3.8). We emphasize
that only terms up to O(α2

s ) are retained, implying that only
the first term of Eq. (3.3) is to be considered in the definition
of V0 above. It is worth noticing that quadratic divergent inte-
grals cancel in the sum, being an illustration of consistency
of the method. Finally, the UV finite part yields (as can be
easily checked, only the diagrams V1 and V2 contribute)

Vrest = αs

π
CA

[
− ln(μ0)

2

4
− iπ ln(μ0)

2
+ π2

4

]
V0 , (3.21)

where we used ln(−μ0)
2 = ln(μ0)

2 + 2iπ ln(μ0) − π2.
At this point we can check if our result is UV finite

after adding the countertem obtained in the last subsection
(Eq. 3.7)

Vren = Vdiv + Vcount

= αs

bπ

[(
Ilog(λ

2) − Ilog(μ
2)

)( 11

12
CA − 1

3
T f NF

)]
V0. (3.22)

Using the scaling relation, Eq. 2.8, we obtain

Vren = αs

π

[(11

12
CA − 1

3
T f NF

)
ln

( λ2

μ2

)]
V0, (3.23)

rendering an UV finite result as expected.
Finally, the virtual decay rate can be obtained by consid-

ering the sum of the tree-level amplitude with the one-loop
radiative correction

V = V0

(
1 + 11

4

αs

π

)
+ Vren + Vrest . (3.24)

In the above equation, the tree level amplitude encompasses
also the correction due to the matching of the effective theory
to the full SM as given by Eq. 3.3. By squaring this result
one obtains, up to the order α3

s

|V |2 = |V0|2
[

1 + αs

π

(
11

2
+

(11

6
CA − 2

3
T f NF

)

× ln
( λ2

μ2

)
+ CA

2

(
− ln(μ0)

2 + π2
))]

(3.25)

and the virtual decay rate is given by

�v = �0

[
1 + αs

π

(
11

2
−

(11

6
CA − 1

3
NF

)

× ln(μ0) + CA

2

(
− ln(μ0)

2 + π2
))]

, (3.26)

where we are choosing the renormalization scale at the Higgs
mass (λ2 = m2

H ) since μ0 = μ2/m2
H .

3.3 Real decay rate

The diagrams that will contribute to the real decay are rep-
resented in Fig. 2 up to αs

√
αs order

We consider first the diagrams with only gluons as exter-
nal legs, which are the more involved to be obtained. In order
to simplify the calculations we adopt the spinor helicity for-
malism in this case. For the diagram with external (light)
quarks, we use the standard procedure. We begin with the
s-channel diagram R1, whose amplitude is given by

iMR1 = gs f
bcdV ντδ(p2, p3,−(p2 + p3))i

gδδ
′
δdd

′

(p2 + p3)2

i Aδad
′
H δ

′
μ(−(p2 + p3), p1)ε

μ
1 εν

2ετ
3

= −Ags f
bca 1

(p2 + p3)2 V
ντδH δμε

μ
1 εν

2ετ
3 , (3.27)

where the expanded tensors are given by

V ντδ(p2, p3,−(p2+ p3)) = (p2− p3)
δgντ − pν

2g
τδ+ pτ

3g
δν

(3.28)

and

H δμ(−(p2+ p3), p1) = −gμδ p1 ·(p2+ p3)+ pδ
1(p2+ p3)

μ.

(3.29)

Contracting the indices and using the Lorenz condition
εμ pμ = 0, one obtains

iMR1 = −Ags f bca

s23
(s12 + s13)(ε1 · ε3 p3 · ε2 − p2 · ε3 ε1 · ε2)

− s12 p3 · ε1 ε2 · ε3 + s13 p2 · ε1 ε2 · ε3

+ 2(p2 · ε1 + p3 · ε1)(p1 · ε2 p2 · ε3 − p1 · ε3 p3 · ε2).

(3.30)

Now we proceed using the spinor helicity formalism.
Firstly, we define three auxiliary momenta ri , i = 1, 2, 3,
one for each of the massless gluons

r(ε1) = p3 ≡ 3, r(ε2) = p1 ≡ 1, r(ε3) = p2 ≡ 2.

(3.31)

123
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Fig. 2 Real diagrams contributing to the decay H −→ ggg and
H −→ gqq̄. From left to right they are respectively R1, R2 and R3.
The dashed line represents the Higgs field and the curly lines represent

the gluon field. The {pi , p j , pk} correspond to the three permutations
of pi , p j and pk , so R1 stands for 3 diagrams

With this choice, the terms p2 · ε3 = p1 · ε2 = p3 · ε1 =
0 are automatically zero, which allows for a great deal of
simplification of the amplitude,

iMR1 = −Ags f bca

s23

[
(s12 + s13)(ε1 · ε3 p3 · ε2)

+s13 p2 · ε1 ε2 · ε3 − 2p2 · ε1 p1 · ε3 p3 · ε2

]
.

(3.32)

The t channel is obtained by making the replacements 1 ←→
3, 2 ←→ 1 and 3 ←→ 2 while the u channel is obtained by
making 1 ←→ 2, 2 ←→ 3 and 3 ←→ 1.

The amplitude for R2 can be obtained in a similar fashion.
The end result is

iMR2 = −Ags f
abc

(
p1·ε3ε1·ε2+p2·ε1ε2·ε3+p3·ε2ε1·ε3

)
.

(3.33)

Summing the s, t and u channels from R1 with the one
vertex diagram from R2 we have

iMg = −Ags

(
f bca

s23

[
(s12 + s13)(ε1 · ε3 p3 · ε2)

+ s13 p2 · ε1 ε2 · ε3 − 2p2 · ε1 p1 · ε3 p3 · ε2
]

+ f abc

s12

[
(s13 + s23)(ε3 · ε2 p2 · ε1) + s23 p1 · ε3 ε1 · ε2

− 2p1 · ε3 p3 · ε2 p2 · ε1
]

+ f cab

s13

[
(s23 + s12)(ε1 · ε2 p1 · ε3) + s12 p3 · ε2 ε3 · ε1

− 2p3 · ε2 p2 · ε1 p1 · ε3
]

+ f abc(p1 · ε3 ε1 · ε2 + p2 · ε1 ε2 · ε3 + p3 · ε2 ε1 · ε3)

)
.

(3.34)

To obtain the unpolarized absolute squared value of the
amplitude we need to sum over all possible colors and helic-
ities,

|Mg|2 =
∑

col,polr

|Mg|2 =
∑
col

2(|M+++
g |2

+|M+−−
g |2 + |M−+−

g |2 + |M−−+
g |2) (3.35)

and use the spinor helicity formalism to perform the spin
sums (see e.g. [37]). A massless real valued four momentum
vector pμ in the representation

pαα̇ = σαα̇
μ pμ, pα̇α = σ̄

μ
α̇α pμ (3.36)

where σμ = (
I, 
σ )

and σ̄ μ = (
I,−
σ )

allows a bispinor
decomposition,

pαα̇ = p〉[p, pα̇α = p]〈p (3.37)

with the properties

〈pq〉 = √
2p · qeiφ, [qp] = √

2p · qe−iφ (3.38)

for an arbitrary φ phase and

p · q = qμ pμ = 1

2
qα̇α p

αα̇ = 1

2
〈qp〉[pq]. (3.39)

The relation between these objects and the usual Mandelstam
variables which we use to compute the amplitudes is

〈i j〉[ j i] = 2pi p j = (pi + p j )
2 = si j . (3.40)

The polarization vectors are given in this notation by

[ε−
p (r)]αα̇ = √

2
p〉[r
[pr ] , (3.41)

[ε+
p (r)]αα̇ = √

2
r〉[p
〈rp〉 , (3.42)

from which follow the inner products

ε−
p (r1) · ε+

q (r2) = 〈pr2〉[qr1]
[pr1]〈r2q〉 ,

ε−
p (r1) · ε−

q (r2) = 〈pq〉[r2r1]
[pr1][qr2] ,

ε+
p (r1) · ε+

q (r2) = [r1r2]〈qp〉
〈r1 p〉〈r2q〉 , (3.43)

ε−
p (r1) · q = 1√

2

〈pq〉[qr1]
[pr1] ,

123
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ε+
p (r1) · q = 1√

2

〈pq〉[qr1]
〈r1 p〉 (3.44)

with p, q being the physical momenta and r1 and r2 the ref-
erence momenta.

Using our previous choice of reference momenta, we have,
for the + − − helicity configuration

M+−−
g = −Ags f

abc
[( 〈23〉

[32]
〈23〉[12]

〈31〉
)( s13

s23
+ s13

s12
+ s23

s12
+ 1

)

−2
( 1√

2

〈23〉[12]
〈31〉

)( 1√
2

〈13〉[21]
[32]

)( 1√
2

〈32〉[13]
[21]

)

( 1

s23
+ 1

s12
+ 1

s13

)]
, (3.45)

and, for the + + + helicity case, one obtains

M+++
g = −Ags f

abc

×
[ [13]
〈31〉

1√
2

〈31〉[23]
〈12〉

( s12 + s13

s23
+ s12

s13
+ 1

)

+[23]
〈32〉

1√
2

〈23〉[12]
〈31〉

( s13 + s23

s12
+ s13

s23
+ 1

)

+[12]
〈21〉

1√
2

〈12〉[31]
〈23〉

( s23 + s12

s13
+ s23

s12
+ 1

)

+ 1√
2

〈23〉[12]
〈31〉

1√
2

〈12〉[31]
〈23〉

1√
2

〈31〉[23]
〈12〉

×
( 1

s12
+ 1

s13
+ 1

s23

)]
. (3.46)

Squaring the amplitudes, one gets

|M+−−
g |2 = 1

2
A2g2

s f
2 s3

23

s12s13
,

|M+++
g |2 = 1

2
A2g2

s f
2 m8

H

s12s13s23
. (3.47)

where we used the momentum–energy conservation condi-
tion m2

H = s12 + s13 + s23.
The remaining helicity configurations can be obtained by

permutation of the momenta. The structure constants can be

written as f 2 = fabc f abc = 2C2
ACF with CF = N 2 − 1

2N
and CA = N with N = 3 for the SU (3) group. Finally, we
obtain the unpolarized amplitude considering gluons only,
Mg ,

|Mg|2 = A2παs8C
2
ACF

1

s12s13s23
(s4

12 + s4
13 + s4

23 + m8
H ),

(3.48)

that can be written as

|Mg|2 = A2παs16C2
ACF

[
s3

12

s13s23
+ s3

13

s12s23
+ s3

23

s12s13

+6(s12 + s13 + s23) + 2(s2
12 + s2

13) + 3s12s13

s23

+2(s2
13 + s2

23) + 3s13s23

s12
+ 2(s2

12 + s2
23) + 3s12s23

s13

]
.

(3.49)

For the case of light quarks in the external legs, diagram
R3, the calculation is easier. Its amplitude Mq is given by

Mq = i Aαs tbεν(p3)H
ρν((−p1 − p2), p3)ū

s(p1)

×γρvs
′
(p2)

1

(−p1 − p2)2 + iε
. (3.50)

By considering the unpolarized amplitude, one must sum
over the color and spin degrees of freedom of the external
particles. In this case, it is essential to recall that, in IReg,
the IR divergences are parametrized as fictional masses for
otherwise massless particles. Thus, when using the complete-
ness relation for the sum over the spins of the massive light
quarks in the limit of vanishing quark masses, one must retain
the massive contribution until the integration over the phase
space is effected, before taking the limit. By doing so, one
obtains

|Mq |2 = A2αs4πTr(tbt
b)

( (s2
13 + s2

12)

s23
+4μ2

s2
23

(s13 + s12)
2

2

)
,

(3.51)

where Tr(tbtb) = Tr
(
CF I

)
= CFCA.

The total unpolarized amplitude of the decay is finally
given by

|M|2 = |Mg|2 + |Mq |2 (3.52)

Our next task is to perform the phase space integral consider-
ing the external particles (gluons and light quarks) with mass
μ. As customary, one defines dimensionless variables which,
in our case, are given by

s13 = q2(χ1 + μ0), s23 = q2(χ2 + μ0),

s12 = q2(1 − χ1 − χ2 + μ0), (3.53)

where μ0 = μ2

q2 and q2 = m2
H (we are using the frame of

reference in which the Higgs boson is at rest). In terms of
these variables the decay rate is given by

�r (H −→ gg(g), gqq̄)

= �0
αs

π

∫ [
CA

(
2 + 3χ2 − 4

(χ2 + μ0)
+ 5χ1

(χ2 + μ0)

− χ2
1

(χ2 + μ0)
+ 1

(χ1 + μ0)(χ2 + μ0)

)

+ NF

( 2μ0

(χ2 + μ0)2 + 1

(χ2 + μ0)
− 2χ1

(χ2 + μ0)

+ 2χ2
1

(χ2 + μ0)
− 2 + 3χ2

)]
dχ1dχ2, (3.54)

123
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where an overall factor
CACF

4
was set to 1. The integration

is over a massive phase space and we already used the energy
momentum conservation condition χ1 + χ2 + χ3 = 1. The
integrals are evaluated in Appendix B using results collected
in [4,31]. Notice that we have already extracted the tree-level
decay rate, which is given by

�0 = |MHgg|2
32πmH

= A2m3
H

8π
. (3.55)

The final result is

�r (H −→ gg(g), gqq̄)

= �0
αs

π

[
CA

(73

12
+ 11

6
ln(μ0)

+ ln2(μ0)

2
− π2

2

)
+ NF

(− ln (μ0)

3
− 7

6

)]
.

(3.56)

By combining Eqs. 3.26 and 3.56, we get the final decay
rate for the process

�T ((H −→ gg(g), gqq̄)) = �0

[
1 + αs

π

(
95

4
− 7

6
NF

)]
,

(3.57)

which, after specializing to QCD, complies with the well-
known result of the literature [40].

As a final comment, in IReg it is easy to obtain the
decay rate at any other desired renormalization point. This
is achieved by leaving the renormalization scale λ2 as a
free parameter until the very end. In our case, one rewrites

log
( λ2

μ2

)
= log

( λ2

m2
H

)
− log(μ0) in 3.25, which produces

the result below,

�T ((H −→ gg(g), gqq̄))

= �0

[
1 + αs

π

(
95

4
− 7

6
NF + 11CA − 2NF

6
ln

(
λ2

m2
H

))]
.

(3.58)

4 Comparison with dimensional schemes

In this section we intend to compare our results with the
ones obtained in the context of dimensional schemes, in a
similar way to the discussions presented in [4,32]. For the
results in dimensional schemes, we will mainly use the analy-
sis performed in [24,30]. In these references, the form factors
for the decay were computed up to two-loop order. As dis-
cussed there, although one needs to consider a broader set of
operators in the effective Lagrangian at two-loop order in all
schemes, this issue is relevant for DRED already at one-loop.

This is due to the presence of additional, fictitious particles,
denoted ε-scalars. For our particular example, when using
DRED, the one-loop contribution due to light quarks can
only be consistently obtained when additional operators are
taken into account. As we have shown in the previous section,
in the case of IReg the inclusion of ε-scalars (or additional
operators) is not necessary.

Following [24,30], the form factors in all dimensional
schemes already UV renormalized can be obtained. In CDR
the form factor related to the process H → gg is given by5

FCDR(αs) =
( αs

4π

){
CA

[
− 2

ε2 − 11

3ε
+ π2

6

]
+ 2NF

3ε

}
+O(ε).

(4.1)

In the case of FDH, one needs also to consider the ε-scalars
when performing the UV renormalization, which amounts to

FFDH(αs) = FCDR(αs) +
( αs

4π

)
nεCA

[
1 + 1

6ε

]
+ O(nεε).

(4.2)

Finally, in DRED one must consider both processes H → gg
and H → g̃g̃ where g̃ stands for the ε-scalars. In this case,
one needs the form factor of FDH and also the form factor
with ε-scalars

Fg̃g̃(αs) =
( αs

4π

){
CA

[
− 2

ε2 − 4

ε
+ 2 + π2

6
− 2nε

]
+ NF

3ε

}

+O(nεε). (4.3)

One should notice that we are already setting the couplings
related to ε-scalars equal to their corresponding values in
usual QCD. This is justified because the UV renormalization
was already carried out. In all cases, the form factors are
normalized to their tree-level values. Recovering them, the
virtual contribution to the decay rate can be readily obtained
for each scheme after setting nε = 2ε

�CDR
v =�0

{
1 + αs

π

[
11

2
+ CA

(
− 1

ε2 − 11

6ε
+ π2

12

)
+ NF

3ε

]}

+ O(ε) (4.4)

�FDH
v =�0

{
1 + αs

π

[
11

2
+ CA

(
− 1

ε2 − 11

6ε
+ π2

12
+ 1

6

)
+ NF

3ε

]}

+ O(ε) (4.5)

�DRED
v =�0

{
1 + αs

π

[
11

2
+ CA

(
− 1

ε2 − 11

6ε
+ π2

12

)
+ NF

3ε
+ NF

6

]}

+ O(ε) (4.6)

5 For all form factors, the prefactor

(
− μ2

m2
H

)ε

e−εγE (4π)ε is implicitly

understood, where μ2 denotes the renormalization scale in dimensional
regularization methods.
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We notice that the first term in the square brackets of each
equation corresponds to the correction due to the matching
of the effective theory to the full SM as given by Eq. 3.3.
We can compare these results to Eq. 3.26, and see that the
correspondence ε−1 → log μ0, ε−2 → log2 μ0/2 is fulfilled
as first noticed in [4]. Moreover, the result in CDR does not
have any finite term (apart from factors of π2 that will be
cancelled against the real contribution). The same statement
holds true for IReg. For FDH and DRED, on the other hand,
there is the appearance of finite terms proportional to CA and
NF respectively.

Regarding the real contributions, to the best of our knowl-
edge, the results are not available in the literature for all of
the schemes. Nevertheless, the part proportional to NF can
be readily obtained. For CDR, there is only one diagram (the
diagram on the right of Fig. 2) which produces the following
unpolarized amplitude

|M̄CDR
q |2 ∝ (s2

13 + s2
12)

s23
+ (d − 4)

2

(s13 + s12)
2

s23
. (4.7)

For FDH, we have the same diagram of CDR and obtain
the same result. This happens because the diagram is not one
particle irreducible, implying that the internal gluon is regular
in the notation of [4]. Therefore, although the external gluon
is split into a d-dimensional gluon and a ε-scalar, there is no
way to produce a diagram with only ε-scalars. In the case of
DRED this happens, since all vector bosons must be split.
The unpolarized amplitude in DRED is given by

|M̄DRED
q |2 ∝ (s2

13 + s2
12)

s23
+ (d − 4)

2

(s13 + s12)
2

s23

+nε

2

(s13 + s12)
2

s23
. (4.8)

It should be noticed that by setting nε = 2ε one obtains
the result of a strictly four-dimensional calculation. One can
also compare these results with Eq. 3.51 obtained within IReg
which we reproduce below

|M̄ IReg
q |2 ∝ (s2

13 + s2
12)

s23
+ 2sμ0

(s13 + s12)
2

s2
23

. (4.9)

As can be seen, the result in IReg is similar to CDR/FDH in
the sense that there is an extra term. In the case of CDR/FDH
it comes from extending the physical dimension to d, while
in IReg it is encoded in the fictitious mass that we have added
for the massless particles. Once the unpolarized amplitude is
known in all schemes, one can obtain the part proportional
to NF of the real contribution to the decay rate

�CDR/FDH
q,r = �0

αs

π

[
− 1

3ε
− 7

6

]
NF + O(ε) (4.10)

�DRED
q,r = �0

αs

π

[
− 1

3ε
− 4

3

]
NF + O(ε) (4.11)

Once again, the result in IReg can be mapped to the one of
CDR/FDH after the identification ε−1 → log μ0.

5 Conclusion

In conclusion, the decay rate �((H −→ gg(g), gqq̄)) at α3
s

order in the strong coupling and large top quark mass limit has
been computed using an effective interaction Lagrangian of
Higgs to gluons added to the QCD Lagrangian in the frame-
work of the fully quadri-dimensional regularization scheme
IReg and compared to dimensional schemes CDR, FDH and
DRED. The purpose was twofold. Firstly to achieve not only
a full separation of BDI from the UV finite integrals (which
IReg accomplishes to arbitrary loop order) but to single out
the IR content as well. Secondly to verify whether the addi-
tional degrees of freedom associated to epsilon scalars in
some of the dimensional schemes have a counterpart in the
non-dimensional scheme IReg.

The present calculation provided a proof of concept exam-
ple involving a non-abelian effective theory Lagrangian with
sufficient complexity to allow to infer that crucial steps of the
procedure are in compliance with fundamental requirements
such as gauge invariance and the removal of IR singularities
fulfilling the KLN theorem. In particular the use of a mass
regulator in the propagators is adequately implemented in
IReg, as well as the renormalization schemes adopted for an
effective theory. The latter point in particular is non-trivial,
as it involves the use of the method’s renormalization scale
relations impacting on the overall cancellation of IR singu-
larities. In addition, by comparing with different dimensional
schemes, one concludes that IReg does not require the use of
evanescent fields at one loop level.
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AppendixA: Integrals used in the evaluationof thevirtual
contribution to H → gg

In this appendix we collect the integrals needed for the eval-
uation of the virtual contribution to the process H → gg.
We organize them in terms of the diagrams presented in
Fig. 1. The UV finite part of the integrals were evaluated
using Package-X [43].

We define b = i

(4π)2 and apply the on-shell limit for each

integral. We also omit all non-contributing integrals where
we already applied the limit μ0 = μ2/m2

H → 0.

A.1 Integrals of diagram V1

The integrals are defined in Eqs. (3.10)–(3.12) and their
results read

I = b
ln2 (−μ0)

4p1 · p2
(A.1)

Iμ = −b
[2 + ln (−μ0)]

2p1 · p2
(pμ

1 − pμ
2 ) (A.2)

Iμν = Ilog(μ
2)

4
gμν + b

4p1 · p2

[
ln(−μ0)p1.p2g

μν

+3p1 p2 g
μν − 2pμ

1(
(ln(−μ0) + 2)pν

1 + pν
2
) − 2 ln(−μ0)pμ

2 pν
2

−2pν
1 p

μ
2 − 4pμ

2 pν
2

]
(A.3)

Iαμν = Ilog(μ
2)

12
((p1 − p2)νgαμ

+(p1 − p2)μgαν + (p1 − p2)αgμν)

+b
[ 1

18p1 · p2
4(−p1.p2 p

μ
2 gαν

+pν
1 p1 · p2g

αμ − p1 · p2 p
ν
2g

αμ − p1 · p2 p
α
2 g

μν)

+3 ln(−μ0)(−p1 · p2 p
μ
2 gαν + pν

1 p1 · p2g
αμ

−p1 · p2 p
ν
2g

αμ)

+pμ
1 ((3 ln(−μ0) + 4)p1 · p2g

αν − 3pν
1 p

α
2

+3pα
2 pν

2 )

−3 ln(−μ0)p1 · p2 p
α
2 g

μν + pα
1 (4p1 · p2g

μν

+3 ln(−μ0)p1 · p2g
μν − 3pν

1 p
μ
2

−pμ
1 ((6 ln(−μ0) + 13)pν

1 + 3pν
2 ) + 3pμ

2 pν
2 )

+3pν
1 p

α
2 pμ

2

+13pα
2 pμ

2 pν
2 + 6 ln(−μ0)pα

2 pμ
2 pν

2 )
]

(A.4)

I2 = Ilog(μ
2) + b(2 + ln (−μ0)) (A.5)

I ν2 = Ilog(μ
2)

2
(pν

1 − pν
2 ) + b

2
(2 + ln (−μ0))(pν

1 − pν
2 )

(A.6)

Iμν
2 = Iquad (μ2)

2
gμν + Ilog(μ

2)

3
(pμ

2 pν
2 + pμ

1 pν
1 )

− Ilog(μ
2)

6
(p1 · p2g

μν + pμ
1 pν

2 + pν
1 p

μ
2 )

+ b

36

[(
ln(−μ0)(12(pμ

1 pν
1 + pμ

2 pν
2 )

−6(pν
1 p

μ
2 + pμ

2 pν
2 + p1 · p2 g

μν)
)

+26(pμ
1 pν

1 + pμ
2 pν

2 ) − 10(pν
1 pμ

2 + pμ
1 pν

2 )

−16p1 · p2 g
μν)

]
(A.7)

I4 = Iquad (μ2) − Ilog(μ
2)p1 · p2

−b(p1 · p2)(2 + ln (−μ0)) (A.8)

A.2 Integrals of diagram V2

∫
k

1

(k − p1 − p2)2

=
∫
k

1

k2 − 2k · (p1 + p2) + 2p1 · p2

= Iquad (μ2) + 2bp1 · p2 ln(−μ0) (A.9)∫
k

kμ

k2(k − p1 − p2)2 =
∫
k

kμ

k2(k2 − 2k · (p1 + p2) + 2p1 · p2)

= Ilog(μ
2)

2
(p1 + p2)μ + b

2
(ln(−μ0) + 2)

(
pμ

1 + pμ
2

)
(A.10)

∫
k

kμkν

k2(k − p1 − p2)2

=
∫
k

kμkν

k2(k2 − 2k · (p1 + p2) + 2p1 · p2)
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2
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2)
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+ Ilog(μ
2)
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[ 1

18
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(
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1 pν

1

+pν
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μ
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1 pν
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2
)
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(
pμ

1 pν
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μ
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1 pν
2 + pμ

2 pν
2
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(A.11)

A.3 Integrals of diagrams V3 and V4

∫
k

1

(k − p2)2 =
∫
k

1

k2 − 2k.p2
= Iquad(μ

2) (A.12)
∫
k

1

k2(k − p2)2 =
∫
k

1

k2(k2 − 2k.p2)
= Ilog(μ

2) (A.13)
∫
k

kμ

k2(k − p2)2 =
∫
k

kμ

k2(k2 − 2k.p2)

= Ilog(μ2)
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2 (A.14)
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∫
k

kμkν

k2(k − p2)2 =
∫
k

kμkν

k2(k2 − 2k.p2)

= Iquad(μ2)

2
gμν + Ilog(μ2)

3
pμ

2 pν
2 (A.15)

Appendix B: Integrals used in the evaluation of the real
contribution to H → gg

The phase space integral is found to be

ρ = q2
0

(4π)3

∫ χ+
1

χ−
1

dχ1

∫ χ+
2

χ−
2

dχ2 (B.1)

where the boundaries for χ±
2 are given by

χ±
2 = 1 − χ1

2
±

√
(χ1 − 3μ0)[(1 − χ1)

2 − 4μ0]
4(χ1 + μ0)

, (B.2)

and the boundaries for χ±
1 are

χ+
1 = 1 − 2

√
μ0, and χ−

1 = 3μ0. (B.3)

Finally, the integrals were evaluated using the following
equations, [4,31]

I (s) =
∫

dχ1dχ2
1

(χ1 + μ0)(χ2 + μ0)
(B.4)

and

Jp(s) =
∫

dχ1dχ2
χ

p
1

(χ2 + μ0)
(B.5)

with p ≥ 0. Using our limit of integrations, the integrals are
evaluated to be

I (s) = ln2(μ0) − π2

2
(B.6)

and

Jp(s) = − 1

p + 1
ln(μ0) +

∫ 1

0
dχ1χ

p
1 [ln(χ1) + 2 ln(1 − χ1)]

= − 1

p + 1
ln(μ0) − 1

p + 1

[ 1

p + 1
+ 2

p+1∑
n=1

1

n

]
. (B.7)
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Stöckinger, Two-loop application of the Breitenlohner–Maison/’t
Hooft–Veltman scheme with non-anticommuting γ 5: full renor-
malization and symmetry-restoring counterterms in an abelian chi-
ral gauge theory. JHEP 11, 159 (2021)

123

http://arxiv.org/abs/2106.11802
http://arxiv.org/abs/2106.14039


73 Page 14 of 14 Eur. Phys. J. C (2023) 83 :73

21. P. Breitenlohner, D. Maison, Dimensionally renormalized Green’s
functions for theories with massless particles I. Commun. Math.
Phys. 52(1), 39–54 (1977)

22. D. Kreimer, The γ5-problem and anomalies: a clifford algebra
approach. Phys. Lett. B 237(1), 59–62 (1990)

23. D. Kreimer, The role of gamma(5) in dimensional regularization
(1993). arXiv e-print: arXiv:hep-ph/9401354

24. C. Gnendiger, A. Signer, D. Stöckinger, The infrared structure of
QCD amplitudes and H →gg in FDH and DRED. Phys. Lett. B
733, 296–304 (2014)

25. W. Hollik, D. Stöckinger, MSSM Higgs-boson mass predictions
and two-loop non-supersymmetric counterterms. Phys. Lett. B
634(1), 63–68 (2006)

26. S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich, W. Hollik,
Renormalization scheme dependence of the two-loop QCD correc-
tions to the neutral Higgs-boson masses in the MSSM. Eur. Phys.
J. C 75, 424 (2015)

27. B. Summ, A. Voigt, Extending the universal one-loop effective
action by regularization scheme translating operators. J. High
Energy Phys. 2018(8), 26 (2018)

28. T.D. Lee, M. Nauenberg, Degenerate systems and mass singulari-
ties. Phys. Rev. 133, B1549–B1562 (1964)

29. T. Kinoshita, Mass singularities of Feynman amplitudes. J. Math.
Phys. 3(4), 1 (1962)

30. A. Broggio, C. Gnendiger, A. Signer, D. Stöckinger, A. Visconti,
Computation of H → gg in DRED and FDH : renormalization,
operator mixing, and explicit two-loop results. Eur. Phys. J. C 75,
1–13 (2015)

31. R. Pittau, QCD corrections to in FDR. Eur. Phys. J. C 74, 2686
(2014)

32. W.J. Torres Bobadilla, G.F.R. Sborlini, P. Banerjee, S. Catani, A.L.
Cherchiglia, L. Cieri, P.K. Dhani, F. Driencourt-Mangin, T. Engel,
G. Ferrera, C. Gnendiger, R.J. Hernández-Pinto, B. Hiller, G. Pel-
liccioli, J. Pires, R. Pittau, M. Rocco, G. Rodrigo, M. Sampaio,
A. Signer, C. Signorile-Signorile, D. Stöckinger, F. Tramontano,
Y. Ulrich. May the four be with you: novel IR-subtraction methods
to tackle NNLO calculations. Eur. Phys. J. C 81(3), 250 (2021)

33. D.C.A. Perdomo, A. Cherchiglia, B. Hiller, M. Sampaio, A brief
review of implicit regularization and its connection with the BPHZ
theorem. Symmetry 13(6), 956 (2021)

34. Y.R. Batista, B. Hiller, A. Cherchiglia, M. Sampaio, Supercurrent
anomaly and Gauge invariance in the N = 1 supersymmetric Yang-
Mills theory. Phys. Rev. D 98(2), 025018 (2018)

35. A. Djouadi, M. Spira, P.M. Zerwas, Production of Higgs bosons
in proton colliders: QCD corrections. Phys. Lett. B 264, 440–446
(1991)

36. C.R. Schmidt, H −→ ggg(gqq̄) at two loops in the large Mt limit.
Phys. Lett. B 413, 391–395 (1997)

37. R.P. Kauffman, S.V. Desai, D. Risal, Production of a Higgs boson
plus two jets in hadronic collisions. Phys. Rev. D 55(7), 4005–4015
(1997)

38. T. Inami, T. Kubota, Y. Okada, Effective gauge theory and the effect
of heavy quarks in Higgs boson decays. Z. Phys. C18, 69–80 (1983)

39. S. Dawson, Radiative corrections to Higgs boson production. Nucl.
Phys. B 359(2), 283–300 (1991)

40. M. Spira, A. Djouadi, D. Graudenz, R.M. Zerwas, Higgs boson
production at the LHC. Nucl. Phys. B 453(1), 17–82 (1995)

41. M. Sampaio, A.P.B. Scarpelli, J.E. Ottoni, M.C. Nemes, Implicit
regularization and renormalization of QCD. Int. J. Theor. Phys.
45(2), 436–457 (2006)

42. T. Hahn, Generating Feynman diagrams and amplitudes with Fey-
nArts 3. Comput. Phys. Commun. 140(3), 418–431 (2001)

43. H.H. Patel, Package-X: a mathematical package for the analytic
calculation of one-loop integrals. Comput. Phys. Commun. 197,
276–290 (2015)

123

http://arxiv.org/abs/hep-ph/9401354

	Higgs boson decay into gluons in a 4D regularization: IR cancellation without evanescent fields to NLO
	Abstract 
	1 Introduction
	2 The IReg method: UV/IR identification and UV renormalization
	3 NLO corrections to Hrightarrowgg in the large top mass limit
	3.1 UV renormalization
	3.2 Virtual contributions
	3.3 Real decay rate

	4 Comparison with dimensional schemes
	5 Conclusion
	Acknowledgements
	Appendix A: Integrals used in the evaluation of the virtual contribution to Hrightarrowgg
	A.1 Integrals of diagram V1
	A.2 Integrals of diagram V2
	A.3 Integrals of diagrams V3 and V4

	Appendix B: Integrals used in the evaluation of the real contribution to Hrightarrowgg
	References




