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Abstract: We examine Lp-viscosity solutions to fully nonlinear elliptic equations with bounded-
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in the theory of Lp-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo
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1. Introduction

We study the regularity of Lp-viscosity solutions to

F
(
D2u,Du, u, x

)
= f in Ω, (1.1)
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where F : S(d) × Rd × R × Ω \ N → R, is a uniformly elliptic operator with bounded-measurable
ingredients, and f ∈ Lp(Ω) for p > p0. Here, Ω ⊂ Rd is an open and bounded domain, N is a null
set, S (d) ∼ R

d(d+1)
2 is the space of symmetric matrices, and d/2 < p0 < d is the exponent such that the

Aleksandrov-Bakelman-Pucci (ABP) estimate is available for elliptic equations with right-hand side in
Lp, for p > p0.

Our contribution is two-fold. From a mathematical viewpoint, we extend the gradient potential
estimates reported in [10] to operators with bounded-measurable coefficients depending explicitly on
lower-order terms.

We argue by combining well-known facts in the theory of Lp-viscosity solutions, obtaining at once
the corpus of results in [10]. That reasoning leads to the second layer of our contribution: the findings
in the paper attest to the broad scope, and consequential character, of the developments reported in [10].

The regularity theory for viscosity solutions to (1.1) is a delicate matter. Indeed, the first result in
this realm is the so-called Krylov-Safonov theory. It states that, if u ∈ C(B1) is a viscosity solution to

F(D2u) ≤ 0 ≤ G(D2u) in B1 (1.2)

and F and G are (λ,Λ)-elliptic operators, then u ∈ Cα
loc(B1), for some α ∈ (0, 1) depending only on d,

λ and Λ. In addition, one derives an estimate of the form

‖u‖Cα(B1/2) ≤ C ‖u‖L∞(B1) ,

where C = C(d, λ,Λ) [25]. Indeed, the regularity result in the Krylov-Safonov theory concerns
inequalities of the form

ai j(x)∂2
i ju ≤ 0 ≤ bi j(x)∂2

i ju (1.3)

where the matrices A := (ai j)d
i, j=1 and B := (bi j)d

i, j=1 are uniformly elliptic, with the same ellipticity
constants. The transition of those inequalities to (1.2) comes from the fundamental theorem of calculus.
Indeed, notice that if F(0) = G(0) = 0, we get∫ 1

0

d
dt

F(tD2u)dt = F(D2u) ≤ 0 ≤ G(D2u) =

∫ 1

0

d
dt

G(tD2u)dt.

By computing the derivatives above with respect to the variable t and setting

ai j(x) :=
∫ 1

0
DMF(tD2u)dt and bi j(x) :=

∫ 1

0
DMG(tD2u)dt,

one notices that a solution to (1.2) also satisfies (1.3).
If we replace the inequality in (1.2) with the equation

F(D2u) = 0 in B1 (1.4)

and require F to be a (λ,Λ)-elliptic operator, solutions become of class C1,α with estimates. Once
again, α ∈ (0, 1) depends only on the dimension and the ellipticity [4,43]. Finally, if we require F to be
uniformly elliptic and convex (or concave) viscosity solutions to (1.4) are of class C2,α, with estimates.
This is known as the Evans-Krylov theory, developed independently in the works of Lawrence C.
Evans [21] and Nikolai Krylov [24].
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The analysis of operators with variable coefficients, in the context of non-homogeneous problems
first appeared in the work of Luis Caffarelli [3]. In that paper, the author considers the equation

F(D2u, x) = f in B1 (1.5)

and requires F(M, x) to be uniformly elliptic. The fundamental breakthrough launched in [3] concerns
the connection of the variable coefficients operator with its fixed-coefficients counterpart. To be more
precise, the author introduces an oscillation measure β(x, x0) defined as

β(x, x0) := sup
M∈S (d)

|F(M, x) − F(M, x0)|
1 + ‖M‖

.

Different smallness conditions on this quantity yield estimates in distinct spaces. It includes estimates
in C1,α, W2,p and C2,α-spaces. Of course, further conditions on the source term f must hold. In
particular, it is critical that f ∈ Lp(B1), for p > d.

An interesting aspect of this theory concerns the continuity hypotheses on the data of the problem.
For instance, the regularity estimates do not depend on the continuity of f . Meanwhile, the notion of
C-viscosity solution requires f to be defined everywhere in the domain, as it depends on pointwise
inequalities [7–9]. Hence, asking f to be merely a measurable function in some Lebesgue space is not
compatible with the theory. See the last paragraph before Theorem 1 in [3].

In [5], the authors propose an Lp-viscosity theory, recasting the notion of viscosity solutions in an
almost-everywhere sense. In that paper, the authors examine (1.1) and suppose the ingredients of the
problem are in Lp, for p > p0. The quantity d/2 < p0 < d appeared in the work of Eugene Fabes and
Daniel Stroock [22]. It stems from the improved integrability of the Green function for (λ,Λ)-linear
operators.

In [20], and before the formalization of Lp-viscosity solutions, the quantity p0 appeared in the
context of Sobolev regularity. In that paper, Luis Escauriaza resorted to the improved integrability of
the Green function from [22] to extend Caffarelli’s W2,p-regularity theory to the range p0 < p < d. For
that reason, p0 is referred to in the literature as Escauriaza’s exponent.

A fundamental study of the regularity theory for Lp-viscosity solutions to (1.1) appeared in [42].
Working merely under uniform ellipticity, the author proves regularity results for the gradient of the
solutions. In case p > d, solutions are of class C1,α. Here, the smoothness degree depends on the
Krylov-Safonov exponent, and on the ratio d/p. However, in case p0 < p ≤ d, solutions are only in
W1,q, where q→ ∞ as p→ d.

The findings in [42] highlight an important aspect of the theory, namely: the smoothness of Du, in
the range p0 < p < d, is a very delicate matter. It is known that C1,α-regularity is not available in this
context.

A program that successfully accessed this class of information is the one in [10]. Through a
modification in the linear Riesz potential, tailored to accommodate the p-integrability of the data, the
authors produce potential estimates for the Lp-viscosity solutions to (1.5). Ultimately, those estimates
yield a modulus of continuity for the gradient of the solutions.

In addition to uniform ellipticity, the results in [10] require an average control on the oscillation of
F(M, x). It also assumes f ∈ Lp(Ω) for p0 < p < d. Under these conditions, the authors prove a series
of potential estimates. Those lead to local boundedness and (an explicit modulus of) continuity for Du.
Also, a borderline condition in Lorentz spaces follows: if f ∈ Ld,1(Ω), then Du is continuous. Besides
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providing new, fundamental developments to the regularity theory of fully nonlinear elliptic equations,
the arguments in [10] are pioneering in taking to the non-variational setting a class of methods available
before only for problems in the divergence form.

We extend the findings in [10] to the case of (1.1) in the presence of bounded-measurable
ingredients. Our analysis heavily relies on properties of Lp-viscosity solutions [5, 42]; see also [45].

Our first main result concerns the Lipschitz-continuity of Lp-viscosity solutions to (1.1) and reads
as follows.

Theorem 1 (Lipschitz continuity). Let u ∈ C(Ω) be an Lp-viscosity solution to (1.1). Suppose
Assumptions A1 and A2 are in force. Then, for every q > d, there exists a constant
θ∗ = θ∗(d, λ,Λ, p, q) such that if Assumption A3 holds with θ ≡ θ∗, one has

|Du(x)| ≤ C

I f
p(x, r) +

(∫
Br(x)
|Du(y)|q dy

) 1
q


for every x ∈ Ω and r > 0 with Br(x) ⊂ Ω, for some universal constant C > 0.

We recall that a constant is called universal whenever it depends solely on the dimension and the
ellipticity constants. The potential estimate in Theorem 1 builds upon Święch’s W1,q-estimates to
produce uniform estimates in B1/2. In fact, by taking d < q < p∗ in Theorem 1, with

p∗ :=
pd

d − p
, and d∗ = +∞,

one finds C = C(d, λ,Λ, p) such that

‖Du‖L∞(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖ f ‖Lp(B1)

)
.

Our second main result establishes gradient-continuity for the Lp-solutions to (1.1) and provides an
explicit modulus of continuity for the gradient. It reads as follows.

Theorem 2 (Gradient continuity). Let u ∈ C(Ω) be an Lp-viscosity solution to (1.1). Suppose
Assumptions A1 and A2 are in force. Suppose further that I f

p(x, r) → 0 as r → 0, uniformly in x.
There exists 0 < θ∗ � 1 such that, if Assumption A3 holds for θ ≡ θ∗, then Du is continuous. In
addition, for Ω′ b Ω′′ b Ω, and any δ ∈ (0, 1], one has

|Du(x) − Du(y)| ≤ C
(
‖Du‖L∞(Ω′)|x − y|α(1−δ) + sup

x∈Ω
I f

p

(
x, 4|x − y|δ

))
,

for every x, y ∈ Ω′, where C = C(d, p, λ,Λ, ω,Ω′,Ω′′) and α = α(d, p, λ,Λ).

The strategy to prove Theorems 1 and 2 combines fundamental facts in Lp-viscosity theory to show
that a solution to (1.1) also solves an equation of the form

F̃(D2u, x) = f̃ in Ω,

where F̃ and f̃ meet the conditions required in [10]. In particular, the Lorentz borderline condition for
gradient-continuity follows as a corollary.

Corollary 1 (Borderline gradient-regularity). Let u ∈ C(Ω) be an Lp-viscosity solution to (1.1).
Suppose Assumptions A1 and A2 are in force. Suppose further f ∈ Ld,1(Ω). There exists 0 < θ∗ � 1
such that, if Assumption A3 holds for θ ≡ θ∗, then Du is continuous.
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We organize the remainder of this paper as follows. Section 2 presents some context on potential
estimates, briefly describing their motivation and mentioning recent breakthroughs. We detail our
main assumptions in Section 3.1, whereas Section 3.2 gathers preliminary material. The proofs of
Theorems 1 and 2 are the subject of Section 4.

2. Potential estimates: from the Poisson equation to fully nonlinear problems

Potential estimates are natural in the context of linear equations for which a representation formula
is available. For instance, let µ ∈ L1(Rd) be a measure and consider the Poisson equation

− ∆u = µ in Rd. (2.1)

It is well-known that u can be represented through the convolution of µ with the appropriate Green
function. In case d > 2, we have

u(x) = C
∫
Rd

µ(y)
|x − y|d−2 dy, (2.2)

where C > 0 depends only on the dimension.
Now, recall the β-Riesz potential of a Borel measure µ ∈ L1(Rd) is given by

Iµβ (x) :=
∫
Rd

µ(y)
|x − y|d−β

dy.

Hence, the representation formula (2.2) allows us to write u(x) as the 2-Riesz potential of µ.
Immediately one infers that

|u(x)| ≤ C
∣∣∣Iµ2 (x)

∣∣∣ ,
obtaining a potential estimate for u. By differentiating (2.2) with respect to an arbitrary direction
e ∈ Sd−1, one concludes

|Du(x)| ≤ C
∣∣∣Iµ1 (x)

∣∣∣ .
That is, the representation formula available for the solutions to the Poisson equation yields potential
estimates for the solutions.

This reasoning collapses if (2.1) is replaced with a nonlinear equation lacking representation
formulas. Then a fundamental question arises: it concerns the availability of potential estimates for
(nonlinear and inhomogeneous) problems for which representation formulas are not available.

The first answer to that question appears in the works of Tero Kilpeläinen and Jan Malý [23], and
Neil Trudinger and Xu-Jia Wang [44], where the authors produce potential estimates for the solutions of
p-Poisson type equations. Taking this approach a notch up, and accounting for potential estimates for
the gradient of solutions, one finds the contributions of Giuseppe Mingione [38–41], Frank Duzaar and
Giuseppe Mingione [16–19], and Tuomo Kuusi and Giuseppe Mingione [26–37]. Of particular interest
to the present article is the analysis of potential estimates in the fully nonlinear setting, due to Panagiota
Daskalopoulos, Tuomo Kuusi, and Giuseppe Mingione [10]. More recent contributions appeared in the
works of Cristiana De Filippis [11] and Cristiana De Filippis and Giuseppe Mingione [12,13]. See also
the works of Cristiana De Filippis and collaborators [14, 15].

In [19] the authors examine an equation of the form

− div a(x,Du) = µ in Ω, (2.3)
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where Ω ⊂ Rd is a Lipschitz domain, and µ ∈ L1(Ω) is a Radon measure with finite mass. Here,
a : Ω × Rd → Rd satisfies natural conditions, regarding growth, ellipticity, and continuity. Those
conditions involve an inhomogeneous exponent p ≥ 2, concerning the behaviour of a = a(x, z) on z.
An oversimplification yields

a(x, z) = |z|p−2z,

for p > 2, turning (2.3) into the degenerate p-Poisson equation. In that paper, the authors resort to the
Wolff potential Wµ

β,p, defined as

Wµ
β,p(x,R) :=

∫ R

0

1

r
d−βp
p−1

(∫
Br(x)

µ(y)dy
) 1

p−1 dr
r
,

for β ∈ (0, d/p]. Their main result is a pointwise estimate for the gradient of the solutions to (2.3). It
reads as

|Du(x)| ≤ C
[∫

BR(x)
|Du(y)| dy + Wµ

1
p ,p

(x, 2R)
]
, (2.4)

whenever BR(x) ⊂ Ω, and R > 0 is bounded from above by some universal quantity depending also
on the data of the problem; see [19, Theorem 1.1]. A remarkable consequence of this estimate is
a Lipschitz-continuity criterium for u obtained solely in terms of the Wolff potential of µ. Indeed,
if Wµ

1
p ,p

(·,R) is essentially bounded for some R > 0, every W1,p
0 -weak solution to (2.3) would be

locally Lipschitz continuous. We notice the nonlinear character of the Wolff potential suits the growth
conditions the authors impose on a(x, z), as it scales accordingly under Lipschitz geometries.

The findings in [19] also respect a class of very weak solutions, known as solutions obtained by
limit of approximations (SOLA); see [1,2]. This class of solutions is interesting because, among other
things, it allows us to consider functions in larger Sobolev spaces. Indeed, for 2− 1/d < p < d one can
prove the existence of a SOLA u ∈ W1,1

0 (Ω) to

−∆pu = µ in Ω

satisfying u = 0 on ∂Ω. In addition, u ∈ W1,q
0 (Ω) with estimates, provided q > 1 such that

1 < q <
d(p − 1)

d − 1
.

When it comes to the proof of (2.4), the arguments in [19] are very involved. However, one notices a
fundamental ingredient. Namely, a decay rate for the excess of the gradient with respect to its average.
Indeed, the authors prove there exist β ∈ (0, 1] and C ≥ 1 such that∫

Br(x)

∣∣∣Du(y) − (Du)r,x

∣∣∣ dy ≤ C
( r
R

)β∫
BR(x)

∣∣∣Du(y) − (Du)R,x

∣∣∣ dy, (2.5)

for every 0 < r < R with BR(x) ⊂ Ω. Here,

(Du)ρ,x :=
∫

Bρ(x)
Du(z)dz.

See [19, Theorem 3.1]. An important step in the proof of (2.5) is a measure alternative, depending on
the fraction of the ball Br in which the gradient is larger than, or smaller than, some radius-dependent
quantity.

Although the Wolff potential captures the inhomogeneous and nonlinear aspects of a = a(x, z), a
natural question concerns the use of linear potentials in the analysis of (2.3).
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Indeed, in [39] the author supposes a(x, z) to satisfy

λ|ξ|2 ≤ 〈∂za(x, z)ξ, ξ〉 , |∂za(x, z)| + |a(x, 0)| ≤ C, |a(x, z) − a(y, z)| ≤ K|x − y|α(1 + |z|), (2.6)

for every x, y ∈ Ω, z ∈ Rd, and ξ ∈ Rd, for some C, λ > 0, and α ∈ (0, 1]. Under these natural conditions,
he derives a gradient bound in terms of the (linear) localized Riesz potential Iσβ (x,R), defined as

Iσβ (x,R) :=
∫ R

0

1
rd−β

(∫
Br(x)

σ(y)dy
)

dr
r
,

for a measure σ ∈ L1(Ω), and β ∈ (0, 1], whenever BR(x) ⊂ Ω.
Indeed, the main contribution in [39] is the following: under (2.6), solutions to (2.3) satisfy

|Du(x)| ≤ C
[∫

BR(x)
|Du(y)|dy + Iµ1(x, 2R) + K

(
I|Du|
α (x, 2R) + Rα

)]
, (2.7)

where C > 0 depends on the data in (2.6). In case a = a(z) does not depend on the spatial variable,
K ≡ 0 and (2.7) recovers the usual potential estimate, such as the one in (2.4).

A further consequence of potential estimates is in unveiling the borderline conditions for
C1-regularity of the solutions to (2.3). See [17]; see also [6] for related results. More precisely, the
intrinsic connection between Lorentz spaces and the nonlinear Wolff potentials unlocks the minimal
conditions on the right-hand side µ that ensures continuity of Du.

In [17], the authors impose p-growth, ellipticity, and continuity conditions on a = a(x, z), and derive
minimal requirements on µ to ensure that u ∈ C1(Ω) [17, Theorem 3]; see also [17, Theorem 9] for the
vectorial counterpart of this fact.

They prove that if µ ∈ L
d, 1

p−1

loc (Ω), then Du is continuous in Ω. To get this fact, one first derives an
estimate for the Wolff potential Wµ

1
p ,p

(x,R) in terms of the (d, 1/(p − 1))-Lorentz norm of µ. It follows
from averages of decreasing rearrangements of µ. See [17, Lemma 2]. Then one notices that such
control implies

Wµ
1
p ,p

(x,R)→ 0

uniformly in x ∈ Ω, as R→ 0; see [17, Lemma 3].
The previous (very brief) panorama of the literature suggests that whenever a = a(x, z) satisfies

natural conditions – concerning p-growth, ellipticity, and continuity – potential estimates are available
for the solutions to (2.3). Those follow through Wolff and (linear) Riesz potentials. Furthermore,
this approach comes with a borderline criterion on µ for the differentiability of solutions. However,
these developments appear in the variational setting, closely related to the notion of weak distributional
solutions.

Potential estimates in the non-variational case are the subject of [10]. In that paper, the authors
examine fully nonlinear elliptic equations

F(D2u, x) = f in Ω, (2.8)

where F is uniformly elliptic and f ∈ Lp(B1). In this context, the appropriate notion of solution is the
one of Lp-viscosity solution [5]. Technical aspects of the theory – including its very definition – rule
out the case where f ∈ L1(Ω), regardless of the dimension d ≥ 2. Instead, the authors work in the
range p0 < p < d, where d/2 < p0 < d is the exponent associated with the Green’s function estimates
appearing in [22].
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The consequences of potential estimates for fully nonlinear equations are remarkable. In fact, if
f ∈ Lp(Ω) with p > d, solutions to (2.8) are known to be of class C1,α, with α ∈ (0, 1) satisfying

α < min
{
α0, 1 −

d
p

}
,

where α0 ∈ (0, 1) is the exponent in the Krylov-Safonov theory available for F = 0; see [42]. It is also
known that C1,α-regularity is no longer available for (2.8) in case p < d. The fundamental question
arising in this scenario concerns the regularity of Du in the Escauriaza range p0 < p < d.

In [42], the author imposes an oscillation control on F(M, ·) with respect to its fixed-coefficients
counterpart and proves regularity estimates for the solutions in W1,q(Ω), for p0 < p < d, for every

q < p∗ :=
pd

d − p
,

with d∗ := +∞. Meanwhile, the existence of a gradient in the classical sense, or any further information
on its degree of smoothness, was not available in the p < d setting.

In [10] the authors consider Lp-viscosity solutions to (2.8), with f ∈ Lp(Ω), for p0 < p < d. In this
context, they prove the local boundedness of Du in terms of a p-variant of the (linear) Riesz potential.
In addition, the authors derive continuity of the gradient, with an explicit modulus of continuity.
Finally, they obtain a borderline condition on f , once again involving Lorentz spaces. In fact, if
f ∈ Ld,1(Ω), then u ∈ C1(Ω).

The reasoning in [10] involves the excess of the gradient vis-a-vis its average and a decay rate for
this quantity. However, in the context of viscosity solutions, energy estimates are not available as a
starting point for the argument. Instead, the authors cleverly resort to Święch’s W1,q-estimates and
prove a decay of the excess at an initial scale. An involved iteration scheme builds upon the natural
scaling of the operator and unlocks the main building blocks of the argument.

3. Technical preliminaries and main assumptions

This section details our assumptions and gathers basic notions and facts used throughout the paper.
We start by putting forward the former.

3.1. Main assumptions

For completeness, we proceed by defining the extremal Pucci operators P±λ,Λ : S (d)→ R.

Definition 1 (Pucci extremal operators). Let 0 < λ ≤ Λ. For M ∈ S (d) denote with λ1, . . . , λd its
eigenvalues. We define the Pucci extremal operator P+

λ,Λ : S (d)→ R as

P+
λ,Λ(M) := −λ

∑
λi>0

λi + Λ
∑
λi<0

λi.

Similarly, we define the Pucci extremal operator P− : S (d)→ R as

P−λ,Λ(M) := −Λ
∑
λi>0

λi + λ
∑
λi<0

λi.

A 1 (Structural condition). Let ω : [0,+∞) → [0,+∞) be a modulus of continuity, and fix γ > 0. We
suppose the operator F satisfies

P−λ,Λ(M − N) − γ|p − q| − ω(|r − s|) ≤ F(M, p, r, x) − F(N, q, s, x)
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≤ P+
λ,Λ(M − N) + γ|p − q| + ω(|r − s|),

for every (M, p, r) and (N, q, s) in S (d) × Rd × R, and every x ∈ Ω \ N . Also, F = F(M, p, r, x) is
non-decreasing in r and F(0, 0, 0, x) = 0.

Our next assumption sets the integrability of the right-hand side f .

A 2 (Integrability of the right-hand side). We suppose f ∈ Lp(B1), for p > p0, where d/2 < p0 < d is
the exponent such that the ABP maximum principle holds for solutions to uniformly elliptic equations
F = f provided f ∈ Lp, with p < p0.

We continue with an assumption on the oscillation of F on x. To that end, consider

β(x, y) := sup
M∈S (d)\{0}

|F(M, 0, 0, x) − F(M, 0, 0, y)|
‖M‖

.

We proceed with a smallness condition on β(·, y), uniformly in y ∈ B1.

A 3 (Oscillation control). For every y ∈ Ω, we have

sup
Br(y)⊂Ω

∫
Br(y)

β(x, y)pdx ≤ θp,

where 0 < θ � 1 is a small parameter we choose further in the paper.

We close this section with a remark on the modulus of continuity ω appearing in Assumption A1.
For any v ∈ C(B1) ∩ L∞(B1) we notice that ω(|v(x)|) ≤ C for some C > 0, perhaps depending on the
L∞-norm of v. Hence (∫

B1

ω(|v(x)|)pdx
) 1

p

≤ C.

This information will be useful when estimating certain quantities in Lp-spaces appearing further in
the paper.

3.2. Preliminaries

In the sequel, we introduce the basics of Lp-viscosity solutions, mainly focusing on the properties
we use in our arguments. We start with the definition of Lp-viscosity solutions for (1.1).

Definition 2 (Lp-viscosity solution). Let F = F(M, p, r, x) be nondecreasing in r and f ∈ Lp(B1) for
p > d/2. We say that u ∈ C(Ω) is an Lp-viscosity subsolution to F = f if for every φ ∈ W2,p

loc (Ω), ε > 0
and open subsetU ⊂ Ω such that

F(D2φ(x),Dφ(x), u(x), x) − f (x) ≥ ε

almost everywhere in U, then u − φ cannot have a local maximum in U. We say that u ∈ C(Ω) is an
Lp-viscosity supersolution to F = f if for every φ ∈ W2,p

loc (Ω), ε > 0 and open subsetU ⊂ Ω such that

F(D2φ(x),Dφ(x), u(x), x) − f (x) ≤ −ε

almost everywhere in U, then u − φ cannot have a local minimum in U. We say that u ∈ C(Ω) is an
Lp-viscosity solution to F = f if it is both an Lp-sub and an Lp-supersolution to F = f .
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Although the definition of Lp-viscosity solutions requires p > d/2, the appropriate range for the
integrability of the data is indeed p > p0 > d/2, as most results in the theory are available only in this
setting. See, for instance, [5]. For further reference, we recall a result on the twice-differentiability of
Lp-viscosity solutions.

Lemma 1 (Twice-differentiability). Let u ∈ C(Ω) be an Lp-viscosity solution to (1.1). Suppose
Assumptions A1 and A2 are in force. Then u is twice differentiable almost everywhere in Ω. Moreover,
its pointwise derivatives satisfy the equation almost everywhere in Ω.

For the proof of Lemma 1, see [5, Theorem 3.6]. In what follows, we present a lemma relating
Lp-viscosity solutions to F = f with equations governed by the extremal Pucci operators.

Lemma 2. Suppose Assumption A1 is in force and f ∈ Lp(Ω), with p > p0. Suppose further that
u ∈ C(Ω) is twice differentiable almost everywhere in Ω. Then u is an Lp-viscosity subsolution [resp.
supersolution] of (1.1) if and only if

i. we have

F(D2u(x) ,Du(x), u(x), x) ≤ f (x)
[resp. F(D2u( x),Du(x), u(x), x) ≥ f (x)]

almost everywhere in Ω, and
ii. whenever φ ∈ W2,p

loc (Ω) and u − φ has a local maximum [resp. minimum] at x∗, then

ess lim infx→x∗
(
P−

(
D2(u − φ)(x)

)
− γ |D(u − φ)(x)|

)
≥ 0

[resp. ess lim supx→x∗
(
P+

(
D2(u − φ)(x)

)
+ γ |D(u − φ)(x)|

)
≤ 0].

For the proof of Lemma 2, we refer the reader to [42, Lemma 1.5]. We are interested in a
consequence of Lemma 2 that allows us to relate the solutions of F(D2u,Du, u, x) = f with the
equation F(D2u, 0, 0, x) = f̃ , for some f̃ ∈ Lp(Ω). This is the content of the next corollary.

Corollary 2. Let u ∈ C(Ω) be an Lp-viscosity solution to (1.1). Suppose A1 and A2 hold. Define
f̃ : Ω→ R as

f̃ (x) := F(D2u(x), 0, 0, x).

If f̃ ∈ Lp(Ω), then u is an Lp-viscosity solution of

F(D2u, 0, 0, x) = f̃ in Ω. (3.1)

Proof. We only prove that u is an Lp-viscosity subsolution to (3.1), as the case of supersolutions is
analogous. Notice the proof amounts to verify the conditions in items i. and ii. of Lemma 2.

Because u solves (1.1) in the Lp-viscosity sense, Lemma 1 implies it is twice differentiable almost
everywhere in Ω. Hence, the definition of f̃ ensures

F(D2u(x), 0, 0, x) ≤ f̃ (x)

almost everywhere in Ω, which verifies item i. in Lemma 2.
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To address item ii., we resort to Lemma 2 in the opposite direction. Let φ ∈ W2,p
loc (Ω) and suppose

x∗ ∈ Ω is a point of maximum for u−φ. Since u is an Lp-viscosity solution to (1.1), that lemma ensures
that

ess lim inf
x→x∗

(
P−

(
D2(u − φ)(x)

)
− γ |D(u − φ)(x)|

)
≥ 0.

Therefore, item ii. also follows and the proof is complete. �

We also use the truncated Riesz potential of f . In fact, we consider its Lp-variant, introduced in [10].
To be precise, given f ∈ Lp(Ω), we define its (truncated) Riesz potential I f

p(x, r) as

I f
p(x, r) :=

∫ r

0

(∫
Bρ(x)
| f (y)|pdy

) 1
p

dρ.

In case p = 1 we recover the usual truncated Riesz potential.
We proceed by stating Theorems 1.2 and 1.3 in [10].

Proposition 1 (Daskalopoulos-Kuusi-Mingione I). Let u ∈ C(Ω) be an Lp-viscosity solution to

F(D2u, x) = f in B1.

Suppose Assumptions A1 and A2 are in force. Then there exists θ1 such that, if Assumption A3 holds
for θ ≡ θ1, one has

|Du(x)| ≤ C

I f
p(x, r) +

(∫
Br(x)
|Du(y)|q dy

) 1
q


for every x ∈ Ω and r > 0 with Br(x) ⊂ Ω, for some universal constant C > 0.

Proposition 2 (Daskalopoulos-Kuusi-Mingione II). Let u ∈ C(Ω) be an Lp-viscosity solution to

F(D2u, x) = f in Ω.

Suppose Assumptions A1 and A2 are in force. Suppose further that I f
p(x, r)→ 0 as r → 0, uniformly in

x. Then there exists θ2 such that, if Assumption A3 holds for θ ≡ θ2, Du is continuous. In addition, for
Ω′ b Ω′′ b Ω, and any δ ∈ (0, 1], one has

|Du(x) − Du(y)| ≤ C
(
‖Du‖L∞(Ω′′)|x − y|α(1−δ) + sup

z∈{x,y}
I f

p

(
z, 4|x − y|δ

))
,

for every x, y ∈ Ω′, where C = C(d, p, λ,Λ, γ, ω,Ω′,Ω′′) and α = α(d, p, λ,Λ).

For the proofs of Propositions 1 and 2, we refer the reader to [10, Theorem 1.3]. We close this
section by including Święch’s W1,p-regularity result.

Proposition 3 (W1,q-regularity estimates). Let u ∈ C(Ω) be an Lp-viscosity solution to (1.1). Suppose
Assumptions A1 and A2 are in force. There exists 0 < θ � 1 such that, if Assumption A3 holds with
θ ≡ θ, then u ∈ W1,q

loc (Ω) for every 1 < q < p∗, where

p∗ :=
pd

d − p
, and d∗ = +∞.

Also, for Ω′ b Ω, there exists C = C(d, λ,Λ, γ, ω, q, diam(Ω′), dist(Ω′, ∂Ω)) such that

‖u‖W1,q(Ω′) ≤ C
(
‖u‖L∞(∂Ω) + ‖ f ‖Lp(Ω)

)
.

The former result plays an important role in our argument since it allows us to relate the operator
F(M, p, r, x) with F(M, 0, 0, x). In what follows, we detail the proofs of Theorems 1 and 2.
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4. Proof of Theorems 1 and 2

In the sequel, we detail the proofs of Theorems 1 and 2. Resorting to a covering argument, we
work in the unit ball B1 instead of Ω. As we described before, the strategy is to show that Lp-viscosity
solutions to (1.1) are also Lp-viscosity solutions to

G(D2u, x) = g in B1.

Then verify that G : S (d) × B1 \ N → R and g ∈ Lp(B1) are in the scope of [10]. More precisely,
satisfying the conditions in Theorems 1.2 and 1.3 in that paper. We continue with a proposition.

Proposition 4. Let u ∈ C(B1) be an Lp-viscosity solution to (1.1). Suppose Assumptions A1 and A2
are in force. Suppose further that Assumption A3 holds with θ ≡ θ, where θ is the parameter from
Proposition 3. Then u is an Lp-viscosity solution for

F(D2u, 0, 0, x) = f̃ in B9/10,

where f̃ ∈ Lp
loc(B1) and there exists C > 0 such that∥∥∥ f̃

∥∥∥
Lp(B9/10)

≤ C
(
‖u‖L∞(B1) + ‖ f ‖Lp(B1)

)
.

Proof. We split the proof into two steps.
Step 1 - We start by applying Proposition 3 to the Lp-viscosity solutions to (1.1). By taking θ in
Assumption A3 such that θ ≡ θ, we get u ∈ W1,q

loc (B1) and

‖Du‖Lq(B9/10) ≤ C
(
‖u‖L∞(∂B1) + ‖ f ‖Lp(B1)

)
, (4.1)

for some universal constant C > 0. Moreover, because u is an Lp-viscosity solution to (1.1), Lemma 1
ensures it is twice-differentiable almost everywhere in B1. Define f̃ : B1 → R as

f̃ (x) := F(D2u(x), 0, 0, x).

Step 2 - Resorting once again to Lemma 1, we get that

f̃ (x) = F(D2u(x), 0, 0, x) − F(D2u(x),Du(x), u(x), x) + f (x),

almost everywhere in B1. Ellipticity implies∣∣∣ f̃ (x)
∣∣∣ ≤ γ |Du(x)| + ω (|u(x)|) + | f (x)| ,

for almost every x ∈ B1. Using (4.1), and noticing that one can always take q > p, we get f̃ ∈ Lp
loc(B1),

with ∥∥∥ f̃
∥∥∥

Lp(B9/10)
≤ C

(
‖u‖L∞(B1) + ‖ f ‖Lp(B1)

)
,

for some universal constant C > 0, also depending on p. A straightforward application of Corollary 2
completes the proof. �

Proposition 4 is the main ingredient leading to Theorems 1 and 2. Once it is available, we proceed
with the proof of those theorems.
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Proof of Theorem 1. For clarity, we split the proof into two steps.
Step 1 - Because of Proposition 4, we know that an Lp-viscosity solution to (1.1) is also an Lp-viscosity
solution to

F̃(D2u, x) = f̃ in B9/10,

where
F̃(M, x) := F(M, 0, 0, x),

and f̃ is defined as in Proposition 4. To conclude the proof, we must ensure that F̃ satisfies the
conditions in Proposition 1.
Step 2 - One easily verifies that F̃ satisfies a (λ,Λ)-ellipticity condition, inherited from the original
operator F. It remains to control the oscillation of F̃(M, x) vis-a-vis its fixed-coefficient counterpart,
F̃(M, x0), for x0 ∈ B9/10.

Because
F̃(M, x) − F̃(M, x0) = F(M, 0, 0, x) − F(M, 0, 0, x0),

one may take θ ≡ θ1 in Assumption 3 to ensure that F̃ satisfies the conditions in Proposition 1. Taking

θ∗ := min
(
θ1, θ

)
and applying Proposition 1 to u, the proof is complete. �

The proof of Theorem 2 follows word for word the previous one, except for the choice of θ∗ :=
min

(
θ2, θ

)
, and is omitted.
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