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Abstract: Among the semiconductors formed by a 13th group element and nitrogen, indium nitride
(InN) has promising electronic and optical properties, which make it an appropriate material for light-
emitting devices and high-speed electronic applications. One-dimensional and two-dimensional InN
structures, such as nanotubes and nanosheets, respectively, are expected to present novel advanced
characteristics different from those of bulk InN, bringing new prospects in the designs of electronic
and optical nanodevices. Despite the difficulties in the synthesis and mass production of the indium
nitride nanotubes and nanosheets, the understanding of their properties, including mechanical ones,
deserves more research attention, taking into account future perspectives. In this context, the present
work is an exploratory study on the numerical evaluation of elastic properties of InN nanosheets and
nanotubes, using the nanoscale continuum modelling (also called molecular structural mechanics)
approach. The results obtained constitute a solid base for further investigation on the mechanical
behaviour of the InN nanostructures, where studies are at an early stage or almost absent.

Keywords: indium nitride; nanotubes; nanosheets; elastic moduli; numerical simulation

1. Introduction

Boron nitride (BN), aluminium nitride (AIN), gallium nitride (GaN) and indium nitride
(InN) semiconductors have been recognised as fundamental constituents of numerous
electronic and optoelectronics devices [1]. Indium nitride has high electron mobility [2]
and the smallest energy gap [3] among the 13th group elements—nitride compounds, which
led to its promising electron transport and optical properties. This indicates that InN is
a more advantageous material than BN, AIN and GaN for light-emitting devices (LED)
and high-speed field-effect transistors (FETs) [1,4,5]. In addition, InN-based alloys fused
with broadband gap GaN are considered key materials for green and blue LEDs and laser
diodes [6,7].

Among other two-dimensional (2D) materials, with a graphene-like honeycomb lattice,
the structural, thermal and mechanical stability of a hexagonal atomic layer sheet of
InN were predicted using first-principles calculations within density functional theory
(DFT) [4,8]. Le [9], in a molecular dynamic (MD) simulation study with Tersoff and Tersoff-
like potentials for modelling interatomic interactions, investigated the tensile behaviour of
hexagonal monolayer sheets, including InN, and calculated their Young’s modulus.

Concerning the one-dimensional (1D) InN tubular nanostructures, the successful
synthesis of single-crystalline indium nitride nanotubes (InNNTs) was reported in the
literature by Yin et al. [10] and Sardar et al. [11]. Yin et al. [10] synthesised INNNTs in
mass quantity via controlled carbonitriding reaction in a vapor-solid (VS) route, using
multi-walled carbon nanotubes (MWCNTs) or pure graphite powder as carbon source
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for the carbonitriding reaction. The synthesised INNNTs were straight, crystalline of
highly pure, with a length of several micrometres and an external diameter of 450-550 nm.
Sardar et al. [11] obtained the single-crystalline INNNTs, almost defect-free, with external
diameter of about 300 nm, employing the low-temperature chemical reaction to reduce
the appearance of defects and prevent decomposition. Concerning theoretical studies on
InN nanotubes, Qian et al. [12] predicted the stability and electronic structure of single-
walled InNNNTs, using DFT calculations. The existence of a direct gap, calculated for zigzag
nanotubes, suggests the potential application of InNNTs in red LEDs [12]. To the best of
our knowledge, results on the mechanical properties of INNNTs are not available in the
literature so far.

Despite the promising uses of InIN nanostructures, there is an evident lack of studies
on their properties, including the mechanical ones. In this context, the present study
makes a systematic numerical evaluation of the elastic properties of one-layer indium
nitride nanosheets (INNNSs) and single-walled indium nitride nanotubes (SWInNNTs) in
a wide range of chiral indices and diameters. The force field constants, which provide
input data for the finite element (FE) model of InN nanostructures, were evaluated by two
different calculation methods. The effect of input parameters, used for the FE modelling
and calculated based on two sets of force field constants, on the elastic properties of INNNSs
and InNNTs was studied.

2. Materials and Methods
2.1. Atomic Structure of Indium Nitride Nanosheets and Nanotubes

The indium nitride sheet has a hexagonal lattice, where the In and N atoms are
arranged in a honeycomb structure with planar geometry [8]. Figure 1 shows the InN
sheet with hexagonal atomic arrangement characterised by the chiral vector, Cy,, which is
expressed as follows:

Ch=na; + may, 1)

where a1 and a5 are the unit vectors of the honeycomb diatomic InN lattice; n and m are the
chiral indices, both integers. The length of the unit vector a is calculated by a = ar, NV/3,
where ay,_y is the equilibrium In-N bond length, equal to 0.206 nm [8]. The knowledge of
the chiral indices, n and m, allows definition of the other fundamental characteristic of the
hexagonal sheet of InN, which is the chiral angle, ®, determined by following expression:

m

VvnZ £ nm + m2

The single-walled INNNT can be understood as a rolled-up InN sheet, with the chiral
angle, ©, varying in the range of 0° to 30°. As a consequence, three main symmetry groups
of nanotubes are defined through the value of ©: zigzag (n, 0) configuration, where ® = 0°
(m = 0); armchair (n, n) configuration, where ® = 30° (n = m); chiral (n, m) configuration,
where 0° < ® < 30° (n # m # 0). The two limiting structures, (n, 0) zigzag and (n, n)
armchair (see Figure 1), are called non-chiral nanotubes. SWINNNTs are characterised by
the nanotube diameter, D, expressed as follows:

-1

. 3
©® = sin >

@

In-Ny/3(n? + nm + m?)
D= — v - , 3)

where n and m are the chiral indices and ay,_y is the equilibrium bond length.
Examples of non-chiral and chiral SWInNNTs with comparable diameters, Dy, are
shown schematically in the Figure 2.
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Figure 1. InN hexagonal sheet with definitions of the chiral vector, Cy,, and the chiral angle, ®, as
well as the scheme for rolling up in zigzag and armchair nanotubes. In atoms are depicted in bright

blue; N atoms in pale blue.
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Figure 2. Configurations (15, 0) zigzag, (12, 6) chiral and (6, 6) armchair SWInNNTSs, obtained using
the software Nanotube Modeler©. In atoms are shown in bright blue; N atoms in pale blue.

2.2. Numerical Modeling of Elastic Properties of InNNSs and SWInNNTs
2.2.1. Input for FE Model of InN Nanostructures

In the current work, the nanoscale continuum modelling (NCM) approach, also known
as molecular structural mechanics (MSM), was employed to assess the elastic properties of
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InN nanostructures. This approach uses the equivalence between bonding interactions in
the hexagonal diatomic lattice and elastic deformations of beam elements (see Figure 3).

I I
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I | |
o Ar
bond stretching beam pure tension
(a) (b)
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90
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90
bond bending beam pure bending
(c) (d)
Ad Ay
dihedral torsion (left) and out-of-plane torsion (right) beam pure torsion
(e) (f)

Figure 3. Equivalence between InN nanostructure bonding interactions and beam elements: (a) bond
stretching; (b) pure tension of the beam; (c) bond bending; (d) pure bending of the beam; (e) dihedral
torsion (right) and out-of-plane torsion or inversion (left); (f) pure torsion of the beam. In atoms are
shown in bright blue; N atoms in pale blue.

Taking into account that the energies related to dihedral angle torsion, Ug,, and out-
of-plane torsion, Uy,, can be merged into a single term with the assumption of small
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deformations, the potential energies of bond stretching, bond stretching, U, bond bending,
Up, and bond torsion, U, can be written as follows [13,14]:

U, = 11<r(Ar)2, (4)
2
1 2
Uo = 5ko(80)?, ©)
1 1
Ur=Ug + Uy = 5(2kg + ky) (80)* = Ske(80)?, 6)

where ki, kg, k¢, and ky, are the bond stretching, bond bending, dihedral torsion and
inversion force constants, respectively; k= 2ky, + ky, is the torsional resistance force
constant; Ar, A@ and A¢ are the bond stretching increment, bending variation of the bond
angle and angle variation of the twist bond, respectively.

On the other hand, the strain energies related to axial, U, bending, Ug, and torsional,
Ur, elastic deformations of equivalent beams are given by following expressions:

Uy = 2 280 (012, )
2 1

Up = 2220 012, ®)
2 1

Ur = 5 2 (a9)? )

where E, Ay, is the beam tensile rigidity, EpI;, is the beam bending rigidity and Gy]J;, is the
beam torsional rigidity; Al is the axial tensile displacement of the beam, w is the rotational
angle at the beam ends and A9 is the relative rotation between the ends of the beam.

Equating U;= Uy, Ug = Up and U= Ur, from expressions (4)—(6) and (7)—(9), it
is possible to link the beam E, Ay, Epl, and GpJ, rigidities with the k;, kg and k. force
constants [15], respectively, as follows:

EpAp = ki, (10)
Eplp,= lkg, (11)
GpJp= Ik, (12)

where, [, is the beam length equal to the bond length, ay,_N.

Equations (10)—(12) permit calculating the input parameters for the numerical simu-
lation, provided that the values of the force constants are known. As there are no values
in the literature for the bond stretching, k;, and bond bending, kg, force constants of InN
nanostructures, two established methods for calculating k; and kg of diatomic nanostruc-
tures were used for this purpose in the present study. One of these methods makes use
of universal force fields (UFF) [14] and the other is based on the combination of ab initio
DFT calculations and the analytical expressions derived from molecular mechanics (MM)
for the surface Young’s modulus, Eg, and the Poisson’s ratio, v [16]. The UFF method,
based only on the chemical element and its connectivity, provides simple relationships for
molecular force field functional forms and parameters regardless of the specific atomic
configuration. The DFT + MM method allows taking into account the geometric parameters
of the diatomic hexagonal nanostructure. The calculation of the bond stretching, k,, and
bond bending, kg, force constants for InN nanostructures is detailed below.
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(1) UFF

The bond stretching, k;, and bond bending, kg, force constants in the UFF method
are evaluated using the generalisation of Badger’s rules. For the calculation of the bond
stretching constant, k;, the following expression was used [14]:

* 7k
1

ke = 664.12 (13)

j
3 4
r;
where Z{ and Z are the effective charges of the N and In atoms and where r;; and ry are
the lengths of In-N and N-In bonds, respectively, with 1j; = rjx = aj, N, as illustrate in
Figure 4.

Figure 4. Section of the InN nanostructure showing rj;, rjx and 8. N atoms are represented in pale
blue and In atoms are in bright blue.

The bond bending constant, kg, was calculated as follows [14]:

757k

ke = 664.12% [3rijrik (1 - cos290) ~r}cos eo}, (14)
jk
where 6 is the angle between adjacent bonds in the InN nanostructure (Figure 4) and
rjzk = rizj —i—rizk—Zrijrikcos 09.

It is worth noting that according to Rappé et al. [14], the ko force constant of the
diatomic nanostructure, depends on the effective charges of the atoms In and N and the
three-body angles between the bond pairs, in the case of the present study, In-N-In and
N-In-N, as can be seen in Figure 3c. This leads to two different values for the bond bending
constant: kgj and kgp. The following relationship between the two values, kg1 and kg»,
and the effective charges of the atoms (Z] ,) was also suggested [14]:

kot _ Z3’
koo  Z;%

(15)

(2) DFT + MM

To determine the bond stretching, k;, and the bond bending constants, kg; and kg5, of
the InN nanostructure the following expressions were used [17]:

9E;

kr = mr (16)

E.r2
i , (17)

ko12) = 7
(1 - ) V3(1+3v)

z7,
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where Eg and v are the surface Young’s modulus and the Poisson’s ratio of the InN sheet,
respectively, which can be obtained experimentally or from ab initio DFT computations;
Zi and Z; are the effective charges of In and N atoms; rjj = ap,\ is the In-N bond length.
The equation (15) was taken into account to derive the expression (17) for kgy ().

Values from the literature, required to calculate the k;, ko1 and kg values, using UFF
and DFT + MM methods, are ap,_n = 0.206 nm [8], Z] = 2.070 charge for In atom [14], Z3
= 2.544 charge for N atom [14], Es = 67 nN/nm [8] and v = 0.59 [8]. The Es and v values
by Sahin et al. [8] were assessed using first-principles plane-wave calculations within the
DFT calculations for strain energy. Moreover, Peng at al. [4] using ab initio MD simulations
obtained similar values of Es = 62 nN/nm and v = 0.586. With the exception of these two
studies, as far as we know, the surface Young’s modulus and the Poisson’s ratio are not
available together for InN nanostructures.

To calculate the torsional force constant, k., the DREIDING force field [13] was used,
where the torsional properties of the diatomic nanostructure are estimated based on hybridi-
sation regardless of the specific atoms involved. DREIDING provides kg = 25 kcal /mol
and ky, = 40(kcal/mol)/ rad?, and the torsional resistance force constant can be calculated
through ke= 2kg + ky,.

The bond stretching, k;, bond bending, kg; and kg, force constants, obtained with
the help of the aforementioned calculation methods (Case 1 corresponding to UFF and
Case 2 to DFT + MM), as well the torsional resistance force constant, k., obtained using
DREIDING, for InN nanostructures, are given in Table 1.

Table 1. k;, kg and k+ force field constants for InN nanostructures.

Case kr, nN/nm ko1, nN-nm/rad> kgy, nN-nm/rad’> ke, nN-nm/rad’
1 (UFF) 278 0.822 0.544 0.625
2 (DFT + MM) 283 0.357 0.236 ’

The discrepancy between the k., kg1 and kg, values calculated by the UFF and DFT +
MM methods, observed in Table 1, can be attributed to the different calculation approaches
used. However, the dissimilarity in k, values is relatively small when compared to that
observed for kg values. This can possibly be explained by the fact that the DFT + MM
method uses Equation (15), whose assumption may not be fully satisfied when applied to
some diatomic nanostructures [16]. It should be noted that the difference, between the force
constants, k;, kg1 and kg, obtained by the UFF and DFT + MM methods, was previously
reported for phosphide nanotubes [17]. The values of the force field constants, k., kg1 and
kgp, and ke, from Table 1, allow calculation of the geometrical and elastic properties of the
beams, as presented in Table 2. In turn, these properties of the beams provide the input
values for the numerical simulation.

Table 2. Geometrical and elastic properties of the beams used as input parameters in FE simulations

of InNNNSs and InNNTs.
Case Di;n:‘:er, Formulation Ymu;:g s (];/{’oadulus, Formulation Shi;r l\:[}c;iaulus, Formulation RI; c;:iso\r/\ s Formulation
, b br , Vb
e 2 K2kl kel? - 3(kgq+k
1 0.1983 4o /2o 7Rog) 1856 B, = K21 849 Gy = Tkt 032 vy = Kb (kg1+ke2)
2 0.1294 A/ a— 4432 2r(kgq+kg2) 4674 27r(k91+k62)2 0.59 krl2+9(kg1+kgo)

* The values were calculated for the beam length I = ay,_n = 0.206 nm.

2.2.2. Geometrical Characteristics of INNNSs and SWInNNTs

Single-layer InN nanosheets with four different sizes were chosen for finite element
analysis (FEA), as shown in Table 3. Regarding InN nanotubes, three main configurations,
zigzag (© = 0°), chiral (family of ® = 19.1°) and armchair (® = 30°) of SWInNNTs were
used in the FEA. Table 4 shows the SWInNNTs geometric characteristics, including their
chiral indices, (n, m), diameter, Dy, and length, L,. The number of beam elements and
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mesh nodes used in FEA are also indicated in Tables 3 and 4. The aspect ratio L, /Dn ~ 30
was chosen to guarantee that the elastic response of nanotube did not depend on L, [18].

Table 3. Geometry of the studied single-layer InN nanosheets.

Size Ly, nm Ly, nm Number of Elements Number of Nodes
1 2.85 2.88 237 170
2 5.71 5.15 857 594
3 17.13 17.50 8333 5626
4 28.54 27.38 21,565 14,490

Table 4. Geometrical characteristics of the studied SWINnNNTs.

NT Type (n, m) 0° Diameter, Length, Number of Elements Number of Nodes
D;, nm L,, nm
(6,0) 0 0.681 20.81 1218 816
9, 0) 1.022 31.31 2745 1836
(12,0) 1.363 41.20 4812 3216
(15,0) 1.704 52.32 7635 5100
zigzag (18, 0) 2.044 61.59 10,782 7200
(23,0) 2.612 78.28 17,503 11,684
(26, 0) 2.953 89.40 22,594 15,080
(30, 0) 3.407 102.38 29,850 19,920
(34,0) 3.862 115.36 38,114 25,432
(37,0) 4.202 126.48 45,473 30,340
4,2) 19.1 0.601 20.81 942 632
6,3) 0.901 31.31 2106 1410
(8,4) 1.202 41.20 3732 2496
(10, 5) 1.502 52.32 5970 3990
(12, 6) 1.803 61.59 8424 5628
chiral (14, 7) 2.103 78.28 11,592 7742
(18,9) 2.704 89.40 19,062 12,726
(20, 10) 3.005 102.38 23,280 15,540
(24, 12) 3.606 115.36 33,480 22,344
(26, 13) 3.906 126.48 39,546 26,390
(28, 14) 4.207 20.81 45,528 30,380
4,4) 30 0.705 18.38 1612 1080
(6, 6) 0.940 27.29 3624 2424
7,7) 1.409 36.13 4921 3290
9,9) 1.879 46.49 8217 5490
. (11,11) 2.114 54.66 12,023 8030
armchair (13, 13) 2.584 64.47 16,939 11,310
(15, 15) 2.819 82.44 22,245 148,50
(18, 18) 3.289 90.61 32,634 21,780
(20, 20) 3.759 108.51 39,860 26,600
(22,22) 4.228 118.39 48,466 32,340

2.2.3. Finite Element Analysis and Elastic Properties of INNNSs and SWInNNTs

The meshes of INNNSs and SWINNNTs used in FEA were built using the Nanotube
Modeler© software (version 1.8.0, ©JCrystalSoft, http:/ /www.jcrystal.com, accessed on
10 November 2022), which generates Program Database files. To convert these files into
the format compatible with the ABAQUS® code, the in-house application InterfaceNan-
otubes.NM [18] was utilised.

The ABAQUS® FE code was used to study the elastic response of INNNSs under the
tensile test. In this code, 2-node cubic beam elements were used. Two loading cases were
considered as shown in Figure 5, which illustrates the boundary and loading conditions
used. In the first case, an axial tensile force, Py, was applied to the edge nodes of the right
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side of the nanosheet (NS), while the edge nodes of the opposite side were fixed (Figure 5a).
In the second loading case, the axial transverse force, Py, was applied at the upper side of
the NS, leaving the opposite side fixed (Figure 5b).

(a) (b)

Figure 5. Boundary and loading conditions for the INNNS of size 2 (see Table 3): (a) horizontal
tension (zigzag configuration) and (b) vertical tension (armchair configuration). The geometrical
parameters of NS are also shown.

Consequently, the displacements in the x direction (corresponding to zigzag configuration—
Figure 5a), vy, and in the y direction (corresponding to armchair configuration-Figure 5b),
vy, taken from the FEA, permit the calculating of the Young’s moduli along the x-axis, Ey,
and along the y-axis, Ey, making use of the following expressions, respectively [19]:

PyLx
Ex = , 18
= Lvitn (18)
P,L
E, =272 19
y vaytn (19)

where Py y, Lyy and vy y are the axial tensile force, the sheet side length and the axial dis-
placement, respectively; the indices x and y are related to the x-axis and y-axis, respectively;
and t, is the nanosheet thickness.

In view of the uncertainty regarding the value of nanosheet thickness, t,, the surface
Young’s moduli (the product of the Young’s modulus by the nanosheet thickness) along
the x-axis, Esx, and y-axis, Esy, were considered in the present study:

P,L
Esx: Extn == L:,V);I (20)
P,L
Eqy= Byty = —2—~. 21
sy yin LXVy ( )

The ABAQUS® FE code was also used to study the elastic behaviour of SWINNNTs
under tensile, bending and torsion tests as shown in Figure 6.
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(9)
Figure 6. Boundary and loading conditions for testing (11, 11) armchair SWINNNTs of: (a) Tension;

(b) Bending; (c) Torsion.

To perform each corresponding test, the axial tensile force, F,, the transverse force, Fy,
and the torsional moment, T, were applied to the one edge of the nanotube (NT), when the
opposite NT edge was constrained, suppressing all degrees of freedom of the respective
nodes. To carry out the torsion test, the edge nodes were prevented from movement in the
radial direction (see Figure 6¢). Thus, the tensile, bending and torsion tests allowed the axial
displacement, uy, the transverse displacement, uy, and the twist angle, ¢, to be obtained
from the FEA. The results obtained from the FEA allow calculation of the tensile, EA,
bending, El, and torsional, GJ, rigidities of the SWINNNTSs using the following expressions:

EA = FzL“, (22)

uz
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F, L3
EI=271, (23)
3uy
o =1k, (24)
()

where L, is the NT length.

The three rigidities, EA, EI and GJ, determined by Equations (22)—(24) are the basis
for calculating the elastic properties of the SWINNNTs. Thus, the Young’s, E, and shear,
G, moduli, and the Poisson’s ratio, v, can be assessed, respectively, by the following
expressions [20,21]:

E= EA , (25)
Tty 8(%)—%
G= Sl ) (26)
Zntn(%),/S(]f—I)—t%
E EI
=551 :6]—1, (27)

where t,, is the nanotube wall thickness, which in the present model is the same parameter
as the nanosheet thickness.

The calculation of the SWINNNTs Young’s, E, and shear, G, moduli by Equations (25)
and (26) presumes the knowledge of the valid value of t,. This makes the surface Young’s
(Es = Etyn) and shear (Gs = Gtn) moduli, which are independent of the wall thickness, more
reliable elastic constants to characterise the mechanical behaviour of the InIN nanotubes.

Assuming that the term t2 in Equations (25) and (26) can be neglected, as 2 < 8 (%) ,

the SWINNNTs surface Young’s, Eg, and shear, G5, moduli are determined, respectively,
as follows:

Es= Et, = i, (28)
Ty /8(%)
Gg= Gt, = GJ (29)

2n () /s(B)

3. Results
3.1. Young’s Modulus of [nNNSs

Figure 7 shows the surface Young’s moduli, Esx (zigzag) and Esy (armchair), calculated
by Equations (20) and (21), respectively, for the INNNSs with different sizes (see Table 3),
considering the two cases of input parameters for numerical simulation (Cases 1 and 2 in
Table 2).

It can be seen that both Egx and Esy values were almost constant for all NS sizes
studied, with the exception of the largest nanosheet for which a slight increase of Egx and
Esy was observed. The surface Young modulus for zigzag NS configuration, Esx, was about
9.2% and 12.5% higher, for Cases 1 and 2, respectively, than that calculated for the armchair
NS configuration, Esy. The average values of the surface Young’s moduli, represented
in Figure 7 by dashed lines, are Esx = 0.152 TPa-nm and Esy = 0.139 TPa-nm for Case 1,
and Egx = 0.108 TPa-nm and Esy = 0.095 TPa-nm for Case 2. The ratio between the surface
Young’s moduli along the zigzag and armchair directions was Esx/Esy ~ 1.1, whether the
case was Case 1 or Case 2. Regarding the influence of the input parameters, the mean
difference between the surface Young’s modulus values evaluated for case 1 (UFF) and
case 2 (DFT+MM) was 40.6% and 44.5% for Esx and Egy, respectively.
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O zigzag case 1 <© armchair case 1
X zigzag case 2 X armchair case 2
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Figure 7. Surface Young’s moduli, Esx (zigzag) and Esy (armchair), of the INNNSs for the four sizes
(Table 3) and the two cases of the input parameters (Table 2). The dash lines represent the average
value of the respective surface Young’s modulus.

Although the studies evaluating the elastic properties of InN nanosheets are scarce
in the literature, it was possible to compare the values of the surface Young’s modulus
calculated for Case 2 (DFT + MM) of input parameters with those reported by Le [9], as
shown in Figure 8.

SX sy

Figure 8. Comparison of the current surface Young’s moduli, Esx (zigzag direction) and Esy (armchair
direction), for the INNNSs of Case 2, size 3, with those of Le [9]. The results obtained for NSs of

similar size were chosen for comparison purposes.

A reasonable agreement was found between the current Egx and Egy values evaluated
for the INNNS of size 3 (see Table 3) and those obtained in the MD simulation study by
Le [9] for the INNNS with size of 15.17 nm x 14.98 nm, with the smallest difference of
8.4% being observed for the surface Young’s modulus along the y-axis (armchair direction).
Moreover, Le [9] reported Esx (zigzag direction) slightly higher than Egy, being the ratio
Esx/Esy &~ 1.03, which is not significantly lower than the 1.1 value observed in the present
study. The dissimilarities found can be possibly attributed not only to the differences with
the simulation and calculation approach used in the work by Le [9] but also to the greater
value of the InN bond length, equal to 0.211 nm, used by Le [9].

To our knowledge, no experimental values of the elastic moduli of the hexagonal InN
sheets have been reported so far. Nevertheless, such results regarding InN bulk material
and thin films can be found in the literature (see, for example, [22,23]). Ueno et al. [22], in
their X-ray diffraction study, reported the bulk modulus equal to 0.1255 £ 0.0046 TPa for
crystalline InN. Benzarti et al. [23] carried out the nanoindentation tests on InN epilayers
and determined its Young’s modulus as Ep,n = 0.171 &£ 0.008 TPa. To calculate the Young’s
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moduli, Ex and Ey, using Equations (18) and (19), according to the present model, it
is necessary to know the precise value of the nanosheet thickness, t,. Sardar et al. [11]
observed by high resolution electron microscopy (HRTEM) images an interlayer spacing
(which is considered equal to tn) of 0.308 nm for single-crystalline INNNTs. This value is
lower than the 0.34 nm which is commonly expected as the interlayer spacing of graphite,
and, consequently, as sheet thickness for carbon NSs or wall thickness in the case of carbon
NTs. On the other hand, Ueno et al. [22] measured the van der Waals distance between
layers equal to 0.570 nm for the bulk InN crystalline structure, using in situ X-ray diffraction
experiments. Thus, Young’s moduli along the zigzag direction, Ey, and armchair direction,
Ey, were evaluated by Equations (18) and (19), respectively, for t, = 0.308 nm and 0.570 nm.
Then, the average value, Epn = (EX + Ey) /2, was considered for comparison purpose. The
Young’s modulus results obtained were: for Case 1 (UFF), Epn = 0.473 TPa and 0.331 TPa
for the nanosheet thickness t, = 0.308 nm and 0.507 nm, respectively; for Case 2 (DFT+MM),
EmN = 0.256 TPa and 0.179 TPa, when t, = 0.308 nm and 0.570 nm, respectively. It can
be concluded that there is very good agreement when comparing the current Ep,n value
assessed for Case 2 and t, = 0.570 nm with that reported by Benzarti et al. [23] for InN
thin films.

3.2. Rigidities of SWInNNTs

In this section, three rigidities, tensile, EA, bending, EI, and torsional, GJ, are evaluated
with the aid of Equations (22)—(24), using the methodology established in previous studies
by the authors [17,18,20,21]. To this end, the evolutions of EA, EI and G]J rigidities are
presented in Figure 9 as a function of the NT diameter, D,.
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Figure 9. Evolutions of: (a) tensile, EA, (b) bending, EI, and (c) torsional, GJ, rigidities as a function
of the NT diameter, D,,, for the SWINNNTs in Table 4.

For Cases 1 and 2 of the input parameters chosen for the FE simulation (see Table 2),
and regardless of the NTs symmetry group, whether zigzag, chiral ® = 19.1° or armchair,
the EA, EI and GJ values are represented by the same trend with increasing NT diameter. It
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is worth mentioning that the tensile, bending and torsional rigidities evaluated for Case 1
(UFF) are greater than the EA, El and GJ values, for case 2 (DFT+MM). As for the cases of the
single-walled carbon [20,21], boron nitride [18] and 13th group element—phosphide [17]-
nanotubes, for SWInNNTs, the EA rigidity can be described by a linear function of Dy
(Figure 10a) and the EI and GJ rigidities can be described by a linear function of D
(Figure 10b,c).
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Figure 10. Evolutions of: (a) tensile, EA, rigidity with Dy, and (b) bending, EI, and (c) torsional, GJ,
rigidities with D3 for the SWINNNTSs in Table 4.

The straight lines in Figure 10a—c can be represented by the following expressions:

EA = apnDn, (30)
EI = Bp,nDn’, (31)
GJ = ¥YinDn®, (32)

where amN, By and vy are the fitting parameters for SWINNNTs. The values of these
parameters, defined as the inclination of dash lines on the graphs in Figure 10a—c, as
well as the mean differences between the EA, EI and GJ values evaluated analytically
by Equations (30)—(32) and those calculated by Equations (22)—(24), based on the data
obtained from the FE analysis, are shown in Table 5. It can be concluded that the Equations
(30)—(32) allow for an accurate assessment of the SWINNNTs rigidities. The knowledge
of the fitting parameters, amN, BN and ypn, and NT diameter, Dy, is the basis for
the accurate evaluation of the elastic properties of InN nanotubes without resorting to
numerical simulation. These data complement a fitting parameters selection, already
composed by results previously obtained for nanotubes of carbon [20,21] and other non-
carbon, such as boron nitride [18], phosphide [17] and silicon carbide [24] nanotubes.
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Table 5. Fitting parameters ap,N, BN and yinn for SWINNNTs and mean difference between the
EA, EI and GJ values evaluated with the aid of these parameters (Equations (30)—(32)) and the
corresponding values acquired from the numerical simulation.

Case

Fitting Parameters Mean Difference, %

AN, NN/nm Binn, NN/nm Yinn, DN/nm EA, nN EL nN-nm? GJ, nN-nm?

453.96 56.71 51.67 0.39 0.69 0.50

321.63 40.14 29.29 0.47 0.82 0.53

E (TPa)

3.3. Young’s Modulus of SWInNNTs

The Young’s modulus, E, of the SWINNNTs was evaluated by Equation (25). Fur-
thermore, replacing in Equation (25) the tensile, EA, and bending, EI, rigidities with the
expressions (30) and (31) and knowing the parameters apN and Py, the SWINNNTs
diameter, Dy, and the wall thickness, t,, E can be calculated as follows:

E = AN : (33)
Titn g /8(%)&%—%

Figure 11 shows the evolutions of the Young’s modulus, E, as a function of the nan-
otube diameter, Dy, for t, = 0.308 nm and 0.570 nm, obtained for Case 1 (Figure 11a) and 2
(Figure 11b) of the input parameters (Table 1). The E values calculated by Equation (33) are
also plotted in Figure 11.
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Figure 11. Evolutions of the Young’s modulus, E, with Dy, for SWInNNTSs, considering the nanotube
wall thicknesses, t, = 0.308 nm and 0.570 nm: (a) Case 1; (b) Case 2.

Regardless of the value of t;, the case of input parameters and the symmetry group of
NT, non-chiral or chiral, the value of E decreases at the beginning with increasing Dy, and
then stabilises for nanotube diameters D, > 1.35 nm. This decrease is more accentuated
for the largest wall thickness of 0.570 nm, as can be seen in Figure 11. Furthermore,
Equation (33) permits accurate evaluation of the Young’s modulus of SWInNNTs without
the need to use numerical simulation. With respect to the accuracy of the Young’s modulus
determination, a considerable dispersion of the E values is observed, depending on the
input parameters and the wall thickness. This makes the Young’s modulus, E, not reliable
enough for characterising the SWINNNTs elastic response. Consequently, the surface
Young’s modulus, Eg, evaluated by Equation (28), is analysed in the following.



Metals 2023, 13,73

16 of 19

By substituting EA and El rigidities in Equation (28) with the correspondent relation-
ships (30) and (31), it is possible to calculate the value of Eg, which is independent of the
NT diameter, as follows:

Eg = &, (34)
Bmn
T 8 ( XInN )
where apn and Py, are the fitting parameters from Table 5.

Figure 12 shows the evolutions of Eg as a function of NT diameter, D;,, for SWInNNTs,

together with the values of the surface Young’s moduli, Esx (zigzag direction) and Esy

(armchair direction), of single-layer INNNSs. The Eg results obtained by Equation (34) are
also shown in Figure 12.

o (n,0) O (n,m) ¢ (n,n)
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Figure 12. Evolutions of the surface Young’s modulus, Eg, for SWInNNTs as a function of the
nanotube diameter, Dy, for Cases 1 and 2 of input parameters. The surface Young’s moduli, Esx and
Esy, for INNNSs are also plotted for comparison purpose.

Both Case 1 and 2 of the input parameters are considered in the analysis. The surface
Young’'s modulus of SWINNNTs is essentially stable over the entire diameter range of the
NTs under study regardless of the case of the input parameters and symmetry group of the
NTs. This quasi-constant value of Eg is about the same as that calculated by Equation (34):
0.145 TPa-nm and 0.102 TPa-nm for Case 1 (UFF) and Case 2 (DFT + MM), respectively.
Moreover, the surface Young’s modulus, Eg, of SWINNNTs approaches the value of Eg
determined along the zigzag direction for the INNNSs; on the other hand, Es is slightly
greater than Egy along the armchair direction, considering both Cases 1 or 2. With regard
to the influence of the input parameters on the results, the ratio between the surface
Young’s moduli determined for Case 1 (UFF) and Case 2 (DFT + MM), was found to be
EISJFF / ESDFT ~ 1.41 for both nanostructures, INNNSs and SWInNNTs, regardless of the
method used for the Eg evaluation, numerical or analytical.

3.4. Surface Shear Modulus and Poisson’s Ratio of SWInNNTs

As shown in the previous section, the Young’s modulus has an ambiguous value and
cannot be a reliable characteristic for describing the elastic behaviour of SWINNNTs. Thus,
only the surface shear modulus results are presented below.

The surface shear modulus, Gg, can be calculated by Equation (29), using the three
rigidities obtained in the FE analysis. However, the EA, EI and G]J rigidities given by the
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analytical relationships (30)—(32), respectively, can be substituted in Equation (29), which
converts into the following expression:

Gs = &3 (35)
/32 ( B )

AInN

where apN, By and vy are the fitting parameters from Table 5. In this way, the surface
shear modulus depends only on its values.

Figure 13 shows the evolution of Gg, calculated by Equations (29) and (35), with the
SWINNNTs diameter, Dy, for Cases 1 and 2 of the input parameters.

casel O (n,0) 0O (nnm) ¢ (nn) ----- Eq. (35)
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Figure 13. Evolutions of the surface shear modulus, Gg, as a function of the NTs diameter, Dy,
for SWINNNTs.

For Dy, < 1.35 nm, the surface shear modulus, Gg, decreases for zigzag (n, 0) nanotubes
and increases for chiral (n, m) and armchair (n, n) nanotubes. As the NTs diameter increases,
the value of Gg stabilises and converges to an almost constant value for any the chiral
angle (NTs symmetry group). The converged average values, Gg = 0.066 TPa-nm and
0.037 TPa-nm for Case 1 (UFF) and Case 2 (DFT+MM), respectively, are equal to those
calculated by Equation (35) for the respective input parameter case. It can be concluded
that the analytical expression (35) allows for the accurate evaluation of the shear modulus
for SWINNNTs with diameters, D, > 1.35 nm. The ratio GEFF / GSDFT ~ 1.76 indicates that
the Gg value determined for Case 1 is higher than that for Case 2.

The Poisson’s ratio, v, of the SWINNNTs was evaluated with help of Equation (27).
Furthermore, combining this equation with expressions (31) and (32) for EI and GJ rigidities,
v can be calculated as follows:

y =Py (36)
YInN
where B, and yp,n are the fitting parameters from Table 5. Thus, the Poisson’s ratio
assessed by this equation is independent of the nanotube diameter.

The evolutions of the SWINNNTs, determined by Equations (27) and (36), with the
NTs diameter, Dy, for Case 1 and 2 of the input parameters are shown in Figure 14.

For the SWINNNTs with D, up to approximately 2.55 nm, v decreases for (n, m)
and (n, n) NTs and increases for (n, 0) NTs. Then, for all InN nanotubes with diameters
D, > 2.55 nm, the Poisson’s ratio converges to the constant value determined by Equation
(36) regardless of the NTs symmetry group. The converged average value of v obtained for
Case 2, v = 0.37, is higher than that for Case 1, v = 0.10. As is evident from Figure 14, the
Poisson’s ratio of the SWINNNT5 is chiral angle sensitive only for NTs with small diameters,
and the v value can be accurately calculated by the analytical expression (36) for nanotubes
with Dy > 2.55 nm.
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Figure 14. Evolutions of the Poisson’s ratio, v, as a function of the NT diameter, D, for SWINNNTs.

4. Conclusions

The elastic properties of indium nitride nanostructures with graphene-like lattice,
single layer INNNSs and SWINNNTs, were assessed using the NCM/MSM approach.
For the first time, the study of this mechanical behaviour was performed, consisting of
the systematic evaluation of the rigidities, elastic moduli and Poisson’s ratio of the InN
nanotubes. The main conclusions are summarised in the following.

The force field constants, necessary for the calculation of the input parameters for
the numerical simulation, were defined by two approaches. The influence of the two
resulting input sets on the elastic properties of the INNNSs (surface Young’s modulus)
and SWINNNTs (three rigidities, Young’s modulus, surface Young’s and shear moduli and
Poisson’s ratio) was analysed. The elastic properties of InN nanosheets and nanotubes,
evaluated by numerical simulation with the input parameters from the UFF calculation
method, showed values greater than those determined using the input set based on the
DFT calculation; the only exception was the Poisson’s ratio of the SWInNNTs.

The surface Young’s modulus of the INNNSs was nearly independent of the nanosheet
size, but it was sensitive to axial loading conditions, i.e., the surface Young’s modulus in
the zigzag direction was greater than that in the armchair direction.

Based on the values of the nanosheet thickness found in the literature, the Young’s
modulus of the INNNSs was compared with relevant results available for bulk and thin
film InN. In the present model, there is a combination of the input dataset and the thickness
of the nanosheet that obtains the best concordance with the literature results for the case of
the Young’s modulus of the InN thin films [23].

Robust methodologies were proposed to calculate the surface Young’s modulus of
SWInNNTs for a wide range of their diameters, and surface shear modulus and Poisson’s
ratio of nanotubes with large diameter, without resourcing to numerical simulation. It
should be noted that the surface Young’s modulus of SWInNNTs tends towards the value
obtained for the single-layer InNNNSs.

The results obtained constitute a benchmark for the evaluation of the elastic properties
of the indium nitride nanosheets and nanotubes using theoretical methods.
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