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Abstract
Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we reported the ergogenic mechanism 
of caffeine through neuronal A2AR antagonism in the central nervous system [1]. We now demonstrate that the striatum rules 
the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8–10 weeks, 47 ± 1.5 g) and twenty-four 
C57BL/6J (8–10 weeks, 23.9 ± 0.4 g) adult male mice were studied behaviorly and electrophysiologically using caffeine and 
energy metabolism was studied in SH-SY5Y cells. Systemic (15 mg/kg, i.p.) or striatal (bilateral, 15 μg) caffeine was psy-
chostimulant in the open field (p < 0.05) and increased grip efficiency (p < 0.05). Caffeine also shifted long-term depression 
(LTD) to potentiation (LTP) in striatal slices and increased the mitochondrial mass (p < 0.05) and membrane potential (p < 
0.05) in SH-SY5Y dopaminergic cells. Our results demonstrate the role of the striatum in the ergogenic effects of caffeine, 
with changes in neuroplasticity and mitochondrial metabolism.
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Introduction

Exercise fatigue is one of the main barriers to exercise and 
sports performance. Caffeine (1,3,7-trimethyl xanthine) is a 
non-selective antagonist of adenosine A1 and A2A receptors 
(A1R and A2AR) that exhibit psychostimulant and ergo-
genic effects (i.e., increases physical performance) [1]. It 
is one of the most popular ergogenic aids in exercise and 
sports, available in coffee, tea, caffeinated soft and sports 
drinks, sports supplements, and other beverages and foods 
[2–5] The gastrointestinal system rapidly absorbs caffeine, 
distributed throughout the body fluids, reaching plasma 
peak concentrations of 2-15 μM (100 mg caffeine) with a 
half-life of 2.5-10h [6, 7]. The World Anti-Doping Agency 
(WADA) detected caffeine in 73.8% of 20,686 urine sam-
ples from elite athletes between 2004 and 2008 [8], a per-
centage close to that reported by Van Thuyne et al. [9]: 
73.6% in 11,361 samples between 1993 and 2002. The 
International Society of Sports Nutrition recommends the 
oral consumption of caffeine in an anhydrous form in doses 
between 3 and 6 mg/kg (100–300 mg) [10]. Larger doses 
(> 9 mg/kg) do not enhance the ergogenic effect and are 
unsafe as they can trigger adverse effects problematic for 
athletic performance, such as restlessness, gastrointestinal 
discomfort, nausea, insomnia, anxiety, and chest pain [10].

Several of the central effects of caffeine can explain the 
ergogenic effects of caffeine. In fact, caffeine-enhancing 
effects include improved neurological functions such as 
typing speed, simple reaction time, sustained attention, 
memory, and logical reasoning during rest [11]. The physi-
ological targets of caffeine for micromolar concentrations 
achieved with dietary consumption are A1 and A2A aden-
osinergic receptors [6, 7]. Davis first demonstrated that the 
adenosine receptor agonist 5′-N-methyl carboxamide aden-
osine (NECA), injected into the rat ventricles, increases 
running performance [12]. We then demonstrated the role 
of endogenous extracellular adenosine in the development 
of fatigue in mice [13] and the pivotal role of neuronal 
A2AR in the mouse forebrain for the ergogenic effects of 
caffeine [1, 14]. Caffeine increases performance expec-
tancy in cyclists [15], reinforcing the findings of Sun et al. 
[16] on the role of A2AR in the nucleus accumbens (NAc) 
on early fatigue associated with exertion in mice or effort-
based cost-benefit decision-making (E-CBDM). Accord-
ingly, the overfunction of A2AR [17, 18] is a hypothetical 
mechanism for the fatigue symptom (E-CBDM) in neuro-
logical diseases [19].

Fatigue recruits corticostriatal loop connections that 
reduce performance [20] and impairs long-term poten-
tiation (LTP) and long-term depression (LTD) [21]. This 
exercise-induced alterations of adenosine signaling [1, 13] 
and of neuroplasticity [20, 21] are candidate mechanisms 

responsible for the central component of fatigue. In this 
work, we investigated the striatal neuroplasticity of caf-
feine ergogenicity.

Materials and methods

Four different experiments were conducted in three differ-
ent laboratories. First, caffeine was administered in vivo 
through systemic (i.p., experiment #1) or local treatment 
via stereotaxy (striatum, experiment #2) to assess their 
impact on animals’ fatigue and motor control (Swiss 
mice, Labioex/UFSC, Brazil). Extracellular electrophysi-
ology analyzed neuroplasticity in striatal slices treated 
with caffeine (experiment #3, C57BL/6J mice, CNC/U 
Coimbra, Portugal), and experiment #4 evaluated in vitro 
the effects of caffeine on the mitochondrial metabolism 
of SH-SY5Y human neuroblastoma cell lines (UFGRS/
Brazil).

Experimental designs #1 and #2

Animals, caffeine, and stereotaxy

We used 34 Swiss naïve male adult mice (8–10 weeks, 47 
± 1.5 g). The animal housing had controlled lighting and 
temperature (12h light-dark cycle, lights on at 7:00 and 
off at 19:00, and room temperature of 21±1°C) and ad 
libitum access to food and tap water. Housing and handling 
of the animals followed the current Brazilian legislation 
(National Council for the Control of Animal Experimenta-
tion - CONCEA) and received bioethical approval (CEUA 
1503210519). The allocation of animals to the experimen-
tal groups was random. Systemic treatment (in a volume 
of 10 ml/kg) with caffeine (15 mg/kg, i.p.) or saline (NaCl 
0.9%, i.p.) was performed 15 min before the behavior and 
exercise tests.

Another group of mice were anesthetized with ketamine/
xylazine, and two cannulas were implanted, one in the right 
striatum (AP 0.5 mm; ML 2 mm and DV -3 mm) and other 
in the left striatum (AP 0.5 mm; ML −2 mm and DV −3 
mm) [22]. One week after surgery, 4 μL of caffeine (15 
μg) or saline (0.5 μg) was injected into conscious animals 
using an infusion pump (2 μL/min, Bonther®, Ribeirão 
Preto, Brazil) immediately before behavioral tests. The caf-
feine dose (15 μg) was selected through pilot studies and 
literature data [23, 24]. The mortality rate was 30% (N=9).

Behavioral analysis

The behavioral experiments were performed during the light 
phase of the circadian cycle, after 1 hour of habituation, 
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between 9:00 and 16:00, under controlled temperature 
(22±1°C) and luminosity (10 lux). All equipment was 
cleaned with EtOH 20% after each animal test.

Open field

We manually recorded crossings and rearings in the circular 
open field test (diameter 58 cm × height 50 cm, Insight® 
EP154C, Ribeirão Preto, Brazil) for 5 min [1].

Rota rod

The Rotarod test (Insight® EFF411) was used to evaluate 
motor coordination. The primary inclusion criterion was 
remaining in the stationary cylinder (0 RPM) for 30 s and 
rotating (5 RPM) for 90 s [25]. After 30 min, the latency to 
fall was evaluated in the accelerated cylinder (0.1 RPM/s) 
with an initial rotation of 5 RPM. Three falls excluded the 
animal from the evaluation stage. All pieces of equipment 
were cleaned after each animal test.

Grip strength meter

The grip strength meter test (Bonther® 5 kgf) graded the 
strength and time of the front paw grip. Each mouse was 
placed individually in the grip meter bar, and after both 
paws were holding the bar, the experimenter gently pulled 
the tail in the opposite direction of the bar. We performed 
4 trials with 10 s each and 1-min intervals between trials, 
and we considered the average of 3 best trials (3 out of 4) 
[26–28]. The equipment measures the force applied and 
the grip time, and the software provides the maximum and 
submaximal values. The decrease in physical performance 
is one of the characteristics of fatigue, evaluated in this 
behavioral test by the decrease in strength and grip time. 
We finalized the fatigue assessment by calculating the 
impulse by integrating the force × grip time curve.

Experimental design #3

Electrophysiology

Twenty-four naïve C57BL/6J mice (male, 23.7 ± 0.5 g, 
8–10 weeks old) were euthanized through cervical dis-
location, and the brain was quickly removed (within 1 
min) and placed in ice-cold, oxygenated (95% O2 and 5% 
CO2) artificial cerebrospinal fluid (ACSF; in mM: 124 
NaCl, 4.5 KCl, 1.2 Na2HPO4, 26 NaHCO3, 1.2 CaCl2, 1 
MgCl2, 10 glucose). Striatal slices (400 μm thick) were 
obtained using a Vibratome 1500 (Leica, Wetzlar, Ger-
many) and allowed to recover for at least 90 min before 
being transferred to a submerged recording chamber and 
superfused at 3 mL/min with oxygenated ACSF kept at 

30.5°C. Corticostriatal transmission was assessed with the 
stimulating electrode placed in the corpus callosum and 
the recording electrode filled with ACSF (2–5 MΩ) placed 
in the dorsolateral aspect of the striatum. The neuronal 
stimulus was delivered with a Grass S44 stimulator (Grass 
Technologies, RI), and the recordings were obtained by 
using an ISO-80 amplifier (World Precision Instruments, 
Hertfordshire, England) and digitized with an ADC-42 
system (Pico Technologies, Pelham, NY). Three consecu-
tive population spike responses were averaged and quanti-
fied using the Win LTP software v. 2.20b (WinLTP Ltd., 
Bristol, UK). The relationship between dendritic respon-
siveness and the synaptic input was determined based on 
input/output curves in which the population spike ampli-
tude was plotted versus the stimulus intensity before and 
after administering different concentrations of caffeine in 
the ACSF solution. Stimulation intensity was then selected 
to yield 40%–50% of the maximum response. Corticostri-
atal slices were treated with 1 μM, 3 μM, or 10 μM caf-
feine in ACSF oxygenated solution for 20 min before the 
high-frequency stimulation (HFS). HFS consists of three 
trains each with 100 Hz pulses for 1 s with 10-s intervals 
between trains. The amplitude of synaptic plasticity was 
evaluated by the alteration of population spike ampli-
tude 30 min after HFS for each concentration of caffeine 
[29–31]. Importantly, the tested concentrations of caffeine 
only act through the antagonism of adenosine receptors to 
impact of synaptic transmission [31].

Experimental design #4

Cell culture and evaluation of mitochondrial metabolism

Human neuroblastoma SH-SY5Y cells were maintained 
in DMEM/F12 supplemented with 10% FBS, 100 units/
mL penicillin, 100 μg/mL streptomycin at 37°C, with 5% 
CO2, under standard conditions. Cells were incubated with 
PBS or caffeine in concentrations (1 μM, 3 μM, or 10 μM) 
selectively acting as an adenosine receptor antagonist [6, 7]. 
An MTT assay (see below) evaluated the viability of cells 
20 min after caffeine exposure [32]. Mitochondrial mass 
and membrane potential were analyzed using green and red 
mitotracker [32].

MTT assay

SH-SY5Y cells were seeded into 96-well plates in DMEM-
F12 with 10% FBS (1 × 104 cells/well). After caffeine treat-
ment, the cells were incubated with 0.5 mg/mL of MTT 
for 2 h at 37 °C. The cell viability was measured by quan-
tifying the activity of cellular dehydrogenases that reduce 
MTT (3-4,5-dimethyl thiazolyl-2,5-diphenyl-2H-tetrazo-
lium bromide, Sigma Inc.) to a purple formazan salt [33]. 
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The formazan salt formed was dissolved in dimethyl sul-
foxide (DMSO), and the absorbance was quantified in a 
spectrophotometer (Spectra Max 190, Molecular Devices, 
Sunnyvale, CA, USA) at 540 nm [32].

Mitotracker flow cytometry protocol

Mitotracker Green FM (Invitrogen) (MTG) or Mitotracker 
Red (MTR) are used for staining mitochondria of live cells 
depending, respectively, on the organelle lipid content (mito-
chondrial mass) and oxidative activity (mitochondrial mem-
brane potential). Briefly, after caffeine treatment, SH-SY5Y 
cells were washed on PBS saline and harvested using trypsin. 
Then, cells were resuspended and incubated for 20 min in the 
dark with 100 nM of MTG and MTR diluted into pre-warmed 
(at 37 °C) DMEM F-12. Emitted fluorescence was measured 
(FL1 “green” 530 nm/30; FL3 “red” 670 nm long pass) in a 
FACSCalibur using the CellQuest Pro software (Becton Dick-
inson, Franklin Lakes, NJ, USA) and data from 10.000 events 
were acquired using a log scale for all parameters. The fluo-
rescence mean intensity of FL1-H and FL3-H was evaluated 
to estimate mitochondrial mass and potential, respectively. 
All flow cytometry analyses were performed using the FCS 
Express 4 software (De Novo, Pasadena, CA, USA) [32].

Statistical analyses

Statistical analysis was performed using GraphPad Prism 
version 6.0 for Windows (GraphPad Software, San Diego, 
California, USA, www.​graph​pad.​com). A one-tailed Stu-
dent’s t-test analyzed the open field test, rotarod, and grip 
strength meter; the Cohen’s effect size (d) was calculated as 
small (0.2), medium (0.5), large (0.8), and very large (1.3) 
[34]. A one-way ANOVA analyzed electrophysiological and 
mitochondrial assays; Cohen’s effect size (η2) was calculated 
as small (0.01), medium (0.09), and large (0.25) (1.3) [34]. 
Differences were considered significant when p<0.05.

Data availability

This work makes open data available under the creative com-
mons license (CC BY) [35].

Results

Systemic and striatal treatment with caffeine 
is ergogenic

Systemic caffeine increased crossings (t22= 2.16, p< 0.05, 
d = 1.0; Fig. 1A) and rearings (t22= 2.84, p< 0.05, d = 1.2; 

Fig. 1B) in the open field, and motor coordination in the 
rotarod (t28= 3.08, p< 0.05, d = 0.45; Fig. 1C). Caffeine did 
not alter grip strength peak (t22= 1.37, p= 0.09; Fig. 1D) but 
increased grip time (t22= 3.31, p< 0.05, d= 1.13; Fig. 1E). 
Figure 1F' shows the area under curve (AUC) from strength 
vs. time results to demonstrate that ergogenic effects of caf-
feine are due to impulse magnitude (t22= 2.14, p< 0.05, d = 
0.81; Fig. 1F–F′).

Figure  2A  (top) shows the coordinates of the mice 
striatum according to Paxinos and Franklin [22], and 
Fig. 2A (bottom) shows a coronal brain view of a mouse 
brain, confirming that cannulas were implanted in the 
expected localization, as previously done [36, 37]. Caf-
feine injected directly into the striatum enhanced the num-
ber of crossings (t8= 9.81, p< 0.05, d = 1.82; Fig. 2B) and 
rearings (t8= 3.66, p< 0.05, d = 1.50; Fig. 2C) in the open 
field. Similarly, as occurred for its systemic treatment, the 
direct intra-striatal caffeine administration did not alter peak 
strength (t8= 0.85, p= 0.20; Fig. 2D) but improved time 
grip time (t8= 4.08, p< 0.05, d = 1.56; Fig. 2E) in the grip 
strength meter test. The ergogenic effect on impulse mag-
nitude (Fig. 2F) was also observed after the intra-striatal 
direct administration of caffeine (t8= 3.50, p< 0.05, d = 
1.48; Fig. 2F′).

Caffeine changes LTD to LTP in striatum slices

Figure 3A shows the location of the stimulus electrode (top) 
in the corpus callosum and of the recording electrode (bot-
tom) in the dorsolateral region of the striatum in a coronal 
brain slice. The first input/output curve (Fig. 3B) shows that 
all slices have a similar pattern of induced excitability during 
the pre-treatment period without caffeine. After 20 min of caf-
feine treatment, none of the tested concentrations of caffeine 
(1–10 μM) significantly altered basal synaptic transmission 
of corticostriatal synapses (F3,16=0.47, p=0.7, Fig. 3C). The 
second input/output curve (Fig. 3D) performed after 20 min 
of exposure to caffeine shows an increased excitability with 
the higher concentration of caffeine (10 μM), as would be 
expected based on the ability of caffeine to antagonize A1 
receptors controlling basal synaptic transmission [31]. High-
frequency stimulation (HFS, black arrow, F29,864=4.26, p< 
0.05, η2=0.21, Fig. 3E) triggered an LTD in control slices 
(without any treatment), as well as in slices treated with 3 
and 10 μM caffeine, whereas the exposure to 1 μM caffeine 
changed the response to HFS from an LTD to an LTP (F3.20 
= 11.2, p< 0.05, η2=0.62, Fig. 3F).

Caffeine improved mitochondrial metabolism 
in SH‑SY5Y cells

Caffeine acutely increased the mass and membrane poten-
tial of the mitochondria of SH-SY5Y cells. Cell viability 

http://www.graphpad.com
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was not modified after exposure to any tested concentration 
of caffeine (1 μM, 3 μM, or 10 μM), as analyzed by the 
MTT assay (F3,68 = 0.58, p= 0.6, η2 = 0.03; Fig. 4A). Caf-
feine (1 μM) increased mitochondrial membrane potential 
(F3,10 = 14.99, p< 0.05, η2 = 0.83; Fig. 4B) and mitochon-
drial mass (F3,11= 20.87, p< 0.05; Fig. 4C) of SH-SY5Y 
cells. Figure 4F shows a fluorescence shift to the right upon 
exposure to 1 μM caffeine.

Discussion

This work demonstrates that the ergogenic effect of acute 
systemic and striatal caffeine on grip strength is associ-
ated with a change LTD to LTP in the striatum, probably 
with an increase of the mass and membrane potential 
of mitochondrial in neurons. Our behavioral data rein-
force the evidence that systemic caffeine administration 

is ergogenic [1–5, 12]. However, we emphasize that this 
previous knowledge analyzed treadmill running perfor-
mance, and we demonstrate here for the first time that 
caffeine increases (grip) muscle strength in mice, an 
effect also observed in humans [38, 39]. Additionally, 
we demonstrated for the first time that direct caffeine 
administration in the striatum reproduces the ergogenic 
effects upon systemic treatment with caffeine. Statistical 
effect sizes were large (systemic) and very large (intrastri-
atal) for caffeine ergogenicity. The modification of force 
performance was on impulse the grip strength size did not 
change. Once again, we demonstrate that caffeine modi-
fies a time-derived index of physical performance (force 
× time), as we have previously demonstrated with running 
power (force ÷ time) [1].

Overall, we have been building a body of evidence to 
unravel the neurological mechanisms of the ergogenic 
effects of caffeine. The ergogenic effects of caffeine 

Fig. 1   The behavioral effects of systemic caffeine in mice, namely 
psychostimulating (A and B), improved motor coordination (C), no 
effect on grip strength (D), but increase in grip time (E). Panel F′ is 

the integral of strength × time (F), representing increased caffeine-
induced impulse. Data are mean ± SEM. N=7–8 animals/group for 
three independent experiments. *P<0.05 vs. saline (Student’s t-test)
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depend on the antagonism of neuronal A2AR in the rodent 
CNS [1, 12], and we now show that they involve a local 
neuroplasticity effect in the striatum, a brain region dense 
in A2AR [40]. Thus, caffeine improves motor coordina-
tion (in the rota rod) and grip time while shifting striatal 
neuroplasticity from an LTD to a LTP. This joins previ-
ous findings that caffeine injected into rat brain ventricles 
improves treadmill performance, an effect that disappears 
upon administration of the adenosine receptor agonist 
NECA [12]. Our results correspond to acute effects of 
caffeine in naïve animals; importantly, previous evidence 
suggests additional benefits when caffeine is consumed 
chronically, namely an increased resistance to stress [41, 
42], from social [43] to cold stress [44]. In humans, the 
ergogenic effects of caffeine do not disappear with chronic 
consumption [2–5]. However, caffeine might increase anx-
iety [43] which is associated with impaired exercise per-
formance due to reduced processing efficiency, including 

attention, and increased physiological cost [45, 46]. How-
ever, caffeine does not impair exercise performance; on 
the contrary, it enhances it. The key to understand this 
apparent paradox might be the arousal effect of caffeine 
[47]. Physiological arousal in exercise bolsters perfor-
mance when limited by awareness of exertion [45, 46]. 
Accordingly, caffeine decreases the rating of perceived 
exertion [48–50].

Our results strengthen the hypothesis about the ergo-
genic mechanism of caffeine involve an antagonism of 
the adenosine modulation system in the central nervous 
system [1, 12–14]. Central A2AR are linked to behavioral 
responses to exertion [16, 51, 52], such as fatigue and 
decision making, while A2AR antagonists such as caf-
feine and SCH58261 increase running performance [1, 
12], and caffeine-treated forebrain A2AR knockouts mice 
did not demonstrate this ergogenic effect [1]. Indeed, 
exertion fatigue and ergogenic effects of caffeine are 

Fig. 2   The behavioral effects of intrastriatal (A) injection of caf-
feine in mice, namely psychostimulating (B and C), no effect on grip 
strength (D), but an increase in grip time (E). Panel F′ is the inte-

gral of strength × time (F), representing increased caffeine-induced 
impulse. Data are mean ± SEM. N=7–8 animals/group for three inde-
pendent experiments. *P<0.05 vs. saline (Student’s t-test)



679Purinergic Signalling (2023) 19:673–683	

1 3

associated with A2AR [1, 16, 51, 52]. As the striatum 
displays a particularly high density of A2AR [40], we 
injected caffeine directly into the dorsolateral striatum 
of mice, which triggered psychomotor and ergogenic 
effects. The psychomotor effects of caffeine in the 
striatum are associated with allosteric modulation of 
A2AR-D2R heteromers and presynaptic control of gluta-
matergic neurotransmission [53]. Striatal A2AR facilitate 
neuronal activity in the striatum by increasing dopamin-
ergic signaling, more by controlling the availability of D2 
and D3 receptors than by influencing dopamine release 
[54]. Thus, the A2AR-D2R allosteric interaction modu-
lates psychostimulant responses, which we believe to be 
involved in the ergogenic effect of caffeine, as discussed 
above.

Regarding electrophysiological findings, repetition 
of exercise can modify corticostriatal neuroplasticity, 
where LTD predominates, which plays an essential role 
in motor control [55, 56]. Ma et al. [21] demonstrated that 

exercise-induced fatigue impairs corticostriatal n-methyl-
d-aspartate (NMDA) receptor-dependent LTP and endo-
cannabinoid-dependent LTD (eCB-LTD). We observed 
that caffeine (1.0 μM) modified ex vivo corticostriatal neu-
roplasticity from LTD to LTP, although this in vivo effect 
remains to be confirmed. Conversely, the increased mito-
chondrial metabolism observed in cells supports increased 
neuronal activity at the site, as previously demonstrated in 
APPsw transgenic mice [57] and neuroblastoma cells [58].

This work is a proof of concept developed in naïve ani-
mals that reinforces our working hypothesis that A2AR in 
the corticostriatal pathway play a key ergogenic role [1, 
13, 14]. However, some limitations of our work need to be 
considered. The experiments were carried out in males, a 
limitation [59] since there is evidence demonstrating that 
the ergogenic effects of caffeine and A2AR antagonists are 
similar [1, 60–63] or lesser in females [63–65], while the 
adverse effects are more significant[66]. Moreover, future 
investigations should evaluate the tolerability developed by 

Fig. 3   Extracellular electrophysiological recordings of population 
spike responses at corticostriatal synapses in the dorsolateral stria-
tum in brain coronal slices (A). All groups displayed superimpos-
able input/output curves, indicating similar efficiency of corticostri-
atal transmission (B). Alteration of basal synaptic transmission after 
exposure to different concentrations of caffeine (C). Twenty minutes 
after caffeine infusion, only 10 μM caffeine increased synaptic effi-
ciency (D). The induction of synaptic plasticity by high-frequency 

stimulation (HFS) caused a long-term depression (LTD) in corticos-
triatal synapses (E), which was shifted into a long-term potentia-
tion (LTP) upon exposure to 1 μM caffeine, as illustrated in the time 
course (E) and in the average alterations of the amplitude of synap-
tic plasticity 30–40 min afterHFS (F). Data are means ± SEM (n=6 
slices/group). One-way ANOVA followed by Newman–Keuls post 
hoc tests). aCSF—artificial cerebrospinal fluid. i/o—input and output. 
PS—pop spike population
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regular consumption of coffee and caffeine on ergogenic-
ity. Finally, it should be noted that the present evidence 
was gathered using different models, whereby behavior 
was assessed in Swiss mice, slice electrophysiology in 
C57BL/6J mice and metabolism in human neuroblastoma 
SH-SY5Y cells. The few studies on the ergogenicity of caf-
feine do not yet allow us to conclude on the eventual exist-
ence of differences between mouse strains, whereas the 
use of cell culture is expected to allow unveiling metabolic 
determinants of brain metabolism underlying the ergogenic 
effect of caffeine.

In summary, our results demonstrate that striatal A2AR 
contribute to the neurophysiology of the ergogenic effects 
of caffeine.
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