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Abstract: A major area of application of multiobjective path problems and resolution algorithms is
telecommunication network routing design, taking into account the extremely rapid technological
and service evolutions. The need for explicit consideration of heterogeneous Quality of Service
metrics makes it advantageous for the development of routing models where various technical–
economic aspects, often conflicting, should be tackled. Our work is focused on multiobjective path
problem formulations and resolution methods and their applications to routing methods. We review
basic concepts and present main formulations of multiobjective path problems, considering different
types of objective functions. We outline the different types of resolution methods for these problems,
including a classification and overview of relevant algorithms concerning different types of problems.
Afterwards, we outline background concepts on routing models and present an overview of selected
papers considered as representative of different types of applications of multiobjective path problem
formulations and algorithms. A broad characterization of major types of path problems relevant
in this context is shown regarding the overview of contributions in different technological and
architectural network environments. Finally, we outline research trends in this area, in relation to
recent technological evolutions in communication networks.

Keywords: multiobjective/multicriteria path problems; communication networks; telecommunication
network routing; multiobjective/multicriteria routing models

1. Introduction

A very important area of the application of shortest path problems in general and
multiobjective path problem formulations in particular is telecommunication network
design, namely in the context of the development and implementation of advanced routing
methods. Routing is a most important network functionality and a key part of network
operational design and has strong impacts on network performance both in technical and
economic aspects, including the quality of experience of the customers for a given service.
Routing methods are essentially focused on the calculation and selection of a loopless
path (corresponding to a sequence of network resources or ‘route’) or a set of loopless
paths from an originating node to one or multiple terminating node(s)—assuming that the
representation of the communication network is a connected network normally composed
of arcs of limited transmission capacity—seeking to optimize one or more objective(s) while
satisfying certain constraint(s) of a technical/economic nature. Although routing models
and methods deal with a number of issues other than path calculation, we can say that at
the heart of any routing method, in any communication network application environment,
there is the need to calculate one or more paths seeking to satisfy some optimizing crite-
rion/criteria and relevant technical–economic constraints. Telecommunication networks
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have experienced extremely rapid progress in terms of technologies, architectures and
provided services, driven by two major forces: technical innovations and accelerated traffic
growth, associated with the demand for more advanced services, such as audio, video
services, video conferencing and cloud computing.

These trends and the need for explicit consideration of different Quality of Service
(QoS) metrics (usually of heterogeneous nature) in the routing methods make it necessary
or advantageous for the development of routing models where various technic–economic
aspects, often conflicting, should be tackled. This has fostered, in recent decades, an increas-
ing interest in the development of multiobjective routing models so that QoS constraints
and trade-offs between different objectives could be treated in a consistent manner in
mathematical terms. It could be noted that, in many situations, taking into account es-
sential characteristics of the network environment, routing models become more effective
if different metrics are explicitly applied by considering an adequate set of optimization
objectives rather than just aggregating some of them a priori in a single objective function
(OF) and transforming the other OFs into constraints as has often been carried out in
Operations Research (OR) application models in this area. There are many applications
where there is the need for an a priori aggregation of criteria, namely for on-line routing or
for off-line automatized dynamic routing with very short route updating times, but even in
these cases, there is a potential advantage in addressing explicitly multicriteria modelling
since it enables a deeper insight concerning the persecution of several issues regarding the
interplay and possible trade-off between some of the criteria.

Thence, it is clear both from an Operations Research and from a network design
perspective that it is important to address multiobjective shortest path problems and de-
velop resolution approaches adequate for the envisaged applications in a telecom network
routing design which constitutes the major motivation for this work. A state-of-the-art
survey on applications of multicriteria decision analysis to telecommunication network
design with a section on multicriteria routing methods is in [1], and an overview also with
references in this area is included in [2]. A conceptual framework for explicitly multicriteria
modelling in QoS-based routing is proposed in [3].

Taking into account the importance of shortest path and k-shortest path problems
in this context, we pay special attention to these problems after reviewing basic concepts
on multiobjective path problems. We present the main formulations of multiobjective
path problems also including evidence-relevant theoretical results. Different categories of
objective functions will be considered, namely linear and non-linear functions as well as
some optimization path problems with an objective function composed of other functions
and problems involving uncertainty. We outline the different types of resolution methods
for these problems appearing in the scientific literature more relevant to this important
application area, not forgetting the approximating approaches. Special emphasis will
be given to exact resolution approaches, namely based on the shortest path, k-shortest
path and dedicated multiobjective shortest path algorithms, having in mind that these
algorithms can solve large instances of the problem in execution times compatible with the
application context. Also, a classification and overview of relevant algorithms and related
contributions concerning different types of problems and of resolution approaches, namely
labeling, ranking, recursive and two-phase methods, as well as interactive approaches, will
be put forward. Note that focusing this work on exact algorithms is not a severe limitation
in many of the path problems because the available resolution approaches enable, in most
cases, a fast resolution of large instances of the problems.

It should be emphasized that when multiple and conflicting objectives are explicitly at
stake in the path optimization problem, the global optimum does not exist. Thence, the
optimal solution is substituted by the concept of an efficient (also known as Pareto optimal)
solution set corresponding to a nondominated point set in the objective function space.
The designation ‘efficient path’ means a feasible path such that there are no other feasible
paths capable of improving the value of one objective function without worsening the
value of at least one of the other objective functions. A further distinction has to be made
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between supported and unsupported nondominated solutions as reviewed in the section on
basic concepts.

One of our main purposes in this work, developed in Section 2, is to provide insights
into current research trends in the application of Operations Research techniques to solve
multiobjective path problems and to outline possible future research directions. In particu-
lar, in the first part of this paper, we refer to articles that are focused on path problems and
their resolution approaches. We considered works published in scientific journals, confer-
ence proceedings, and book chapters. We carried out a search in the following databases:
Elsevier, Wiley, Springer, Scopus, IEEExplore, Research Gate, and Google Scholar; we used
several keywords such as “multiobjective paths” or “multicriteria paths”. We also present
a summary of the main features of the problems in tables, which can help the researchers
in comparing the works and exploring new possible configurations.

In this paper, we consider three types of algorithms. Firstly, we consider the algorithms
for which there is no articulation of preferences of the Decision Maker (DM) (this means
that the aggregation of preferences is made a posteriori), so that the algorithms calculate
the whole set of efficient solutions. Secondly, we consider those which are characterized by
a progressive articulation of preferences of the DM, designated as interactive approaches;
Thirdly, we consider those for which there is an a priori articulation of preferences, for
instance by building a value/utility function. In the case of interactive approaches (see
Figure 1), after each calculation phase leads to one (or several) efficient solution(s), there is
a dialogue phase with the DM. This phase is carried out so that a new calculation phase
is initiated, and so on. The stopping condition of this procedure depends on the specific
characteristics of the interactive procedure.
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Figure 1. Interactive process (adapted from [4]).

It should be noted that, concerning interactive procedures, the emphasis on exact
algorithms, of course, refers to the calculation phase only, that is, to the phase of calculation
of efficient solutions.

A second main purpose of our work is the presentation of an overview of selected
papers considered as representative of different types of applications in telecommunication
network routing models of multiobjective path problem formulations and of the associ-
ated resolution approaches. Note that the extremely rapid evolution of communication
technologies, network architectures and provided services had an important impact on
various aspects of the developed routing models. In fact, the advantage, in many cases,
of explicit consideration of QoS metrics and economic-based metrics either as objectives
to be optimized or as constraints has fostered an increasing interest in the development
of multicriteria/multiobjective routing models. Note that routing methods deal with a
number of issues other than path calculation since the functional technical entities that
actually implement the establishment of routes, designated as routing protocols, have to ex-
ecute several procedures concerning the management of various types of information/data
following strict formats, contents and processing rules, dependent on the technical features
of the network underlying technology(ies) and architecture.

The possibility of implementing advanced routing methods of multicriteria nature,
the advantages of which have been referred to above, is strongly related to the technical
capabilities provided by modern network technologies and architectures.

We highlight some technological evolutions in basic communication technologies
which had an important impact on routing model developments. Firstly, Multiproto-
col Label Switching (MPLS) was developed for packet-switched services (Internet-type
services) and enables ‘label-switched paths’ (LSPs) to be established via label-switched
routers, so that end-to-end traffic flows can be carried ensuring various QoS requirements.
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A further extension of MPLS specially developed for optical networks was Generalized
MPLS (GMPLS) that provides control functionalities for advanced switching mechanisms,
namely wavelength switching, time division multiplexing and fiber (port) switching. In
essence, from a logical–functional point of view, this capability is equivalent to circuit-
switching or circuit-routing, enabling routing principles perfectly analogous to those of
classical multiservice digital telephone networks. Concerning physical transport tech-
nologies, Wavelength Division Multiplexing (WDM) and Dense WDM (DWDM) optical
technologies enabled the use of tens of wavelengths on each fiber, so that extremely great
information rates and enormous traffic carrying capabilities can be implemented associ-
ated with flexibility resulting from the possibility of wavelength conversion in the optical
switches. Also, the Optical Transport Network (OTN) was designed as the base transport
system for the Synchronous Digital Hierarchy (SDH) transmission system and was ex-
tended enabling the Internet Protocol (IP) and Ethernet protocols to be supported. It is
capable of carrying very large bandwidths and allowing advanced mechanisms in terms of
operations, administration, maintenance and provisioning at the level of wavelengths. Note
that the interplay between various technologies in distinct functional layers of telecom-
munication networks enables various network architectures to be used such as IP/MPLS
over WDM or IP-over-OTN-over-DWDM that enable the reduction of the needed router
capacities and power consumptions and a more efficient utilization of bandwidth. A re-
cent technological paradigm that is having a decisive impact in improving the working
and management of current network structures is Software-Defined Networking (SDN).
The basic idea behind SDN is the separation between the network control logic and the
underlying devices that implement the forwarding of traffic flows, this being achieved by
the direct control of specific types of hardware devices by using common management
interfaces. This is an important development in a wider trend directed to the ‘softwariza-
tion’ of key network functionalities, based on the concept of separation of the functions of
the control plane (where the ‘intelligence’ of the routing mechanism is located) from the
data/message transport plane. Another area where extremely rapid progresses occurred is
mobile networks, driven by the exponential increase in the demand for mobile data and
video services, including fast Internet access, associated with the spread of fifth-generation
(5G) networks, providing important quantitative and qualitative advancements in terms of
bandwidth access (enabling new and better QoS data streaming services) and transmission
latency (with more stringent requirements for real-time services). Also, the development of
specialized IP-based local wireless networks, namely Wireless Sensor Networks (WSNs)
and ad hoc wireless networks (ad hoc WNs), pose specific requirements and limitations to
the routing models, resulting from the fully distributed nature of the routing control and
the limited capacities of the routers in terms of available network information.

In Section 3 of this paper, we outline background concepts related to telecom network
routing models and present an overview of selected papers considered as representative of
different types of applications of multiobjective path problem (MOPP) formulations and
algorithms. A broad characterization of major types of path problems relevant to telecom
routing models, namely single path, path pair and multipath problems (and their main
variants) will be mentioned, in the context of the overview of contributions concerning
different technological and architectural network environments.

Representative examples of routing models for application in various network environ-
ments that involve the formulation of MOPPs will be addressed, focusing on the essential
features of the routing model and of the associated MOPP and the resolution approaches
that are either exact or approximate. Concerning the types of approaches used for tackling
MOPPs in the context of this overview of routing models, we distinguish those that use a pri-
mary resolution procedure algorithm(s) specifically dedicated to the calculation of solutions
to MOPPs, including heuristics and metaheuristics, from those which use instrumentally,
as auxiliary resolution procedures, MOPP-dedicated algorithm(s), including shortest path
and k-shortest path algorithms. A further distinction will be made by considering a third
type of model that involved explicitly, as an objective of the mathematical formulation, the
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calculation of paths that are solutions to MOPPs by recurring to OR approaches which are
not specifically dedicated to path problems, such as network flow, integer linear program-
ming (ILP), mixed integer linear programming (MILP), non-linear programming (NLP)
and other more general types of network optimization approaches. The models of the two
latter types appear frequently in routing methods where the route/path calculation and
selection cannot be mathematically separated from the assignment of node-to-node traffic
flows to the selected paths, which happens in all models for which the routing method
embodies a teletraffic engineering mechanism. Typical examples are models with traffic
splitting, where each node-to-node offered bandwidth can be divided by several paths,
models in circuit-switched networks with alternative routing (where a primary route/path
and an alternative route are calculated such that the alternative route is used whenever
the primary route is blocked) and routing models for GMPLS-based networks using the
Resource Reservation Protocol—Traffic Engineering (RSVP-TE) routing protocol. Also,
we will refer to a few routing models where multicriteria path problems are formulated
through a heuristic multiattribute decision approach using an a priori specification of the
system of preferences by using an empirical utility function, common in applications to
WSNs and ad hoc WNs, having in mind functional characteristics of these networks.

Finally, in the last section of the paper, we outline general major research trends and
challenges in this wide and multifaceted area of application of multiobjective paths problem
formulations and algorithms.

2. Overview of Multiobjective Path Problems and Algorithms
2.1. Basic Concepts

Let G = (N, A) be a directed graph and s, t ∈ N be two given nodes in G. A path
from s to t in G is a sequence p = ⟨v1, v2, . . . , vℓ⟩, where v1 = s, vℓ = t, vi ∈ N, i = 1, . . . , ℓ,
and (vi, vi+1) ∈ A, i = 1, . . . , ℓ− 1. The set of paths from s to t in G, denoted by Pst, can be
represented by means of linear constraints, as

∑(i,j)∈A xij −∑(j,i)∈A xji =


1 if i = s
0 if i ∈ N\{s, t}
−1 if i = t

(1)

where xij ∈ {0, 1} are binary decision variables associated with any arc (i, j) ∈ A. Con-
straints (1) are known as flow balance constraints. Under these conditions, each vector x is
the indicator vector of a path from s to t and the arcs (i, j) with flow xij = 1 form a path
from s to t [5]. We can also write

Pst =

x ∈ {0, 1} : ∑(i,j)∈A xij −∑(j,i)∈A xji =


1 if i = s
0 if i ∈ N\{s, t}
−1 if i = t

 (2)

Let us consider that each arc (i, j) ∈ A is associated with r cost values, ck
ij ∈ R, k =

1, 2, . . . , r, and that the functions f k assign a real value to any path in Pst, based on its
arc costs, for k = 1, 2, . . . , r. The multiobjective path problem can be formulated as an
optimization program with linear constraints, considering the previous decision variables
xij for any (i, j) ∈ A. The problem can be formulated as

min f (x) =
(

f 1(x), f 2(x), . . . , f r(x)
)

(3)

s. t. (1)

xij ∈ {0, 1}, for all (i, j) ∈ A. (4)

The image of the feasible set, Pst, is f (Pst).
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In general, there is no optimal solution to a MOPP since there is not a path in Pst
which optimizes all objective functions simultaneously. Thus, in a MOPP, the concept of
optimality is replaced by the concept of efficiency (or nondominance). A path p ∈ Pst is
said to be efficient if and only if it does not exist any other path q ∈ Pst that dominates p,
that is, such that f (q) ≤ f (p) and f (q) ̸= f (p). In this case, the image of p, f (p), is said to
be a nondominated point. Let XE denote the set of efficient paths in Pst and FN denote the
corresponding set of nondominated points or Pareto front.

We distinguish between supported and unsupported efficient solutions. Supported
efficient solutions are efficient solutions for the images which are located on the boundary
of the convex hull of the nondominated solution set defined in the objective function space,
while the images of unsupported efficient solutions are located in the interior of this hull,
in the duality gaps. Details on duality gaps can be seen in [6].

Supported shortest paths can be obtained as optimal solutions of the single-objective
weighted shortest path problem (WSPP):

min
x∈X

{
∑r

k=1 λk f k(x)
}

, (5)

with given weights λk > 0, for k = 1, 2, . . . , r. The set of supported efficient paths will be
represented by XS, and its nondominated image, f (XS), denoted by FS. The remaining
efficient solutions in XNE = XE\XS are designated non-supported efficient paths. These
cannot be obtained as the solution of a WSPP. The set of non-supported nondominated
points, f (XNE), is represented by FNN .

Two paths p, q ∈ Pst are designated as alternative (or equivalent solutions) if f (p) =
f (q). In this paper, the set of all efficient paths is designated as a maximal complete set, and
it may contain equivalent solutions. The minimal complete set is a subset of the maximal
complete set that contains a single path from any set of equivalent solutions (corresponding
to a unique nondominated point).

2.2. Types of Multiobjective Path Problems

We consider three groups of MOPPs. The first group (Section 2.2.1) is the most well
known, the multiobjective shortest path problem (MOSPP), where objective functions, to be
minimized, are additive (minsum):

f k(p) = ∑(i,j)∈p ck
ij, k = 1, 2, . . . , r, p ∈ Pst. (6)

Since the MOSPP is the most used path problem in telecommunication network appli-
cations, we consider a large number of methods for its resolution and their classification
as follows:

• APO—methods using an a posteriori aggregation of preferences, that is, methods that
generate the whole set of efficient paths, so that the articulation of preferences is made
by the decision maker;

• APR—methods using an a priori aggregation of preferences methods, that is, the
problem is a priori transformed into a single objective problem, for instance, by using
a utility function. We must refer that, as the different objective functions are modeled
prior to the reduction to a single objective problem, the problem remains intrinsically
multiobjective. Note that strict-sense lexicographic approaches should be included in
this class;

• INT—Interactive methods, that is, methods where the articulation of preferences is
progressive, including two successive phases: calculation and dialogue phases. So, a
cycle of proposals and reactions continues till a so-called satisfactory compromise is
obtained, i.e., some stopping condition is reached.

In the second group (Section 2.2.2), we include, besides minsum functions (for instance,
those associated with routing load costs, expressed in terms of the inverse of the available
bandwidth in each arc/link of the path), other types of objective functions, for instance,
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capacity functions such as maxmin or minmax corresponding typically, in routing models,
to the optimization of path bottleneck bandwidths.

The third group (Section 2.2.3) refers to specific path combinatorial problems, and
we focus on methods dedicated to their resolution based on specific biobjective shortest
path techniques.

In Figure 2, we summarize the classification of the above referred to problems, consid-
ering deterministic formulations only.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 47 
 

multiobjective. Note that strict-sense lexicographic approaches should be included in 
this class; 

• INT—Interactive methods, that is, methods where the articulation of preferences is pro-
gressive, including two successive phases: calculation and dialogue phases. So, a cy-
cle of proposals and reactions continues till a so-called satisfactory compromise is 
obtained, i.e., some stopping condition is reached. 
In the second group (Section 2.2.2), we include, besides minsum functions (for in-

stance, those associated with routing load costs, expressed in terms of the inverse of the 
available bandwidth in each arc/link of the path), other types of objective functions, for 
instance, capacity functions such as maxmin or minmax corresponding typically, in rout-
ing models, to the optimization of path bottleneck bandwidths. 

The third group (Section 2.2.3) refers to specific path combinatorial problems, and we 
focus on methods dedicated to their resolution based on specific biobjective shortest path 
techniques.  

In Figure 2, we summarize the classification of the above referred to problems, con-
sidering deterministic formulations only. 

 
Figure 2. Classification of multiobjective path problems. 

In the next subsections, we will be referring to the main results regarding the consid-
ered methods. 

In Tables 1–3, we summarize some essential features of the mentioned resolution 
methods as referred to in this paper. 

2.2.1. MOPP with Additive Objective Functions 
The MOSPP and its more common particular case, the biobjective shortest path prob-

lem (BOSPP), have been studied since the early works [7,8]. They proved that, theoreti-
cally, the problem is intractable and also that instances of this problem can have an expo-
nential number of Pareto optimal solutions depending on the number of nodes. Despite 
this characteristic, several exact methods have been proposed for calculating the efficient 
path solution set. Refs [9,10] obtained finiteness and boundedness conditions for the 
MOSPP, assuming that there are no negative cycles for one of the objective functions (cy-
cles for which the value/cost of at least one of the OFs is negative). Furthermore, these 
studies also proved that, with these assumptions, if the value of any cycle is strictly posi-
tive for at least one of the OFs, then every efficient path is an efficient loopless path, and 
the reverse is also true. In practice, exact algorithms are fast enough to deal with many 
real applications. 

In Table 1, we present a summary of some essential features of exact algorithms for 
the MOSPPs that are referred to in this subsection by indicating the number of OFs, the 
essential features of the resolution technique and the class of the resolution method 
(APO—a posteriori aggregation of preferences; INT—interactive; or APR—a priori aggre-
gation of preferences) as defined above. 

We consider five types of MOSPP algorithms, namely, generalizations of labeling 
techniques for the single-objective shortest path problem (ls, label setting, and lc, label 
correcting); parametric methods which compute nondominated supported solutions based 
on the scalarization of the objective functions depending on a varying parameter (par); 

Figure 2. Classification of multiobjective path problems.

In the next subsections, we will be referring to the main results regarding the consid-
ered methods.

In Tables 1–3, we summarize some essential features of the mentioned resolution
methods as referred to in this paper.

2.2.1. MOPP with Additive Objective Functions

The MOSPP and its more common particular case, the biobjective shortest path prob-
lem (BOSPP), have been studied since the early works [7,8]. They proved that, theoretically,
the problem is intractable and also that instances of this problem can have an exponential
number of Pareto optimal solutions depending on the number of nodes. Despite this
characteristic, several exact methods have been proposed for calculating the efficient path
solution set. Refs. [9,10] obtained finiteness and boundedness conditions for the MOSPP,
assuming that there are no negative cycles for one of the objective functions (cycles for
which the value/cost of at least one of the OFs is negative). Furthermore, these studies also
proved that, with these assumptions, if the value of any cycle is strictly positive for at least
one of the OFs, then every efficient path is an efficient loopless path, and the reverse is also
true. In practice, exact algorithms are fast enough to deal with many real applications.

In Table 1, we present a summary of some essential features of exact algorithms
for the MOSPPs that are referred to in this subsection by indicating the number of OFs,
the essential features of the resolution technique and the class of the resolution method
(APO—A posteriori aggregation of preferences; INT—Interactive; or APR—A priori aggre-
gation of preferences) as defined above.

We consider five types of MOSPP algorithms, namely, generalizations of labeling
techniques for the single-objective shortest path problem (ls, label setting, and lc, label
correcting); parametric methods which compute nondominated supported solutions based
on the scalarization of the objective functions depending on a varying parameter (par);
ranking methods which list paths in order of cost and eliminate solutions dominated by
others (ran); two-phase algorithms which generate the nondominated supported solutions
of the problem and afterwards swap duality gap regions to find those that are unsup-
ported nondominated (2p); and recursive algorithms (rec) which extend node labels recur-
sively, therefore following a depth-search policy and generating labels implicitly until a
certain point.
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Table 1. Summary of some essential features of exact algorithms for the MOPPs with additive metrics.

Reference # Objectives Technique * Class

(Hansen 1980) [8] 2 ls APO
(Clímaco and Martins 1982) [11] 2 ran APO
(Martins 1984) [12] k ls APO
(Corley and Moon 1985) [13] k lc APO
(Mote et al., 1991) [14] 2 2p APO
(Stewart and White 1991) [15] k ls APO
(Tung and Chew, 1992) [16] k ls APO
(Santos 1999) [9] k ls/lc APO
(Guerriero and Musmanno 2001) [17] k ls/lc APO
(Clímaco et al., 2003) [18] 2 ran APO
(Mandow and de la Cruz 2010) [19] 2 lc APO
(Machuca et al., 2012) [20] 2 ls APO
(Xie and Waller 2012) [21] k par APO
(Demeyer et al., 2013) [22] k ls APO
(Sanders and Mandow 2013) [23] k ls APO
(Duque et al., 2015) [24] 2 rec APO
(Pulido et al., 2015) [25] k ls APO
(Machuca and Mandow 2016) [26] 2 ls APO
(Giret et al., 2016) [27] 2 ls APO
(Sedeño-Noda and Colebrook 2019) [28] 2 ls APO
(de las Casas et al., 2021) [29] k ls APO
(Hu et al., 2021) [30] k ls APO
(Kergosien et al., 2022) [31] k lc APO
(de las Casas et al., 2023) [32] k ls APO
(Hernández et al., 2023) [33] 2 ls APO
(Kurbanov et al., 2023) [34] k ls APO
(Mandow and de la Cruz 2023) [35] 2 ls APO

(Current et al., 1990) [36] 2 2p INT
(Murthy and Olson 1994) [37] 2 2p INT
(Henig 1994) [38] 2 lc INT
(Coutinho-Rodrigues et al., 1999) [39] 2 2p/ran INT

(Paixão et al., 2003) [40] k lc/ran APR
(Clímaco et al., 2006) [41] 2 lc/ran APR
(Sauvanet and Néron 2010) [42] k lc APR
(Fouchal et al., 2011) [43] k ls APR
(Pulido et al., 2014) [44] k ls APR
(Shirdel and Ramezani-Tarkhorani 2018) [45] k ls APR
(Pugliese et al., 2020) [46] k 2p/lc APR

* ls: label setting; lc: label correcting; par: parametric; ran: ranking; rec: recursive; 2p: two phases.

The works [47,48] present multiobjective combinatorial optimization surveys including
sections dedicated to the MOPP; classifications including this type of problem are in [49,50].
Later on, the biobjective shortest path problem (BOSPP) was surveyed in [6,51] and the
MOPP in [52]. Computational studies on the multiobjective shortest path problem were
presented in [53], considering two OFs, and in [54], the latter including the use of utility
functions for defining the next label to be scanned and considering two or more OFs. This
study concluded that the features of the network structure have a decisive role in the
algorithm performance.

After reviewing the literature concerning the BOSPP, a thorough computational com-
parison of some of the resolution strategies for this type of problem is presented in [6].

Let us now review the most relevant types of algorithms in each group of methods.

2.2.1.1. APO—A Posteriori Aggregation of Preferences Methods

(a) Maximal Complete Set Computation

Labeling techniques
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Labeling algorithms for the MOSPP are generalizations of the single objective
labeling methods.

Since we have now more than one objective function the algorithm has to consider
more than one path starting in s up to each node, implying that more than one label
associated with that node is used. Note that the labels associated with one node may
dominate one another. This type of algorithm is founded on an adaptation of the Principle of
Optimality valid for the shortest path problem that states that every efficient path is formed
by efficient subpaths. This can be stated if no cycles with a negative cost exist in the network
representation. Like in the single objective problem, these algorithms may be grouped into
two types: label setting or label correcting algorithms. The latter type can still be divided into
those algorithms that make a label correspond to a path starting in s (these are designated as
label-selection methods) or those that are characterized by associating a label with each node
and representing several paths from s to that node so that whenever a label is chosen all
the associated paths are expanded by using the network arcs (these are designated as node-
selection methods). This technique is outlined in Algorithm 1 and illustrated in Figure 3.

Algorithm 1: Generic multiobjective labeling method (node selection)

Variables: Let: X be the set that stores the nodes which correspond to the labels yet to be
examined; L(i) the set that stores all the labels which are associated with node i; πx the
objective function vector associated with the path from node s to node x
Summary: When the algorithm starts, the only label that is considered corresponds to the
path ⟨s⟩. Afterwards, this label is extended using the arcs in A. A dominance test is applied to
any new label, with an objective function vector πx + cij, considering the current labels in
L(j), ensuring that only nondominated labels are stored. When the algorithm is over, L(t)
stores the nondominated labels for node t, which correspond to the efficient paths from node
s to node t.

1 for any node i ∈ N do L(i)← ∅
2 L(s)← {(0, 0, . . . , 0)}
3 X ← {s}
4 while set X is not empty do
5 i← node in X
6 Delete node i from set X
7 For any arc (i, j) ∈ A do
8 for any label πx in set L(i) do
9 If vector πx + cij is not dominated by any label in set L(j) then
10 Add a new label, corresponding to the vector πx + cij, to set L(j)
11 Delete any label in set L(j) that is dominated by the new label
12 end if
13 end for
14 If set L(j) was modified then Insert node j in set X
15 end for
16 end while
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In order to ensure that an efficient path is calculated, the label to be scanned is normally
picked in X in lexicographic order. The applied dominance test consists of comparing one
label cost with the cost of the latest efficient path that was obtained for the biobjective case.
In fact, if labels (a1, b1), . . . , (ak, bk) are selected in lexicographic order, then ai < ai+1, or
ai = ai+1 and bi ≤ bi+1 for i = 1, . . . , k− 1. The subsequence of a given one formed only by
the nondominated labels also satisfies bi ≥ bi+1. Let us assume, without loss of generality,
that some (ak, bk) are not dominated and denote by (x, y) a label lexicographically greater
than (ak, bk). Thence, ak < x and bk ≥ y implies that ai < x and bi ≥ y for any i associated
with the nondominated labels subsequence. Otherwise, if ak < x and bk < y, then (x, y) is
dominated. Similarly, if (ak, bk) = (x, y), then (x, y) is nondominated, like the former label,
but ak = x and bk < y means that (x, y) is dominated. Alternatively, for the case where
we have more than two OFs, we have to check the cost of all the efficient paths previously
obtained. Finally, it should be noted that, similarly to the single objective case, the arc
costs should be non-negative so that label setting algorithms may be applied, whereas label
correcting methods are valid for finite instances of the MOSPP.

It is important to note that when labels are analyzed in lexicographic order, an efficient
path from s to t is obtained whenever a nondominated label associated with node t is
selected, meaning that label setting methods calculate these efficient paths along their
labeling phase. Otherwise, if label correcting is being used, the efficient paths can only be
identified after all the labels are analyzed. The experimental analysis reported in [51,53]
indicates that ranking methods for the biobjective shortest path problem (BOSPP) are close
to an exhaustive search and consequently less competitive than others. Although there is a
dependence on the data structures used in the implementation of the algorithms, it was
concluded in [6,17,51] that, in general, label correcting methods are faster than label setting
methods, the main reason resulting from the fact that label setting involves the extraction
of the label with minimal cost from the set of temporary labels. This task can be completed
either by maintaining the set of labels sorted, or by simply selecting the minimal element
in the set at every extraction, and both are demanding operations that have to be repeated
several times. Furthermore, following [6], node selection can be more advantageous than
label selection taking into account that it allows setting several paths terminating at node
j whenever an arc (i, j) is being analyzed. Still, the authors in [6] concluded that label-
setting and label-correcting methods are the ones with the best performances for most
of the instances that these authors evaluated and that the two-phase methods can be
competitive with other resolution procedures for the BOSPP. This was concluded after the
test of different implementation strategies for each calculation phase, whereas the ranking
method using a “near shortest path” procedure (a dynamic programming type procedure)
performed poorly. In particular, a ranking approach recurring to a “near shortest path”
procedure (alternately identifying nondominated supported solutions and searching within
duality gaps) and the two-phase method, investigating different methods for solving the
problems arising in phases 1 and 2, were tested. It also investigates the two-phase method
considering ranking in phase 2. The addressed near-shortest path method was adapted
from the algorithm in [55], enabling the enumeration of all near-shortest loopless paths
assuming the network has non-negative arc costs, meaning those with a cost that does not
exceed the minimum with a tolerance ϵ ∈ R+.

Next, we summarize more recent or particularly relevant references on labeling meth-
ods for MOSPPs.

In [8], a generalization of the single objective shortest path algorithm in [56] is pre-
sented, considering two objectives. A generalization of Hansen’s algorithm is presented
in [12], considering more than two objectives. In the proposed method, the lexicograph-
ically lowest label is selected in the set of temporary labels, so that it corresponds to an
efficient path. A label correcting algorithm with a form of label generation is described
in [13], similarly to the single-objective shortest path problem proposed by [57,58].

The works in [15,19] extend the so-called heuristic search algorithm A* to the multiob-
jective case: the algorithm Multi-Objective A* (MOA) and the algorithm New Approach to
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Multi-Objective A* (NAMOA), respectively. The A* algorithm is a path finding method
which combines the traditional labeling with a heuristic function that estimates the re-
maining cost of the path to the terminal node [59]. MOA also uses a labeling method
complemented by a node expansion strategy that is guided by a heuristic for the cost of
partial paths. NAMOA is based on MOA, but it dynamically uses the cost of the efficient
paths found by the algorithm to update the partial solutions that should still be expanded.

Label correcting/setting methods for the MOSPP are investigated in [17]. This work
proposes new label-selection and also several node-selection strategies and presents com-
putational experiments. It reports instances of the problem where label selection is the
best strategy and others where node selection performs better. Furthermore, it reports that
label setting is superior for some instances, whereas label correcting performs better for
others. A label-setting algorithm that uses a preference model built a priori for calculating
efficiently the exact preferred solutions for the multiobjective shortest path problem is
described in [43]. The approach is based on the use of the Choquet integral in the context
of a multicriteria decision aid method (see [60]), which can model both relative importance
and interactions between criteria. The paper introduces Choquet dominance rules [61]
which replace the Pareto dominance, integrated within the algorithm by [12].

In [20], the authors present an analysis and a comparison of the performance of
three label-setting algorithms that use heuristic information for improving their efficiency,
namely, the procedures MOA and NAMOA referred to above, and the algorithm in [16].
The related paper [26] presents a lower-bound-set calculation procedure for the biobjective
shortest path problem to be used for improving the computational efficiency of label-
setting algorithms. The method is based on a standard dichotomic search that provides
increasingly precise lower-bound sets.

The work in [22] develops two speedup measures for the algorithm presented in [12]
using a well-defined stopping condition enabling the search to be terminated as soon as all
efficient paths are found and searching the network bidirectionally. That is, dividing the
search procedure into a forward search initiated at the origin node and a backward search
initiated at the destination node.

Paper [23] develops a parallelized version of a label-setting algorithm for the MOSPP,
enabling the calculation of the whole efficient solution set. The procedure is based on
the generalization of a priority queue (designated as Pareto queue) for a multiobjective
optimization purpose. The authors concluded that the implementation of the developed
parallelized algorithm for the biobjective problem yields to an asymptotically lower com-
putational load than the previous sequential type algorithms.

Paper [25] explores the possibility of strengthening the search when the portion of the
Pareto front considered to be interesting for further exploration can be initially bounded. A
dimensionality reduction technique is applied to label-setting algorithms, which reduces
the number of dominance checks. Tests on the application of this technique to problems
with three to five objectives are performed; significant reductions in time requirements
were obtained. The work [27] addresses the BOSPP and introduces a label-setting algorithm
with a dynamic update of the Pareto front. Different exploration strategies are proposed.

Paper [30] extends the ripple-spreading algorithm proposed in [62] for the single-
objective shortest path problem of the MOSPP. The ripple-spreading algorithm is an exact
method based on labeling, with an approach similar to the pulse algorithm [63] but which
defines search areas for each node in order to limit the computation, instead of guiding it
recursively. The new algorithm calculates all the efficient paths.

In [29], a label-setting algorithm is introduced for finding a minimal complete set
of efficient paths for the MOSPP. The new algorithm is called the Multiobjective Dijkstra
Algorithm (MDA). The size of the priority queue used to store the node labels is bounded
by the number of nodes in the graph. The new management of the labels allows us to
parallelize some of the subroutines. Paper [32] follows up this work, and it equips the MDA
with A*-like techniques, with the goal of discarding uninteresting subpaths to be explored
at early stages of the algorithm. A key issue is how to store the subpaths. Moreover, the
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priority queue used in the MDA is combined with a lazy management of paths outside
the queue.

An exact algorithm for the MOSPP is developed in [31]. The described algorithm
seeks to improve upon a label-correcting algorithm by enabling the removal of unnec-
essary nodes from the graph and by dynamically updating the bounds for the costs of
partial paths.

The work in [34] describes an original algorithmic combination for a one node-to-many
nodes MOSPP seeking to achieve a fast solution search. For this purpose, a modification of
a multiobjective label-setting algorithm, operating on the cover graph and employing a
dimensionality reduction procedure enabling swifter domination checks, is developed. The
original procedure preserves the Pareto optimality of the solutions; in addition, it enables
the incorporation of existing heuristics for achieving further efficiency improvements.

The authors in [33] introduce efficient, constant-time, dominance tests between labels
in labeling algorithms for the BOSPP. The new dominance tests are combined with an
algorithm based on the procedure A*.

Also [35] addresses a biobjective shortest path algorithm equipped with efficient
pruning checks. In this work, different types of pruning techniques are highlighted, some of
them known from the previous literature. The pruning operations are classified depending
on the type (op-pruning, cl-pruning, old-filter, new-filter), the moment of their application
(eager, early, lazy), and the use of dimensionality reduction. The early pruning technique is
introduced, which reduces the computational overhead of lazy op-pruning and filtering.

Parametric techniques
Algorithms of this type compute efficient paths corresponding to supported nondom-

inated solutions based on the scalarization of the objective functions. This scalarization
depends on a parameter which varies in order to output the different solutions. It is often
used as the first phase of the two-phase method described below.

In [21], a biobjective parametric solution framework is introduced based on an ap-
proximate label-setting algorithm for the parameterized and constrained single-objective
subproblem. This method finds the supported efficient paths and a large percentage of
non-supported efficient paths. In addition, a general projection scheme is proposed to de-
compose a multiobjective problem into a number of biobjective problems. The introduced
parametric algorithm is polynomial in time.

Ranking techniques
Algorithms of this type rank paths in non-decreasing order of one of the objective

functions and partition the set of efficient solutions into subsets, Si, by means of a dom-
inance test, comparing each obtained path with the previous, and selecting the efficient
ones. For the biobjective case, the search starts with the lexicographic shortest path with
respect to f 1 and halts when the minimal value of f 2 is achieved.

If paths are listed in non-decreasing order of f 1, then the f 2 values of efficient paths
appear in non-increasing order. The algorithm recurs to a set PX for storing temporarily
any computed path while it is not dominated by any other, and there is no guarantee that
it is efficient. Therefore, the algorithm stores in PX the paths that are candidates to be
efficient, and the dominance test for p ∈ Si compares f 1(p) with M1 and f 2(p) with m2,
where M1 is the greatest value of f 1 for the paths previously determined, whereas m2 is the
lowest value of f 2 for the same paths. As paths are found in non-decreasing order of f 1,
either f 1(p) = M1 or f 1(p) > M1. In the first case, p is dominated by some other path if
m2 < f 2(p); otherwise, p is a candidate to be an efficient path, therefore it is inserted in PX .
In the second case, the paths in PX are efficient, and p is temporarily the only new efficient
path candidate in PX and also the only element calculated so far from the elements in a new
set Si. This technique is summarized in Algorithm 2, and it is illustrated in Figure 4.



Algorithms 2024, 17, 222 13 of 46

Algorithm 2: Generic biobjective ranking method

Variables: Let PX be the set that stores potential efficient paths; XE the set that stores the
efficient paths from node s to node t
Summary: Firstly, the algorithm computes the optimal path with respect to each objective
function, also providing f̂ 1, an upper bound on f 1(p), for any efficient path p. Then, the
paths from s to t are listed by nondecreasing order of function f 1 and the dominance of each
one is checked by comparing its objective function vector with (M1, m2), a pair formed by the
worst value of function f 1 and the best value of function f 2, respectively, for the paths
previously analyzed. A path p is included in XE in case it is not dominated; if it is dominated
then it is discarded, and otherwise, it is temporarily stored in PX .

1 for i = 1, 2 do p∗i ← shortest path with respect to the objective function f i

2 f̂ 1 ← f 1(p∗2
)

3 M1 ← f 1(p∗1
)
; m2 ← f 2(p∗1

)
4 PX ← ∅; XE ← ∅
5 p← p∗1
6 while f1(p) ≤ f̂ 1 do
7 if f 1(p) = M1 then
8 if f 2(p) = m2 then Insert path p in set PX
9 else
10 if f 2(p) < m2 then
11 PX ← {p}
12 m2 ← f 2(p)
13 end if
14 end if
15 else
16 if f 2(p) < m2 then
17 Insert all the paths in PX in set XE
18 M1 ← f 1(p); m2 ← f 2(p)
19 end if
20 end if
21 p← next shortest path with respect to the objective function f 1

22 end while
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Note that when there are more than two OFs, the test of dominance has to take into
account all the cost values of the previously determined paths.

The initial proposal of this type of method used the ranking algorithm in [64]. The
efficiency of the subroutine used for ranking paths is critical regarding the method’s
performance since the dominance test and the stopping condition bound the number of
generated solutions. Nevertheless, in the worst cases, the calculation of the complete set can
require an exponential number of paths to be listed; although, the results in [65] showed
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that this limit is never reached for practical problems; the empirical results reported in the
studies below also showed reasonable running times.

Path ranking methods can be classified into the following three groups:

• Deletion algorithms: After the shortest path calculation, a new network is constructed
with all the original paths except the shortest ones. The repetition of this procedure
enables the paths to be listed by order of cost. Various versions of this algorithm were
proposed in [64,66,67]. The algorithm in [68] is a recursive method that calculates a
new path by obtaining the best alternative to the current path to each node. This can
be envisaged as a recursive variant of the method in [67].

• Labeling algorithms: If there are no cycles with negative cost in the network, the
k-shortest path problem satisfies an extension of the optimality principle, thus paths
can be ranked by using labeling methods. To do so, a label is made to represent a path
from s up to a certain node and at most k labels have to be stored for each network
node (see [69]).

• Deviation algorithms: In these algorithms any path from s to t is the deviation from a
shorter path, split into an initial subpath common to both paths, a deviation arc and
the shortest path from its head up to t. Since the shortest path from any node to t can
be calculated in advance by recurring to a shortest path algorithm, new candidate
paths can be generated by selecting the next deviation arc, see [70–72].

Among the most efficient algorithms for ranking loopless paths, we cite the deviation
algorithms in [71,73–75].

Next, we summarize some representative papers using ranking techniques for multiob-
jective shortest path problems.

The work [9] presents computational experiments for the MOSPP, considering labeling
and ranking approaches, in random instances. For two or three objectives, the label-
correcting implementation using a first in–first out (FIFO) approach outperformed both
label setting and the deletion ranking method in [66]. However, for a small set of tests,
a similar implementation using the algorithm in [71] was faster than the remaining ones.
Paper [18] deals with a BOSPP with additional constraints, which imposes that paths cannot
exceed a maximal bound concerning an additive metric. The work reports experiments
where the label setting method is faster than the ranking method using the algorithm
in [71]. However, deviation algorithms are very flexible whenever additional constraints
are imposed because the non-feasible paths can be discarded at an early phase.

The ranking method in [64] may be used to solve the MOSPP. In [11], it was used for a
particular case with two objectives.

Two-phase techniques
These algorithms work in two phases, analogously to what is described in the context

of interactive methods for the MOSPP in [36] and in a general biobjective optimization
problem context in [76].

In phase 1 of the algorithm, extreme, supported efficient solutions are calculated
very often by solving single-objective weighted shortest path problems. In phase 2, the
remaining supported and non-supported efficient solutions are calculated by enumeration.
Note that, in phase 2, the search space of the solutions is restricted to the duality gaps.
Therefore, those problems can be solved faster than by applying pure enumeration to
the BOSPP.

The unimodularity property of the constraints is used by [14] in the considered linear
programming formulation of the BOSPP. The proposed method solves a parametric shortest
path problem for finding the efficient supported solutions. The unsupported solutions are
obtained with a label correction method. This approach is illustrated in Figure 5.
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Recursive methods
An exact recursive algorithm (considering non-negative arc costs) is proposed in [24],

using implicit enumeration based on the ‘pulse algorithm’ for the constrained shortest path
problem given in [63]. Different types of pruning are applied: pruning paths with cycles,
pruning based on a dominance test, pruning Nadir points based on upper bounds for each
objective function, with both techniques being used in complete and partial paths. These
procedures are particularly suited for implicit enumeration. This method is also extended
to more than two OFs.

(b) Minimal complete set computation

Labeling techniques
A generalization of Dijkstra’s algorithm to the biobjective shortest path problem is

presented in [28], by keeping only one candidate label per node in a priority queue of size n.
Thence, a novel algorithm for the one node-to-all nodes BOSPP, enabling the determination
of all the nondominated points in the objective function space and one efficient path
associated with each of these points, is introduced. For the one-to-one BOSPP, the classical
bidirectional search scheme is incorporated into the procedure. The proposed procedure
also involves pruning strategies so that the computation of unnecessary labels is avoided.

2.2.1.2. INT—Interactive Methods

Paper [36] describes an interactive method for obtaining an approximation to the
efficient solution set for the BOPP. The goal of the method is to assist the DM in the
selection of the preferred/best trade-off solution within the efficient solution set, working
in two phases. The first phase recurs to a Non-Inferior Set Estimation (NISE)-like procedure
(enabling a specific order of calculation of supported efficient solutions) [77]; in the second
phase of the method, a constrained shortest path problem is solved, enabling a search in
specified duality gaps, see [78].

In [37], an interactive method for the BOSPP, which obtains the optimal solutions
for a quasi-concave and non-increasing utility function defined by the DM, is proposed.
In the first step, the DM evaluates OF values for supported efficient paths. The search
region is reduced by carrying out pairwise comparisons until it is defined by two adjacent
solutions in terms of costs. Afterwards, a labeling algorithm is applied to the obtainment of
the non-supported nondominated points, while the domination cones derived from the
pairwise comparisons carried out by the DM cause the search area to shrink.

Paper [38] proposes an interactive method by showing that, given an acyclic network
and a preference-order relation, the principle of optimality is valid if and only if the
preferences are linear functions with respect to the objectives. It is suggested to use an
interactive method for assessment of a value function while using the principle of optimality
in the search for an optimal solution. Furthermore, in this process, the DM is asked about
the compromises between solutions or to sort paths according to his/her preferences.



Algorithms 2024, 17, 222 16 of 46

The authors in [39] describe an interactive method for finding efficient biobjective
shortest paths which is based on the proposal in [36], but now, in phase 2, the ranking of
paths is performed, instead of solving constrained shortest path problems.

Paper [42] deals with an application of the MOSPP in the context of cycling routes,
and it develops a method focused on finding a well-balanced trade-off path between the
objectives. The algorithm follows the Best Compromise A* method, the goal of which is to
find a path that minimizes a Chebyshev-weighted norm considering a given reference point.
The algorithm follows a labeling approach and includes pruning techniques to enhance its
computational performance.

2.2.1.3. APR—A Priori Aggregation of Preferences Methods

Next, we summarize more recent or particularly relevant references on a priori aggre-
gation of preferences methods for MOPPs.

Paper [40] proposes a method that uses different metrics as utility functions based on
the norm value associated with each path. Two algorithms for solving the minimum-cost
path problem for the proposed metrics are then described.

The authors in [44] introduce an exact label-setting algorithm that obtains the subset
of efficient optimal paths which satisfy a set of lexicographic goals, or the subset which
minimizes deviation from goals whenever these cannot be fully satisfied. In particular,
given an a priori set of goals, the work addresses the problem of finding the subset of Pareto
optimal paths which satisfy the goals or, if these cannot be satisfied, finds the subset of
Pareto optimal paths which minimize deviation from the goals. This is achieved by means
of a multiobjective label-setting algorithm with lower bounds and label expansion that
obtains such goal-optimal solutions.

Concerning the works [46,79], the first paper addresses the ‘resource-constrained
shortest path problem’, the aim of which is to obtain the shortest path under constraints
corresponding to upper bounds on resource consumption along the path. A new resolution
method, based on the reference point methodology, is described. Furthermore, the concept
of the Chebyshev distance is used for obtaining models and methods enabling upper and
lower bounds on the consumption of resources along the paths to be found. The second
work addresses the MOSPP and applies a reference point method using a non-additive
scalarizing function for finding the ‘best Pareto optimal path’ according to the considered
preference-based approach. For this purpose, a reference point-based constrained shortest
path problem is formulated. A two-phase method is described for its resolution where,
in the first phase, a bound on the optimal solution is computed and used to define the
constraints, whereas in the second phase, a labeling algorithm is applied to search for an
optimal solution. The proposed method is applied to grid networks.

In [41], a method of analysis of efficient solutions enabling the automated ordering
and selection of solutions of a MOPP is proposed and applied to a telecom network routing
model based on a BOSPP formulation as it will be referred to in Section 3. The described
algorithm is based on a reference point approach such that the paths in a specific priority
region in the OF space are ranked by non-decreasing order of a weighted Chebyshev metric.
The priority regions are specified from preference thresholds that represent requested and
acceptable values previously defined for each OF.

Paper [45] introduces a hybrid method for a MOSPP seeking to generate an efficient
path which fulfils the decision maker’s preferences. The method takes advantage of
common weights methodology to define the relative importance of some of the objectives,
which results in a single-objective shortest path problem.

2.2.2. MOPP with Other Objective Functions

The methods presented here are a posteriori aggregation of preferences methods.
Maximal complete set computation and minimal complete set computation approaches are
included in the following paragraphs.
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In Table 2, we present a summary of some essential features of exact algorithms for the
MOPP with non-additive metrics referred to in this subsection by indicating the number of
OFs of the addressed problems.

Table 2. Summary of some essential features of exact algorithms for the MOPP with non-
additive metrics.

Reference # Objectives

(Martins 1984) [80] 2
(Current et al., 1985, 1988) [81,82] 2
(Current et al., 1987) [83] k
(Pelegrín and Fernández 1998) [84] 2
(Gandibleux et al., 2006) [85] k
(Pinto et al., 2009, Pinto and Pascoal 2010) [86,87] 3
(Iori et al., 2010) [88] k
(Bornstein et al., 2012) [89] k
(Pascoal et al., 2013) [90] 2
(Torchiani et al., 2017) [91] 2
(Pascoal 2018) [92] 2

(a) Maximal complete set computation

In [80], BOPPs having at least one maxmin objective function are addressed. The other
OF can either be of that type or be a minsum or minratio type function. Two algorithms
are proposed: the first one enabling the minimal complete set of efficient paths to be
found; the second one enabling the maximal complete set to be obtained. Both algorithms
can be utilized as long as there is an OF of maxmin type and an algorithm is available
for determining the best solution for the other OF. The minimal complete set can be
computed in a time of O(m1g(n)), m1 being the number of maxmin objectives and g(n)
being the number of operations needed to calculate an optimal path. The papers [81,82]
define the maximum covering/shortest path, the minimum covering/shortest path and
the maximum population/shortest path problems, the latter being a special case of the
former. The problems are formulated as biobjective integer programs. The paper also
presents a summary of the results obtained for a sample problem concerning the latter
formulation. Also, variants and applications of both problem formulations are shown. Note
that these formulations extend the concept of ‘coverage’ used in facility location analysis to
network design and routing analysis. The work in [83] puts forward the median shortest
path problem (MeSPP), a BOSPP, the objective functions of which are the path length and
the travel time required for the demand to reach a node on the path. An algorithm is
proposed incorporating a ranking path procedure for identifying efficient solutions. The
work in [88] addresses the multi-objective shortest path problem with sum and bottleneck
objective functions and introduces a weighted sum aggregate ordering of the labels to be
incorporated into label-setting algorithms.

(b) Minimal complete set computation

The authors in [84] address the minsum–maxmin path problem. This work shows that
the quickest path problem (QPP) (see Section 2.2.3) is equivalent to a weighted shortest
path problem associated with the defined problem. An algorithm enabling the calculation
of some specific efficient paths of the minsum–maxmin path problem, based on [93], and
a resolution procedure for the QPP (that coincides with the one introduced in [94]) are
presented.

In [85], an extension of the label setting algorithm in [12] for the MOPP is presented.
This extended version handles one more maxmin OF, f r, besides the minsum objective
functions, f 1, . . . , f r−1, and obtains the efficient paths from s to the other nodes. Note that
given paths p, q between a given pair of nodes, q weakly dominates p if f i(q) = f i(p), for
i = 1, . . . , r− 1, and f r(q) > f r(p). Thence, the classical version of the optimality principle
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is not valid in this case because efficient paths may contain weakly efficient subpaths, and
consequently, a new dominance test is necessary.

The works [86,87,89] address path problems with two OFs of maxmin type, and a
third OF of any kind, assuming that the optimal solution with respect to that function can
be found. In the first paper, a polynomial algorithm is presented enabling the generation of
the minimal complete set by computing the optimal path in any subgraph where the set of
arcs is constrained according to the maxmin values. The second paper seeks to improve
the former method by considering the OF values of previous paths to skip some maxmin
values, thence reducing the number of subproblems. The same strategy can be applied to
other network optimization problems. A labeling procedure for the addressed problem
is also developed as a variant of the first procedure which aims at choosing the solutions
with the best maxmin value when the cost remains the same. It is shown that the time
bound for the first type of algorithms isO(m1m2g(n)), m1, m2 being the number of distinct
values for each maxmin OF and g(n) being the number of operations necessary to obtain
the single source–single destination shortest path. As for the labeling procedure, it has time
complexity of O(m1m2 log(nm1m2)(mm1m2 + n)). Finally, the third work generalizes the
algorithm for more than two OFs of maxmin type.

Paper [90] considers a BOPP where two parameters, namely an additive cost value
and a label, are assigned to each arc. The first OF of the problem seeks the minimization
of the path cost, whereas the aim of the second OF is to obtain the path with a minimal
number of different labels. Two algorithms are presented that generate a set of efficient
paths. One of the algorithms finds the shortest paths in a sequence of subnetworks of
the original one, setting different lower bounds for the number of labels, together with a
dominance test for the solutions. The other one uses a breadth-first search (BFS) tree of
label combinations together with the calculation of the shortest path associated with each
tree node.

The authors in [91] address the shortest path with a shortest detour problem, a problem
in which the first OF is the path length (to be minimized), and the second OF (also to be
minimized) is the maximal length of a detour path whenever the chosen path is blocked.
The relation of this problem to robust optimization is highlighted, and a polynomial time
resolution algorithm is proposed, enabling the computation of a minimal complete set of
efficient paths. Moreover, it is shown that the number of arcs in the graph is a bound for
the number of nondominated points.

In [92], BOPPs are considered, involving the number of hops (or arcs) of a path as
one of the OFs and either the path additive cost or the path capacity as the other OF.
Labeling algorithms are proposed, which utilize a breadth-first search tree for finding the
maximal and the minimal sets of efficient solutions. Dominance rules are derived, and
the properties of the used data structure are explored to better suit the number of hops
enabling a simplification of the labeling process. For both problems, the minimal complete
set can be found in a time of O(mn).

2.2.3. Other Specific Path Problems Involving Two Functions

Next, we overview some specific path problems involving two functions. In Table 3, a
summary of some essential features of the exact algorithms of the type referred to in this
subsection are shown.

Table 3. Summary of some essential features of exact algorithms for other specific path problems.

Reference # Objectives Problem Type

(Martins 1984) [95] 1 minsum/maxmin
(Ahuja 1988) [96] 1 minsum/max reliability
(Chen and Chin 1990) [97] 1 quickest
(Rosen et al., 1991) [93] 1 quickest
(Hansen et al., 1997) [98] 2 min(max-min)
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Table 3. Cont.

Reference # Objectives Problem Type

(Martins and Santos 1997) [94] 1 quickest
(Boffey et al., 2002) [99] 1 quickest
(Captivo et al., 2003) [100] 2 knapsack
(Park et al., 2004) [101] 1 quickest
(Soroush 2008) [102] 1 minsum/minsum
(Clímaco and Pascoal 2009) [103] 2 disjoint path pairs
(Figueira et al., 2010) [104] 2 knapsack
(Laporte and Pascoal 2011) [105] 1 minsum with relays
(Calvete et al., 2012) [106] 1 quickest
(Ruzika and Thiemann 2012) [107] 1 quickest
(Ghiani and Guerriero 2014) [108] 1 quickest
(Sedeño-Noda and González-Barrera 2014) [109] 1 quickest
(Calvete et al., 2017) [110] 1 quickest
(Pascoal and Clímaco 2020) [111] 2 shortest disjoint path pairs
(Moghanni et al., 2022) [112] 2 k-shortest dissimilar paths

(a) Minimal cost–capacity ratio path problem

Paper [95] addresses the minimal cost–capacity ratio path problem by developing a
polynomial time algorithm enabling a path from s to t, which minimizes the cost–capacity
ratio to be calculated. The objective function of this problem is as follows:

f (p) =
∑(i,j)∈p c1

ij

min
(i,j)∈p

{
c2

ij

} . (7)

The proposed algorithm is based on the resolution of the corresponding minsum–
maxmin biobjective path problem.

(b) Minimal cost–reliability ratio path problem

Paper [96] addresses the minimum cost–reliability ratio path problem that seeks the
determination of a path p from s to t which minimizes the following objective function:

f (p) =
∑(i,j)∈p c1

ij

∏(i,j)∈p c2
ij

. (8)

Parametric programming is used (taking into account that the optimal solution to this
problem is an efficient path for a biobjective path problem), thence enabling the enumeration
of the solutions. A specific sufficiency condition is applied to cut down the enumeration
process.

(c) Linear fractional path problem

Paper [102] addresses the linear fractional path problem, the aim of which is the
calculation of a simple path p between s and t that minimizes

f (p) =
∑(i,j)∈p c1

ij

∑(i,j)∈p c2
ij

. (9)

An exact method for finding an optimal simple path when arc costs associated with the
functions in the numerator and denominator are non-negative is proposed. The algorithm
uses specific multiobjective optimization related techniques like path preference structures
and elimination techniques enabling partial paths that cannot be part of an optimal path to
be discarded.
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(d) Quickest path problem

The goal of this optimization problem is to find a path p that minimizes

f (p) = ∑(i,j)∈p c1
ij +

σ

min
(i,j)∈p

{
c2

ij

} , (10)

for a given σ ∈ R+.
In a telecommunication network routing context, the function f (p) gives the total

transmission time of σ data units between nodes s and t along path p, and c1
ij and c2

ij denote
the expected delay and the bandwidth (transmission capacity) of arc (i, j), respectively.
This problem (QPP) was introduced in [113], and a survey on this topic is in [114].

The authors in [97] noted that for constant arc capacities, the QPP is reducible to the
shortest path problem. For this purpose, the original network is transformed by creating
subnetworks of the original one, with different fixed-capacity lower bounds. The paths
in the extended network correspond to the paths from the origin s to t in (N, A) with a
given capacity; therefore, one of the shortest paths from node s to any of the new terminal
nodes must be the quickest one. The consideration of different levels for each defined
capacity value implicitly solves the problem as a biobjective problem; this is achieved
by fixing one of the OF values and obtaining the best path with respect to the other OF.
This algorithm runs in a time of O(r(m + nlog n)) and uses memory space of O(r(m + n)),
where r denotes the number of values of arc capacities.

In the methods proposed in [93,94], different variants of the resolution strategy are
used. In the first paper, the algorithm computes the shortest paths in a sequence of specific
subnetworks of the original one, considering fixed lower bounds of the arcs capacity.
These subnetworks are obtained by eliminating the arcs with a certain capacity, as new
paths are being determined. Like in the previous method, this procedure implicitly solves
a biobjective problem. In the second work, the QPP is approached from a biobjective
perspective and applies the algorithm for minsum–maxmin problems in [80]. The outcome
is very similar to the latter resolution method. These algorithms enable the reduction of
the memory space complexity to O(m + n). In [99], it is noted that the set of arcs of each
subnetwork in the sequence used by [93] is always a subset of the previous one, thus a
proposal to replace some resolution procedures of the shortest path problem by a simplified
version of Dijkstra’s algorithm is put forward. Empirical tests do not demonstrate a
significant enhancement in the efficiency of the algorithm.

A label-setting algorithm for obtaining the quickest path is described in [101]. The
original network is transformed into another one satisfying an optimality property such
that each subpath of a quickest path is also a quickest path. The proposed algorithm avoids
enumerating non-efficient paths which have a total transmission time greater than the
minimum.

The work in [106] presents algorithms for the quickest path problem and for a related
problem seeking the identification of the quickest path, the reliability of which is above a
given threshold. The algorithms use an enlarged network like the one proposed in [97]
but that considers the number of items to be transmitted. Two approaches are presented
for the second problem. The first proposes paths to be ranked in nondecreasing order of
transmission time so that the first one which satisfies the reliability constraint is selected.
The second approach recurs to an enlarged network and the problem is modified in terms
of a constrained shortest path problem.

Minmax versions of robust quickest path problems are proposed and investigated
in [107]. The authors propose exact algorithms or fully polynomial-time approximation
procedures depending on the complexity of the addressed problems.

In [109], a label-setting algorithm for the quickest path problem is proposed. The
algorithm is based on the property that the optimal solution to the problem corresponds to
a supported nondominated point in the objective function space of the minsum–maxmin
BOPP; note that the procedure does not require enlarging the network representation.
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As for [108], it describes a resolution procedure based on obtaining a lower bound of
the time-to-target for the QPP, a bound which is embedded into an A* algorithm.

Paper [110] addresses a variant of the quickest path problem in which each arc is
associated with the energy consumed during the transmission along the arc, while each
node is assigned with a limited power to transmit messages. The aim of the energy-
constrained quickest path problem is to obtain the quickest path, the nodes of which can
support the transmission of a message of a known size. Algorithms are proposed for this
problem as well as to find the complete set of efficient paths for the problem in which the
OFs are the transmission time and the total used energy.

(e) Minimum range and ratio path problem

In [98], a study on the following path problems is presented: minrange problem, the aim
of which is to find a path with the smallest range of arc lengths, max

(i,j)∈p

{
c1

ij

}
− min

(i,j)∈p

{
c1

ij

}
,

and the minratio problem, the goal of which is to calculate a path for which the ratio of the
largest to the smallest arc length is minimum, that is, with the following objective function:

f (p) =
max
(i,j)∈p

{
c1

ij

}
min
(i,j)∈p

{
c1

ij

} . (11)

The optimal solution to these problems is an efficient minsum–maxmin path. The
proposed algorithms are based on the enumeration of candidate paths in decreasing order
of the objective values, skipping those paths with an OF value greater than or equal to the
best known so far. The described algorithms have a time complexity of O

(
m2log log n

)
in directed networks and O

(
m2) in undirected networks. The paper also investigates

biobjective extensions of these problems.

(f) Knapsack problem

The works [100,104] study the performance of new labeling algorithms devised for
finding all of the efficient solutions of the multiobjective integer knapsack problem. The
algorithm proposed in the first paper takes advantage of the conversion of the 0–1 knap-
sack problem into a BOPP over an acyclic network. The second paper describes a generic
labeling algorithm for finding all efficient solutions of the multiobjective integer knapsack
problem. This algorithm is based on the resolution of the MOPP on an underlying net-
work. Algorithms devised for defining four network modes representing the problem are
proposed.

(g) Disjoint path pair problems

Paper [103] proposes an exact method for calculating efficient biobjective shortest
pairs of disjoint simple paths. The resolution approach is based on an algorithm for ranking
pairs of disjoint simple paths in non-decreasing order of cost [71], which constitutes an
adaptation of a path ranking algorithm application to a network obtained from the original
one after a specific duplication of the topology. Each path in this transformed network
corresponds to a pair of paths in the former one. The obtained listed paths are then put
through an effective dominance test. The work in [111] uses an analogous approach for
finding pairs of paths that simultaneously minimize the number of arcs that they share and
the total cost of the two paths. The performance of the proposed method is assessed also
when applied to obtain efficient solutions close to the maximally disjoint path pair (that is,
quasi-disjoint pairs, for a given admissible relaxation value).

(h) Shortest path problem with relays

The work in [105] studies the minimum cost path problem with relays (MCPPR).
This problem consists of obtaining a shortest path from s to t, with a resource weight
constraint. In order to fulfill this constraint, the path nodes can be utilized as relays,
resetting the transported weight to 0 while generating a node-dependent cost. The MCPPR
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is formulated as a BOPP involving an aggregated function of the path and relay costs and a
weight function, dealing with a variant which takes all three functions separately. The paper
presents labeling algorithms in which W, the bound on the weight of paths, determines
the number of node labels. The proposed algorithm for the constrained single objective
function version has a time complexity of O(Wm + Wnlog max {W, n}). Furthermore, the
algorithm is extended to consider two additive OFs: the path cost and the relay cost.

(i) Dissimilar paths problem

The problem of finding sets of paths with minimal cost and maximal dissimilarity
between them is addressed in [112]. Integer linear formulations for the problem are
provided, and an ϵ-constrained method to solve them is proposed.

2.3. Approximate Methods

Given their difficulties, NP-hard optimization problems are often approached by
approximate methods which work fast while looking for sets of solutions that approximate
the efficient ones. Even if shortest path problems can be solved efficiently, when several
objectives are considered or the solutions are subject to additional constraints, the instances
become harder and, in such cases, exact methods may not be very successful.

An early work concerning an approximate method for solving the MOSPP is [115],
where the author proposes a fully polynomial time approximation scheme (FPTAS) to find
an approximation to the set of efficient paths. The basic foundation of this algorithm is
to use an upper bound on the cost of the paths for every OF, enabling the OF space to be
divided into cells such that their size grows exponentially and applying an efficient exact
pseudopolynomial algorithm to each cell, namely the algorithm in [12]. The work [116] also
introduces a FPTAS for the multiobjective shortest path problem with non-negative and
integer arc costs. The algorithm combines a labeling algorithm and a FPTAS proposed in an
earlier work by [117]. More recently, [118] proposes an approximation method framework
for solving the MOSPP based on three speeding up strategies for labeling algorithms. The
authors present a comparison performance study of the proposed approximate methods
with other approximate procedures and with exact algorithms, considering random and
reference test networks in combinatorial optimization and real-type German power grid
networks.

Paper [119] addresses the dynamic MOSPP, which considers arc costs that may vary.
It develops an exact algorithm under a FIFO assumption that is used as a starting point for
an FPTAS for both the static MOSPP and its dynamic variant.

Several heuristic and metaheuristic approaches have been used to solve some multiob-
jective problems that are formulated in the context of telecommunication network routing
design, as illustrated in more detail in some references in Section 3. Here, we highlight some
of these metaheuristics. Two resolution approaches of a multiobjective routing model based
on simulated annealing and on tabu search are proposed and tested in [120]. Simulated
annealing (SA) has been widely used to solve different optimization problems. It is based
on an analogy with the annealing phenomenon in physics, which involves heating and then
slowly cooling (in a controlled manner) a material, which will change its physical properties.
This technique, in single objective problems, requires a fine tuning of its parameters, so
that it may lead to approximate solutions to the optimal solution. Tabu search (TS) is also
a widely used metaheuristic procedure in different optimization problems. It is a local
neighborhood search technique. In single objective problems, it tries to diversify the areas
of the solution space that are explored. This is achieved by an intelligent guidance into
those areas by forbidding some moves and allowing the solutions to become worse (i.e., it
is possible to escape local optima).

Concerning simulated annealing approaches, next we add two references dedicated
to MOPPs [121,122]. These papers investigate an oriented spanning tree (OST)-based
simulated annealing for solving the MOSPP as well as the multiobjective constrained
shortest path problem, especially for those with non-linear OFs. The test results are
compared with those obtained by a recent Evolutionary Algorithm (EA).
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Genetic algorithms and EAs are often used to solve multiobjective routing optimization
problems. Some examples are in [123–126]. These algorithms are based on the idea behind
the evolution theory by Charles Darwin, such that the resolution procedure mimics the
natural selection observed in nature. Different solutions (represented by chromosomes)
are found through the application of operations of crossover and recombination, mutation,
and selection.

We add some relevant papers on this subject: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [127], Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [128], the
Multi-Objective Ant Colony System (MOACS) [129], and Multi-Objective Particle Swarm
Optimization (MOPSO) [130]. Furthermore, recent relevant references dedicated to MOPPs
are now mentioned.

Papers [131,132] present an evolutionary algorithm for a MOPP in undirected net-
works. The algorithm differs from the evolutionary algorithms for more general multiob-
jective optimization problems as it uses an external set to maintain efficient solutions and a
different selection strategy.

There is a diversified range of Artificial Intelligence (AI) techniques that may be used
for multiobjective optimization problems in this area. An example is in the paper [133],
where the authors apply Deep Neural Networks (DNN) and Fuzzy Inference Systems (FIS)
to solve a multiobjective Route and Wavelength Assignment (RWA) routing model for
Elastic Optical Networks (EONs). In the case of DNNs, they try to mimic the way in which
information is processed by the human brain, in order to learn more information and use it
to make meaningful decisions. As for FIS, these are systems that use a set of rules (based
on fuzzy set theory) to establish relations between features (inputs) and classes (outputs).
At the core of this technique lies a reasoning mechanism based on the rules or guidelines,
which tries to infer an acceptable output in the context of a problem.

Another example of a metaheuristic applied in this area is the greedy randomized
adaptive search procedure (GRASP), used in [134]. This technique starts by (i) generating
greedy randomized solutions, i.e., it is based on random solutions, the quality of which is
assessed, and the more promising solutions are greedily selected; (ii) afterwards, there is
an attempt to improve the considered solutions through a local search procedure.

2.4. Path Problems Dealing with Uncertainty—An Outline

The classical single objective or multiobjective path problems assume that the param-
eters associated with the arcs are deterministic. However, setting the parameter values
is often very difficult, since these values may be subject to several sources of uncertainty
and/or imprecision.

Having in mind that path problems dealing with uncertainty/imprecision are not
in the core subject of this work, we just briefly refer to shortest path problems involving
probabilistic network parameters and to cases where the imprecision of parameters is
modelled using fuzzy sets or rough sets.

(a) Stochastic Path Problems

In the work in [135], the authors develop a method for solving a stochastic mul-
tiobjective shortest path problem and present an application to a hazardous material
transportation case. In [136], a biobjective path problem on a directed multigraph with
cycles is studied, where each arc is associated with a survival probability of moving along
the arc parameter and the length of the arc. The authors intend to maximize the path
survival probability, and to minimize the path length. As it involves the resolution of a
NP-complete problem, even in the acyclic case, approximation algorithms are developed.
The papers [137,138] deal with an uncertain MOSPP in a ‘weighted connected direct graph’
where two uncertain parameters, cost and time, represented by uncertain variables are
associated with the arcs. The authors proposal consists of solving the deterministic transfor-
mations of two models. Namely, an expected value model and a chance constrained model
of the multiobjective uncertain shortest path problem. Furthermore, the deterministic
models resolution uses two multiobjective genetic algorithms, namely nondominated sort-
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ing genetic algorithm II (NSGA-II) and multiobjective cross-generational elitist selection,
heterogeneous recombination and cataclysmic mutation (MOCHC).

(b) Imprecision in Shortest Path Problems

A shortest path problem on a network in which fuzzy numbers are assigned to the
arc lengths is addressed in [139]. An order relation between fuzzy numbers is introduced,
allowing us to build an auxiliary problem which enables a resolution for the fuzzy shortest
path problem to be derived. The auxiliary problem consists of the calculation of the efficient
paths set of a MOSPP, based on the order relation between fuzzy numbers referred to above.
Other variants of this problem have been approached in [140,141]. Paper [137] deals with
a multiobjective path problem in a directed network, and the associated arc weights are
represented as rough variables in order to model the imprecision. The proposed problem
resolution involves a modified rough Dijkstra’s labeling algorithm; or, alternatively, a
method which considers a rough chance constrained programming technique solved by a
Goal Attainment Method and the NSGA-II.

3. Applications to Communication Network Design
3.1. Background Concepts

We should note that the mathematical formulation of a routing model (envisaged as
a logical-mathematical system encompassing the assumptions and mathematical entities
which enable an unequivocal specification of the route/path calculation and selection
problem in a given network environment) typically considers a network representation
in terms of a capacitated graph and, in many models, a matrix of node-to-node expected
(average) offered demand.

If we wish to have a more complete representation of the factors of the network
environment associated with routing methods, then traffic flows (in fact of a stochastic
nature), a more general representation, through a ‘teletraffic network’, composed of several
mathematical and other logical entities (see e.g., [1,142]), should be used. Furthermore,
the nature of real communication networks is very complex, since they are organized,
from the point of view of the functional, operational and control/management aspects, in
several interrelated layers, which leads to the necessity of considering them as multilayer
network structures. An Internet network, for example, in a limited national area, has at
least three layers, namely the physical infrastructure (or physical layer, including coaxial
cables, optical fiber cables and microwave links), the router topology layer (corresponding
to the logical layer) and the third layer (corresponding to the representation of application
level and possibly social network flows). This often raises difficult modelling issues in the
development of adequate/realistic routing models in a given application context which
can have an impact on the mathematical formulation of the path problem(s) defined as a
nuclear part of the routing model.

The formulation of the routing models is strongly dependent on various aspects,
mainly (i) basic features of the network communication technology (for example, whether it
is circuit-switched or equivalent, packet-switched, as in technologies based on IP, or hybrid);
(ii) the underlying routing principles (such as static, dynamic, fully distributed, centralized,
on-line or off-line routing methods); (iii) the network architecture (for example, IP-over
MPLS over WDM); (iv) the QoS features of provided services and service classes, including
resilience/protection requirements; (v) the computing capability and network information
provided to the route calculation devices (such as switches in circuit-switched networks,
routers in IP-based networks or optical-cross connectors in GMPLS optical networks);
(vi) the network functional layer where the routing procedure is applied (for example, the
logical layer, physical/transport layer or an intermediate layer); and (vii) end-to-end traffic
management mechanisms (associated with bandwidth allocation throughout each path
for different end-to-end service demands, as in routing methods with explicit bandwidth
allocation or traffic splitting).

A general class of routing methods other than the basic class (usually designated as
unicast routing where only one node-to-node route/path is calculated for each service
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demand) is multipath routing that involves the simultaneous calculation of several paths,
between two nodes or between two sets of originating and terminating nodes. An important
type in this class refers to routing models with explicit reliability requirements/optimization
objectives, in which an active/primary path and a backup path/protection path (which will
be used for actually carrying the end-to-end communication messages in the event of failure
of the active path) have to be computed simultaneously for each pair of origin-destination
nodes; this should not be confused with alternative routing (where a secondary path has
to be computed and used when the primary or first choice path is blocked due to traffic
congestion, typical of circuit-switched networks or of equivalent logical type). The routing
methods with built-in reliability requirements are designated in general as resilient routing
methods. Another class is designated as multicast routing for which a set of paths has to
be calculated from the originating node to a set of destination nodes—point-to-multipoint
routing (this is the situation typical of the distributional services supplied by a certain
service provider)—or interconnecting two subsets of network nodes—a multipoint-to-
multipoint routing model (for example in teleconferencing services in Internet). If all the
nodes have to be interconnected, it is designated as broadcast routing and is formulated
as a spanning tree problem. If the set of destination nodes is a proper subset of the set of
network nodes, the associated multicast routing problem can be formulated as a Steiner
tree problem, where the destination nodes and the originating node are the terminal nodes.
These types of models using spanning trees or Steiner tree problem formulations are out of
the scope of the present work.

Reference books focusing on concepts, techniques, models and algorithms concerning
communication network routing methods and protocols for key types of telecommunication
network technologies and architectures are [143,144].

3.2. Overview of Selected Papers

Hereafter, we present an overview of selected papers considered as representative of
different types of applications in telecom network routing in the scope of this work. As men-
tioned above, we will distinguish, in each subsection, three types of contributions: those
corresponding to routing models that use as primary resolution procedure algorithm(s)
specifically dedicated to the calculation of solutions to MOPPs, including heuristics and
metaheuristics (these will be referred to in Section 3.2.1); routing models which use in-
strumentally, as auxiliary resolution procedures, MOPP-dedicated algorithm(s), including
shortest path and k-shortest path algorithms (these will be referred to in Section 3.2.2);
those models that involve explicitly, as the objective (but not necessarily the unique one)
of the mathematical formulation, the calculation of paths that are solutions to MOPPs
by recurring to Operations Research approaches which are not specifically dedicated to
path problems, such as network flow, integer linear programming (ILP), mixed integer
linear programming (MILP), non-linear programming (NLP) and other more general types
of network optimization approaches that may be designated as ‘network wide routing
optimization approaches’, in the sense defined in [145] and, in a multiobjective routing
broad context, in [142]. This type of paper will be referred to in Section 3.2.3. Furthermore,
throughout this overview we will give examples of contributions concerning different
types of path solutions sought by the MOPP formulations referred to in each paper, namely
single path node-to-node, path pair node-to-node and multipath node-to-node solutions.
Note that each of these types of solutions corresponds to different types of routing mod-
els and may have different formulations that have to be contextualized in a particular
network environment.

Finally, we refer to a few, specific routing models, where multicriteria path problems
are formulated through a multiattribute decision approach using an a priori specification
of the system of preferences through an empirical utility function. These approaches were
proposed for simplified heuristic multiobjective routing procedures in WSNs and ad-hoc
WNs using hop-by-hop routing protocols where the node computation capability is very
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limited, and the information provided to a node is limited to metrics of the adjacent links
(corresponding to arcs of the network graph representation).

We would like to mention that in the late nineteen-nineties/early two-thousands,
a new routing paradigm, designated as QoS routing, emerged as a result of the rapid
technological evolutions, especially concerning IP-based services. This trend had to do
with the need for the development of multiservice networks capable of dealing explicitly
with different, heterogeneous QoS metrics. The associated routing models usually included
multiple hard constraints or one objective function and several QoS-related constraints.
As noted in [1], QoS routing models corresponding to constrained single objective path
problem formulations may be considered as ‘first tentative of multicriteria routing mod-
elling’ bearing in mind that a known approach to multicriteria optimization involves the
transformation of the OFs into constraints, except one OF, which is to be optimized; in
certain conditions, the calculated solution will be Pareto optimal for the associated MOPP
which includes some of the former QoS constraint(s) as OFs [146]. This approach to the
characterization of models, which should be considered as explicitly multicriteria, was
also adopted by the authors in [3]. They propose a conceptual framework concerning the
development of explicitly multi-criteria modeling approaches, for multicriteria QoS routing
in IP-based networks and put forward a representative example of a routing model using
achievement functions defined according to a reference point approach.

The shortest path problems associated with QoS routing models formally are not
MOPPs and the number of papers in this area is very large. Nevertheless, we will refer
to some relevant works on this type of routing models noting that most exact resolution
approaches in this domain were based on shortest path and k-shortest path algorithms, and
also a number of proposed heuristics/metaheuristics were often based on those types of
auxiliary exact algorithms. One of the earliest works in this area is the report [147] which
presented an exact algorithm (referred to as constrained Bellman–Ford algorithm) for a
constrained shortest path problem in QoS routing design, for calculating minimal cost
paths with a delay constraint. It enables the obtainment of successive shortest paths for
different values of the right-hand-side constraint on the delay, leading to efficient solutions.
Bearing in mind the implicit bicriteria nature of this approach, we could remark that the
bicriteria shortest path problem method in [11] could obtain a similar result by using a
more efficient procedure.

An early state-of-the-art report on QoS routing up to 1999 is given in [148].
The author of [149] describes a unified treatment of several path calculation problem

formulations in QoS routing models (including linear and non-linear objective functions
such as in shortest path, widest path, widest-shortest path, most-reliable path and most-
reliable shortest path problems) by proposing an ‘algebra of weights’, also enabling us to
consider a specific requirement for the implementation of the corresponding hop-by-hop
routing procedure on the Internet. For this purpose, it constructs a variant of the Dijkstra
algorithm. A review on constrain-based QoS routing models can be seen in [150]. In [151],
a formal analysis of complexity issues of the multiconstrained path problem, shows that
this problem is NP-complete but not strong NP-complete and also explains reasons why
in most practical instances of this problem, in communication network routing, exact
resolution methods can be used. A study concerning the comparison of exact algorithms
and specific heuristics (ϵ-approximation algorithms) for the multiconstrained optimal path
problem in QoS routing is shown in [152]. An analysis of the relation between QoS routing
problem resolution approaches based on Lagrangean decomposition and the optimization
of linear combinations of the OFs (for example, average path delay and path cost) used in
multicriteria analysis can be seen in [1] (Section 4.1.2.1).

It is also important to note that, in the context of packet-switched networks and
IP-based networks, adequate versions of classical shortest path algorithms have been
extensively used as the basis of routing algorithms associated with two classes of routing
protocols. These classes are defined in terms of the type of information and information
exchange that a node needs (and may need to pass to its neighbors) to compute the shortest
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paths. The first type comprises link state routing protocols such as Open Shortest Path First
(OSPF) and Intermediate System to Intermediate System (IS-IS) which have been commonly
used as Internet intra-domain routing protocols and typically use a distributed version
of the Dijkstra algorithm. In this case, the current link metric values (arc costs) are to be
known by the nodes, and nodes are informed about its changes in a distributed manner
(link-state advertisement mechanism). The second type comprises distance-vector routing
protocols—where a node needs to know the cost (or ‘distance’) from each of its neighbors
to all destination nodes, so that a shortest path may be computed and typically use a
distributed version of the Bellman–Ford algorithm. An important example is the Routing
Information Protocol (RIP). Extensive analysis of the application of shortest path-based
routing algorithms and related protocols can be seen in [143] (Chapter 7) and in [144]
(Chapters 2 and 7). Also, an analysis of an NP-hard optimization problem, important
in shortest path routing networks, called the ‘weight setting problem’ also designated
as ‘shortest path routing allocation problem’, is put forward in these references. In this
problem, one seeks the calculation, in a capacitated network, of the costs (or ‘weights’)
which should be assigned to the arcs so that the node-to-node traffic demand volumes
are carried, assuming that one or various shortest paths are used for any node-to-node
connection, aiming at the optimization of a given network objective function, such as
minimizing the average delay or the maximal utilized bandwidth in the network. Various
basic variants of this problem have been considered in the literature, leading to mixed-
integer programming formulations sometimes recurring to duality-based approaches also
described in the mentioned references. These types of single-objective formulations and
associated resolution methods will not be analyzed in our work. Nevertheless, we will
refer to a few representative papers where multiobjective routing models based on shortest
path routing methods have been developed.

3.2.1. Models That Use Straightforwardly Algorithm(s) Dedicated to MOPPs

Herein, we refer to representative papers on routing models that use primary resolu-
tion method algorithm(s) specifically dedicated to the calculation of solutions to MOPPs,
including heuristics and metaheuristics. A summary of some essential features of these
models is in Table 4.

In the review on QoS routing models [150], lexicographic formulations of related path
problems are addressed, such that there is an a priori articulation of preferences in the
path selection (including as optimization objectives bandwidth, delay and number of arcs
(or ‘hop count’)) in the context of widest–shortest (where one seeks a path of maximal
bottleneck bandwidth (or width) among those of minimal length from source to destination)
and shortest–widest path formulations (where the aim is to find a shortest path among those
of maximal bottleneck bandwidth (or ‘width’)). This type of lexicographic formulation was
also addressed in [149], namely concerning widest–shortest path and most-reliable shortest
path problems, by proposing the use of an algebra of weights. Paper [153] addresses
techniques based on the derivation of partial order rules for implementation of state-
vector routing protocols aimed at seeking lexicographic optimal path solutions in IP-based
networks, associated with computation procedures based on shortest path algorithms.
These mathematically based procedures are shown to be very useful for efficient heuristic
lexicographic routing protocol implementations—designated as ‘dominant paths vectoring
protocols’—namely, for widest–shortest path routing.

An example of an efficient combinatorial heuristic resolution for a lexicographic
path pair optimization problem with maximal disjointness objectives for application to a
resilient routing model in optical GMPLS networks involving the calculation of an active
and a protection path (to be used in the event of failure of the active path) can be seen
in [154]; the four OFs to be minimized (in this order of priority) are the number of common
nodes, the number of common arcs, the number of common failure risks and the total
cost of the two paths. The two proposed heuristics are based on extensions of the ‘Trap
avoidance’ algorithm [155] and of the ‘weighted Shared Risk Link Group (SRLG) path
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selection’ algorithm [156]. A closely related lexicographic approach for resilient routing
in optical networks is in [157] that addresses a biobjective lexicographic formulation of
the protection routing path pair problem which involves the calculation of an active path
and a protection path seeking to minimize the number of risks (corresponding to SRLGs)
common to the two paths and the two paths cost (in terms of occupied bandwidths). An
exact resolution algorithm which combines a path ranking procedure (using the k-shortest
path algorithm [71]) and a path labeling algorithm is proposed and compared with an ILP
formulation in reference test networks.

Paper [158] tackles a problem of multiobjective k-disjoint shortest (secure) paths, where
the “length” of an edge is associated with information regarding the probability of attacks
in a communication network. The multiple “lengths” of each edge are converted into a
single “length” given by a weighted sum of “lengths”, where the weight for each criterion
depends on the importance assigned to that specific criterion. The weights are defined in
very distinct ranges, leading to a lexicographic approach. A generalization of the Dijkstra
algorithm is used to devise prioritized multicriteria k-shortest (secure) paths. For the
specific value of k = 2, a prioritized multicriteria 2-disjoint (node/edge) shortest paths
problem is proposed and solved by an approach based on the dynamic programming
(DP) approach proposed in [159]. Finally, the problem of finding (if they exist) a set of
k (edge-)disjoint paths for a source–destination pair, such that each path is the shortest
concerning each of the multiple criteria, is tackled and an algorithm is proposed to solve it.

In [160], the description of an application to an Internet stochastic packet routing
method of the k-quickest path algorithm in [161] is included. The objective function of the
corresponding path optimization problem is the expected total transmission time given by
the sum of total average delay (an additive metric) and the expected packet transmission
time associated with the path bottleneck bandwidth (a non-additive metric) and is solved
exactly by that deviation algorithm. The efficiency of the routing method is shown with a
stochastic packet traffic simulator using a truncated Pareto distribution.

Note that this type of path ranking calculation method can be very useful in applica-
tions to single objective multipath routing and to multicriteria routing models where the
path bottleneck bandwidth is a central optimization objective.

Concerning non-lexicographic MOPP formulations, which are the main focus of this
work, we will begin by referring to [162]. It is, as far as we know, a first approach to an
explicitly multiobjective routing model for telecommunication networks solved with an
exact combinatorial algorithm. It presents a biobjective routing model seeking paths with
minimal cost and average delay which corresponds to the formulation of a biobjective
shortest path problem. This model can be adapted to different additive objective functions
associated with different types of end-to-end services in multiservice networks. An exact
resolution method was developed which computes efficient paths based on the optimization
of weighted sums of the OFs by recurring to the very efficient k-shortest path algorithm [71].
Furthermore, QoS requirements are represented in the model through ‘soft constraints’
(which are not directly included in the BOSPP mathematical formulation) concerning
‘acceptable’ and ‘requested’ values for each of those metrics. These values enable the
definition of priority regions in the OF space where nondominated solutions can be searched
for and can be used in the context of an automatic search procedure of a final routing
solution. Paper [18] addresses a multiobjective routing model with two additive objective
functions (routing cost in terms of the number of arcs and a ‘load cost’ associated with
the available bandwidth in the arcs) and three QoS constraints concerning average delay,
delay jitter and bottleneck bandwidth. This corresponds to the formulation of a biobjective
constrained shortest path problem previously tackled in a telecom network routing design
context by [163] using a rule-based heuristic based on the Dijkstra shortest path algorithm,
a heuristic which does not guarantee that the obtained solutions are Pareto optimal. The
authors in [18] present an exact resolution approach for calculating the whole set of efficient
solutions for this problem by recurring to the biobjective shortest path algorithm in [11] and
to the MPS algorithm in [71], for calculating k-shortest paths having as objective function
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the convex combination of the two OFs of the problem. The use of a ranking algorithm
in this context was shown to be the more efficient resolution approach (even in networks
with up to a few thousand nodes) due to the explicit consideration of the mentioned QoS
constraints of the biobjective problem. Note that this type of routing model, although
originally formulated for video type traffic in the discontinued Asynchronous Transfer
Mode (ATM) based networks, can be applied straightforwardly to current networks with
packet-switch-based technologies (such as MPLS–Transport Profile, MPLS-TP) by simple
adaptation of the pertinent QoS constraints.

A reference point approach to the important problem of selecting a Pareto optimal
solution in the context of a multiobjective shortest path model for a network routing model,
considering that the final routing solution has to be defined in an automated manner was
presented in [41]. That proposal, in [41], uses an algorithm for minimizing a weighted
Chebyshev distance to reference points specified in each priority region; this method is
applied to a biobjective video traffic routing problem formulated as a BOPP with various
QoS constraints.

A multiobjective routing model for the Internet using a multiobjective path formulation
is presented in [164]; the model uses as path metrics number of arcs, total mean delay
and residual bandwidth, and it is solved by an exact algorithm that obtains the set of
efficient solutions for connections from one node to all the other nodes and a method for
selecting a solution that uses a weighted Chebyshev distance to the ideal point. In [125], a
multiobjective shortest path problem is also formulated, for application to a QoS routing
model, that considers the metrics optimized maximal bandwidth and minimal delay. The
MOPP is solved by a genetic algorithm.

The authors in [165] address a new multicriteria approach for routing in IP-based
networks using the principle of “routing-as-a-service” such that users/companies may
choose from a set of ‘path services’ offered by various network providers competing in an
“open marketplace”. This leads to a routing model where paths are calculated and chosen
dynamically from a biobjective time-constrained path problem seeking to optimize cost and
expected delay under QoS and time-constrained requirements. The resolution method is a
dynamic programming procedure that uses Yen’s k-shortest path algorithm [73], enabling
us to obtain efficient solutions for a given time interval partition, one to be chosen by
the customer.

A key path problem in WDM optical network routing is the Route and Wavelength
Assignment (RWA) problem which involves, in general, the calculation of lightpaths
(topological paths in the optical transport networks) and the assignment of wavelengths to
each arc (optical link) along a lightpath (a classic overview in this area is [166]). The work
in [167] addresses a formulation of this problem as a multiobjective shortest path problem
where the OFs are the number of arcs (optical links), the number of free wavelengths
and the path blocking probability. Solutions are obtained with a shortest path algorithm
applied to the weighted sum of the objective functions. In [168], there is the development
of a biobjective path problem formulation for a RWA problem designated as dynamic
lightpath establishment problem with incremental traffic with regards to the topological
lightpath calculation subproblem. The first objective function is additive and expressed
in the bandwidth usage of the path arcs, and the second is the number of arcs (or ‘hops’),
both to be minimized. The exact resolution approach of this key subproblem uses a k-
shortest path algorithm and preference thresholds for defining preference regions in the
OFs space. The used topological lightpath is selected automatically by using a reference
point procedure as in [41]. The choice of wavelengths along the lightpath is performed by a
heuristic based on path wavelength bottleneck bandwidth.

The OFs considered in the first level are path costs and the number of arcs of the
path, and the second level OFs are bottleneck bandwidth and the expected packet delay
on the path. The model is solved exactly by calculating the Pareto optimal solutions of the
first-level functions with an exact biobjective shortest path algorithm, which are “filtered”
by using bounds defined through the second-level OFs.
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Next, we will refer to applications of MOPP algorithms to multipath routing models.
Paper [169] proposes a multiobjective resilient multipath routing model for transport

telecom networks, the aim of which is the simultaneous calculation of an active efficient
shortest path seeking to minimize ‘load cost’ (an additive bandwidth related metric) and
hop count and a maximally disjoint protection path; an exact resolution method is described
which is based on a k-shortest path algorithm, applied to the convex combination of the
two OFs, enabling all supported and unsupported efficient solutions to be obtained. The
work [170] presents a biobjective resilient routing model with path protection leading to
the formulation of a biobjective maximally SRLG-disjoint/minimal cost path pair problem
the aim of which is to minimize the number of risks, corresponding to SRLGs common to
both the active and the protection path, and the path pair cost. An exact resolution method
enabling the whole set of Pareto optimal solutions to be calculated, based on the algorithm
which combines a path ranking method and path labeling in [111], is described and the
performance analyzed in reference test networks.

In paper [171], the problem of finding the set of efficient solutions of a MOPP seeking
the calculation of paths from one source node to different destination nodes is tackled,
for application to cloud computing. The resolution process is based on the extension of a
Pareto BFS method proposed in [172], with which it is possible to enumerate all paths from
one source node to a destination node and uses a pruning strategy to readily identify the
paths which are not efficient.

Table 4. Summary of some essential features of models that use straightforwardly algorithms
dedicated to MOPPs.

Reference # Objectives Type of Path Problem Resolution Approach

(Sobrinho 2002) [149] 2 Multipath; widest–shortest path;
most-reliable–shortest path

Lexicographic (a variant of
Dijkstra algorithm)

(Sobrinho and Ferreira 2020) [153] 2 Shortest–widest path;
widest–shortest path

Heuristics based on algebraic
framework (a
lexicographic approach)

(Gomes et al., 2016) [154] 4 Lexicographic maximally
risk–disjoint path pair

Heuristic (based on trap
avoidance and weighted
sum model)

(Pascoal et al., 2022) [157] 2
Lexicographic maximally
risk–disjoint /minimal cost
path pair

Exact a priori lexicographic
(path ranking and
path labeling)

(Dinitz et al., 2021) [158] ≥ 2 k-disjoint shortest (most
secure) paths

Lexicographic (based on a
weighted sum method)

(Antunes et al., 1999) [162] 2 Biobjective shortest paths Exact a priori (based on a
weighted sum method)

(Clímaco et al., 2003) [18] 2 QoS constrained biobjective
shortest paths

Exact a priori (based on a
weighted sum method)

(Clímaco et al., 2006) [41] 2 Biobjective path (video traffic)
Exact a priori (based on
weighted Chebyshev distance
to reference points)

(Beugnies and Gandibleux 2006) [164] 3 Multiobjective path
Exact (based on a reference
point approach using a
weighted Chebyshev distance)

(Zheng et al., 2022) [125] 2 Biobjective path Metaheuristic (Genetic
algorithm)

(Bhat and Rouskas 2016) [165] 2 k-time constrained path problem
Exact a posteriori (uses a
dynamic programming
procedure)

(Markovic and Acimovic-Raspopovic
2005) [167] 3 Multiobjective shortest

path problem
Exact a priori (uses a
weighted sum method)
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Table 4. Cont.

Reference # Objectives Type of Path Problem Resolution Approach

(Gomes et al., 2009) [168] 2 Biobjective topological lightpath
Exact a priori (uses a
k-shortest path method and a
reference point approach)

(Clímaco et al., 2007) [160] 2 + 2 Stochastic k-quickest path
Uncertainty (solution based
on an exact
deviation algorithm)

(Gomes et al., 2012) [169] 2 Biobjective shortest path and
maximally disjoint backup path

Exact a posteriori (based on a
k-shortest path approach
regarding a weighted sum OF)

(Craveirinha et al., 2023) [170] 2 Maximally risk–disjoint/minimal
cost path pair

Exact a posteriori (based on a
path ranking and path
labeling algorithm)

(Xu et al., 2023) [171] k
Multicriteria shortest paths (from
one source node to multiple
destination nodes)

Exact a posteriori (based on a
breadth-first search, with
pruning to identify paths
which are not Pareto optimal)

3.2.2. Models That Use as Auxiliary Resolution Procedures Shortest Path
Dedicated Algorithm(s)

Herein, we refer to representative works describing multicriteria routing models of var-
ious types and for different network environments where the resolution approach uses, as
auxiliary resolution procedures, algorithms dedicated to single objective or multiobjective
path problems. A summary of some essential features of these models is in Table 5.

Paper [173] develops a stochastic multiple-objective dynamic routing model for circuit-
switched networks such that the routes for all node-to-node traffic flows may change
dynamically. The objective functions of the network-wide optimization model are the mean
blocking probability and the maximal node-to-node blocking probability. The resolution
method of the model is heuristic, but for calculating candidate paths, blocking probabilities
and implied costs [174] are used, leading to a specific auxiliary-constrained biobjective
shortest path problem. This is solved exactly with a modified version of the biobjective
shortest path algorithmic approach in [41], enabling us to select the paths that are can-
didates to be efficient. A stochastic hierarchical bilevel multiobjective routing model for
MPLS networks with two service classes including fairness objectives is described in [175].
A heuristic resolution method for this complex model is proposed and tested in a reference
network which is based on an auxiliary biobjective shortest path sub-model for calculating
candidate paths. This sub-model uses ‘marginal implied costs’ (as proposed in [176]) and
blocking probabilities and is solved exactly by the method in [41].

The authors in [133] propose a multiobjective RWA routing model for Elastic Optical
Networks with spectrum segmentation and shared backup protection (meaning that the
bandwidth of a backup path may be shared by several active paths) that seeks to optimize
blocking probability and fault restoration ratio. The resolution approach is a metaheuris-
tic, a Deep Neural Network model with a multiobjective Fuzzy Inference System which
recurs to Yen´s k-shortest path algorithm, and its performance is compared with similar
calculation procedures.

The work in [177] proposes a biobjective extension of the shortest path-based routing
principle largely used on the Internet and, in general, in shortest path-based routing
networks, namely in the context of extensions of the application of link state routing
protocols such as OSPF. It considers traffic splitting according to an equal cost multipath
(ECMP) split rule and that the paths are calculated with a single objective shortest path
algorithm, the weights of which have to be optimized in order to obtain approximate
efficient solutions of a biobjective network optimization model. The two OFs of this
model are traffic load balancing functions in fully operational and in arc-failure scenarios.
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This approach leads to a biobjective version of the ‘weight-setting problem’ referred to
above. The resolution method is a specialized heuristic that uses a hash function and a
diversification technique. Also, a multiobjective formulation of this problem in the context
of networks using shortest path routing protocols is proposed in [123]. The authors present
an evolutionary metaheuristic for obtaining an approximation to the Pareto front of the
associated multiobjective routing model.

Table 5. Summary of some essential features of routing models that use shortest path dedicated
algorithms as auxiliary resolution procedures.

Reference # Objectives * Type of Model Approach/Auxiliary Method

(Martins et al., 2005) [173] 2 Hierarchical stochastic multiobjective Heuristic/Biobjective stochastic
shortest path algorithm

(Girão-Silva et al., 2009) [175] 2 Hierarchical stochastic multiobjective
with two traffic classes

Heuristic/Biobjective stochastic
shortest path algorithm

(Lourenço and César 2022) [133] 2 Stochastic biobjective path pair
(resilient routing)

Metaheuristic/k-shortest path
algorithm

(Yuan 2003) [177] 1 Shortest path based biobjective
routing with traffic splitting

Heuristic (for biobjective weight
setting problem)/Shortest path
algorithm

(Sousa et al., 2011) [123] 2 Shortest path based multiobjective
routing with traffic splitting

Metaheuristic (for multiobjective
weight setting problem)/Shortest
path algorithm

* number of objective functions of the auxiliary resolution procedure.

3.2.3. Models That Include the Resolution of MOPPs by Non-Dedicated Path Approaches

Herein, we overview contributions representative of routing models and path-related
models for different types of communication networks such that the mathematical for-
mulation of the model includes multiobjective path problems, solved by approaches not
specifically dedicated to MOPPs. A summary of some essential features of these models is
in Table 6.

In [178], a very specific problem of route selection for survivable book-ahead guar-
anteed (BAG) services in MPLS networks is tackled. The authors consider different and
potentially conflicting objectives and different survivability requirements for the service
requests. The survivable BAG services must be routed without significantly affecting
best effort services. To guarantee the survivability, a pair of link-disjoint paths (primary
and secondary paths) is calculated by recurring to a MILP formulation, considering four
different optimization objectives: residual capacity, routing cost, a penalty cost for non-
routed demands and routing revenue. An iterative heuristic is proposed to solve the
formulated problem.

A multiobjective routing model for supporting a long-term virtual private network
on the Internet is proposed in [134], using an integer multicommodity flow approach with
special constraints. This leads to a biobjective path model considering average packet
delay and traffic load balancing as OFs. A heuristic of the type Greedy Randomized
Adaptive Search procedure is used as the resolution method. A metaheuristic procedure
for solving a multiobjective routing problem in MPLS networks is proposed in [124]. In this
paper, a variable neighborhood multiobjective genetic algorithm (VN-MGA) is developed,
aiming at the minimization of the network cost, the minimization of the number of rejected
simultaneous requests and the maximization of arc bandwidth load. Results are compared
with those obtained with an ILP solver.

In [179], there is a proposal of a multiobjective routing model for MPLS considering
traffic splitting (in terms of bandwidth) leading to a multipath routing problem addressed
with a MILP formulation. The OFs are the average packet delay, a traffic load balancing
function and the total number of used LSPs (Label-Switched Paths). The resolution method
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is based on an evolutionary algorithm, and the results are compared with those of an
alternative resolution procedure.

Paper [120] presents a metaheuristic resolution approach for the stochastic hierarchical
multiobjective routing model for MPLS networks with two service classes including fairness
objectives developed in [175]. Two resolution procedures are proposed, the first one a
simulated annealing based technique, the second one using a tabu search technique, and
both are compared with a specialized heuristic.

The work in [180] describes a multiobjective routing model for MPLS networks, with
multiple service types and traffic splitting, considering a network flow approach so that
the routing problem is formulated as a multiobjective mixed-integer linear program having
as objective functions the routing cost and the load cost in the network links, including a
constraint on maximal splitting of each service bandwidth demand. Two exact resolution
methods are developed for obtaining the Pareto optimal solutions, the first one based on
the classical constraint method in [77] and the second based on the modified constraint
method in [181]. This MILP model is extended in [182] to include a path protection resilient
routing scheme (without traffic splitting) and solved exactly by the classical constraint
method, after enumerating feasible disjoint path pairs for each traffic flow with the aid of
an algorithm based on the k-shortest path algorithm MPS [71].

A multiobjective routing model for wireless IP-based networks is proposed in [183],
seeking to obtain paths which minimize total energy consumption, latency and bit error
rate (corresponding to a non-additive metric). The resolution method is based on the
optimization of a normalized weighted additive function combining the three OFs, to seek
for efficient solutions; a distributed heuristic implementation of the method is described
and applied to small test networks.

Paper [184] proposes a biobjective routing model for mobile ad-hoc Wireless Networks
that consider minimized energy consumption and link stability as OFs, leading to a dy-
namic biobjective constrained shortest path formulation. This type of wireless networks is
composed of a collection of mobile devices that form a self-organizing temporary network
that does not use an underlying telecommunication structure or a centralized control. A
heuristic resolution method is used which is based on the optimization of the combination
of the two OFs, using an ILP formulation, seeking to account for the dynamic nature of the
model and the distributed nature of the routing control. A multiobjective routing model
for Wireless Sensor Networks (WSNs) is described in [185]. These networks are composed
of sensor nodes installed with the objective of gathering real-time information of specific
type(s), in a given area, so that the obtained data are forwarded to an interface node, the
sink node. The optimization objectives associated with each node are residual energy,
frequency count of packet transmission via a node and number of hops counted from
the sink node. The proposed resolution method is a heuristic based on a utility function
defined for each node that is the additive aggregation of the OFs, using different weight
sets, empirically obtained in terms of the resulting packet loss ratio. Similar types of models
and multiattribute resolution approaches are presented in [186] (where the weights are
chosen by a ‘weight rating’ method) and [187,188] that use a decision matrix for choosing
the next node to be selected in the path.

Note that many multicriteria routing models proposed for WSNs use ‘hop-by-hop’
path calculation heuristics based on a weighted utility function, such that the next node in
the path is selected among the adjacent nodes by using a multiattribute model recurring to
a performance matrix updated at each step of the procedure. The work in [189] proposes a
generic multicriteria routing framework for WSNs regarding the criteria to be addressed
and discusses a form of additive aggregation based on technical features of the used routing
protocol.

A very particular constrained multipath lexicographic path problem is addressed
in [190], aiming at minimizing the number of active paths with the maximal number of
arcs in a resilient routing model where active and backup paths (to be used in the event of
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failure of service path(s)) have to be calculated simultaneously, all with a bounded number
of arcs; ILP formulations are used for obtaining exact solutions.

In [191], a specific biobjective path-related problem in packet-switched Software
Defined Networks is formulated. The first objective is the minimization of the consumption
of the sum of the energy of the switches, the active controllers and the active links. The
second objective is the minimization of the sum of all the delays between the active switches
and the respective domain controller. An ILP is formulated aiming at the calculation of (i)
whether a switch, a controller or a link should be on or off; (ii) whether a path is active;
and (iii) which controller should a switch be linked to. A weighted sum method is used for
solving the problem and compared with two heuristic procedures.

A ‘critical disruption path problem’ involves the identification of the loopless paths
for a source–destination pair, such that their removal will maximize the disruption of the
network, in terms of operability. A multiobjective formulation of this problem is proposed
in [126]. Considering an induced subgraph obtained when a path is deleted, the tackled
problem aims at the minimization of the size of the largest connected component, the
maximization of the number of connected components and the minimization of the cost of
the disruption path. A MILP formulation is presented, and an evolutionary metaheuristic
resolution approach consisting of a hybrid algorithm including modified-NSGA-II and
Variable Neighborhood Search (VNS) is used to find an approximation to the Pareto front.

Table 6. Summary of some essential features of models that include the resolution of MOPPs by
non-dedicated path approaches.

Reference # Objectives Type of Model Resolution Approach

(Thirumalasetty and Medhi
2001) [178] 4 Multiobjective disjoint path

pair routing MILP solved with iterative heuristic

(Resende and Ribeiro 2003) [134] 2 Biobjective constrained routing Integer multicommodity flow
solved with heuristic (GRASP)

(Onety et al., 2013) [124] 3 Multiobjective constrained
routing

Metaheuristic: genetic algorithm
VN-MGA (based on NSGA-II)

(Erbas 2003) [179] 3 Multiobjective routing with traffic
splitting

Metaheuristic: evolutionary
algorithm

(Girão-Silva et al., 2009) [120] 2
Hierarchical stochastic
biobjectiverouting with two traffic
classes

Metaheuristics: simulated
annealing; tabu-search

(Girão-Silva et al., 2015) [180] 2
Biobjective constrained routing
withtwo traffic classes and
traffic splitting

MILP solved by exact approach
based on a modified constraint
method

(Girão-Silva et al., 2017) [182] 2 Biobjective routing with two
trafficclasses and path protection

MILP solved by exact approach
based on a modified constraint
method and a k-shortest path
algorithm

(Malakooti and Thomas 2006) [183] 3 Multiobjective routing Heuristic using a specific
utility function

(Guerriero et al., 2009) [184] 2 Biobjective constrained dynamic
distributed routing ILP solved by a heuristic

(Bhunia et al., 2014; Das et al., 2015;
Suh et al., 2015; Rehena et al.,
2017) [185–188]

3 Multiobjective constrained
dynamic distributed routing

Heuristics using a multiattribute
utility function

(Gouveia et al., 2016) [190] k Lexicographic multipath routing
with path protection

ILP solved by exact
lexicographic approach

(Naseri et al., 2021) [191] 2 Specific biobjective path related
model

ILP solved by a weighted sum
method or by heuristics

(Granata and Sgalambro 2023) [126] 3 Multiobjective critical disruption
path model

MILP solved by
evolutionary metaheuristic
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4. Conclusions and Trends

Next, after highlighting the essential contents and broad conclusions of this work, we
will seek to outline major research trends and challenges in this very wide and multifaceted
area of the application of multiobjective path problem formulations and algorithms, in
relation to recent technological evolutions in communication networks.

After reviewing basic concepts and presenting main formulations of multiobjective
path problems, considering different categories of objective functions, namely linear, non-
linear functions and special types of objective functions, we outlined the essential features
of different types of resolution methods for these problems appearing in the scientific
literature that seemed more relevant to this important application area, not forgetting the
approximate approaches. Special emphasis was given to exact resolution approaches. This
focus can be justified by the inherent advantage of these methods and by our conclusion
that, in many applications, these algorithms can solve large instances of the problems.

Regarding the application of exact algorithms to MOPPs formulated in the context of
routing models these should be considered, in many situations, as a possible advantageous
first approach, whenever known efficient algorithms are available or can, at least in theory,
be developed. This choice should be carefully evaluated, in each particular case.

Despite the relevance of classical NP-completeness analysis in this respect, we note that
this is in fact a worst-case analysis. We can say, also from our own research experience, that
in many cases, this analysis per se may not be the critical factor in the choice of a resolution
method. We concluded that in many applications of multiobjective path problems in
this area—as also noted by [151] for QoS routing problems—the predicted worst-case
complexity can be much different from execution times in different applications. In many
situations, efficient exact algorithms for multiobjective path problems associated with
routing models are effective ways of obtaining Pareto optimal solutions in computational
times compatible with the application. Multiple examples of the application of exact
approaches in this area were referred to in the section above. This does not mean that
approximate methods including heuristics and metaheuristics do not play a role of great
importance in this very wide area of application of multiobjective path problems. In fact,
as noted above, given their inherent resolution difficulties NP-hard optimization problems
are often approached by approximate methods which work fast while looking for sets
of solutions that approximate the efficient ones. This may be a practical requirement in
various applications as it is the case in NP-hard multiobjective problems formulated in
the context of routing models in networks of very great dimension and connectivity or
involving more complex multilayer network representations and particularly in the case
of on-line or dynamic routing models (with very fast updating periods) or in local-area
wireless network technologies with switches/routers of limited calculation/information
management (for instance, in terms of provided signaling data) capabilities. These specific
requirements are naturally related to essential features of the routing protocols associated
with a given network technical scenario.

After an outline of background concepts on telecom network routing models, we
presented an overview of selected papers considered as representative of different types
of applications of multiobjective path problem formulations and algorithms either as
direct resolution methods or as auxiliary resolution procedures. Also, an overview of
multiobjective routing models formulated in terms of approaches that involve explicitly, as
a goal (but usually not the unique one) of the mathematical formulation, the calculation
and selection of paths that are solutions to MOPPs by recurring to approaches which are
not specifically dedicated to path problems, was presented. This had in mind the fact that
these routing models are common in multiple situations. Note that the models of the two
latter types appear typically in routing methods where the route/path calculation and
selection cannot be mathematically separated from the assignment of node-to-node traffic
flows to the selected paths. This happens in routing models for which the routing method
embodies a teletraffic engineering mechanism requiring some form of optimization of the
bandwidth demand (associated with different end-to-end services) assignment to the arcs
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of the paths, seeking, on the one hand, the satisfaction of the demand under certain QoS
requirements and, on the other hand, the achievement of some form of global network
performance optimization, in terms of different network metrics.

Concerning trends and challenges in this research area, as noted above, we begin
by noting that the nature of real telecommunication networks is very complex, having in
mind that they are organized, in functional, operational and management/control terms,
in several interrelated layers, which leads to the necessity of considering them as multilayer
networks. This raises difficulties in terms of routing modeling when some inter-layer
representation is at stake that also may affect the formulation of the corresponding path
problems. An example of the way in which this issue could be tackled, in the context of
resilient routing models with path protection, is the concept of Shared Risk Link Group
that corresponds to the definition, for each possible failure risk in an element of the
physical/transport layer, of the set of arcs in the logical layer which are affected by that
risk. The specification of these sets assumes that the mapping of the physical layer onto the
logical layer is known, so that this information can be incorporated in the mathematical
formulation of the path pair (active path and protection path) problem. This of course has
a strong impact in the form of the addressed path problem (either single or multiobjective)
and in the corresponding resolution approach (as described in some references referred to
in the previous section) since it requires that discrete objective functions specified in terms
of operations on finite sets be used. In more complex multilayer modelling situations, a
useful mathematical tool may be the definition of ‘multilevel graphs’, as proposed in [192].

In most papers concerning applications of MOPP algorithms to multiobjective telecom
network routing models, computational experiments considering different types of net-
work environments are presented. Many of these studies are focused on the performance
evaluation of the algorithms in terms of CPU times, usually in reference to topological
network structures. In multiple cases, these computational studies also analyze the effects
of the application of the proposed routing methods in terms of the resulting network
performance measures, using some type of simulation of end-to-end service demands,
depending on the network technological and architectural context and on relevant fea-
tures of the network environment. Specific examples of such computational studies are
in references [18,157,170,171]. Also, in a few of the methodological papers in Section 2,
real-world applications are presented, see for instance [33,118]. Furthermore, it would be
clearly important to evaluate the possible merits and disadvantages of the multiple types
of multiobjective routing methods proposed in the literature, in real-world network appli-
cations. This would require further empirical studies desirably involving collaborations
with network and service operators, on a case by case basis, in the context of future applied
research tasks.

Also, the practical implementation requirements and specific limitations (namely
related to signaling, information management, control functionalities of routers, switches or
optical cross-connectors and other related routing protocol requirements), for the multiple
types of multiobjective routing methods proposed in the literature, should be investigated
in real-world network application contexts. This would require further empirical R&D
studies with real networks involving collaborations with network and service operators
and communication software/equipment suppliers, on a case by case basis, and it is a
matter that justifies future research.

A problematic area where multiobjective path problem formulations are raising in-
terest is resilient routing involving multiobjective multipath problems. As already noted
in [193], the development of multiobjective routing approaches and of resilient routing
models, in particular, will enable a mathematically consistent analysis of trade-offs between
various route and network performance metrics for different routing methods correspond-
ing to different options in terms of protection or rerouting mechanisms in each layer.
This poses a significant challenge since it will require us to address the difficult issue
of decomposition of the path optimization model. In routing with path protection, this
is associated with the fact that the efficient solutions of the routing/path optimization
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problem in the physical network level (for instance an OTN optical network structure) are
pairs of lightpaths, such that each of these lightpaths may correspond to different feasible
paths in the next layer of the network representation (for instance, corresponding to the
use of a MPLS-TP protocol technology). Note that in this type of network architecture
and modeling approach, the path optimization model would also be multiobjective in
this upper layer, thus leading to a complex issue of interrelated problems. Another kind
of hierarchical modeling issue, relevant to multilayer networks, involves a hierarchy of
the routing/path optimization formulation, which is concerned with the application of
well-known optimization methods to multi-level routing, as outlined in [3] in the context
of IP-based networks.

These remain challenging methodological questions that deserve future research.
Still in relation to resilient routing, taking into account that many network failures oc-

cur as a result of disasters (natural phenomena or as a consequence of human intervention),
in such a way that these events have a very strong impact on a certain geographical area
(geographically correlated failures, see [194]), there has been an increasing interest in the
development of geodiverse routing models. These routing methods have to take into account
the geodiversity property of the paths, and this can be modeled in different manners,
implying specific types of constraints on the choice of the protection path(s) (a brief review
is in [195]). A strategy recurring to k-geodiverse shortest paths is described in [196], where
a lower bound on the geographic distance between the paths is imposed. Also, resilient
routing models with preventive techniques, namely in the case of malicious attacks, have
been given attention. A possible strategy is to define specific nodes where the traffic must
pass, so that a security inspection is performed to identify possible threats, thence imposing
a specific type of topological constraint on the path problems (see examples in [197,198]).

We think that also in the mentioned sub-areas of resilient routing there is room for the
investigation of multiobjective routing approaches leading to interesting multiobjective
constrained path problems.

Another area where challenging issues concerning the development of multiobjective
routing optimization models deserve attention is heterogeneous networks that is networks
where an end-to-end connection can (or needs to) use different technological platforms
so that a route/path has to traverse several network structures/routing domains, each of
them with distinct technical features.

Another issue with impact on multiobjective routing models is the consideration in
various network environments of power consumption as a relevant objective function,
not only from an economic perspective but foremost, because of the very significant
environmental impacts of electrical energy consumption by telecommunication networks
and all types of ICT (Information and Communication Technologies) structures in general
(for instance, critically relevant vis-à-vis cloud computing). This trend has led to the
development of ‘energy-aware routing methods’. An illustrative example is in [199] where
a multiobjective routing method, using a heuristic solution for WDM networks, was
developed. This study shows that the minimization of power consumption and path
blocking probability are conflicting objectives thence fully justifying the consideration
of multiobjective routing approaches. This is a research trend where new path problem
formulations that incorporate adequate energy consumption objectives/constraints for a
given network environment should be developed.

Concerning new modelling aspects related to the new technological platforms, with
implications in the form of the formulated MOPPs, this will require, as far as routing
models are concerned, the specification of adequate criteria/objectives and constraints,
involving technical and often economical aspects, and it is an important preliminary issue.
Moreover, adequate resolution methods will have to be selected or developed for new
multiobjective problem formulations associated with such models. Examples of new
areas of development in this context are multiobjective routing models for anycast flows
(traffic patterns of one-to-one of many flows) in cloud computing (see [200]) and certain
unicast routing models, such that it is imposed that paths include certain intermediate
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nodes previously specified. For instance, single objective formulations of this type of
problem, in the context of a specific resilient routing method with path protection, were
addressed in [197]. These models involve the obtainment of shortest node–disjoint path
pairs constrained to visit specific nodes.

Next, we mention some specific modern network technological platforms where it
is expected that new routing models possibly involving multiobjective formulations may
be developed.

Concerning transport networks, Elastic Optical Networks aim at a more efficient use
of the spectrum, by allocating the bandwidth in a flexible way, considering different
modulation formats, tailored for each specific application. The problem of routing in EONs
is not tackled per se, but rather taking into consideration the allocation of spectrum (Routing
and Spectrum Assignment—RSA), sometimes jointly with modulation selection (Routing,
Modulation (Level) and Spectrum Assignment—RMSA). There are many approaches for
both problems in EONs, with different pros and cons in terms of spectrum fragmentation,
modulation formats, quality of transmission, traffic grooming, network survivability, energy
efficiency and cost [201]. In [202], a generalization of the Dijkstra algorithm is proposed
to tackle the problems of RSA and RMSA where constraints related to the continuity and
contiguity of the frequency slot units are taken into account. The problem of RMSA in
OTNs is also tackled in [203,204] using different modeling algorithmic approaches.

The sixth generation (6G) of mobile networks also poses new challenges in terms of
routing. The need to satisfy the increasingly demanding key performance indicators
while optimizing the available network resources is an important aspect to consider. In
this context, Software Defined Networking takes a pivotal role in the network management.
Furthermore, the use of Artificial Intelligence and Quantum Computing for optimizing
routing are foreseen in the near future [205], and there are multiple approaches to deal with
routing in these networks. An example using quantum computing is developed in [206]
where a single objective and a multiobjective approach of lexicographic type are described,
including as optimizing criteria battery consumption and battery cost, respectively.

Finally, another important recent trend with potential impact in this research area
is Network virtualization that enables the provision of services by instantiating virtual
connections over an existing telecommunication physical infrastructure. Routing in these
networks is controlled by the service providers that manage the transport infrastructure.
A routing-related problem is the need to guarantee traffic load sharing over multiple paths
(thus leading to multipath routing) among different servers (from the perspective of the
service provider) or to concentrate the traffic on one particular server (from the perspective
of the clients with virtual networks) [207].
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