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A B S T R A C T   

Industry 5.0 is on the horizon, but the role of digital twins (DTs) as one of its major technological enablers is far 
from being understood. This article begins with a bibliometric analysis and a systematic review, followed by a 
discussion of insights obtained from the literature through the lens of strong structuration theory. The results 
include a description of the new paradigm of future-oriented and responsible physical-digital convergence, a 
research agenda, and the proposal of the structure – agency (SA)–DT framework to guide advances in Industry 
5.0 with digital twins. A concept-centric analysis is used to identify use cases, impacts, redesigned forms of 
physical–digital interaction, challenges, and the changes in both human and non-human agents increasingly 
intertwined in more advanced DT solutions. Moreover, this study reveals how digital twins can be deployed to 
address, in an integrated manner, the three main pillars of Industry 5.0: human-centric, sustainable, and resilient 
industry transformation. Practitioners may find our contribution helpful for their Industry 5.0 roadmaps, which 
require more ample interaction with society at all levels and evidence of responsible practices for current and 
future generations.   

1. Introduction 

The industrial agenda has a new priority. Having its roots in the 
fourth industrial revolution, which promised to transform 
manufacturing with advanced technologies and cyber-physical systems 
(Schwab, 2017), Industry 5.0 aims to responsibly accomplish this 
mission. 

Technological advances offer common ground for research on in
dustry transformations. However, instead of focusing on particular 
technology adoption for manufacturing efficiency like Industry 4.0 (e.g., 
artificial intelligence (AI) to improve maintenance practices, deploying 
sensors and advanced communication technologies to achieve real-time 
monitoring of production), Industry 5.0 requires their integration into 
more complex systems that must, by design, (1) include humans in the 
development of more advanced digital capabilities; (2) measure the 
impact of decisions in the organization and its environment; and (3) be 
future-oriented (Cannavacciuolo et al., 2023; Ghosh et al., 2022). The 
shift to “5.0” is significant because it places individuals at the center of 
industry development, improving resilience in processes and supply 
chains, which have become so crucial in an era of global disruptions, and 
ensuring more circular and sustainable practices to address grand 
challenges of our society (Maddikunta et al., 2022b). The European 

Commission is one of the most active proponents of Industry 5.0 (Eu
ropean Commission, 2021, 2023). 

It was already recognized that the digital twin (DT) “is a key enabling 
technology for both Industry 5.0 and Society 5.0, which enables the 
connectivity between cyberspace and physical space” (Huang et al., 
2022), shaping the ongoing physical-digital convergence (García et al., 
2022). Defined as a digital replica of physical objects or systems 
(Glaessgen and Stargel, 2012), a DT can monitor, control, or improve 
decision-making using data collected from the real environment at 
different stages of the product or system lifecycle (Semeraro et al., 
2021). DT affordances offer an extraordinary opportunity to implement 
Industry 5.0; however, “few studies combine a DT with analysis methods 
to make integrated decisions” (Hao Wang et al., 2023a), and though 
“scientific literature has analyzed the adoption of DT in the optimization 
of products life cycle, few contributions have yet focused on the 
exploitation of DT to assess and improve the sustainability performances 
of whole value chains” (Semeraro et al., 2021). 

This research, therefore, uncovers the role of DTs in Industry 5.0, 
presenting (1) a bibliometric analysis; (2) a concept-centric assessment 
of the literature addressing the interplay of physical and digital parts of 
DT and the changing role of human and non-human agents in industry 
transformation; (3) a framework for developing a new generation of 
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human-centric DTs prioritizing resiliency and sustainability; and (4) an 
agenda for future research on the creation of DTs that contribute to the 
tenets of Industry 5.0. Our analysis of the literature and framework 
proposal are made in light of strong structuration theory (Greenhalgh 
and Stones, 2010; Stones, 2005). 

The remainder of this paper is organized as follows. Section 2 pro
vides the background for Industry 5.0 and DTs. Section 3 explains the 
methodology used, and the results are detailed in Section 4, which in
cludes the bibliometric and concept-centric study. Section 5 discusses 
the findings, outlines the structure – agency (SA)–DT framework, and 
summarizes future research opportunities. Section 6 concludes the study 
and presents the main conclusions, limitations, and implications for 
theory and practice. 

2. Background 

2.1. Industry 5.0: a quest for responsible transformation in manufacturing 

Industry 5.0 has gained increasing attention in both research and 
practice in recent years. It describes the next phase of industrialization, 
characterized by the integration of advanced technologies and human 
capabilities. As such, Industry 5.0 causes a cross-sectoral and societal- 
driven transformation of manufacturing (Barata and Kayser, 2023). 

Several facets of Industry 5.0 are being researched, most notably 
sustainability, resilience, mass personalization, and human-machine 
collaboration (Aheleroff et al., 2022). Sustainability in Industry 5.0 re
fers to adopting circular processes that prioritize resource reuse, 
reduction of waste, and environmental impact, contributing to a circular 
economy for improved resource efficiency (Xu et al., 2021). Resilience 
entails bolstering industrial production against disruptions, enabling it 
to serve as critical infrastructure during crises and swiftly adapt to 
geopolitical changes and natural emergencies (Xu et al., 2021). More
over, Industry 5.0 responds to the demand for personalized products 
that reflect unique requirements while remaining affordable (Aheleroff 
et al., 2022). This movement towards mass personalization represents a 
key driving force in the use of technology to amplify human contribu
tions to manufacturing (Aheleroff et al., 2020). 

Industry 4.0 already included the integration of advanced technol
ogies in manufacturing productivity (Özköse and Güney, 2023). Exam
ples of technological enablers of human-machine collaboration include 
augmented reality, virtual reality, communication technologies, AI, ro
botics, or the Internet of Things (IoT), and the vital role of wearable 
technologies in optimizing industrial processes (Maddikunta et al., 
2022b; Perno et al., 2022). However, there is an ongoing debate on the 
challenges and opportunities of automation, including concerns about 
job displacement and the need for upskilling and reskilling. Industry 5.0 
advances these issues by shifting its focus from human replacement 
discussions to collaborations between humans and machines (Majerník 
et al., 2022). This approach highlights the importance of human skills 
(Kolade and Owoseni, 2022) and expertise in conjunction with intelli
gent machines. 

Human centricity aims to integrate human needs into digital trans
formation efforts, enabling collaboration with autonomous robots 
within shared workspaces (B. Wang et al., 2024). For example, Kaasinen 
et al. (2022) present three possible approaches for human-machine 
collaboration design. First, complex networks formed by interactions 
between humans and non-humans should be analyzed, emphasizing the 
capacity of technology as an influential actor and considering 
human-machine interactions in digitalized networks to understand 
roles, interactions, and processes. Second, operations in Industry 5.0 
serve as user-oriented documents that describe system characteristics 
from the end user’s perspective, focusing on operational goals, con
straints, system elements, interfaces, and high-level user requirements. 
Finally, an ethically aware design of human-machine collaboration, 
aimed at respecting workers’ autonomy, privacy, dignity, and mean
ingfulness, is achieved through methods such as value-sensitive design, 

ethical impact assessment, and creating ethical guidelines to ensure 
responsible design choices (Kaasinen et al., 2022). Broader perspectives 
can also be considered for human centricity, not limited to the worker 
using technology (e.g., a machine, robot, AI system, or other), but also 
all the system’s stakeholders, internal and external to the organization, 
in the present or the future. Hence, Industry 5.0 has the potential to 
revolutionize the industrial sector, not restricted to productivity and 
operational aspects. 

2.2. Digital twin: a living model of critical assets for intelligent production 

A DT is a digital replica of a physical object or system, also called a 
living model, because of its capacity to evolve using data (GE, 2016). With 
its initial applications in NASA’s efforts to assist in the aerospace program 
(Glaessgen and Stargel, 2012), the DT integrates simulation capabilities 
with real-time data of the physical twin and historical data. Nevertheless, 
it is essential to differentiate DTs that include bidirectional, real-time 
communication between physical elements and the digital replica from 
other concepts, such as digital models (no real-time communication) or 
digital shadows that only support real-time communication from the 
physical to the digital replica (Aheleroff et al., 2021). 

DTs are rapidly changing to more advanced architectures that 
include sensors to obtain (increasing volumes of) real-time data from a 
product or its environment throughout the entire lifecycle, with the aim 
of dealing with complexity and unpredicted events (Grieves and Vickers, 
2016). The DT predictive presented by Aheleroff et al. (2021) is a 
paradigmatic example revealing the role of machine learning in the 
capacity to incorporate knowledge in the DT, exploring big data. 

Research on DTs has grown exponentially since 2017. The use cases 
in manufacturing are particularly relevant, including (1) product design, 
identifying problems in the working environment and accelerating the 
process; (2) replicating manufacturing equipment, with an emphasis on 
predictive maintenance capabilities; (3) modeling the workshop to 
optimize production or minimize waste; (4) providing after-sale ser
vices, collecting data from the product in use, and (5) integrating data 
from all the product lifecycle stages previously presented, accumulating 
relevant historical data and allowing a comprehensive informational 
model of the product (Fang et al., 2022). 

Production optimization, improving product performance, and 
assisting in industry decisions are well aligned with the traditional goals 
of industry digitalization. For example, Semeraro et al. (2021) found 
that the main functions of DTs include more operational usage goals like 
“[a]ccelerating the product development speed; [i]dentifying cus
tomers’ needs; [p]erformance optimization and validation [e.g., pre
venting failures and downtime, reduce quality costs, optimize resource 
allocation]; [r]emote commissioning and diagnostics”, which is crucial 
for competitiveness but, when compared to the new priorities of In
dustry 5.0, also reveals a gap that needs to be addressed. Recent appli
cations have shifted from specific objects (e.g., manufacturing 
machines) to systems of systems, integrating multiple DTs at different 
levels of abstraction (Boyes and Watson, 2022; Hao Wang et al., 2023a). 
It is now possible to discuss supply chain DTs that go beyond factory 
boundaries, which is particularly relevant to ensure visibility and 
resiliency (Dolgui et al., 2020; Barata, 2021). However, these and other 
examples, such as indoor safety or human DTs, are still emerging in the 
literature (Liu et al., 2023). Moreover, the factory of the future will not 
be isolated from the surrounding society, which may indicate that in
dustry DTs will be part of wider smart cities/regions DTs (Hao Wang 
et al., 2023a). 

Important open challenges for DT research also fall within the scope 
of Industry 5.0. For example, there is a need to research DT interoper
ability and interaction with humans, as well as the shortcomings of 
studies addressing the use of DTs for circular economy and sustainability 
(He and Bai, 2021). Additionally, most DTs focus on a single lifecycle 
stage (e.g., design, production, or service) and are limited in support of 
the multisectoral and societal view of Industry 5.0. 
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3. Methodology 

This study follows the guidelines proposed by Durach et al. (2017), 
Okoli and Schabram (2010), and Webster and Watson (2002) for a 
systematic literature review. According to Durach et al. (2017), the 
usual steps include “(1) defining the research question, (2) determining 
the required characteristics of primary studies, (3) retrieving a sample of 
potentially relevant literature, (4) selecting the pertinent literature, (5) 
synthesizing the literature, and (6) reporting the results” (Durach et al., 
2017). Okoli and Schabram (2010) also suggest that the researchers 
train literature search before starting the analysis, particularly when the 
work is done in parallel by multiple researchers, while Webster and 
Watson (2002) provide essential suggestions for structuring the study 
and conducting a concept-centric analysis. 

The first stage (planning) defined our goal of understanding the role 
of DTs in the emerging needs of Industry 5.0, the literature survey, and 
the synthesis protocol by two reviewers. Bibliometric network analysis 
preceded the second stage (selection) to identify relevant keywords and 
clusters in the main pillars of Industry 5.0. The team evaluated publi
cations indexed in Scopus using VOSViewer (van Eck and Waltman, 
2010) using the main keywords “Industry 5.0” AND (“digital twin” OR 
“digital twins”) and variants for human-related studies, sustainability, 
and resilience. Subsequently, the authors screened titles, keywords, and 
abstracts to identify studies that were clearer in framing the study with 
the two topics using the Scopus and Web of Science samples. Each 
researcher performed an initial analysis on a small sample of ten papers 
to ensure that the inclusion criteria were consistent. The team obtained 
93 publications for full-text reading, excluding duplicates from both the 
databases. Content analysis revealed 57 publications that the team could 
access, coded in Mendeley reference management software, and classi
fied in a table with more specific information about each paper to assist 
in grouping concepts for discussion. 

In the selected context, human and technology dimensions are 
deeply intertwined. Among the several possible theoretical lenses for 
understanding the phenomena, strong structuration theory (Stones, 
2005) stands out. According to this theory, systems that include the 
behaviors of the actors at the micro (e.g., individual), meso (e.g., or
ganization), and macro (e.g., country or region) levels, and structure 
(resources and rules that are used and created by humans) are insepa
rable (Giddens, 1984). Structures support society’s actions and are 
shaped by the results of these actions. More recently, strong structura
tion theory has appeared to clarify the duality of structure, providing a 
theoretically helpful lens for understanding technology developments, 
which have already been adopted in critical settings such as healthcare 
and management (Greenhalgh and Stones, 2010; Jack and Kholeif, 
2007). 

Stones (2005) posits that structure and patterns of action should be 
studied through hermeneutics, suggesting the identification of 
position-practice networks (ontology-in-situ) involving humans and 
non-human agents (e.g., technology). Four main components must be 
addressed in studies adopting the theory, called the quadripartite nature 
of structuration: (1) external structures (forces that affect agents’ 

behaviors independently of their will); (2) internal structures of agents 
(knowledge or agent roles); (3) active agency, referring to the types of 
actions performed; and (4) outcomes of actions, where structures can 
remain the same or change (Greenhalgh and Stones, 2010; Stones, 
2005). Table 1 explains how strong structuration theory was adopted in 
our work to study DTs in Industry 5.0. 

After completing the paper selection, each was evaluated in full to 
extract relevant concepts and integrate them according to the lens of 
strong structuration theory. 

4. Unfolding the literature 

4.1. Bibliometric analysis 

Our initial assessment of the studies used VOSViewer (van Eck and 
Waltman, 2010). This section presents the results of the Scopus sample 
because it provides a broader list of studies. The results reveal that In
dustry 5.0 gradually diverges from the traditional stream of the 4.0 
literature. The human aspects of digital transformation, such as accident 
prevention, operator 4.0, and the influential paradigm of Society 5.0, are 
more evident in the former. Nevertheless, key technological trends such 
as big data, IoT, and AI are shared by both the productivity-centered 
Industry 4.0, and its new 5.0 counterpart, and can also be found in the 
structural elements of a DT. 

Figs. 1–3 provide an overview of the bibliometric network created 
for the three main Industry 5.0 pillars. Fewer relevant terms or syno
nyms were removed. We also omitted the node “Industry 4.0” to identify 
only the most relevant links with Industry 5.0. Each cluster of papers is 
identified by a color representing notes with a closer relationship. The 
size of each node/line increases proportionally to its relevance in terms 
of the number of papers. 

Fig. 1 provides an overview of the clusters restricted to “Industry 5.0” 
AND (“digital twin” OR “digital twins”) AND human” which resulted in 
1027 papers. The topics of ergonomics, accident prevention, and 
human-robot collaboration appear in the red (digital twin) cluster in 
parallel with human resource management and training. Several tech
nologies appear in the green cluster (e.g., AI, IoT, and Blockchain). Two 
smaller clusters present research on metaverse (purple) and cyber- 
physical systems (yellow). The focus of Industry 5.0 in sustainability 
and supply chains can be found in the blue cluster. Fig. 2 presents the 
results for the sustainability pillar. 

A total of 1047 results were obtained with the keyword combination 
“Industry 5.0” AND (“digital twin” OR “digital twins”) AND (sustain
ability OR sustainable). Consistent with the vision that Industry 5.0 is 
not restricted to company borders, the supply chain node, life cycle 
analysis, and circular economy also emerge in this sample. The tech
nological cluster in blue is also visible, but we expect a clearer link with 
circular economy concepts. The network also reveals a red cluster of 
papers addressing social sustainability, with touchpoints on the human- 
centric sample previously presented. The keyword resilience (although 
the node is not significant) also appears in this network, which is the 
third pillar, as shown in Fig. 3. 

Table 1 
Strong structuration applied to DTs in Industry 5.0  

Quadripartite component Ontology-in-situ 

External structures Institutional, political, and technological forces affect DT adoption, which must simultaneously ensure human-centricity, sustainability, and 
resilient industry practices. 

Internal structures Several technologies are available to create DTs, but their integration with other DTs and also with humans is not yet the norm in industry 
practices. The increase in technology agents is challenging human work practices, not yet exploring the predictive capacities of technology 
for decision-making and providing evidence of compliance with the three pillars of Industry 5.0. 

Active Agency/Agent’s practices More advanced DT use cases are necessary to make Industry 5.0 a reality. 
Outcomes Multiple questions emerge: how current structures can be changed with DTs, how they adhere to Industry 5.0 priorities, and their impact on 

both human agents and digital transformation strategies.  
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Restricting our search with the keyword “Industry 5.0” AND (“digital 
twin” OR “digital twins”) AND resilien*” returned 614 results, which 
may indicate less emphasis on DTs to assist this critical facet of industrial 
transformations. Several combinations include the supply chain, but 
also reveal the role of cybersecurity. Articles proposing DTs to predict/ 
prevent and respond to disruptions in production flows can be found in 
this sample. 

Our bibliometric networks suggest that the DT can be integrated with 

the three pillars of Industry 5.0, emphasizing the human-centric and 
sustainability lines of research. It also suggests that human centricity 
tends to be studied internally within companies and employees (e.g., 
relationships with robots, accident prevention, and improved interac
tion via extended reality), probably overlooking other relevant stake
holders for a socially responsible industry. The focus of the sustainability 
pillar is on the environment, which is understandable but insufficient to 
assist the development of circular manufacturing and a comprehensive 

Fig. 1. Co-occurrence of keywords in Scopus for human-centric research (SCOPUS sample obtained in March 2024, all fields).  

Fig. 2. Co-occurrence of keywords in Scopus for sustainability (SCOPUS sample obtained in March 2024, all fields).  
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reduction of all forms of waste. Finally, resilience is evolving alongside 
the supply chain literature, which is interesting and desirable to prevent 
disruption in physical flows using DTs. The popularity of blockchain in 
the three samples was surprising, requiring a deeper analysis of its role 
at the intersection of Industry 5.0 and DTs. 

4.2. Concept-centric analysis 

The majority of the 57 papers selected were published in 2023 
(51%), followed by 2022 (33%), 2024 (already 11%), and 2021 (5%). 
The human-centric stream of research reaches 71% of the papers, while 
sustainability (13%) and resilience (16%) are more balanced in our 
sample. 

A concept-centric analysis of the literature (Webster and Watson, 
2002) is subsequently presented according to the lenses of strong 
structuration theory (Greenhalgh and Stones, 2010), which, addresses 
(in 4.2.1) the networks of position-practice relationships of humans and 
technology, and (4.2.2) human and technology agents in focus. 

4.2.1. The interplay of physical and digital agents 
Most studies on DTs can be integrated into position practice net

works, which can be explained by their purpose of representing and 
optimizing complex sociotechnical contexts. 

4.2.1.1. Use cases of digital twins in industry 5.0. Examples of relevant 
DT use cases are listed in Table 2. 

There are relevant sector-specific use cases of DTs in different areas 
of society, including healthcare, agriculture (Taj and Jhanjhi, 2022), and 
important industries. For example in construction, Wang et al. (2022) 
create a DT framework that assists in all stages of the construction 
lifecycle and propose a virtual reality interaction module, while Rios 
et al. (2023) discuss the potential adoption of DTs for bridge design, 
management, and operation. According to the authors, a multimetric 
bridge health-monitoring system can explore historical and real-time 
data on the structural, environmental, and operational conditions of 
the bridge. The critical food supply chain is another appealing context 
for DT adoption, aiming to assist decisions in reducing food waste 
(Guruswamy et al., 2022) or ensuring equity and equality in decisions 
(Ignatius and Bahsoon, 2023). 

Supporting manual assembly in manufacturing is another important 
use case for the human-centered adoption of DTs, as illustrated in the 
research of Pang et al. (2023), considering the (1) scene, which defines 
the assembly sequence, (2) assembly model, and (3) parts model. The 
system may verify positional errors, part selection errors, or positional 
errors, for example, by comparing physical and digital results (Pang 
et al., 2023). 

Flexible manufacturing can contribute to a more resilient industry. 
For example, Minca et al. (2022) consider DTs in the context of multi
functional flexible manufacturing technology and explore the key mo
tivations for their use, such as remote monitoring. Another example is 
presented by Zhang et al. (2021), who introduce a “lightweight” DT 
approach for parallel manufacturing that focuses on core dimension 
information, employs digital simulation, and enhances production effi
ciency through reverse control, thereby facilitating flexible and iterative 
improvements of the production line. 

Several affordances can be identified for DTs in Industry 5.0. For 
example, testing dangerous situations before they are implemented in 

Fig. 3. Co-occurrence of keywords in Scopus for resilience (SCOPUS sample obtained in March 2024, all fields).  

Table 2 
Use cases of DTs in Industry 5.0  

I5.0 Pillar Context References 

Human- 
centric 

Human health and safety Wang et al. (2022), Pang et al. (2023), 
Choi et al. (2022), Ruppert et al. 
(2022), Ignatius and Bahsoon (2023),  
Haoqi Wang et al. (2023b) 

Work assistance and 
error reduction 
Training 
Fair decision making 

Sustainability Environmental 
protection 

Rios et al. (2023), Guruswamy et al. 
(2022), Choi et al. (2022) 

Energy optimization 
Waste reduction 

Resilience Health monitoring and 
disaster prevention 

Rios et al. (2023), Choi et al. (2022),  
Minca et al. (2022), Zhang et al. 
(2021), Dewangan and Chandrakar 
(2023) 

Supply chain continuity 
Manufacturing 
flexibility 
Secure data storage  
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practice, monitoring human health or training (Ruppert et al., 2022), 
enhancing student motivation and learning through practical simula
tions, allowing the exploration of real-world scenarios and complex 
systems (human-centric), addressing environmentally relevant pur
poses, such as e-waste management (sustainability), ensuring data se
curity and data privacy (Dewangan and Chandrakar, 2023), and 
managing the risks of disruptions (resilience) in supply chains (Choi 
et al., 2022). These examples are not exhaustive but illustrate the po
tential of DTs in the three main pillars of Industry 5.0. 

4.2.1.2. Resiliency-aware digital twin. A good example can be found in 
Ivanov (2023) and the digital supply chain twin, including (1) the vir
tual representation of physical objects, (2) the technological portfolio 
for DT creation, (3) system description/visualization, and (4) system 
prediction/prescriptive analytics. Expanding the scope of the “worker”, 
the social aspects of supply chain DTs also include population needs. DTs 
may help in sustainability analysis, such as fair trade and regulatory 
compliance (Ivanov, 2023), clearly spanning the borders of each orga
nization participating in the supply chain. Additionally, DTs embedded 
with forecasting capabilities inside a warehouse can be useful. However, 
there is a lack of research on the specific steps of the process, such as 
packaging (Drissi Elbouzidi et al., 2023) and order picking, in which DTs 
can be used for occupational health and safety purposes to check if 
working conditions are appropriate, including noise exposure or body 
posture (Grosse, 2023). 

Resilience can also be achieved through decentralization of 
manufacturing structures, as suggested by Leng et al. (2023). These 
authors present a blockchain-based DT prototype to manage more 
complex production networks that require synchronization and constant 
adjustments in the flow of products and materials. The use of DTs to 
improve human-machine collaboration in large-scale manufacturing 
that requires personalization is an appealing avenue for future research 
(Nguyen et al., 2022a). 

4.2.1.3. Physical - digital interaction. Several technologies can be used 
to create interactive DTs for energy optimization or gathering data to 
improve product design (Bhattacharya et al., 2023). For example, using 
augmented, extended, or virtual reality (although not required to be 
considered a DT, as explained by Turner and Garn (2022)) to improve 
workplace conditions. A method for integrating extended reality and 
DTs to improve user interaction with equipment was proposed by Tu 
et al. (2023). The four main building blocks of the architecture include a 
visualization module (e.g., 3D model of the equipment, dashboards, 
warnings), a control module that allows the operation of different de
vices such as cranes exemplified in the paper, a module that establishes 
data flows between the real and virtual environments, and an identifi
cation component using a QR code. Another example involving cranes 
(Yang et al., 2022) also focuses on virtual representation and improved 
interaction between humans and machines. Virtual reality is an impor
tant enabler of user-friendly DT adoption in Industry 5.0 (Lv, 2023). 

Aiming at a more inclusive society, a digital-twin human-machine 
interface can use gestures to control electronic peripherals and improve 
the expression ability of non-verbal individuals (Mo et al., 2023). In 
addition, at the interface of the human and artificial, Xian et al. (2023) 
emphasized that a DT is central to personalized collaboration between 
humans and machines. Nevertheless, as presented in recent studies by Li 
et al. (2023) S. Wang et al. (2024) and Zhong et al. (2024), DTs can also 
be adopted to ensure safe and reliable human-robot collaboration. 

A DT can mirror the structural aspects of a plant (e.g., machines and 
production lines), allowing their optimization at the levels of supervi
sion, interaction, and prediction, thereby reducing waste (Turner and 
Garn, 2022). However, it is challenging to create parsimonious DTs 
solutions that are capable of representing and acting in the most critical 
parts of the physical system. Additionally, DTs still lack standardization 
to increase their interoperability. 

4.2.1.4. Challenges for the digital twin evolution. DT potential is vast for 
Industry 5.0 with analytics, synchrony between the physical and digital 
realms, prediction of faults and technological bottlenecks, and auto
mation of repetitive tasks that would not be interesting for humans. Yet, 
the barriers are not less significant, namely, the existence of an infor
mation technology infrastructure integrating sensors and data process
ing, quality and consistency of source data, privacy, security, and trust in 
a system that will become central to manufacturing operations, stan
dardization, and support for DT modeling (Sasikumar et al., 2023). 

Cybersecurity in DT design is a common concern (Alcaraz and Lopez, 
2023; Choi et al., 2022). Suhail et al. (2023) presented one of the most 
recent examples of an explainable DT solution to ensure the security of 
cyber-physical systems. Their solution addresses the three main pillars 
of Industry 5.0, for training people (human-centric), detecting anoma
lous behavior (sustainability), and predicting attacks (resilience). 
However, significant research gaps exist in the practical development 
and implementation of DTs, such as the lack of interoperability among 
different software used along the DT model generation track, perfor
mance improvement of anomaly detection algorithms, and the direction 
for the creation of macro-DTs that integrate the DTs of individual 
infrastructure assets (Rios et al., 2023). 

Responsible DT use requires the explainability of AI components to 
remove unsafe DT outputs (Bhattacharya et al., 2022). Other challenges 
include the development of practical DT models and addressing human 
behavior uncertainties. The privacy and security of DTs involve solu
tions such as federated learning, blockchain technology, and role-based 
access control (Xian et al., 2023). Other challenges lie in integrating DTs 
with metaverse-enabled systems, addressing security and privacy issues, 
and establishing standardized governance and regulations for this 
transformative socio-technological shift (Jagatheesaperumal and 
Rahouti, 2022). We agree with Balogh et al. (2023) that “the ad-hoc 
solutions that are currently in use are not sustainable in the long term 
and are difficult to integrate into other systems and DT environments”. 

4.2.2. Agents-in-focus 
Human DTs are becoming popular in the literature (Asad et al., 2023; 

He et al., 2024; B. Wang et al., 2024). Motion tracking systems, bio
logical (e.g., electrocardiograms), and environmental sensors can pro
vide a comprehensive overview of operations. The latter is more 
common and includes, for example, temperature, humidity, and noise. 
The combination of wearable technology and environmental sensors 
offers a very interesting solution to occupational health and safety, also 
assisting in auditing/certification purposes. Therefore, application do
mains for human DTs include ergonomics, avoiding collisions between 
humans and robots, testing and training robots and humans (Eriksson 
et al., 2022; Kaarlela et al., 2022), security simulation, and the most 
immediate application in health management, including rehabilitation 
and well-being in the industry (Asad et al., 2023; Davila-Gonzalez and 
Martin, 2024). 

Operators’ 5.0 can be trained using DTs (Verdugo-Cedeño et al., 
2023). The case study presented by Eriksson et al. (2022) for higher 
education is an example illustrating the application of a DT of a 
laboratory-scale production line, while Kaarlela et al. (2022) found 
positive results for DTs supporting robotic teleoperation and providing 
training when resources are unavailable on-site. In addition, in this 
study, the authors stress the importance of cybersecurity in ensuring 
sustainable online platform use. 

Hybrid collaboration scenarios via cobots can use DTs in scenario 
impacts, and a deeper exploration of performance (Yao et al., 2022). 
Turner and Oyekan (2023) underline the need for an integrated 
approach that combines human expertise and automation, guided by 
sustainability principles. For example, automatically identifying unsafe 
states, such as “running” or “entering the dangerous zone” (Haoqi Wang 
et al., 2023b). Activity recognition is part of this line of study, which can 
enhance smart factory environments (Nagy et al., 2022). Nevertheless, 
virtual reality-DT interfaces can cause higher anxiety and 
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mental/physical demands for the operator. Eye-tracking analysis in
dicates that user attention is more focused on the interface device than 
on the robot twin, potentially compromising safety (Kuts et al., 2022). 

The human profile can also be embedded into the DT model (Cutrona 
et al., 2023), allowing interaction with a DT to be adapted to the 
worker’s skills or needs. This idea is presented by Modoni and Sacco 
(2023) and tested with assembly operators. Human DT requires a model 
of the behaviors and attributes of workers, supported by real-time sensor 
data (Asad et al., 2023). The review conducted by Paul et al. (2021) 
clearly shows that a DT is a core element of the future of data-driven 
ergonomics. Nevertheless, there are challenges in using personal data 
in industry settings (He et al., 2024), a critical issue for industry man
agers, which can compromise the practical adoption of human DTs in 
the short term or force them to restrict their architecture to digital 
models or digital shadows. 

The intrinsic characteristics of DT technology include connectivity 
through sensors, homogenization of sensor data, digital trace represen
tation, reprogrammability, and modularity (Jagatheesaperumal and 
Rahouti, 2022). The list of DT “traditional” technology components 
continues, for example, with IoT, Big Data, and AI (Raja Santhi and 
Muthuswamy, 2023). The human-centric DT perspective increases the 
complexity to another level with computer vision, simulation tools, 
game engines, 3D visualization, and virtual and augmented reality (Asad 
et al., 2023; Zhironkina and Zhironkin, 2023). Therefore, integration is 
key to DTs for Industry 5.0. (Montini et al., 2022). 

A DT can be adopted at different levels of abstraction, such as in wind 
farms, factories, or smart cities (Maddikunta et al., 2022b). The DT holds 
the potential for customized product development, improved business 
functions, defect reduction, and innovative business models at a larger 
scale. But more intelligent DTs are necessary for Industry 5.0 to ensure 
human awareness of problems and assist in decisions (Alimam et al., 
2023). The focus on intelligent DTs is also selected by Chen et al. (2021) 
for the case of a wind turbine, supporting the training of AI models for 
decision-making. According to these authors, “the role of the human is 
elevated to a supervisory level. Human intelligence (HI) provides 
essential inputs to the system to make greater high-level decisions based 
on perception-driven strategies”, suggesting a new form of human-DT 
collaboration. More recently, Lauria and Azzalin (2023) facilitate 
decision-making and predictive maintenance strategies, reducing envi
ronmental impacts, which aligns with the important role of cognitive 
DTs for the achievement of UN sustainable development goal 9: in
dustry, innovation, and sustainability (Sharma and Gupta, 2024). 

The future-oriented paper presented by Maddikunta et al. (2022a) 
highlights the importance of connectivity using DTs to improve collec
tive intelligence. The role of blockchain is also expected to increase, 
owing to the advantages of regulatory models. The concept of a fleet (a 
network of multiple DTs) is well aligned with these authors’ vision of 
6G. Nevertheless, studies addressing DT fleets are still rare in the liter
ature, despite evidence that this characteristic is one of the most 
promising ways to increase DT learning speed and accuracy (GE, 2016). 

The analysis of the 57 publications provided essential insights into 
the emerging networks of position-practice relations of DTs in Industry 
5.0, and how human and non-human actors are increasingly connected. 

5. Discussion 

5.1. Physical-digital convergence for human-centric, resilient, and 
sustainable industry transformations 

According to Uhlenkamp et al. (2022), DT “development and use is a 
process of continuous improvement”. Following, for example, the pop
ular Plan-Do-Check-Act (PDCA) (Deming, 1993; Shewhart, 1939) cycle, 
DTs can be used in the early stages of designing (P) a new system (a 
machine or more ample physical scenarios such as production lines, or 
supply chains) to improve the usability of the new system, simulate 
disruptions that can affect it (e.g., safety risks, disruptions in materials or 

information flows, energy consumption), monitor and supervise the 
system in use (D), allowing self-adjustments (e.g., adjusting operation to 
optimum consumption levels of resources), warnings (e.g., security 
menaces), and enhanced interaction between humans and physical as
sets, continuously assessing via a single DT or the fleet (C) predicting 
critical events; and (A) assisting in the decisions that may be relevant to 
the three pillars of Industry 5.0. 

However, there are also shortcomings in the existing generations of 
productivity-centered DTs. First, fleets have rarely been discussed in 
literature. Industry 5.0, which is cross-sectoral, will need to use tech
nology at larger scales in systems, supply chains, and business ecosys
tems, requiring innovative DT architectures (Boyes and Watson, 2022). 
For example, at a City 5.0 level (Rosemann et al., 2021), integrating data 
of all factory DTs in the region (the fleet) can provide an aggregated 
measurement of environmental impacts (sustainability), accident pre
vention (human-centric), or alternative (local) supply in case of dis
ruptions (resiliency). Major differences compared to the traditional DT 
of a single factory or organization (van der Aalst et al., 2021) are (1) the 
interest of the community in the key performance indicators of each 
physical asset, which requires proving data accuracy and ensuring at the 
same time that private data (e.g., commercial secrets and financial 
agreements) are also protected; (2) the need to share data in the 
manufacturing ecosystems (e.g., digital product passports for end cus
tomers, product traceability from suppliers, parallel manufacturing data 
for partners); (3) the pressure for more open data to support quick 
response in case of resiliency problems (as happened, for example, 
during the previous pandemic). DTs can be used as a single point of truth 
for Industry 5.0 compliance, including (1) evidence monitored in 
real-time and (2) the data used to support decision-making; however, 
data governance (e.g., data quality, privacy, retention, etc.) is more 
complex in distributed DT architectures. 

One of the first qualitative studies on the value of DTs in business 
ecosystems is presented by Rantala et al. (2023), who conclude that 
human centricity is mostly increasing in DTs within factory boundaries 
(e.g., providing training, documentation, instructions, process safety, 
and historical data). The authors also concluded that companies “are not 
yet ready to shift their value creation logic from internal to 
ecosystem-level utilization” (Rantala et al., 2023). Interestingly, some of 
the known barriers to deploying DTs that include integration and 
interoperability, security, performance, data quality, suppliers prepa
ration and other external factors, and problems “in identifying clear 
value propositions associated with DT solutions” (Perno et al., 2022) are 
amplified if companies want to trust in this solution for resiliency. 

Human factors in DT research are advancing rapidly but reveal a 
focus (albeit an important one) on the worker. First, in contrast to the 
traditional social aspects of computing that emphasize humans as users 
and developers of technology, DTs can include humans in their own 
internal structure, representing them entirely (human DT), preparing 
human interactions with the environment (training), helping humans 
(assistance), and mediating how humans deal with the environment (B. 
Wang et al., 2024). Simon (1996) anticipated that humans would be 
deeply related to the artificial, and the new generations of DTs in In
dustry 5.0 prove that vision. Nevertheless, similar to other disruptive 
technologies, DTs may affect human activities in two ways: supportive 
or substitutive (Grosse, 2023). Additionally, DTs in Industry 5.0 do not 
necessarily have to integrate personal data (which can be challenging in 
organizations), and there are other, perhaps more short-term opportu
nities to develop the concept of organizational DTs (van der Aalst et al., 
2021) for resilience. Future research is necessary to understand “what 
emerges from the usage and adaptation of the IT and the formal and 
informal processes by all of its users” (Paul, 2007). Therefore, a broad 
understanding of the human-centric priority to future DT developments 
in Industry 5.0 can be appealing to industry managers, which can 
include the organizational and societal interests of the DT outcomes, not 
restricted to the individuals interacting with physical assets inside the 
company borders. 
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But are the physical and social realms prepared to be mirrored and 
changed in real-time, intermediated by a digital replica? Ethics, regu
lations, privacy, security, and industrial relations need to adapt (Asad 
et al., 2023; Jagatheesaperumal and Rahouti, 2022). While the “4.0 
paradigm” worked perfectly inside company borders and control, the 
“5.0 paradigm” will require more data exchange and collaboration be
tween different entities. For example, the transparency and 
evidence-based decisions that are part of the “digitalization with a 
purpose” in Industry 5.0, will allow for the creation of more advanced 
benchmarking platforms to assist companies and consumers in their 
informed decisions about responsible practices. 

A DT relies upon other technologies to be put into practice (Boyes 
and Watson, 2022; Perno et al., 2022). A DT cannot be reduced to a 
mathematical model, a network of sensors connected by 5G to extract 
data from real objects, a distributed and immutable database supported 
by blockchain to ensure trust in data (for example, for sustainability 
audits), or a 3D representation of a specific system. Interestingly, it is all 
of this assembled in a composite solution that requires in Industry 5.0 (1) 
better design principles, (2) innovative architectures, (3) interopera
bility standards, and (4) a new role in academic curricula of computer 
science and information systems courses. Moreover, DT interfaces must 
be redesigned for new users (humans, such as suppliers, partners, in
surance companies, auditors, or regulators or non-humans such as ma
chines and other DTs in the fleet) and more user-friendly interactive 
technologies, for example, with natural language processing. The 
multidisciplinary nature of DT development offers more collaboration 
with different experts in the technological domain (e.g., information 
systems, communication and telematics, software engineering, and AI 
researchers), and between them and other crucial fields in industrial 
engineering and social sciences. 

DT intelligence can become the foundation for collective intelligence 
projects that explore the fleet. Our review found several studies that 
adopted machine learning techniques to create decision models for 
specific objects (Nguyen et al., 2022b). However, we could not find a 
single empirical study in our sample exploring the collective intelligence 
of multiple DTs that can be of a similar nature (fleet), for example, 
multiple twins of a specific machine assisting its manufacturer, or 
different nature – DTs built at different levels of abstraction (e.g., how 
DTs of specific machines collaborate to reduce consumption at the fac
tory DT level). For example, the DT of a smart city/region can be 
composed of more specific twins for vehicles, environmental conditions 
(e.g., carbon emissions), buildings, or emergency service capacity 
response to optimize the entire city/region, producing a synergistic ef
fect. Collective intelligence (Malone et al., 2010) may contribute to 
creating new solutions for the ambitious agenda of sustainability and 
resilience in Industry 5.0. 

Our work also confirms the relevance of strong structuration theory 
for digital transformation studies. Following previous studies in 
healthcare and management (Bamel et al., 2023; Greenhalgh and 
Stones, 2010; Jack and Kholeif, 2007), our work is the first to integrate 
DTs and Industry 5.0 based on this theoretical lens. Several advantages 
can be pointed out in its use, namely, (1) the focus on the instantiated 
interactions between humans and technology, (2) the possibility of 
separately evaluating the human/technology in focus that reveals 
different research avenues, and (3) the advantage of reminding re
searchers to assess the micro, meso, and macro levels of abstraction that 
pose different challenges in the adoption of new technology. In contrast 
to Industry 4.0 advancements evaluated by the perception of managers 
and employees, Industry 5.0 must produce evidence beyond the factory 
walls. For example, a DT for resilient supply chains in critical products 
requires the collaboration of multiple entities to be monitored and 
optimized using digital technologies. 

5.2. A framework for digital twins in industry 5.0 

There are already several influential frameworks for Industry 4.0, 

such as RAMI 4.0. Industry 5.0 and DTs, however, have particularities 
that do not align perfectly with early architectures. Examples include the 
social aspects and the need to go far beyond the connected world – the 
last level of the hierarchy in RAMI 4.0 and extended life cycles that 
include product change (e.g., that need to be more transparent with the 
digital product passport under development in the European Union, and 
addressing the entire product lifecycle), and recycling. Therefore, the 
research team sought inspiration from influential architectures for DTs 
(Aheleroff et al., 2021), the new requirements of Industry 5.0, and the 
duality of structure and agency of humans and technologies emerging 
from strong structuration theory to propose the SA-DT framework 
(Fig. 4). 

The SA-DT framework has two main theoretical foundations, 
namely, the duality of physical and digital realms (Aheleroff et al., 2021) 
and the duality of structure and agents in networks of position practices 
guided by strong structuration theory (Stones, 2005). 

Prominent DT architectures differentiate between physical objects 
and digital objects (the term object is changed to a system in our 
framework due to the increasing complexity of DT settings) and auto
matic flows. SA-DT extends these contributions with an additional agent 
(the social system, which includes humans and culture, which is part of 
the social structure), creating a double cycle. The DT can receive data 
from humans (e.g., using wearable technology) or artificial systems (e. 
g., machines and vehicles) and produce information in real time (Ahe
leroff et al., 2021). The flow between social systems and the DT is rep
resented by the dashed line because it can include data or knowledge, 
which is a free choice of humans (agency). A parallel flow can be found 
on the right with the physical and social environment. Contrasting to 
traditional object-centric DTs aiming at monitoring and improving the 
operation of physical objects, human-centric DTs will require sources of 
data relevant to assist humans and measure impacts in the environment 
of the decisions made. 

Strong structuration theory identifies external forces affecting the 
social setting – represented in our framework by the pillars of Industry 
5.0 described in the outer elements of the framework (resilience on the 
left, sustainability – social, environmental, and economic, at the top, and 
human-centric at the bottom). These three pillars are populated in our 
framework with the priorities and use cases found in the literature re
view. Moreover, agents can be human or non-human, as represented by 
the dual cycle of interactions between DTs and both the physical and 
human systems and their environments that affect and are affected by 
decisions made. In practical terms, human characteristics and needs 
must be a requirement for the new DT generation. The analysis made by 
the research team about the adoption of strong structuration theory can 
be found in Appendix A. 

Integration is represented by the links existing in the four central 
elements (physical/social systems and their environments) and also the 
increasing importance of DT fleets. The right part of SA-DT suggests that 
researchers should address, by design, the endpoints of their DT crea
tions and how they can add to the existing fleets. For example, a supply 
chain DT required to predict energy consumption in the near future will 
require inputs from the DTs of its segments (e.g., raw materials, product 
manufacturing, or logistics). The scale of DTs in Industry 5.0 will 
probably increase to ensure resilience and effective measurements of 
sustainability indicators. 

Although non-exhaustive, the authors point to essential lines that can 
be found in the literature review for each one. First, human-centric DTs 
can be created for human parties that are more related to the 
manufacturing process (e.g., human DTs, workers, health, and safety 
compliance in a specific sector of the factory), people not directly 
involved with the company but affected by their operations (e.g., cus
tomers and neighborhoods), and ultimately, as a memorization system 
for future generations. Second, DTs for resiliency can address several 
important dimensions, as stated in a recent report issued by Spain’s 
National Office of Foresight and Strategy (Spain’s National Office of 
Foresight and Strategy, 2023) for the European Union, including 
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strategic aspects of autonomy in industry, the capacity to deal with 
changes and disruptions that can be increasingly relevant and more 
frequent, and the need to anticipate future events. The most critical 
dimensions represented on the top left are responsibility, resources 
(energy reduction, material reductions), and (1) monitoring and (2) 
predicting future states of micro (objects), meso (factories), and macro 
(cities, regions) that comply with sustainability regulations. 

The SA-DT framework can assist future DT contributions to Industry 
5.0 (or related initiatives such as healthcare 5.0, or agriculture 5.0) to 
discuss (1) the forces considered in their work, (2) the particularities of 
the dual cycle of flows between DT and human/non-human agents, (3) 
interactions with the (social and physical) environment, and (4) DT 
interoperability. 

5.3. Agenda for future research 

Table 3 summarizes important research opportunities in the field. 
The priorities included in Table 3 were extracted from the literature 

as a result of the analysis provided by SA-DT framework for the dual DT 
cycle of the social and physical reality, spanning company borders. In 
this reflection, we included several aspects related to structure and 
agency, which are essential for future DT research. 

6. Conclusion 

This study sheds light on the sociotechnical and boundary-spanning 
roles that DTs will play in the new European priority of Industry 5.0. Our 
systematic literature review started with a bibliometric analysis of 
publications at the crossroads of Industry 5.0 and DTs, identifying 
relevant clusters of papers for human-centric, sustainability, and 

resilient industry transformations. The next stage involved an in-depth 
concept-centric assessment of 57 papers extracted from Scopus and 
Web of Science (Durach et al., 2017; Okoli and Schabram, 2010; Webster 
and Watson, 2002). The changing role of human and non-human agents, 
as well as their interactions enacted by DTs are discussed. Strong 
structuration theory (Greenhalgh and Stones, 2010; Stones, 2005) was 
selected to understand the human, technical, and networks of position 
practices enabled by the DTs in Industry 5.0. 

The main contributions of our study can be summarized as follows: 
First, we identify use cases, impact, challenges, and opportunities for 
DTs aiming at more responsible (internal and external) industry prac
tices that can be mirrored in the digital realm, allowing real-time 
monitoring, supervision and operation, optimization, and more reli
able disclosure of industry practices. Second, the SA-DT framework is 
designed to frame current and future research. The interest in designing 
DTs internal to the factory floor aimed at specific production assets will 
undoubtedly continue in the future, but they need to be integrated with 
a fleet and suitable for use by third-party organizations (e.g., suppliers, 
partners, supply chain participants, or assessors) to contribute to the 5.0 
movement. Third, a research agenda is proposed. This study argues that 
DTs are the most promising technological enablers to make Industry 5.0 
a reality. It will be much more challenging to achieve the ambition of a 
competitive and sustainable industry that is not replicated in the digital 
world rigorously, accurately, integrated, trustworthy, and auditable. 

Some delimitations and limitations of this study must be stated. The 
former includes the three pillars of Industry 5.0 selected by the European 
Commission (European Commission, 2021, 2023). They are currently 
influenced by technology, geostrategic priorities, and global challenges, 
including the recent pandemic needs, climate change, the uncertainty of 
conflicts, and the balance of world power that become extremely visible 

Fig. 4. SA-DT framework for Industry 5.0.  
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in the tenets of strong structuration theory. Other pillars may emerge in 
different parts of the globe or need to be incorporated in the future, 
owing to the drastic transformations that technology brings to the world. 
For example, airspace exploration (in which DTs have already proven 
their utility) will probably justify changes in industry priorities. As for 
the limitations, we point to the databases used (restriction to Web of 
Science and Scopus), albeit relevant to scientific research, and to the 
dynamic characteristics of Industry 5.0 and digital transformation. This 
is a vibrant field of research, and researchers may also publish papers on 
related topics without using the terms we selected. 

Several implications have been identified for academia and industry. 
First, it contributes to the accumulation and integration of knowledge 
dispersed in the literature (Tranfield et al., 2003). We confirm that DTs 
can make a solid contribution to Industry 5.0 projects. Researchers may 
use the DT vision, to identify precisely how they contribute to Industry 
5.0 and identify lines for future research across the SA-DT framework. 
Both researchers and practitioners participating in the recently created 
Industry 5.0 Community of Practice (CoP 5.0) may find our work 
interesting to guide the deliverables and identify use cases. In our view, 
the twin transition strategy (Mäkitie et al., 2023) and DT strategy are 
inseparable. 

Finally, companies must identify solutions to address the forth
coming requirements of European regulations and determine how to 
achieve corporate social innovation (Mirvis et al., 2016). DTs are a 
possible solution to address both supply chain and societal enhance
ments, but their value depends on knowledge exchange capabilities. For 
example, a machine DT can provide value for predicting maintenance 
and reducing costs and resources. Analogous to the maturity model 
proposed by Uhlenkamp et al. (2022) for DTs, this particular DT would 
be at a low level of maturity for Industry 5.0, but can evolve to address 
other priorities, incorporate more stages of the lifecycle in 
manufacturing, and expand the restricted level of analysis (a single 
machine) to a fleet-level exchanging knowledge with third-party orga
nizations. DT pilot projects for Industry 5.0 must consider a societal 
rollout plan, which will require more collaboration with academic in
stitutions and industry associations. For example, it would be interesting 
to design new DT platforms for benchmarking and provide shared ser
vices for fleet management in particular industries and supply chains. 
Government and certification institutions may create requirements for 
DTs suitable for remote monitoring and improvement of companies 
following specific mandatory regulations or voluntary standards certi
fication schemas (e.g., health and safety, environmental, energy, or re
sponsibility). Digitalization with a specific purpose (European 
Commission, 2022) offers new opportunities to compete with social 
innovation, but there is a trade-off. The industry will require more 
physical-digital convergence and must prepare its investments for the 
possibility that Industry 5.0 will become increasingly -positively- 
intrusive in company data and decision-making processes at a more 
fine-grained level than ever, putting DT deployments at the top of digital 
transformation priorities. 
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Table 3 
Priorities for digital twins in Industry 5.0  

I5.0 Pillar Priorities References 

Human- 
centric  

• simulate various workplace designs 
and conditions, thereby facilitating the 
identification and mitigation of 
potential hazards and the enhancement 
of ergonomics  

• optimize production schedules and 
workflows, thereby reducing 
workloads and alleviating stress on 
workers  

• create virtual training environments 
that enable workers to acquire new 
skills and practice procedures in 
controlled environments  

• training customized to the specific 
needs of each employee  

• shared information spaces can be 
created using DTs, enabling workers to 
collaborate and exchange ideas  

• offer workers insights into the 
performance of their systems and 
processes, equipping them with the 
knowledge necessary to make informed 
decisions on how to optimize them  

• ethical use of DTs  
• human DTs for specific roles in industry  
• DT adoption and usability studies, 

including how collective intelligence 
can be formed in cooperation between 
humans and DTs  

• balancing the needs of free will with 
the automatic response of DTs in a 
more regulated industry 

Eriksson et al. (2022) 
Majerník et al. 
(2022) 
Cutrona et al. (2023) 
Li et al. (2023) 
Maddikunta et al. 
(2022a) 

Sustainability  • reduction of resource consumption by 
assisting in production plans 
optimization  

• planning and execution of renewable 
energy systems and eco-friendly pro
duction processes  

• use of renewable energies and 
sustainable manufacturing materials  

• monitor and manage the entire 
lifecycle of a product, from its 
inception to its end-of-life disposal  

• cost-benefit analysis and incentives for 
developments addressing SA-DT prior
ities – economic sustainability is a gap 
in existing Industry 5.0 literature  

• new frameworks to measure the rigor 
of the DT in representing reality  

• longitudinal studies to understand 
medium to long-term implications of 
DT use in the industry  

• interfaces between industry DTs and 
external stakeholders  

• DT fleets 

Bhattacharya et al. 
(2023) 
Verdugo-Cedeño 
et al. (2023) 
Sharma and Gupta 
(2024) 

Resilience  • monitor performance-specific systems 
and detect potential disruptions before 
they occur  

• simulation of different response 
scenarios  

• research on secure DT operation  
• evaluate scalability in DT 

implementation at a larger scale (e.g., 
fleets or supply chains)  

• resilient and trustworthy DT 
infrastructure  

• DTs as a memorization system of 
industry practices (heritage digital 
twin), which is particularly interesting 
in traditional manufacturing or 
products with cultural relevance 

Xian et al. (2023) 
Maddikunta et al. 
(2022a)  
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