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Abstract

This paper presents a generalisation of a non�classical decision procedure for simple
bilinear models with a general error process� proposed by Gon�calves� Jacob and Mendes�
Lopes ������	 This decision method involves two hypotheses on the model and its consis�
tence is obtained by establishing the asymptotic separation of the sequences of probability
laws de
ned by each hypothesis	 Studies on the rate of convergence in the diagonal case
are presented and an exponential decay is obtained	 Simulation experiments are used to
illustrate the behaviour of the power and level functions in small and moderate samples
when this procedure is used as a test	
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� Introduction

The asymptotic separation of two families of probability laws is a probabilistic
notion that can be implemented in the statistical inference of stochastic processes
to construct new kinds of convergent tests or estimators�

Let X � �Xt� t � ZZ� be a real stochastic process with a law which belongs to
a set of parametric laws �P�� � � ��� Let f�����g be a partition of �� Following
Ge�roy ���	
�� we say that the two families of laws �P�� � � ��� and �P�� � � ���
are uniformly asymptotically separated if there exists a sequence of Borel sets of
IRT � �AT � T � IN�� such that

��
�

inf
����

P T
� �AT � ��

T���
�

inf
����

P T
� �AT � ��

T���
��

where P T
� denotes the probability law of �X�� X�� ���� XT � �

In Ge�roy ���	
� ��
��� we �nd conditions on the two families of laws under
which the uniform asymptotic separation is stated� moreover� he has obtained a
uniform lower bound �resp�� upper bound� of P T

� �AT � � � � �� �resp�� of P
T
� �AT � �

� � ��� which lead to the rate of convergence of these sequences�
So� if the sets AT only depend on the observable part of the process� we may use

this procedure to construct sequences of convergent tests of the hypothesis � � ��

against the alternative � � ��� with acceptance regions AT �
This was done by Moch�e ���
��� who applied Ge�roy�s results to test the signal

function� � � �� of a model X � �Xt� t � ZZ� such that Xt � ��t� � �t� where
� � ��t� t � ZZ� is a classical white noise� The regions AT involved were constructed

using the variational distance between the conditional laws P
XT��

��
and P

XT��

��
� where

XT�� is the �� �eld generated by XT��� XT��� ���� and ��� �� are particular functions
� such that �� � �� and �� � ���

If we deal with more general models like� for instance� arma models� Ge�roy
results are not directly applied� Nevertheless� the procedure used to construct re�
gions AT leads to convergent tests of simple hypotheses for those kind of models� in
particular� consistent tests had been obtained by Mass�e and Viano ������ for ar���
models with independent error processes and by Gon�calves� Jacob and Mendes�
Lopes ����
�� and Gon�calves and Mendes�Lopes ����
� for ar�p� models with a
general non�independent error process�

We point out that� if the procedure is used as a test� the test obtained is not a
Neyman�Pearson classical one� in fact� as the size is not �xed a priori� we do not
privilege any one of the test hypotheses and� so� a symmetrical role is attributed to
both�

In this paper� with the aim of proposing a decision procedure to distinguish

�



between simple bilinear models and error processes� we consider the bilinear model
X � �Xt� t � ZZ� de�ned by

Xt � �Xt�k�t�l � �t� k � �� l � �

where � � ��t� t � ZZ� is a strictly stationary and ergodic error process with certain
conditions on the conditional laws of �t� we state the asymptotic separation of the
two families of probability laws associated with the hypotheses � � � and � � 	
�	 �� �� �xed�� We construct separation sets AT using the variational distance
between two particular conditional distributions of Xt when the parameter values
are � � � and � � 	� In the diagonal case� we also obtain an explicit upper bound
for the probability of AT when � � �� which converges exponentially to zero�

As the separation sets depend on the non�observable error process of the model in
this case� in order to use these results as a test procedure� we have to show that they
remain true when the error process is replaced by the residual process� This problem
has been treated by simulation and the results obtained lead us to conjecture its
truthfulness� A simulation study is then presented in the last paragraph for models
with Cauchy error processes�

The proposal developed here opens a way to a test methodology for bilinear
models� We point out that� in addition to ease of implementation due to the sim�
plicity of the construction of the sets AT � this methodology has the great advantage
of being applicable to models with general error processes� in fact� even the usual
hypotheses of existence of two order moments are unnecessary here� Moreover� the
upper bound obtained for the probability of AT allows us to calculate the minimum
number T for which the test has level at least equal to 
� 
 � ��� �� � arbitrarily �xed�

This paper generalizes the results obtained in Gon�calves� Jacob and Mendes�
Lopes ������ for an order one bilinear diagonal model�

� General properties and hypotheses

Consider the simple bilinear model X � �Xt� t � ZZ� de�ned by

Xt � �Xt�k �t�l � �t� k � �� l � �� ���

where � is a real number and � � ��t� t � ZZ� is a strictly stationary and ergodic pro�
cess such that Ej log j�tjj �� and E�log j�tj� � log j�j � �� Under these conditions�
we obtain

Xt � �t �
�X
n��

�n�t�nk
n��Y
j��

�t�l�jk �a�s��� t � ZZ�

Then� from Quinn���
�� and Azencott and Dacunha�Castelle���
�� pp� �������
there exists a strictly stationary and ergodic solution to ���� with Ej log jXtjj ���
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Furthermore� model ��� is invertible if E�log jXtj� � log j�j � � and we obtain

�t � Xt �
�X
n��

����nXt�nl

n��Y
j��

Xt�k�jl �a�s��� t � ZZ�

Denoting by X t and �t the ���elds generated by �Xt� Xt��� � � �� and ��t� �t��� � � ��
respectively� we conclude that X t � �t� in view of the two equalities above�

Hereafter we assume these general hypotheses concerning the stationarity� ergo�
dicity� and invertibility of model ���� We also take m � min fk� lg� M � max fk� lg�
and de�ne the process Y � �Yt� t � ZZ� by Yt � Xt�k�m�t�l�m�

So�

Yt � Xt�k�m

�
�Xt�l�m �

�X
n��

����nXt��n���l�m

n��Y
j��

Xt�k��j���l�m

�
A �a�s��� ���

is also strictly stationary and ergodic� We note that Xt � �Yt�m � �t� according to
��� and ����

� A consistent decision procedure

Let us consider the hypotheses

H� � � � � against H� � � � 	 �	 �� � �xed��

We construct a decision procedure to distinguish between the models related
with these hypotheses by establishing the asymptotic separation of two families of
probability laws associated to them�

Let us denote the model distribution and the corresponding expectation by P�
and E� respectively� when the parameter of the model is equal to �� Let g be a sym�
metrical weight�function de�ned on IR� which is strictly positive and non�decreasing
on IR� and P��integrable� We use T observations of the process X denoted by
x�� x�� � � � � xT � T � M � to construct the decision procedure� This construction is
slightly di�erent in the cases 	 � � and 	 � ��

Let us suppose �rstly 	 � �� De�ning the set

D �
n
�u� v� � IR� � u � �� v � �

�
u
o
�
n
�u� v� � IR� � u � �� v � �

�
u
o
�

we consider the following regions

AT �

��
�x�T � �

TX
t�M��

g�	yt�m� ���ID�yt�m� xt�� �� � �

��
	 � T � M�

�



where x�t� � �� � � � xt��� xt� �
tY

��

IR and yt denotes the particular value of Yt� These

regions are easily interpreted in the case of autoregressive ar models as is outlined
in Gon�calves and Mendes�Lopes ����
��

The asymptotic separation of P� and P� will then be established using the se�
quence of Borel sets �AT � T � M��

For each t �M � �� � � � � T � let us take

��yt�m� xt� � �t � g�	yt�m����ID�yt�m� xt�� �� and �T �
�

T

TX
t�M��

�t�

The ergodic theorem allows us to conclude that

lim
T���

�T � E���M��� �a�s���

Let us now study the sign of this limit under each one of the hypotheses H� and H��
Denoting d �M �m and using properties of conditional expectation� we have

E���M��� � E��E���M�� �Xd����

� E� fg�	Yd��� ��E� ��ID�Yd��� XM����Xd���� ��g ���

and

E� ��ID�Yd��� XM��� �Xd��� � E�

h
�IIR��Yd����I	����

�
Yd��


�XM���

� �IIR��Yd����I	�
�
Yd�����
�XM��� �Xd��

i

� �IIR��Yd���P�


XM�� �

�
�
Yd�� �Xd��

�
��IIR��Yd���P�



XM�� �

�
�
Yd�� �Xd��

�
�

For each t � ZZ� we assume that the law of �t given the past �t�m has a unique
zero median and we denote by Ft the distribution function of this conditional law�

Thus� under H�� the previous equality becomes

E� ��ID�Yd��� XM��� �Xd��� �

����
���

FM��



�
�
Y �
d��

�
� if Yd�� � �

�� FM��



�
�
Yd��

�
� if Yd�� � �

�� if Yd�� � ��

where Ft�x
�� � P ��t � x� �t�m��

The nullity and the uniqueness of the conditional median and the fact that 	 is
strictly positive imply

E� ��ID�Yd��� XM��� �Xd��� �
�

�
�a�s���

�



as Yt �� �� P� � a�s�� �t � ZZ� Then� as g is strictly positive�

g�	Yd�����E���ID�Yd��� XM��� � Xd���� �� � � �a�s���

Now� from ��� we have� under H��

lim
T���

�a�s���T � ��

which implies
lim

T���
�If�T��g

� ��

Finally� the bounded convergence theorem gives us

lim
T���

P��AT � � ��

Let us now verify that� under H�� lim
T��

P��AT � � �� In fact� under H� we obtain

E� ��ID�Yd��� XM��� �Xd��� � �IIR��Yd���P�


	Yd�� � �M�� �

�
�
Yd�� �Xd��

�
��IIR��Yd���P�



	Yd�� � �M�� �

�
�
Yd�� �Xd��

�

�

����
���

FM��



��

�
Y �
d��

�
� if Yd�� � �

�� FM��



��

�
YM

�
� if Yd�� � �

�� if Yd�� � ��

Then

E���ID�Yd��� XM��� �Xd��� �
�

�
�

taking into account the uniqueness and the nullity of the conditional median and
the fact that 	 is greater than zero� Therefore

g�	Yd�����E���ID�Yd��� XM��� �Xd���� �� � �� P� � a�s��

From this inequality� we deduce

lim
T���

�a�s���T � �

and� �nally�
lim

T���
P��AT � � ��

by the bounded convergence theorem�






In the case 	 � �� we obtain an analogous result considering the set

D� �
n
�u� v� � IR� � u � �� v � �

�
u
o
�
n
�u� v� � IR� � u � �� v � �

�
u
o

and the Borel sequence

A�
T �

��
�x�T � �

TX
t�M��

g�	yt�m� ���ID��yt�m� xt�� �� � �

��
	 � t � M�

The following theorem summarizes the results obtained above�

Theorem ��� Let X � �Xt� t � ZZ� be a real process satisfying model ��� with
��t� t � ZZ� a strictly stationary and ergodic process such that� for each t � ZZ� the
median of the conditional law of �t given �t�m is unique and equal to zero� Under
the hypotheses presented in section � on the model ���� there is a sequence of Borel
sets ensuring the asymptotic separation of the sequences of the probability laws of
the model de�ned by the hypotheses H� and H��

We remark that� if we substitute � by 	 in the expression ��� of Yt and follow
the proof of the convergence taking into account this new de�nition� it is simple to
verify that the asymptotic separation of P� and P� is established in the same way�

As mentioned in the introduction� this theoretical result can be used as a test of
the hypotheses

H� � � � � against H� � � � 	 �	 �� �� �xed��

namely when the de�nition of the regions AT does not involve the non�observable
error process� this happens� in particular� when we substitute � by 	 in the referred
expression of Yt� So� in this case we obtain clearly a convergent test of the hypothesis
H� against H�� More generally� we can use the result as a test when we replace the
parameter � with an estimate ��T � The following theorem ensures the consistence of
the corresponding estimator of Yt when ��T is a consistent estimator of ��

Theorem ��� If � belongs to a bounded set B� included in the stationarity region
of Xt� and ��T is a consistent estimator of �� then

Yt� ��T � � Xt�k�m� ��T � �t�l�m �



���X
i��

��iT �t��i���k�m
i��Y
j��

�t�l��j���k�m � �t�k�m

�
� �t�l�m

converges a�s� to Yt��� when T tends to ���

	



Proof� Let us consider the sequence of functions �ft�n���� n � IN� de�ned by

ft�n��� �
nX
i��

�i�t�ik
i��Y
j��

�t�l�jk � �t�

As stated in section �� we have

lim
n���

ft�n��� � ft��� �
��X
i��

�i�t�ik
i��Y
j��

�t�l�jk � �t �a�s���

If this convergence is uniform� then ft��� is a continuous function� as ft�n��� is
continuous� for each n � IN� We have

sup
��B

jft�n���� ft���j � sup
��B

������
��X

i�n��

�i�t�ik
i��Y
j��

�t�l�jk

������
	 sup

��B

��X
i�n��

j�ij j�t�ikj
i��Y
j��

j�t�l�jkj

	
��X

i�n��

ai j�t�ikj
i��Y
j��

j�t�l�jkj�

with a � maxfj inf Bj� j supBjg� This last expression converges to zero when n
tends to ��� as it is the rest of an a�s� convergent series to �Xt de�ned by

�Xt � a �Xt�kj�t�lj� j�tj�

as this model satis�es the stationarity condition E�log j�tj� � log jaj � ��
So� if ��T � � �a�s�� then Yt� ��T � � ft�k�m� ��T ��t�l�m converges a�s� to Yt���

when T tends to ��� 


� Convergence rate of P��AT � in the diagonal case

Restricting ourselves to diagonal models� the convergence results concerning the
asymptotic separation� presented in the previous section� may be completed by the
knowledge of the convergence rate of P��AT �� So� let us consider now model ��� with
k � l � m � M and d � �� under the general hypotheses of stationarity� ergodicity
and invertibility presented in section ��

In this section� we assume that the error process � is such that






�t � ZZ� �t � 
t�� Zt� where

t�� is a strictly positive and measurable function of �t��� �t��� � � �

with � � l� 	 
t 	 l��
�Zt� t � ZZ� is an independent and identically distributed sequence of

real random variables with symmetrical distribution and unique
zero median� and Zt independent of �t���

We remark that the form imposed here on the error process includes� in particu�
lar� conditionally heteroscedastic models like arch �Engle���
���� garch �Boller�
slev���

�� or gtarch �Gon�calves and Mendes�Lopes����
�� models�

We also point out that the law of �t given �t�� is symmetrical� moreover� the
in uence of �t�� on �t� speci�ed by this formulation� is an in uence on the variance
of �t� when it exists�

Let us denote by F the distribution function of a random variable Z identically
distributed with Zt� t � ZZ�

The following result establishes an exponential rate for the convergence to one
of P��AT �� �T � ����

Theorem ��� Under the previous conditions on the model and supposing the weight	
function g de�ned by

g�x� � �F
�


jxj
�l�

���
� � � �P



Z � jxj

�l�

�
� �� x � IR�

we have

P��AT � 	

�
E�

�
exp

�
��

�

�
�F

�

j�l��Z

�j

�l�

���
� �

�����T�k

� T � k�

Proof� Only the case 	 � � is presented here� as the study for 	 � � is analogous�
We use an inequality of Hoe�ding ���
�� and an inequality of moments �Martins�
������ that is a generalization of a result of Mass�e and Viano ������� These two
results� called inequality A and B respectively� are summarized in the appendix�

From the de�nition of AT � we have

P��AT � � P�



�� TX

t�k��

�t � �

�
� � P�



�exp

�
�� TX

t�k��

�t

�
A � �

�
� �

Then

�



P��AT � 	 P�



�exp

�
�� TX

t�k��

�t

�
A � �

�
�

	 E�



�exp

�
�� TX

t�k��

�t

�
A
�
� � using Markov�s inequality

� E�

��
�E�



�exp

�
�� TX

t�k��

�t

�
A �XT��

�
�
��
	

� E�

��
�exp

�
�� T��X

t�k��

�t

�
AE� �exp���T � �XT���

��
	 � ���

To prove the inequality stated in the theorem� we need to consider separately the
cases T � �k � � and k � � 	 T 	 �k� but in fact� only the �rst case is important
in terms of asymptotic studies� Let us then suppose T � �k � �� Moreover� as the
proof is quite long� we consider several steps in order to improve its understanding�

Step A� In this part� we obtain an upper bound for E� �exp���T � �XT����

Applying the Hoe�ding inequality with U � ��T � ���YT�k� XT � and
B � XT��� we obtain

E�

�
e���YT�k�XT ��E����YT�k�XT � �XT��� �XT��

�
	 e���g

���YT�k�� P� � a�s��

which is equivalent to

eE����YT�k�XT � �XT���E�

n
e���YT�k�XT � �XT��

o
	 e���g

���YT�k�� P� � a�s�� ���

On the other hand� we have

E� ���YT�k� XT � �XT��� � g�	YT�k� ��E���ID�YT�k� XT � �XT���� �� �
�

with

E���ID�YT�k� XT � �XT��� � F
�


�jYT�kj
� �T��

���
� P� � a�s�� �	�

In fact� as in section ��

E���ID�YT�k� XT � �XT��� �

����
���

P�



XT � �

�
YT�k �XT��

�
� YT�k � �

P�



XT � �

�
YT�k �XT��

�
� YT�k � �

�� YT�k � ��

��



But� under H�� XT � �T � so� using the de�nition of �t and the symmetrical property
of the common distribution of �Zt� t � ZZ�� we obtain �	��

From �
� and �	�� we have

E� ���YT�k� XT � �XT��� � g�	YT�k�
�
�F

�

�jYT�kj
� �T��

���
� �

�
� P� � a�s��

which allows us to conclude that inequality ��� is equivalent to

E�

n
e���YT�k�XT � �XT��

o
	 exp

�
�
�
g��	YT�k�� g�	YT�k�

�
�F

�

�jYT�kj
� �T��

���
� �

��
� P� � a�s�

	 exp
�
�
�
g��	YT�k�� g�	YT�k�

�
�F

�

�jYT�kj
� l�

���
� �

��
� P� � a�s��

in view of the condition 
t 	 l�� t � ZZ� The minimum of this upper bound is obtained

considering the weight�function g�x� � �F
�


jxj
�l�

���
� �� which is symmetrical�

strictly positive and non�increasing on IR� and P��integrable� Let us also remark
that g�x� is the distance in variation between the Gaussian lawsN��� l�� andN�x� l���
Using this de�nition of g� we obtain

E�

n
e���YT�k�XT � �XT��

o
	 exp



��

�
g��	YT�k�

�
� P� � a�s�� �
�

Step B� After inserting the result just obtained in ���� we use k�� times a technique
analogous to the one used in step A�

Inequality �
� together with ��� gives us

P��AT � 	 E�



�exp

�
�� T��X

t�k��

�t

�
A exp



��

�
g��	YT�k�

��� � ���

To facilitate notation� let us de�ne

Sn � exp

�
�� nX

t�k��

�t

�
A � n � k � � and G�x� � exp



��

�
g��	x�

�
� x � IR�

If k � �� the expectation in ��� is then equal to

E� fST��G�YT�k�E� �exp ���T��� �XT���g �

Applying the Hoe�ding inequality again and repeating the procedure� we have� if
k � ��

P��AT � 	 E� fST��G�YT�k�G�YT�k���E� �exp ���T��� �XT���g �

��



Using the same technique k� � times more� which corresponds to k� � applica�
tions of the Hoe�ding inequality as in step A� we arrive at

P��AT � 	 E�

�
ST�k

k��Y
i��

G�YT�k�i�E�

h
exp



��T��k���

�
�XT�k

i�
� ����

Applying the Hoe�ding inequality once more� now with U � ��T��k��� and
B � XT�k� we obtain

E�

n
e��T��k��� �XT�k

o
	 G�YT��k���� P� � a�s��

This inequality and ���� give us the following upper bound for P��AT ��

P��AT � 	 E�

�
ST�k

k��Y
i��

G�YT�k�i�

�
�

This is equivalent to

P��AT � 	 E�

�
ST�k��

k��Y
i��

G�YT�k�i�E� �G�YT�k� exp���T�k� �XT�k���

�
� ����

Note that ���� is still true when T � �k � �� stipulating Sk � ��

Step C� Let us now look at E� �G�YT�k� exp���T�k� �XT�k����

In order to �nd an upper bound for

E� �G�YT�k� exp���T�k� �XT�k���

� E�

n
exp

h
��

�
g��	YT�k�

i
exp ����YT��k� XT�k�� �XT�k��

o
����

using inequality B� we consider the functions !g and !hy de�ned by

� !g�x� � G�x�� � exp���
�
g��	x���� x � IR�

� !hy�x� � exp����y� x��� x � IR� with y �� � a �xed real number�

These functions satisfy the hypotheses of inequality B� In fact� taking into account
the de�nition of g� it is simple to verify that !g is strictly positive� symmetrical and
decreasing on IR�� Concerning !hy we have� for a �xed y � IR�

!hy�x� � expf�g�	y����ID�y� x�� ��g

�

�
exp��g�	y��� �y� x� � D
exp�g�	y��� otherwise

�

�
exp��g�	y��� xy � � � jxj � �

�
jyj

exp�g�	y��� xy � � 
 jxj � �
�
jyj�

��



If y � ��

!hy�x� �

�
exp��g�	y��� x � � � jxj � �

�
y

exp�g�	y��� x � � 
 jxj � �
�
y

� e�g��y��I	����
�
y
�x� � eg��y��I
�

�
y���
�x��

If y � ��

!hy�x� �

�
exp��g�	y��� x � � � jxj � ��

�
y

exp�g�	y��� x 	 � 
 x 	 �
�
y

� eg��y��I	����
�
y	�x� � e�g��y��I	�

�
y���
�x��

So� if y � �� inequality B applies� with � � �
�
y � � and a � e�g��y� � b � eg��y�� if

y � �� inequality B applies� with � � �
�
y � � and a � eg��y� � b � e�g��y��

Let us now go back to the expectation in ����� Under H�� that expectation is
equal to

E�

h
!g��T�k� !hYT��k

��T�k� � �T�k��
i

which� from inequality B� is less than or equal to

E�

h
G���T�k� � �T�k��

i
E� �exp ���T�k� � �T�k��� � ����

as ��YT��k� �T�k� � �T�k� under H��
On the other hand� under H�� G�YT�k�i� � G���T�k�i�� i � IN� Then� ���� and

���� allow us to obtain the following upper bound for P��AT ��

E�

�
ST�k��

k��Y
i��

G���T�k�i�E�



G���T�k� � �T�k��

�
E�



e��T�k � �T�k��

��
� ����

Step D� Let us now concentrate on E�

h
G���T�k� � �T�k��

i
�

Using the de�nition of g and the fact that �T�k � 
T�k��ZT�k� we obtain

E�

h
G���T�k� � �T�k��

i
� E�

��
�exp



���

�

�
�F

��
���

T�k��Z
�
T�k

�l�

���
� �

��
�
� � �T�k��

��
	 �

This expectation is less than or equal to

E�

��
�exp



���

�

�
�F

��
�l��Z

�
T�k

�l�

���
� �

��
�
� � �T�k��

��
	 � E�



G�l��Z

��
�
�

��



as 
T�k�� � l� � � and ZT�k is independent of �T�k�� and identically distributed
with Z� From this and ����� we obtain

P��AT � 	 E�

�
ST�k��

k��Y
i��

G���T�k�i�E�



G�l��Z

��
�
E�



e��T�k � �T�k��

��
�

Note that E� �G�l
�
�Z

��� is a deterministic value� Therefore� the previous expectation
is equal to

E�



G�l��Z

��
�
E�

�
ST�k��

k��Y
i��

G���T�k�i�E�



e��T�k �XT�k��

��
� ����

Step E� Next� we �rstly �nd an upper bound for E�



e��T�k �XT�k��

�
� then we

use it in ���� and obtain a new upper bound for P��AT �� We repeat this procedure

with E�



e��T�k�� �XT�k��

�
�

The Hoe�ding inequality leads us to

E�



e��T�k �XT�k��

�
	 G�YT��k�� P� � a�s��

This inequality and ���� allow us to arrive at

P��AT � 	 E�



G�l��Z

��
�
E�

�
ST�k��

kY
i��

G���T�k�i�

�
� ��
�

which is equivalent to

P��AT � 	 E�



G�l��Z

��
�
�

�E�

�
ST�k��

kY
i��

G���T�k�i�E�

h
G���T�k���e

��T�k�� �XT�k��

i�
� ��	�

Inequality B applied to the conditional expectation gives

P��AT � 	
h
E�



G�l��Z

��
�i�

E�

�
ST�k��

kY
i��

G���T�k�i�E�



e��T�k�� �XT�k��

��
��
�

and� from the Hoe�ding inequality� we have

E�



e��T�k�� �XT�k��

�
	 G�YT��k���� P� � a�s�� ����

From ��
� and ����� we deduce

P��AT � 	
h
E�



G�l��Z

��
�i�

E�

�
ST�k��

k��Y
i��

G���T�k�i�

�
� ����

��



Step F� Finally� we note that this inequality is of the same type as ��
�� Repeating
the procedure T � �k � � times� we have

P��AT � 	
h
E�



G�l��Z

��
�iT��k��

E�

�
�Sk�� T�k��Y

i�T��k��

G���T�k�i�

�
A � ����

A �nal application of inequality B and the Hoe�ding inequality gives

P��AT � 	
h
E�



G�l��Z

��
�iT��k

E�

�
�T�k��Y
i�T��k

G���T�k�i�

�
A � ����

It is now easy to verify that

E�

�
�T�k��Y
i�T��k

G���T�k�i�

�
A 	 h

E�



G�l��Z

��
�ik

�

in view of the form of �t� the bounds of 
t and the independence of �Zt� t � ZZ��
These two inequalities give us the upper bound for P��AT � stated in the theorem�

To �nalize� we point out that� if k�� 	 T 	 �k� i�e�� T � �k� j� � 	 j 	 k� ��
we obtain the same result by using the Hoe�ding inequality k � j times� 


� Application to the statistical study of bilinear

models

The asymptotic separation of two probabilistic models is particularly interesting
when it can be used as a statistical decision rule� either in estimation or in test
theory�

The aim of this section is to illustrate the suitability and usefulness of this
decision procedure within the scope of tests for simple bilinear models�

So� a simulation study is done considering a real process X � �Xt� t � ZZ�
following a bilinear model

Xt � �Xt���t�� � �t

where ��t� t � ZZ � is a sequence of i�i�d� random variables following the standard
Cauchy distribution� for all t� and supposing � ���� ������

Under these conditions� this model is strictly stationary� ergodic and invertible�

��



In fact� we can prove that ��t� t � ZZ� is a strictly stationary and ergodic error
process� moreover� E�log j�tj� 	

�
�
and E�log jXtj� 	

�
�
� So� if j�j � ����� the

quantities E�log j�tj� � log j�j and E�log jXtj� � log j�j are simultaneously negative�
Furthermore� it is obvious that the error process has the form considered in

section � with l� � l� � ��
The decision procedure will be used to test the hypotheses

H� � � � � against H� � � � 	� �	 � � �xed��

In this case� the separation set

AT �

�
x�T � �

TX
t��

g�	yt��� ���ID�yt��� xt�� �� � �

�
� T � ��

is the acceptance region of the test� The values of Yt were taken as

����
���

�yt � xt�
t��X
k��

����kx�t�k

k��Y
i��

xt�i � xt�� t � �� ���� T�

�y� � x���

this is the same as if we took the observations before time � equal to zero� The �rst
value �y� proposed is obtained using the de�nition of y�� y� � x���� and the model
equation �t � ��xt���t�� � xt with x� � ��

To evaluate the importance of the weight�function present in the test statistics�
we take �rstly the observations equally weighted �g � g� � ��� afterwards� we
consider the weight�function used to establish the rate of convergence of this test
level sequence� which takes here the form g�x� � g��x� �

�
�
arctg� jxj

�
�� These two

functions are symmetrical� non�decreasing on IR� and P��integrable� Moreover�
g�	Yt� � ���t � ZZ� P��a�s�� as � is absolutely continuous�

To evaluate the behaviour of our test when H� is true� a simulation study is
done� for T � �� and T � ��� taking � � � in the model� The size of the
test is estimated� testing this model against six alternatives �	 � ����� 	 � �����
	 � ���� 	 � ���� 	 � ��� and 	 � ����� For each one of these alternatives� we
calculate the proportion of rejections of H� in 
� replications of the model� in table
�� we record the ��" con�dence regions� corresponding to samples of size ��� for
this proportion �

�




T �� �� �� ��
	 g� g� g� g�
���� ������ ����� ������ ����� ������ ����� ����
� ���
�
���� ����
� ����� ������ ���
� ����
� ����� ������� ������
��� ������ ����� ������ ����� ����
� ����� ����� ������
��� ������ ���
� ������� ������ ������ ����� ���
��� ������ ����� ������� ������ ������� ����� ���
��� ������ ���	� ��� ������� ����� ���

Table �	 Proportion of rejections of H� when � � �

We note that our test performs very well� even for quite small values of 	 and
T �	 � ���� e T � ���� when the observations are weighted according to g�� When
T increases �T � ���� the behaviour of the test is strongly improved even when the
observations are not weighted �for 	 � ��� the estimation of the size is very good in
both cases�� Nevertheless� we must point out the signi�cant in uence of the weight
function in the performance of the test�

In order to have an idea of the rate of convergence of the power of this test� we
consider� for T � �� and T � ��� the same values of 	 �	 � �����
	 � ����� 	 � ���� 	 � ��� 	 � ��� and 	 � ���� and we generate the bilinear
models corresponding to � � 	� in each case� we record the proportion of rejections
of the alternative hypothesis �true in this case� in 
� replications of the model� The
��" con�dence regions for this proportion� obtained with samples of size ��� are
presented in table ��

T �� �� �� ��
	 g� g� g� g�
���� ����
� ����� ����
� ����� ������ ���
� ����
� ���	�
���� ������ ���
� ����
� ���
� ������ ���
� �����
� �����
��� ������ ���
� ������ ����� ������ ���
� ����� ������
��� ����	� ����� ������ ���
� ������ ����� ���
��� ������ ���
� ������� ����� ������� ����
� ���
��� ������ ����� ����� ������ ��� ���

Table 
	 Proportion of rejections of H� when � � �

Taking into account the similarity between the results presented in this table and
in the previous one� we point out the symmetrical role given by our procedure to H�

and H�� in fact� the empirical behaviour of the two kinds of test errors is obviously
the same�

�	



Moreover� this analogous behaviour emphasizes the importance of the weight�
function in the performance of the test and allows us to conjecture the same rate of
convergence for its power function�

Finally� in practice and with real data� we suggest the expression ��� of Yt with
� replaced by 	� according to the idea presented in the end of section �� or the con�
vergent estimation for Yt� presented in theorem ���� with � replaced by a consistent
estimate ��T �as� for instance� the modi�ed least squares estimate proposed by Pham
and Tran ���
���� A point of future research is the study of the consistence of this
test in this last case�

� Appendix

Inequality A �Hoe�ding ���
�� inequality ����
��
Let �#�A� �� be a probability space� U a real random variable on �#�A� �� taking

its values on the interval �a� b� and B a sub��	�eld of A with a regular version �BU
of the conditional law of U given B� Then

EB
	 �e

U�EB
� �U�� 	 e

�
�
�b�a�� ��� a�s���

Inequality B �Martins �������
Let Y be a real random variable with a symmetrical distribution� PY � Consider

a symmetrical function g � IR �� IR�
� that is non	increasing on IR� and such that

g�Y � is a r�v� with E�g�Y �� � ��� Let a� b and � be real numbers�

a� Consider the function h de�ned by h � a�I	���

 � b�I

���
� and suppose that
one of the following cases occurs


	i� � 	 � and a � b�

	ii� PY �f�g� � � and � � � and a 	 b�

	iii� PY �f�g� �� � and � � � and a 	 b�

Then
E�g�Y �h�Y �� 	 E�g�Y ��E�h�Y ��� ����

b� Suppose now that h is de�ned as h � a�I	���
	 � b�I	
���
� Then ���� is still
true if one of the following situations is veri�ed


	i� � � � and a 	 b�

	ii� PY �f�g� � � and � 	 � and a � b�

	iii� PY �f�g� �� � and � � � and a � b�

�




The proof of this result is based on the following lemma�

Lemma Let U and V be real random variables such that E�U� � �� and V is
bounded� Then

E�UV �� E�U�E�V � �
Z
IR�

�FU�V �u� v�� FU �u�FV �v�� du dv�

where FU�V � FU � FV denote the distribution functions of �U� V � and its margins
respectively�

The proof of this lemma is analogous to that of a similar result of Hoe�ding
�Suquet� ������ for U and V verifying E�U�� � �� and E�V �� � ���
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