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Abstract

This paper presents a generalisation of a non-classical decision procedure for simple
bilinear models with a general error process, proposed by Gongalves, Jacob and Mendes-
Lopes (1999). This decision method involves two hypotheses on the model and its consis-
tence is obtained by establishing the asymptotic separation of the sequences of probability
laws defined by each hypothesis. Studies on the rate of convergence in the diagonal case
are presented and an exponential decay is obtained. Simulation experiments are used to
illustrate the behaviour of the power and level functions in small and moderate samples
when this procedure is used as a test.
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1 Introduction

The asymptotic separation of two families of probability laws is a probabilistic
notion that can be implemented in the statistical inference of stochastic processes
to construct new kinds of convergent tests or estimators.

Let X = (X;,t € ZZ) be a real stochastic process with a law which belongs to
a set of parametric laws (P, € ©). Let {©1,0,} be a partition of ©. Following
Geffroy (1976), we say that the two families of laws (P, 6 € ©;) and (P,,0 € ©,)
are uniformly asymptotically separated if there exists a sequence of Borel sets of
R”, (Ar,T € N), such that

6cO; T—+o0

inf P (Ar) — 0,

0cO, T—+o0

where P] denotes the probability law of (X, Xs, ..., X7).

In Geffroy (1976, 1980), we find conditions on the two families of laws under
which the uniform asymptotic separation is stated; moreover, he has obtained a
uniform lower bound (resp., upper bound) of P} (Ar),0 € ©; (resp., of P} (Ar),
6 € O4) which lead to the rate of convergence of these sequences.

So, if the sets Ar only depend on the observable part of the process, we may use
this procedure to construct sequences of convergent tests of the hypothesis § € ©,
against the alternative 8 € ©,, with acceptance regions Ar.

This was done by Moché (1989), who applied Geffroy’s results to test the signal
function, 8 € O, of a model X = (X;,t € Z) such that X; = 0(t) + ¢, where
€ = (e,t € Z) is a classical white noise. The regions Az involved were constructed

using the variational distance between the conditional laws Pf ! and Pf =1 where
X, is the o— field generated by Xt 1, X7 9, ..., and 61, 65 are particular functions
0 such that 01 c @1 and 92 S @2.

If we deal with more general models like, for instance, ARMA models, Geftroy
results are not directly applied. Nevertheless, the procedure used to construct re-
gions A7z leads to convergent tests of simple hypotheses for those kind of models; in
particular, consistent tests had been obtained by Massé and Viano (1995) for AR(1)
models with independent error processes and by Gongalves, Jacob and Mendes-
Lopes (1996), and Gongalves and Mendes-Lopes (1998) for AR(p) models with a
general non-independent error process.

We point out that, if the procedure is used as a test, the test obtained is not a
Neyman-Pearson classical one; in fact, as the size is not fixed a priori, we do not
privilege any one of the test hypotheses and, so, a symmetrical role is attributed to
both.

In this paper, with the aim of proposing a decision procedure to distinguish



between simple bilinear models and error processes, we consider the bilinear model
X = (X, t € 7ZZ) defined by

Xt‘ = ()OXt—kE:t—l + f':t, k > 0, l > 0

where € = (g;,t € Z) is a strictly stationary and ergodic error process with certain
conditions on the conditional laws of £;; we state the asymptotic separation of the
two families of probability laws associated with the hypotheses ¢ = 0 and p =
(B # 0, fixed). We construct separation sets Ar using the variational distance
between two particular conditional distributions of X; when the parameter values
are ¢ = 0 and ¢ = . In the diagonal case, we also obtain an explicit upper bound
for the probability of A7 when ¢ = 0, which converges exponentially to zero.

As the separation sets depend on the non-observable error process of the model in
this case, in order to use these results as a test procedure, we have to show that they
remain true when the error process is replaced by the residual process. This problem
has been treated by simulation and the results obtained lead us to conjecture its
truthfulness. A simulation study is then presented in the last paragraph for models
with Cauchy error processes.

The proposal developed here opens a way to a test methodology for bilinear
models. We point out that, in addition to ease of implementation due to the sim-
plicity of the construction of the sets Ar, this methodology has the great advantage
of being applicable to models with general error processes; in fact, even the usual
hypotheses of existence of two order moments are unnecessary here. Moreover, the
upper bound obtained for the probability of Ar allows us to calculate the minimum
number 7" for which the test has level at least equal to a, a € |0, 1], arbitrarily fixed.

This paper generalizes the results obtained in Gongalves, Jacob and Mendes-
Lopes (1999) for an order one bilinear diagonal model.

2 General properties and hypotheses

Consider the simple bilinear model X = (X, ¢ € ZZ) defined by
Xy = SOthk Et—1 + €ty k> Oa [ > 07 (1)

where ¢ is a real number and ¢ = (g;,t € Z) is a strictly stationary and ergodic pro-
cess such that E|log |e;|| < oo and E(log |e;|) +log|e| < 0. Under these conditions,
we obtain

0o n—1
X, = + Z O"Et nk H ek (a.s.), t € ZL.
n=1 7=0

Then, from Quinn(1982) and Azencott and Dacunha-Castelle(1984, pp. 30/32),
there exists a strictly stationary and ergodic solution to (1), with E|log |X;|| < oo.
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Furthermore, model (1) is invertible if E(log|X;|) + log|¢| < 0 and we obtain

oo n—1
g =X+ Z (—QO)nXt_nl H Xt—k—jl (a.s.), teZ.
n—1 j=0

Denoting by X, and g, the o-fields generated by (X, X; 1,...) and (g4,€¢ 1,...)
respectively, we conclude that X, = g, in view of the two equalities above.

Hereafter we assume these general hypotheses concerning the stationarity, ergo-
dicity, and invertibility of model (1). We also take m = min {k,(}, M = max{k, !},
and define the process Y = (Y;,t € Z) by Y; = Xy kimEt 14m-

So,
s n—1

Y = Xiopym | Xeciom + D (=0)" Xe—(nrtyiem [ Xek—(eryiam | (as),  (2)
n=1 7=0

is also strictly stationary and ergodic. We note that X; = ¢Y; ,, + &, according to
(1) and (2).

3 A consistent decision procedure

Let us consider the hypotheses
Hy: 9 =0 against H; : o = [ (8 # 0 fixed).

We construct a decision procedure to distinguish between the models related
with these hypotheses by establishing the asymptotic separation of two families of
probability laws associated to them.

Let us denote the model distribution and the corresponding expectation by P,
and E, respectively, when the parameter of the model is equal to ¢. Let g be a sym-
metrical weight-function defined on IR, which is strictly positive and non-decreasing
on R" and P,-integrable. We use T observations of the process X denoted by
x1,%o,...,x7, T > M, to construct the decision procedure. This construction is
slightly different in the cases > 0 and 3 < 0.

Let us suppose firstly 8 > 0. Defining the set

D:{(u,v)€1R2:u>0,v<gu}u{(u,v)ele:u<0,v>§u},

we consider the following regions

Ar = {$(T) : i 9(BYt—m) 21D (Yt—m, T:) — 1] > 0} , T'> M,

t=M+1



t
where z(®) = (oo, @y, my) € H IR and y; denotes the particular value of Y;. These
regions are easily interpreted}n the case of autoregressive AR models as is outlined
in Gongalves and Mendes-Lopes (1998).

The asymptotic separation of P, and P will then be established using the se-
quence of Borel sets (Ap, T > M).

Foreacht =M +1,...,T, let us take

1 T

‘If(yt_m, mt) =V, = 9(5yt—m)[2]lp(yt—m, iUt) - 1] and ﬁT = f ;.
+1

t=M

The ergodic theorem allows us to conclude that

TETOO ET = E(p(\IJM+1) ((1,.8.).

Let us now study the sign of this limit under each one of the hypotheses Hy and H;.
Denoting d = M — m and using properties of conditional expectation, we have

Ega(\I/M+l) = Ecp[Ew(\IlMJrl /Xd+l)]
= LB, {9(BYa11) [2E<p (Ip(Yar1, Xar41)/Xap) — 1]} (3)

and
Eso (]ID(Yd+1, XM+1) /Xdﬂ) = Eso {][R‘*‘ (Yd+1)][]_oo,§yd+1[(XM+1)
+ ][R*(Yd+1)][]§yd+1,+oo[(XM+1) /Xd—o—l}

= I+ (Yar1) Py (XM+1 < 8Yy /Xdﬂ)
+1g- (Y1) Py (XM+1 > ng+l /XdH) .

For each t € 7, we assume that the law of ¢; given the past ¢, ,, has a unique
zero median and we denote by F; the distribution function of this conditional law.
Thus, under Hj, the previous equality becomes

Fair (8Y504) if Va1 >0
Eo (Ip(Yay1, Xarv1) / Xar1) =4 1= Fya (ng+l> , Yy, <0
0, 1f Yd+1 - 0,

where Fy(z7) =P (er < x /&4 1,)-
The nullity and the uniqueness of the conditional median and the fact that 3 is
strictly positive imply

1
Eo (Ip(Yas1, Xmv1) / Xapa) > 5 (a.s.),



as Y; #0, P, —a.s., Vt € ZL. Then, as g is strictly positive,

9(8Ya11)[2Eo(Ip(Yar1, Xarv1) / Xayr) —1] > 0 (a.s.).
Now, from (3) we have, under Hy,

TEIEOO((L.S.)\IJT > 0,

which implies

lim 1T
T—+o00

@0y = L

Finally, the bounded convergence theorem gives us

TEI—POO P()(AT) =1.

Let us now verify that, under Hy, 71im P,(Ar) = 0. In fact, under H; we obtain
—00

Eg (][D(Ydﬂ, XM+1) /Xdﬂ) = ][R+(Yd+1)Pﬂ <5Yd+1 +em < ng+l /XdH)
+1g- (Yar1)Ps (5Yd+1 +eEmMy1 > ng+1 /ldﬂ)

P (—9Yi0) if Ygu >0
= { 1— Fyn (—gyM) . if Yy <0
07 if Yd+1 — 0.

Then

1
EglIp(Yas1, Xmi1) / Xgiq] < >

taking into account the uniqueness and the nullity of the conditional median and
the fact that 3 is greater than zero. Therefore

9(BYa11)2Es(Ip(Yay1, Xrs1) / Xyq) — 1] <0, Pz —a.s..

From this inequality, we deduce

Tng(a.s.)WT <0

and, finally,
lim Plg(AT) = 0,

T—+o00

by the bounded convergence theorem.



In the case § < 0, we obtain an analogous result considering the set
D':{(u,v)€]Rz:u<0,v<gu}u{(u,v)G]RZ:u>0,v>§u}

and the Borel sequence

t=M+1

T
A’IT — {LU(T) . Z g(ﬂyt,m) [2][1)/ (yt,m, ﬂ}t) — 1] > 0} , t> M.

The following theorem summarizes the results obtained above.

Theorem 3.1 Let X = (X;,t € Z) be a real process satisfying model (1) with
(es,t € ZZ) a strictly stationary and ergodic process such that, for each t € 7Z, the
median of the conditional law of €; given g,_,, is unique and equal to zero. Under
the hypotheses presented in section 2 on the model (1), there is a sequence of Borel

sets ensuring the asymptotic separation of the sequences of the probability laws of
the model defined by the hypotheses Hy and H;.

We remark that, if we substitute ¢ by § in the expression (2) of Y; and follow
the proof of the convergence taking into account this new definition, it is simple to
verify that the asymptotic separation of Fy and Py is established in the same way.

As mentioned in the introduction, this theoretical result can be used as a test of
the hypotheses

Hy: p =0 against Hy : o = (6 # 0, fixed),

namely when the definition of the regions A7 does not involve the non-observable
error process; this happens, in particular, when we substitute ¢ by 3 in the referred
expression of Y;. So, in this case we obtain clearly a convergent test of the hypothesis
Hy against H,. More generally, we can use the result as a test when we replace the
parameter ¢ with an estimate ¢7. The following theorem ensures the consistence of
the corresponding estimator of Y; when ¢ is a consistent estimator of (.

Theorem 3.2 If ¢ belongs to a bounded set B, included in the stationarity region
of Xz, and o7 is a consistent estimator of p, then

“+o00 1—1
- - ~d
Yt(@T) = thk+m(90T) Et—l+m = Z Pr Et—(i+1)k+m H Et—1-(j+1)k+m T Et—ktm | Et—1+m
i=1 3=0

converges a.s. to Yy(p) when T tends to +oo.



Proof: Let us consider the sequence of functions (f:,(¢), n € IN) defined by

fen(@ Z‘P& zkH5t13k+5t

As stated in section 2, we have

i—1
ngglooftn( ¢) = fily ngat ik ] et + &0 (as.).
i=1 j=0

If this convergence is uniform, then f;(¢) is a continuous function, as f;,(¢) is
continuous, for each n € IN. We have

wp |fonle) — @) = suwp |3 oer zkH& gk
p€EB pEB ;= n+1
< sup Z 0" [er—inl H [
pEB ;= n+1
+o0 .
< Y d el H let1-jkl,
i=n+1 Jj=0

with @ = max{|inf B|,|sup B|}. This last expression converges to zero when n
tends to +00, as it is the rest of an a.s. convergent series to X; defined by

Xt = aXt7k|5tfl| + |et|,

as this model satisfies the stationarity condition E(log|e:|) + log|al < 0.

So, if ¢ — ¢ (a.s.) then Yi(o7) = fi kim(Pr)et_11m converges a.s. to Yi(y)
when 7" tends to +o00. &

4 Convergence rate of Py(Ar) in the diagonal case

Restricting ourselves to diagonal models, the convergence results concerning the
asymptotic separation, presented in the previous section, may be completed by the
knowledge of the convergence rate of Py(Az). So, let us consider now model (1) with
k=1=m = M and d = 0, under the general hypotheses of stationarity, ergodicity
and invertibility presented in section 2.

In this section, we assume that the error process ¢ is such that



YVt € U, ¢ = ny_1 Zy, where

Mi—1 is a strictly positive and measurable function of ¢&;_4, €;_9,...
with 0 < l; < n < ls;

(Zy, t € Z) is an independent and identically distributed sequence of
real random variables with symmetrical distribution and unique
zero median, and Z; independent of g, ;.

We remark that the form imposed here on the error process includes, in particu-
lar, conditionally heteroscedastic models like ARCH (Engle(1982)), GARCH (Boller-
slev(1986)) or GTARCH (Gongalves and Mendes-Lopes(1998)) models.

We also point out that the law of ¢; given ¢, ; is symmetrical; moreover, the
influence of g,_; on ¢, specified by this formulation, is an influence on the variance
of &;, when it exists.

Let us denote by F' the distribution function of a random variable Z identically
distributed with Z;, t € 7.

The following result establishes an exponential rate for the convergence to one
of Po(AT), (T — +OO)

Theorem 4.1 Under the previous conditions on the model and supposing the weight-
function g defined by

g(x):2F<(|2%)_>—1:2P<Z<%)—1, z€RR,

we have

o[- (2 (252 ) )| o

Proof: Only the case § > 0 is presented here, as the study for 3 < 0 is analogous.
We use an inequality of Hoeffding (1963) and an inequality of moments (Martins,
1999), that is a generalization of a result of Massé and Viano (1995). These two
results, called inequality A and B respectively, are summarized in the appendix.

From the definition of A7, we have
T
exp | — Z v, | >1f.
t=k+1

Py(Ar) < {Eo

T
- > >0
t=k+1

Po(ZT):PO :PO

Then



T
Po(ZT) S P[] exXp | — Z \I/t Z]_
t=k+1
T
< Ejlexp|— Z W, | [, using Markov’s inequality
t=k+1

— Eo{Eo exp (— i ‘I’t) /KTl]}

= E {GXP <— i ‘I’t) Ey [exp(—¥r) /XT—l]} . (4)

t=k+1

To prove the inequality stated in the theorem, we need to consider separately the
cases T'> 2k +1 and k +1 < T < 2k, but in fact, only the first case is important
in terms of asymptotic studies. Let us then suppose T' > 2k + 1. Moreover, as the
proof is quite long, we consider several steps in order to improve its understanding.

Step A. In this part, we obtain an upper bound for Ey[exp(—¥7) / Xr_4].

Applying the Hoeffding inequality with U = —¥pr = —U(Yr 4, Xr) and
B = X;_;, we obtain

E, {e—‘I’(YT—k,XT)-FEo[‘I’(YT—k,XT)/KT1] /lTl} < 61/292(ﬂYT—k), Py—a.s.,

which is equivalent to
eEO[‘I’(YT*’“’XT)/XT—l]Eo {e_q'(YT"“’XT) /XT_l} < 61/292(EYT"“), Py —a.s.. (5)
On the other hand, we have

Eo [ Y(Yr i, X7) | X 1) = 9(BY7r &) 2Eo(Ip (Y, X7) /| X 1) — 1] (6)

with
Eo(Ip(Yr—, X1) / Xp 1) = F ((%ﬁ') ) , Fo—as. (7)
In fact, as in section 3,
Py (X7 < %ka [ X7r 1), Yr x>0
Eo(Ip(Yr—, X7) / X 1) = Py (X7 > 8Yr 4/ Xr_q), Yr <O
07 YTfk = 0
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But, under Hy, X1 = e7; so, using the definition of ¢; and the symmetrical property
of the common distribution of (Z;,t € 7Z), we obtain (7).
From (6) and (7), we have

By [¥(Yr-x, Xr) / Xr ) = 9(8r-) [2F (%)) 1], Py as,

2071
which allows us to conclude that inequality (5) is equivalent to
E, {e—‘I’(YT_k,XT) /XT—l}
< exp {%g2(ﬂYT_k) — g(BY7r_¢) [2F ((%:’;')_) — 1] } , Py—a.s.
< exp {%g2(ﬁYT_k) — g(BY7r_y) [2F ((ﬁ%ﬂ)‘) — 1] } , Py—a.s.,

in view of the condition 7, < Iy, t € ZZ. The minimum of this upper bound is obtained

lzl

212)) — 1, which is symmetrical,

considering the weight-function g(z) = 2F ((

strictly positive and non-increasing on R™ and P,-integrable. Let us also remark
that g(z) is the distance in variation between the Gaussian laws N (0, l3) and N(z, l3).
Using this definition of g, we obtain

Ey {e_ql(YT_k’XT) /XT—1} < exp <_%92(5YT7k)) , Po—a.s.. (8)

Step B. After inserting the result just obtained in (4), we use k—1 times a technique
analogous to the one used in step A.

Inequality (8) together with (4) gives us

exp (— i ‘I’t) exp (—%92(5YT—k))

t=k+1

Py(Ar) < Ey

To facilitate notation, let us define
S, = exp (— > \Ift) ,m>k+1 and G(z) = exp (—%g%ﬁx)) , ¢ € R.
t=k+1
If k£ > 2, the expectation in (9) is then equal to
Eo{S7—2G(Yr—x) Eo [exp (—¥7-1) / X o]}

Applying the Hoeffding inequality again and repeating the procedure, we have, if
k>3,

Po(Ar) < Eg{Sr—3 G(Yr_)G(Yr—r—1)Eq [exp (—¥7_3) / X7 3]} .

11



Using the same technique k£ — 3 times more, which corresponds to k — 1 applica-
tions of the Hoeffding inequality as in step A, we arrive at

k—2
Py(Ar) < Ey {STk 11 G(Yr_r—s) Eo [GXP (-‘I’T—(k—n) /X:ruk} } . (10)
i=0
Applying the Hoeffding inequality once more, now with U = —W¥r_(_;) and
B = Xr_;, we obtain

Ey {G_WT’(’“’” /KT_k} < G(Yr-gkt1), Po—a.s..

This inequality and (10) give us the following upper bound for Py(Ar):
k-1
Py(Ar) < Ey {STk 11 G(YTki)} .
i=0
This is equivalent to
k-1

Po(Ar) < Eq {ST—k—l [T G(Yr—k—i) Eo [G(Yr-1) exp(—Pr_4) /XT—k—l]} - (11)

i=1
Note that (11) is still true when T = 2k + 1, stipulating Sy, = 1.

Step C. Let us now look at Ey [G(Yr_k) exp(—¥r_ k) / Xp p 1]

In order to find an upper bound for
Eo [G(Yr—i) exp(—=¥r—k) / X 1]
= Eo {exp [—3 9°(8Yr +)] exp [~ ¥ (Y1 ox, X1 )] / X4 1} (12)
using inequality B, we consider the functions g and Ey defined by
o §(z) = G(2?) = exp[—; ¢*(B2”)], z € R,
e hy(z) = exp[—¥(y,z)], = € R, with y # 0 a fixed real number.

These functions satisfy the hypotheses of inequality B. In fact, taking into account
the definition of g, it is simple to verify that g is strictly positive, symmetrical and
decreasing on IR". Concerning h, we have, for a fixed y € R,

hy(z) = exp{—g(By)[21p(y, =) — 1]}

_ {eXP[—g(ﬁy)], (y,x) € D
explg(By)],  otherwise

_ { exp[—g(By)], xy <0V |z|< §|y|
exp[g(By)], xy >O0Al|z| > §ly|.

12



Ify>0,

Ry(z) = { expl—g(By)], =<0V |z| <2y
’ explg(By)], =>0Alz|>2y
= e_g(ﬂy)][]ioogy[( T) + eg(ﬂy)]l[gy,Jroo[( z).
Ify <O,
ho(z) — { exp[—g(By)], =>0V|z| < -5y
’ explg(By)], z<0Az<fy
= eg(ﬂy)][]ioo y}( T)+e g(ﬂy)][]ﬂy+oo[( z).

So, if y > 0, inequality B applies, with v = & By>0anda=e 9B <p=eI), if
y < 0, inequality B applies, with v = £ 5y <0anda= e9BY) > h = e 90BY)
Let us now go back to the expectatlon in (12). Under Hy, that expectation is
equal to
Ey [g(er ) Byp su(er ) /o7 1]

which, from inequality B, is less than or equal to

Ey [G(gg“—k) /§T—k—1} Eolexp (—Yr_k) /€p_i_1] (13)
as \II(YT—Zk, 5T—k) = \IIT—ka under Hg.

On the other hand, under Hy, G(Yr_x_;) = G(¢%_,_;), i € N. Then, (11) and
(13) allow us to obtain the following upper bound for Py(Az):

Ey lSTkl lj G(g%—k—i) Ey (G(52T—k) /§Tfk71> Eq (ef‘PT_k /§Tk1>] . (14)

Step D. Let us now concentrate on Ejy [G(e?,,_k) /QT_k_l}.

Using the definition of g and the fact that e r = 97127 &, we obtain

By [G(e2 ) / €r—n-1) = Eo {exp l—% <2F (("”%)) - 1)1 /gT_k_l} .

This expectation is less than or equal to

Ey {exp [—%(21«” ((ﬂlfg k)) - 1)1 /gT_k_l} = B (G(1327)),

13



as Nr_x-1 > 1y > 0 and Zp 4 is independent of e;_;_; and identically distributed
with Z. From this and (14), we obtain

P()(ZT) S EO lST_k_l 1:[1 G(gg“fkfi)EO (G(Z%ZZ)> EO (6_\I’T7k /QTkl>] .

Note that Fy (G(1?Z?)) is a deterministic value. Therefore, the previous expectation
is equal to

Ey (G(lez)) Eo [ST—k—l l:[ G(e7_x—i) Eo (6_%_'“ /XT—k—l)] : (15)

=1

Step E. Next, we firstly find an upper bound for Ej (e*‘I’T—k /XT_k_1>, then we

use it in (15) and obtain a new upper bound for Py(Ar). We repeat this procedure
with Ho (e™¥7-+-1 / X1y ).

The Hoeffding inequality leads us to
EO (e*q’T*k /XTfkfl> S G(Yszk), PO — a.S..

This inequality and (15) allow us to arrive at

Py(Ar) < By (G(132%)) Eq (ST,H 1:[1 G(a;,”)> , (16)

which is equivalent to
Py(Ar) < Ep(G(32%)) x
k
<bo{Sra (166 4 ) [0, e+ /x| o
=2

Inequality B applied to the conditional expectation gives

Po(ZT) S [EO (G(Z%Z2))}2E0 [ST_k_g QG(a%—k—i)EO (6_‘11T_k_1 /KT—k:—Z)‘| (18)

and, from the Hoeffding inequality, we have

By (e "+ ) Xp o 3) S G(Vrm 1), Po—as. (19)
From (18) and (19), we deduce
9 k+1
Py(Ar) < |Ey (G(132%))] Eo (STH 1_12 G(a;ki)) . (20)

14



Step F. Finally, we note that this inequality is of the same type as (16). Repeating
the procedure T' — 2k — 1 times, we have

T—-2k—1

Po(Ar) < [By (G22%)]" By (S I G(e%,u-)). (21)

i=T—2k—1
A final application of inequality B and the Hoeffding inequality gives

T—k-1

Py(Ar) < [Eo (¢(22%)]" "By ( G(s%_k_i)> . (22)

i=T—-2k

It is now easy to verify that

E, ( il G(e%_k_i)) < B (a@2?)]",

1=T—-2k

in view of the form of &, the bounds of 7; and the independence of (Zy, t € ZZ).
These two inequalities give us the upper bound for Py(Ar) stated in the theorem.

To finalize, we point out that, if k+1 < T < 2k,ie., T =2k—35,0<73< k-1,
we obtain the same result by using the Hoeffding inequality k£ — j times. &

5 Application to the statistical study of bilinear
models

The asymptotic separation of two probabilistic models is particularly interesting
when it can be used as a statistical decision rule, either in estimation or in test
theory.

The aim of this section is to illustrate the suitability and usefulness of this
decision procedure within the scope of tests for simple bilinear models.

So, a simulation study is done considering a real process X = (X;,t € Z)
following a bilinear model

Xe=pXi 1801+
where (e;,t € Z ) is a sequence of i.i.d. random variables following the standard

Cauchy distribution, for all ¢, and supposing ¢ €]0,0.53].
Under these conditions, this model is strictly stationary, ergodic and invertible.
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In fact, we can prove that (g, t € ZZ) is a strictly stationary and ergodic error
process; moreover, E(logle]) < 2 and E(log|Xy|) < 2. So, if |¢| < 0.53, the
quantities E(log|e:|) + log |¢| and E(log|X;|) + log |¢| are simultaneously negative.

Furthermore, it is obvious that the error process has the form considered in
section 4 with [, = [, = 1.

The decision procedure will be used to test the hypotheses

Hy: ¢ =0 against Hy : o = (3, (6 > 0 fixed).
In this case, the separation set

T
Ar = { Zg Byi-1) 21p(ye—1, z) — 1] ZO}, T>1,
=2

is the acceptance region of the test. The values of Y; were taken as

lgt:wt(z — $t kHzt Z—f—mt t:2,...,T,
k=1
o1 = z;

this is the same as if we took the observations before time 1 equal to zero. The first
value g; proposed is obtained using the definition of y;, y; = z1£;, and the model
equation ¢, = —px; 16, 1 + xy with g = 0.

To evaluate the importance of the weight-function present in the test statistics,
we take firstly the observations equally weighted (9 = g1 = 1); afterwards, we
consider the weight-function used to establish the rate of convergence of this test
level sequence, which takes here the form g(x) = g2(z) = arctg(m). These two
functions are symmetrical, non-decreasing on IR" and P, 1ntegrable Moreover,
9(BY;) > 0,Vt € Z, P,-a.s., as ¢ is absolutely continuous.

To evaluate the behaviour of our test when Hj is true, a simulation study is
done, for T' = 20 and T' = 50, taking ¢ = 0 in the model. The size of the
test is estimated, testing this model against six alternatives (8 = 0.01, § = 0.05,
6 =0106=0208=03and 8 = 0.5). For each one of these alternatives, we
calculate the proportion of rejections of Hy in 60 replications of the model; in table
1, we record the 95% confidence regions, corresponding to samples of size 30, for
this proportion .
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T 20 20 50 50
B g1 g2 g1 g2
0.01 |[]0.39,0.44[ | ]0.19,0.23[ | ]0.31,0.35[ | ]0.06,0.08]
0.05 |]0.26,0.31[ | ]0.05,0.08] | ]0.16,0.19[ |]0.003,0.009]
0.1 ]0.20,0.24[ | 10.03,0.04[ | 10.08,0.11[ | 10.0,0.002]
0.2 ]0.12,0.16[ | ]0.005,0.012[ | ]0.03,0.05] 0.0
0.3 10.09,0.12[ | ]0.001,0.005[ | ]0.014, 0.03] 0.0
0.5 10.05, 0.07] 0.0 10.003,0.01] 0.0

Table 1. Proportion of rejections of Hy when ¢ =0

We note that our test performs very well, even for quite small values of 3 and
T (6 =0.05e T = 20), when the observations are weighted according to g,. When
T increases (T = 50), the behaviour of the test is strongly improved even when the
observations are not weighted (for 5 > 0.1 the estimation of the size is very good in
both cases). Nevertheless, we must point out the significant influence of the weight
function in the performance of the test.

In order to have an idea of the rate of convergence of the power of this test, we
consider, for T 20 and T 50, the same values of (§ (f 0.01,
B =0.06,3=010 =020 =03 and § = 0.5) and we generate the bilinear
models corresponding to ¢ = (3; in each case, we record the proportion of rejections
of the alternative hypothesis (true in this case) in 60 replications of the model. The
95% confidence regions for this proportion, obtained with samples of size 30, are
presented in table 2.

T 20 20 50 50
B g9 ge g9 go
0.01 []0.36,0.41[ | ]0.16,0.19[ | ]0.31,0.36[ | ]0.06,0.07]
0.05 |]0.24,0.28[ | ]0.06,0.08[ | ]0.15,0.18[ |[]0.008,0.02]
0.1 10.15,0.18] | ]0.03,0.05] | ]0.05,0.08] | ]0.0,0.004]
0.2 10.07,0.09[ | ]0.01,0.08[ | ]0.01,0.02] 0.0
0.3 ]0.04, 0.06[ | ]0.005,0.02[ | ]0.002, 0.008] 0.0
0.5 10.01,0.03[ | ]0.0,0.002] 0.0 0.0

Table 2. Proportion of rejections of H; when ¢ = 3

Taking into account the similarity between the results presented in this table and
in the previous one, we point out the symmetrical role given by our procedure to Hy
and Hi; in fact, the empirical behaviour of the two kinds of test errors is obviously
the same.
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Moreover, this analogous behaviour emphasizes the importance of the weight-
function in the performance of the test and allows us to conjecture the same rate of
convergence for its power function.

Finally, in practice and with real data, we suggest the expression (2) of Y; with
¢ replaced by [, according to the idea presented in the end of section 3, or the con-
vergent estimation for Y;, presented in theorem 3.2, with ¢ replaced by a consistent
estimate ¢ (as, for instance, the modified least squares estimate proposed by Pham
and Tran (1981)). A point of future research is the study of the consistence of this
test in this last case.

6 Appendix

INEQUALITY A (Hoeffding (1963) inequality (4.16))

Let (2, A, ) be a probability space, U a real random variable on (2, A, p) taking
its values on the interval [a,b] and B a sub—o-field of A with a regular version ub
of the conditional law of U given B. Then

EE(eU_EE(U)) < e’ (u— a.s.).

INEQUALITY B (Martins (1999))

Let'Y be a real random variable with a symmetrical distribution, Py. Consider
a symmetrical function g : R — Ry that is non-increasing on R and such that
g9(Y) is a r.v. with E(9(Y)) < +o00. Let a, b and v be real numbers.

a) Consider the function h defined by h = alj o[ + b1, oo, and suppose that
one of the following cases occurs:
(i) v<0anda > b;
(ii) Py({0}) =0 andv >0 and a < b;
(iii) Py({0}) #0 and v > 0 and a <b.
Then
Elg(Y)h(Y)] < E[g(Y)]E[R(Y)]. (23)
b) Suppose now that h is defined as h = alj o, + b}, 1] Then (23) is still
true if one of the following situations is verified:
(i) v>0 and a < b;
(ii) Py({0}) =0 andv <0 and a > b;
(iii) Py({0}) #0 and v <0 and a > b.
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The proof of this result is based on the following lemma.

Lemma Let U and V' be real random variables such that E(U) < 400 and V is
bounded. Then

E(UV) - EU)E(V) = /B - (Fuy (u,0) — Fy(u) Fy (v)) dudv,

where Fyy, Fy, Fy denote the distribution functions of (U,V) and its margins
respectively.

The proof of this lemma is analogous to that of a similar result of Hoeftfding
(Suquet, 1994), for U and V verifying E(U?) < +o00 and E(V?) < +o0.
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