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Abstract� Various characterisations are given of the generalised Lorentz�Zygmund
�GLZ� spaces Lp�q���R�� with p� q � �����	� m � IN� � � IRm and �R��� a 
nite
measure space� Given a measure space �R��� and � � Rm

�
� we obtain equivalent

representations for the �quasi�� norm of the GLZ space L������R�� Moreover�
when �R� �� is a 
nite measure space and � � Rm

� � we present an equivalent norm

for the space L������R� in terms of decompositions� We show how the equiva�
lent norms considered for L������R�� with �R��� a 
nite measure space� and the
decomposition norm in L������R� can be employed to get simple proofs of some
extrapolation results involving these spaces�

�� Introduction

In �EK�� Edmunds and Krbec obtained some decompositions for the exponential
Orlicz space L������ usually denoted by E����� with Young function 	� given by
	��t� 
 exp t� for large t� where � � � and � is a measurable subset of IRn with
�nite n
dimensional Lebesgue measure j�jn� Without loss of generality� it was assumed
that j�jn 
 �� They showed that considering a suitable decomposition of ��� �� into a
union of disjoint intervals f�tk� tk���gk�IN it is enough to control only the blow up of the
norms kf�kLk�tk�tk���� where f

� is the non
increasing rearrangement of f � by the same

power k���� to have L�� ���� The proof was based on the fact that L����� coincides
with the Zygmund space L��logL�������� �see �BR��� Theorem D� or �BS��� Lemma
IV������� In Section �� we extend this result to the generalised Lorentz
Zygmund �GLZ�
spaces Lp�q���R�� with p� q � ������� m � IN� � � IRm� and �R��� a �nite measure
space� cf� Theorem ���� The method of the proof is di�erent from� and in our opinion
easier than� that used in �EK��

In �Tri���� Triebel gave an equivalent norm for the exponential Orlicz space L������
where � is a measurable subset of IRn with �nite volume� see also �EGO���� With

this equivalent norm� he proved that the embeddings id � B
n�p
pp ��� � E���� and

id � H
n�p
p ���� E����� with � � p � ��� � � � � p� and � a bounded C�
domain in

IRn� are compact and obtained estimates for the approximation and entropy numbers of

those embeddings� Let us just mention that Bn�p
pp ��� and H

n�p
p ��� are classical Besov

spaces and fractional Sobolev spaces� respectively� We refer to �Tri��� for more details�
Equivalent norms for the double exponential Orlicz space L�� ���� usually denoted by
EE����� with Young function 	� given by 	��t� 
 exp exp t� for large t� where � � �
and � is a measurable subset of IRn with �nite volume� were obtained by Edmunds�
Gurka and Opic in �EGO���� The proof was also based on the fact that L����� coincides
with the GLZ space L������� �

�
���� see �EGO��� Lemma ����� Following the same tech


nique as in �EGO���� we obtain in Section � equivalent representations for the �quasi
�
norms of the GLZ spaces L������R�� with �R��� a measure space and � � Rm

� � i�e�

Date� May �
� �����
���� Mathematics Subject Classi�cation� ��E���
Key words and phrases� Generalised Lorentz�Zygmund spaces� equivalent �quasi�� norms�

extrapolation�

�



� J� S� NEVES

� 
 ���� � � � � �m� � IRm� ��� � � � � �m�� � � and �m � �� cf� Theorem ��� and its Corol

laries� In particular� when �R��� has �nite measure we obtain equivalent norms for the
GLZ spaces L������R�� with � � Rm

� � extending in this way the results in �Tri��� and
�EGO���� Still in Section �� we give an equivalent norm for the spaces L������R�� with
�R��� a non
atomic �nite measure space and � � Rm

	 � i�e� � 
 ���� � � � � �m� � IRm�
��� � � � � �m�� � � and �m � �� in terms of decompositions� This result extends a re

sult obtained by Edmunds and Triebel� cf� �ET��� Theorem �� p� ���� for the spaces
L��logL������ with � � � and � a measurable subset of IRn with �nite volume� We
refer to �FK��� Theorem ���� for a di�erent proof of this result�

In Section �� we show how the equivalent norms obtained in Section � for L������R��
with� � Rm

� � and the decomposition norm in L������R�� with� � Rm
	 � can be employed

to get simple proofs of some extrapolation results involving these spaces� Let us remark
that we do not follow a general setting in terms of abstract extrapolation methods
considered by Jawerth and Milman� cf� �JM��� �see also �Mil����� We mention that the
starting point of the extrapolation theory was the Theorem of Yano �Yan��� which can
be described as follows� Suppose that T is a bounded linear operator on Lp��� �� for
p � � with kTkLp�Lp 
 O��p � ����� as p � �� for some � � �� then these estimates
can be extrapolated to L��logL����� �� � L���� ��� see �Zyg��� Theorem XII����� �ii��
p� ���� for a more general formulation� We refer to �Tor��� Theorem IV����� p���� where
T was supposed to be sublinear� We also refer to �FK��� Theorem ���� where T was
supposed to be subadditive� In �Ste��� p� ��� and �ET��� p� ��� the case was considered
when T is the Hardy
Littlewood maximal operator� It should be emphasised that the
decomposition approach� used in �ET��� and �FK���� skips completely the machinery
of weak type inequalities and the Marcinkiewicz interpolation Theorem� since it follows
at once from the expression of the norm in L��logL������ with � � �� There is also a
dual statement for operators acting from Lp�R�� into Lp�R��� with �R�� ��� and �R�� ���

�nite measure spaces� for p close to ��� such that kTkLp�Lp 
 O�p���� as p� ��� for
some � � �� then there exist positive constants ��K such that

R
R�

exp��jTf j�� d�� � K

for each f with jf j � �� see �Zyg��� Theorem XII����� �i�� p� ����� There is also a version
of this result for sublinear operators� We refer to Section � for more details�

�� Notation and Preliminaries

As usual� IRn denotes Euclidean n
dimensional space� Let �R��� ��� usually denoted
by �R���� be a totally 	
�nite measure space and referred in the sequel only as a measure
space� A set E � � is called an atom of �R��� �� if ��E� � � and F 	 E� F � � implies
either ��F � 
 � or ��EnF � 
 �� If there are no atoms� then �R��� �� is called non

atomic� A measure space �R��� is called resonant if it is one of the following two types�
�i� non
atomic� �ii� completely atomic� with all atoms having equal measure� We refer to
�BS��� pp������� for more details and for a di�erent� but equivalent� de�nition� When
R 
 IRn we shall always take � to be Lebesgue measure �n� and shall write j�jn 
 �n���
for any measurable subset � of IRn� The family of all extended scalar
valued �real or
complex� �
measurable functions on R will be denoted byM�R����M��R��� will stand
for the subset of M�R��� consisting of all those functions which are �nite �
a�e�

De�nition ���� Let f � M��R���� The distribution function �f of f is de�ned by

�f ��� 
 �fx � R � jf�x�j � �g� for all � � �������

and the non�increasing rearrangement of f is the function f� de�ned on ������ by

f��t� 
 inff� � � � �f ��� � tg� for all t � �������

If �R��� is a �nite measure space� then the distribution function �f is bounded by
��R� and so f��t� 
 � for all t � ��R�� In this case we may regard f� as a function
de�ned on the interval ��� ��R��� for more details we refer to �BS����
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De�nition ���� Two functions f � M��R��� and g � M��S� 
� are said to be
equimeasurable if they have the same distribution function� i�e�� if �f ��� 
 
g��� for
all � � ��

Now let m � IN and � 
 ���� � � � � �m� � IRm� Let us denote by �m� and �m� the real
functions de�ned by

�m� �t� 

mY
i��

l�ii �t�� for all t � ������������

and

�m� �t� 

mY
i��

l�ii���t�� for all t � ������������

where l�� l�� � � � � lm are non
negative functions de�ned on ������ by

l��t� 
 t� l��t� 
 � � j log tj� li�t� 
 � � log li���t�� i � f�� � � � �mg������

De�nition ��� �cf� �EGO����� Let p� q � ������� m � IN and � 
 ���� � � � � �m� �
IRm� The generalised Lorentz�Zygmund �GLZ� space Lp�q���R� is de�ned to be the set
of all functions f � M��R��� such that

kfkp�q���R �
 kt
�
p�

�
q �m� �t� f��t�kq����	�������

is �nite� Here k�kq����	�� stands for the usual Lq �quasi�� norm over the interval
�������

We remark that in �EGO���� the space Lp�q���R� and the quasi
norm k�kp�q���R
de�ned above are denoted by Lp�q��� ������m�R� and k�kp�q���������m�R� respectively� We use
the notation in �EGO��� only when we are considering particular cases�

Let us observe that when we consider � 
 ��� � � � � �� in the previous De�nition� we
get the Lorentz space Lp�q�R� endowed with the �quasi
� norm k�kp�q�R� which is just
the Lebesgue space Lp�R� endowed with the �quasi
� norm k�kp�R when p 
 q� if p 
 q�
m 
 � and �R��� 
 ��� �n�� we get the Zygmund space Lp�logL������ endowed with
the �quasi
� norm k�kp����
�

Let us introduce some more notation� that will be needed in Section �� Let m � IN
with m � �� We de�ne the numbers exp�� � � � � expm by

exp� 
 �� expi 
 eexpi�� � i � f�� � � � �mg�

Let � 
 ���� � � � � �m� � IRm� Let us denote by 
m� the non
negative function de�ned by


m� �t� 

mY
i��

��ii���t�� for all t � �expm������������

where ��� � � � � �m are the non
negative functions de�ned by

���t� 
 t� t � �� �i�t� 
 log �i���t�� t � expi��� i � f�� � � � �mg�

We are going to need in Section � the following Lemma� which is very easy to prove�

Lemma ���� �i� Let m� k � IN� Then

lm�e�k	�� 
 lm���k��

�ii� Let m � IN� and k � IN� Then

lm�k� � lm�k � �� � e lm�k��

�iii� Let � � IR and m� k � IN� Then for each t � �e�k� e�k	��� we have the inequalities

minf�� e�g l�m���k� � l�m�t� � maxf�� e�g l�m���k��
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�iv� Let � � IR� m � IN and k � �� Then the inequalities

minf�� e��g l�m���k� � l�m�t� � maxf�� e��g l�m���k�

hold for each t � �e�k	�� e�k	���

The following Lemma� with an obvious proof� will be used later on�

Lemma ���� Let k � IN and q� � expk��� Then

�i� �k�q� � lk�q�� for each q � �expk�������
�ii� lk�q� � ek�k�q�� for each q � �expk�����

�iii� lk�q� �

�
k

�k�q��
� �

�
�k�q�� for each q � �q������

By a Young function 	 we mean a continuous non
negative� strictly increasing and
convex function on ������ satisfying

lim
t���

	�t�

t

 lim

t�	�

t

	�t�

 ��

Given a Young function 	 and any measurable subset � of IRn� L���� will denote
the corresponding Orlicz space� i�e� the collection of functions f �M���� �n� for which

there is a � � � such that
R

	

�
jf�x�j
�

�
dx � ��� equipped with the Luxemburg norm

k�k��
 given by

kfk��
 
 inf

�
� � � �

Z



	

�
jf�x�j

�

�
dx � �

�
�

We refer to �Ada��� Chapter VIII� and �KJF��� Chapter III� for more details�
Let 	� and 	� be Young functions� Recall that 	� dominates 	� globally if there is

a positive constant � such that

	��t� � 	���t������

for all t � �� Similarly� 	� dominates 	� near in�nity if there are positive constants �
and t� such that ����� holds for all t � �t������ Two Young functions are said to be
equivalent globally �near in�nity� if each dominates the other globally �near in�nity��
We have from �Ada��� Theorem ����� pp� ���
���� the following result� If 	� and 	�

are equivalent globally �or near in�nity and j�jn � ���� then L����� 
 L����� and
the corresponding norms are equivalent�

Lemma ��� �cf� �EGO����� Let � be a measurable subset of IRn with �nite volume and
let � � �� Then

�i� the space L��logL�������� 
 L����� �
�
��� coincides with the Orlicz space

L������ where 	��t� 
 exp t� for all t � t� with some t� � ������� and the
corresponding �quasi�� norms are equivalent�

�ii� the space L��log logL�������� 
 L������� �
�
��� coincides with the Orlicz space

L������ where 	��t� 
 exp exp t� for all t � t� with some t� � ������� and the
corresponding �quasi�� norms are equivalent�

We will denote the Orlicz spaces L����� and L�� ���� considered in Lemma ���� by
E���� and EE����� respectively� In view of the same Lemma� we may endow these
spaces with the quasi
norms k�kE��
� �
 k�k����� �

� �

and k�kEE��
� �
 k�k������� �

� �

�

For more details we refer to �EGO����
Let m � IN� We denote by Rm

	 and Rm
� the following subsets of IRm�

Rm
	 
 f���� � � � � �m� � IRm � ��� � � � � �m�� � � and �m � �g

Rm
� 
 f���� � � � � �m� � IRm � ��� � � � � �m�� � � and �m � �g�
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Given a Banach space X let us denote by X� its dual space�
Let j� � IN and let fAjgj�j� be a sequence of Banach spaces� We denote by l��Aj�

the space of all sequences a 
 fajgj�j� with aj � Aj� j � j�� such that

kakl��Aj � 

	�X
j�j�

kajkAj � ���

By l��Aj� we denote the space of all sequences a 
 fajgj�j� with aj � Aj� j � j�� for
which kakl��Aj � 
 supj�j� kajkAj is �nite� The space c��Aj� is the subspace of l��Aj�
consisting of all sequences a 
 fajgj�j� such that

lim
j�	�

kajkAj 
 ��

By Lemma ������ in �Tri��� pp���
���� generalised in an obvious way�

�c��Aj��
� 
 l��A

�
j �������

with the usual interpretation �not only isomorphic but also isometric�� see �Tri��� for
more details�

For two non
negative expressions �i�e� functions or functionals� A� B we use the
symbol A � B to mean that A � cB� for some positive constant c independent of the
variables in the expressions A and B� If A � B and B � A� we write A 
 B�

We adopt the convention that a
	� 
 � and a

� 
 �� for all a � �� If p � �������

the conjugate number p� is given by �
p � �

p� 
 ��

�� Decompositions

As was said in the Introduction� the following results extend the decompositions
considered in �EK� for the exponential Orlicz spaces E�����

Let us assume� in this Section� that �R��� is a �nite measure space� Without loss of
generality we suppose that ��R� 
 �� see Remark ���� In the sequel� we shall consider
the decomposition of ��� �� into f�e�k� e�k	��gk���

Theorem ���� Let p� q � ������� m � IN and � 
 ���� � � � � �m� � IRn� Then for each
f � Lp�q���R� we have

�i� if � � q � ���

kfkp�q���R 


�
	�X
k��

�
e�k�p �m� �k� f��e�k�

�q 	��q
�����




�
	�X
k��

�
e�k�p �m� �k� f��e�k	��

�q 	��q
������

�ii� if q 
 ���

kfkp�q���R 
 sup
k��

n
e�k�p �m� �k� f��e�k�

o
�����


 sup
k��

n
e�k�p �m� �k� f��e�k	��

o
������

Proof� �i� Let � � q � �� and suppose f � Lp�q���R�� Then by Lemma ��� it follows
that

kfkqp�q���R � c�

	�X
k��

�
e�k�

�
p�

�
q ��m� �e�k	�� f��e�k	��

�q
e�k

� c�

	�X
k��

�
e�

k
p �m� �k� f��e�k�

�q
�
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Conversely� for f � Lp�q���R�� we have again by Lemma ���

kfkqp�q���R � c�

	�X
k��

�
e�

k
p �m� �k� f��e�k	��

�q
� c�

	�X
k��

�
e�

k
p �m� �k� f��e�k�

�q
�

which gives the desired inequalities�
�ii� The proof of the case q 
 �� is similar to the previous one� �

Let � be a measurable subset of IRn such that j�jn 
 �� By Theorem ��� we conclude
that

kfkE��
� 
 sup
k��

f��e�k�

k���

 sup

k��

f��e�k	��

k���
� for each f � E�����

and

kfkEE��
� 
 sup
k��

f��e�k�

�� � logk����

 sup

k��

f��e�k	��

log��� k
� for each f � EE�����

The next Lemma� with an easy proof� will be used to prove the last result of this
Section�

Lemma ���� Let f �M��R���� Jk 
 �e�k� e�k	��� k � �� Then

�i� for each k � IN we have

c�f
��e�k	�� � kf�kk�Jk � c�f

��e�k�������

where c� and c� are positive constants independent of f and k�
�ii� for each k � � we have

c�f
��e�k	�� � kf�kk�Jk�� � c�f

��e�k	��������

where c� and c� are positive constants independent of f and k�

Theorem ���� Let p� q � ������� m � IN and � 
 ���� � � � � �m� � IRn� Let Jk 

�e�k� e�k	��� k � �� and Ik 
 Jk��� k � �� Then for each f � Lp�q���R� we have

�i� if � � q � ���

kfkp�q���R 


�
	�X
k��

�
e�k�p �m� �k� kf�kk�Jk

�q 	��q
�����




�
	�X
k��

�
e�k�p �m� �k� kf�kk�Ik

�q 	��q
������

�ii� if q 
 ���

kfkp�q���R 
 sup
k��

n
e�k�p �m� �k� kf�kk�Jk

o
�����


 sup
k��

n
e�k�p �m� �k� kf�kk�Ik

o
�������

Proof� �i� Suppose � � q � �� and let f � Lp�q���R�� Then by ����� and by ������ we
have

kfkqp�q���R � c�

	�X
k��

�
e�

k
p �m� kf�kk�Jk

�q
�

By ����� and by ������ we also have

kfkqp�q���R � c�

	�X
k��

�
e�

k
p �m� �k� kf�kk�Ik

�q
�
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Conversely� for f � Lp�q���R�� by ����� and by ������ we have

kfkqp�q���R � c�

	�X
k��

�
e�

k
p �m� �k� kf�kk�Jk

�q
�

By ������ by Lemma ��� and by ������ we have

kfkqp�q���R � c�

	�X
k��

�
e�

k
p �m� �k� f��e�k	��

�q
� c�

	�X
k��

�
e�

k
p �m� �k� kf�kk�Ik

�q
�

which gives the desired inequalities�
�ii� The proof of the case q 
 �� is similar to the previous one� �

Let � be a measurable subset of IRn such that j�jn 
 �� By Theorem ��� we conclude
that for each f � E����

kfkE��
� 
 sup
k��

kf�kk�Jk
k���


 sup
k��

kf�kk�Ik
k���

�������

The �rst estimate in ������ is given in �EK� by Corollary ���� The counterpart for
the spaces EE���� is given by

kfkEE��
� 
 sup
k��

kf�kk�Jk
�� � log k����


 sup
k��

kf�kk�Ik

log��� k
� for all f � EE�����

Remark ���� If �R��� is a �nite measure space with measure ��R�� m � IN and � �
IRm� we have �m� �s� 
 �m� �s ��R��� for all s � ��� ��� This follows from the estimates
e�j li�s� � li�s��R�� � ej li�s�� for all s � ��� �� and i 
 �� � � � �m where j is a positive
integer such that ej�� � l����R�� � ej �

With the previous considerations� it is easy to see that the estimates in Theorem ���
and Theorem ��� still hold� up to constants� if we replace f��e�k� by f��e�k ��R��� for
each k � IN� and Jk 
 �e�k� e�k	�� by Jk 
 �e�k ��R�� e�k	� ��R��� for each k � IN�
respectively�

�� Equivalent �Quasi�� Norms for some Generalised Lorentz�Zygmund
Spaces

In this Section� we are going to consider in the �rst part the GLZ spaces L������R��
with � � Rm

� � and in the second part the GLZ spaces L������R�� with � � R
m
	 �

���� The GLZ spaces L������R��
First we are going to recall a Lemma�

Lemma ��� �cf� �GO���� Lemma ����� Let m � IN and 
 � �� Then there is a constant
c � ������ such that for all s � ��� ���

sup
q����	��

l��m���q�s
��q � c l��m �s��

With the help of the previous result� it is not di�cult to prove the next Lemma�

Lemma ���� Let m � IN and � � Rm
� � Let t� � ������� Then there is a positive

constant c such that �m� �q�s��q � c �m� �s�� for all s � ��� t�� and all q � �������

The following result generalises Theorem ��� in �EGO����

Theorem ���� Let m � IN and � � Rm
� � Let t� � �������

�i� Let p � ������� Then for each f � Lp�����R��

kfkp�����R 
 sup
q����	��

�m� �q� kf�k q
q�p��

������t�� � sup
t��t�	�

ft��p�m� �t�f��t�g������



� J� S� NEVES

�ii� Then for each f � L������R��

kfk������R 
 f��t�� � sup
q����	��

�m� �q� kf�kq����t��������

Proof� We follow the proof of Theorem ��� in �EGO���� where the case p 
 ��� m 
 ��
�� 
 �� �� � � and ��R� � �� with t� 
 ��R� was considered�

�i� Let t� � ������ and A �
 B � C where

B �
 sup
q����	��

�m� �q� kf�k q
q�p�� ������t�� and C �
 sup

t��t�	�
ft��p�m� �t�f��t�g�

Suppose f � Lp�����R�� By Lemma ��� there is a constant c� � � such that for all
q � �������

�m� �q� kf�k q
q�p��

������t�� � c� sup
��s�t�

f�m� �s� s
�
p f��s�g�

Passing to the supremum over all q � ������� we get the inequality B � c� kfkp�����R�
Hence

A � �maxf�� c�gkfkp�����R������

Conversely� suppose the right hand
side of ����� is �nite� Fix s � ��� t�� and set q 


� � j log sj� Then B � �m� �q� s
�
q	

�
p f��s� � e���m� �s�s

�
p f��s�� Taking the supremum

over all s � ��� t��� we obtain the inequality

B � e�� sup
��t�t�

ft��p�m� �t�f��t�g�

So A � e��kfkp�����R� which together with ����� gives the estimate ������
�ii� Let t� � ������� First we prove the following estimate

A� B 
 f��t�� � sup
q����	��

�m� �q� kf�kq����t��������

where

A �
 sup
q����	��

�m� �q� kf�kq������t�� and B �
 sup
t��t�	�

f�m� �t�f��t�g�

Suppose the right hand
side of ����� is �nite� Since kf�kq������t�� � kf�kq����t���
cf� Proposition IV���� of �BS���� and B � f��t��� we immediately obtain the inequality

A � B � f��t�� � sup
q����	��

�m� �q� kf�kq����t���

Now we prove the converse inequality� Suppose that A� B � ��� If � � q � q� then

kf�kq����t�� � kf�kq�������t��t
�
q�

�
q�

� ���
q

q�
����q������

Let q � ������� Since lj�q� � lj��q� � elj�q�� for all j � IN� we have by ������ with
q� 
 �q� the following inequalities

�m� �q� kf�kq����t�� � c��
m
� ��q� kf�k�q������t�� � c� sup

r����	��
�m� �r� kf�kr������t���

Therefore� passing to the supremum over all q � ������� we get the inequality

sup
q����	��

�m� �q� kf�kq����t�� � c�A������

Now it easily follows from ����� that

f��t�� � sup
q����	��

�m� �q� kf�kq����t�� � maxfc�� �
m
���t��g �A � B�

and ����� is proved� The estimate ����� follows from ������ with p 
 ��� and from
������ �
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When �R��� is a �nite measure space the previous estimates are much nicer�

Corollary ���� Suppose �R��� is a measure space such that ��R� � ��� Let m � IN
and � � Rm

� �

�i� Let p � ������� Then for each f � Lp�����R��

kfkp�����R 
 sup
q����	��

�m� �q� kfk q
q�p��

���R������

�ii� Then for each f � L������R��

kfk������R 
 sup
q����	��

�m� �q� kfkq�R������

Proof� The results follow from the theorem with t� 
 ��R� and from the fact that
f��t� 
 �� t � ��R�� For the part �ii� we use also Proposition II���� in �BS���� see also
Theorem ����� in �Zie���� �

From �ii� of Corollary ��� we recover the results of Theorem ��� in �EGO��� for the
spaces E���� and EE����� where � is a measurable subset of IRn with j�jn � ���

Corollary ���� Let m � IN and � � Rm
� � Let t� � ������� If j� � IN and q� � � then

for all f � L������R��

kfk������R 
 f��t�� � sup
j�IN�j�j�

�m� �j� kf�kj����t�������


 f��t�� � sup
q��q��	��

�m� �q� kf�kq����t���������

Proof� We follow the proof of Corollary ��� in �EGO���� where the case m 
 �� �� 
 ��
�� � � and ��R� � �� with t� 
 ��R� was proved� For f � L������R�� j� � IN and
q� � � we denote

S��f� 
 f��t�� � sup
q����	��

�m� �q� kf�kq����t���

S��f� 
 f��t�� � sup
q����	��

�m� �q� t
���q
� kf�kq����t���

S��f� 
 f��t�� � sup
q��q� �	��

�m� �q� kf�kq����t���

	��f� 
 f��t�� � sup
j�IN�j�j�

�m� �j� kf�kj����t���

	��f� 
 f��t�� � sup
j�IN�j�j�

�m� �j� t���j� kf�kj����t���

	��f� 
 f��t�� � sup
j�IN�j��q� �	�

�m� �j� kf�kj����t���

where �q�� denotes the integer part of q��
�i� Let t� � ������� j� � IN and f � L������R�� First we prove that

kfk������R 
 f��t�� � sup
j�IN�j�j�

�m� �j� kf�kj����t���

If q � ������� we put j 
 maxfj�� �q� � �g and choose n � IN such that en�� � j��
Then

j � j���q� � �� � j�q � en���q � �� � en���q � enq

and hence
lk���j� � enlk���q�� k 
 �� � � � �m�

Therefore

en���					�m��m� �q� � �m� �j��������
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Since j � �q� � � � q� we get by H�older�s inequality together with ������ the inequality

�m� �q�t
���q
� kf�kq����t�� � c �m� �j�t

���j
� kf�kj����t���

where c 
 e�n���					�m� � �� and hence

S��f� � c 	��f��������

It is easy to see that S��f� 
 S��f�� 	��f� 
 	��f�� and since 	��f� � S��f� we have�
together with ������� the estimates

	��f� � S��f� 
 S��f� � c 	��f� 
 	��f��������

So ����� it follows from ����� and �������
�ii� Let t� � ������� q� � � and f � L������R�� From ����� it follows that

S��f� � S��f� 
 kfk������R�������

Since 	��f� 
 	��f� if j� 
 �q�� � �� we have by �����

kfk������R 
 	��f� � S��f��������

Therefore� by ������ and ������ we get ������ and the proof is �nished� �

When �R��� is a measure space of �nite measure we obtain simple equivalent norms�

Corollary ���� Suppose �R��� is a measure space such that ��R� � ��� Let m � IN
and � � Rm

� � If j� � IN and q� � � then for all f � L������R��

kfk������R 
 sup
j�IN�j�j�

�m� �j� kfkj�R������


 sup
q��q� �	��

�m� �q� kfkq�R�������

Proof� The results follow from Corollary ��� with t� 
 ��R� and Proposition II���� in
�BS���� see also Theorem ����� in �Zie���� �

If we consider m 
 �� �� � � and � a measurable subset of IRn with j�jn � �� in
the above Corollary we recover part �i� of Corollary ��� in �EGO����

Corollary ���� Let m � IN� m � � and � � Rm
� � Let t� � ������� If j� � IN�

j� � �expm��� � � and q� � expm�� then for all f � L������R��

kfk������R 
 f��t�� � sup
j�IN�j�j�


m� �j� kf�kj����t��������


 f��t�� � sup
q��q� �	��


m� �q� kf�kq����t���������

Proof� �i� Let j� � IN� j� � �expm������ Since j� � expm��� it follows from �i� and �iii�
of Lemma ��� that� for each k � f�� � � � �m� �g� �k�j� 
 lk�j�� for all j � j�� Therefore�
the estimate ������ follows from ������

�ii� Let q� � expm��� Then for k 
 �� � � � �m � �� the estimate �k�q� 
 lk�q�� for all
q � q�� follows from �i� and �iii� of Lemma ���� Therefore� the estimate ������ follows
from ������� �

Corollary ��	� Suppose �R��� is a measure space such that ��R� � ��� Let m � IN�
m � � and � � Rm

� � If j� � IN� j� � �expm��� � � and q� � expm�� then for all
f � L������R��

kfk������R 
 sup
j�IN�j�j�


m� �j� kfkj�R������


 sup
q��q��	��


m� �q� kfkq�R�������
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Proof� The results follow from Corollary ��� with t� 
 ��R� and Proposition II���� in
�BS���� see also Theorem ����� in �Zie���� �

If we consider m 
 �� �� 
 �� �� � �� and � a measurable subset of IRn with
j�jn � �� in the above Corollary we recover part �ii� of Corollary ��� in �EGO����

���� The GLZ spaces L������R��
Let us assume� in this Subsection� that �R��� is a �nite measure� Again� without

loss of generality we suppose that ��R� 
 �� Let m � IN and � � Rm
	 � Let us con


sider the spaces L������R� and L�������R� endowed with k�k������R and k�k�������R�
respectively�

The triangle inequality for k�k������R follows immediately by the property�Z t

�

��s��f � g���s�ds �

Z t

�

��s�f��s�ds �

Z t

�

��s�g��s�ds� � � t � ��

whenever � is a non
negative decreasing function on ��� ��� cf� �Lor��� p� ��� or �BR���
p�����

Let us introduce the functional kfk��������R� 
 sup
��t��

�m���t�f
���t�� Then by

Lemma ��� in �EGO���� we have

kfk�������R � kfk��������R� � kfk�������R�

for all f � L�������R�� The triangle inequality for k�k��������R� it follows from the
sub
additivity of f �� f��� cf� Theorem II���� in �BS����

Before we give the next result� we refer to �BS��� for the de�nitions of mutually
associate and rearrangement
invariant Banach function spaces� Given a Banach function
space X let us denote by X � its associate space�

Lemma ���� Let m � IN and � � Rm
	 � If �R��� is a resonant measure space� then

X 
 �L������R�� k�k������R�

and

Y 
 �L�������R�� k�k��������R��

are rearrangement�invariant Banach function spaces and they are mutually associate
�up to equivalence of norms��

Proof� There is no di�culty in verifying that X and Y are Banach function spaces and
the rearrangement invariance is obvious� since two equimeasurable functions have the
same non
increasing rearrangement�

Now we are going to prove that X and Y are mutually associate� We follow the proof
of Theorem IV���� in �BS��� and the proof of Lemma ��� in �EGO����

Suppose g � Y � Then for any f � X with kfkX � �� we have by the Hardy
Littlewood
inequality� cf� Theorem II���� in �BS����Z

R

jfgj d� �

Z �

�

f��t�g��t� dt � sup
��t��

fg���t��m���t�gkfkX 
 kgkY kfkX �

Hence taking the supremum over all f � X with kfkX � �� we get

kgkX� 
 supf

Z
R

jfgj d� � f � X� kfkX � �g � kgkY �������

To establish an inequality reverse to ������� it is su�cient by the Luxemburg repre

sentation Theorem �see �BS��� Theorem II������ p� ���� to do so for the measure space
�IR	� ��� and functions g in IR	 for which g 
 g�� Suppose g belongs to the associate
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space X � of X� and also under the previous conditions� then by H�older�s inequality� cf�
Corollary II���� in �BS���� for � � t � ��

tg���t� 


Z �

�
����t��s�g

��s� ds � k����t�kXkgkX� �

Since

k����t�kX 


Z �

�

����t��s��
m
� �s� ds 


Z t

�

�m� �s� ds 
 t �m� �t��

we get

kgkY � kgkX� �������

The estimates ������ and ������ together show that Y is equivalent to the associate of
X and hence� by the Lorentz
Luxemburg Theorem� cf� Theorem I���� in �BS���� the
spaces X and Y are mutually associate� �

Proposition ���� Suppose �R��� is a non�atomic measure space� Let m � IN and
� � Rm

� � Then� up to equivalence of norms�

�L�������R��� 
 L�������R��������

where L�������R� is the completion of L��R� in L������R��

Proof� We apply Theorem II���� in �BS��� pp� ��
��� to the space X 
 L������R��
It is easy to see that lim

t���
�X �t� 
 �� where �X is the fundamental function of X� see

�BS��� p� ���� Therefore� by Theorem II���� in �BS���� �Xb�
� 
 X�� But by Lemma ����

X� coincides with L�������R� up to equivalence of norms and� by Proposition I����� in
�BS��� p� ���� Xb coincides with the space L�������R�� �

Let j��m � IN and � � Rm
� � We denote by cs��Lj�R�� the subspace of c��Lj�R��

which consists of all elements fFjgj�j� of c��Lj�R�� with Fj 
 �m� �j�f � for all j � j��
where f � L������R�� In what follows� and according to Corollary ���� we consider
the space L������R� endowed with the norm

k�kd������R 
 sup
j�IN�j�j�

�m� �j� k�kj�R�

Proposition ���� Let j��m � IN and � � Rm
� � Then

L�������R� 
 ff � L������R� � lim
j�	�

�m� �j� kfkj�R 
 �g

and �L�������R�� k�kd� is isometric to �cs��Lj�R��� k�kl��Lj�R����

Proof� If f � L�������R�� the results follow easily�
Conversely� suppose f � L������R� with lim

j�	�
�m� �j�kfkj�R 
 �� Let � � �� Then

there is j� � IN� with j� � j�� such that for all j � j� we have the inequality

�m� �j�kfkj�R �
�

�
�������

Since f � L������R�� f is �nite � � a�e� For each n � IN let us consider the set
Rn 
 fx � R � jf�x�j � ng� Now we introduce a sequence ffngn�IN in L��R� by fn�x� 

f�x� if x � RnRn� and fn�x� 
 � otherwise� Then� for each n � IN� we have by ������

kf � fnk
d
������R � max

j�IN�j��j�j�
�m� �j�kfkj�Rn �

�

�

 �m� �k�kfkk�Rn �

�

�
�������

Now
k�m� �k�fkkk�Rn


 k ��m� �k�f�k �Rnk��R�

Let us consider� for each n � IN� a function de�ned �� a�e� on R by

gn 
 ��m� �k�jf j�k �Rn �



ON DECOMPOSITIONS IN GENERALISED LORENTZ
ZYGMUND SPACES ��

We note that for all n � IN� jgnj � h� �� a�e on R� where h 
 ��m� �k�jf j�
k
� �� a�e

on R� is a function in L��R�� Since lim
n�	�

�Rn 
 �� ��a�e� it follows from the Lebesgue

dominated convergence Theorem that lim
n�	�

k�m� �k�fkkk�Rn

 �� Hence� there is n� � IN

such that

�m� �k�kfkk�Rn �
�

�
� for each n � n��������

Therefore� from ������ and ������� we get lim
n�	�

kf � fnk
d
������R 
 �� which shows that

f � L�������R��

Now we can de�ne a linear mapping H from L�������R� onto cs��Lj�R�� by

H�f� 
 f�m� �j�fgj�j� � for all f � L�������R��

We also have kH�f�kcs
�
�Lj�R�� 
 kfkd������R� for all f � L�������R�� and the proof is

�nished� �

The next result gives an equivalent norm for the GLZ spaces L������R�� with� � R
m
	 �

in terms of decompositions�

Theorem ���� Suppose �R��� is a non�atomic measure space� Let m � IN and � �
Rm
	 � Let j� � IN with j� � �� Then L������R� is the set of all measurable functions

g � R� C which can be represented as

g 

	�X
j�j�

gj �������

with gj a measurable function on R that belongs to Lj��R�� for each j � j�� such that

	�X
j�j�

�m� �j�kgjkj��R � ���������

The in�mum of the expression �	�
�� taken over all admissible representations �	�
��
is an equivalent norm on L������R�

Proof� Let j� � IN� Let us consider a measurable function h � R � C that can be
represented as

h 

	�X
j�j�

gj�������

with gj a measurable function on R that belongs to Lj��R�� for each j � j�� such that

	�X
j�j�

�m� �j�kgjkj��R � ��

and let us de�ne

	h�f� 


Z
R

hf d�� for all f � L��������R��������

Then 	h � �L��������R��� and

k	hj�L
�
�������R���k � inf

	�X
j�j�

�m� �j�kgjkj��R�������
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where the in�mum is taken over all admissible representations ������� In fact� for all
f � L��������R�� we have by Theorem ���� in �Rud��� p���� and by H�older�s inequality�
the following

j	h�f�j �
	�X
j�j�

kgjkj��Rkfkj�R � kfkd�������R

	�X
j�j�

�m� �j�kgjkj��R�

Thus� 	h is a bounded linear functional on L�������R� �the linearity of 	h is obvious�
such that

k	hj�L
�
�������R���k �

	�X
j�j�

�m� �j�kgjkj��R

and we get �������
Now we follow the reasoning in the proof of Theorem ������� in �ET��� pp� ��
����

Let G � �L��������R���� Since L��������R� is isometric to cs��Lj�R��� cf� Proposition

���� G �H�� � �cs��Lj�R���
�� where H is the isometry considered in the referred propo


sition� By Hahn
Banach theorem� there exists a bounded linear functional �G �H�� on
c��Lj�R��� which is an extension of G �H�� to c��Lj�R�� and has the same norm

k�G �H��j�c��Lj�R���
�k 
 kG �H��j�cs��Lj�R���

�k�

But by ������ �G �H�� can be identi�ed with an element f  Gjgj�j� � l���Lj�R��
�� such

that

kG �H��j�cs��Lj�R���
�k 
 k�G �H��j�c��Lj�R���

�k 

	�X
j�j�

k  Gjj�Lj�R��
�k�������

Since each  Gj can be identi�ed with a  gj � Lj��R� by

 Gj�f� 


Z
R

 gj f d�� for all f � Lj�R��

with k  Gjj�Lj�R��
�k 
 k gjkj��R� it follows from ������ that

kGj�L��������R��
�k 
 kG �H��j�cs��Lj�R���

�k 

	�X
j�j�

k gjkj��R�������

Using Theorem ���� in �Rud��� p� ��� we get

G�f� 

	�X
j�j�

 Gj��
m
���j�f� 


Z
R

h f d�� for all f � L��������R��

with

h 

	�X
j�j�

gj and gj 
  gj �
m
���j�� j � j��

because� for each f � L��������R��

	�X
j�j�

Z
R

jf �m���j� gj j d� � kfkd�������R

	�X
j�j�

k gjkj��R � ���

From ������� we get

kGj�L��������R���k � inf
	�X
j�j�

�m� �j�kgjkj��R�������
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where the in�mum is taken over all admissible representations of h that satisfy �������
But since G 
 	h� we have from ������ and ������ that

kGj�L��������R���k 
 inf
	�X
j�j�

�m� �j�kgjkj��R�

where the in�mum is taken over all admissible representations of h that satisfy �������
Now given a function h represented as ������ and satisfying ������� we infer by ������

that there is a g � L������R� such that

	h�f� 


Z
R

f g d�� for all f � L��������R��

with

kgk������R 
 k	hj�L
�
�������R���k�

Then it follows� by Theorem ���� in �Rud��� p� ���� that g 
 h � � a�e�� because it is
easy to see that g� h � L��R��

Conversely� let g � L������R�� By ������� g de�nes a linear functional !g on
L��������R� such that

!g�f� 


Z
R

f g d�� for all f � L��������R��

with

kgk������R 
 k!gj�L
�
�������R���k�

Since there is a function h that can be represented as ������ and satisfying ������ for
which !g 
 	h� it follows as above that g 
 h � � a�e� �

�� Applications

As was referred in the Introduction� there is a version of the extrapolation result in
�Zyg��� Theorem XII����� �i�� p� ���� for sublinear operators� Therefore we start this
section by de�ning sublinear operator and by recalling that extrapolation result� see
�Tor��� Theorem V����� p����� or �FK��� Theorem ���� for instance�

De�nition 	��� Let �R�� ��� and �R�� ��� be measure spaces� Let T be an operator
whose domain is some linear subspace of M��R�� ��� and whose range is contained in
M�R�� ���� Then T is said to be sublinear if the relations

jT �f � g�j � jTf j� jTgj and jT ��f�j 
 j�j jTf j

hold �� � a�e on R� for all f and g in the domain of T and for all scalars ��

Theorem 	��� Suppose � is a measurable subset of IRn with �nite volume� Let � � �
and q� � ������� If A is a bounded sublinear operator in Lq���� q� � q � ��� such
that

kAfkq � c q���kfkq � q � q� � ��

then

kAfkE��
� � ckfk�� for all f � L�����

Now� by the results of Section �� the following Theorem is an obvious generalisation
of the previous one�

Theorem 	��� Let m � IN and � � Rm
� � Suppose �R�� ��� and �R�� ��� are �nite

measure spaces�
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�i� Suppose A is a bounded sublinear operator from Lq�R�� into Lq�R�� such that
either

kAfkq�R�
� c �m���q�kfkq�R�

� for all f � Lq�R���

for each q � �q����� with q� � �� or

kAfkq�R�
� c 
m���q�kfkq�R�

� for all f � Lq�R���

for each q � �q����� with q� � expm�� and m � �� Then

A � L��R�� �� L������R���

and

kAfk������R�
� ckfk��R�

� for all f � L��R��

�ii� Suppose A is a bounded sublinear operator from Lq�R�� into Lq�R�� such that
either

kAfkq�R�
� c �m� �q�kfkq�R�

� for all f � Lq�R���

for each q � �q����� with q� � �� or

kAfkq�R�
� c 
m� �q�kfkq�R�

� for all f � Lq�R���

for each q � �q����� with q� � expm�� and m � �� Then

A � L������R�� �� L��R���

and

kAfk��R�
� ckfk������R�

� for all f � L������R���

Proof� The proof is a consequence of Corollaries ���� ��� and �KJF��� Theorem �������
p� ���� �

If we take m 
 �� � 
 ����� with � � � in part �i� of the previous Theorem� we
recover Theorem ����

Now we present an extrapolation result involving the GLZ spaces L������R�� with
� � Rm

	 �

Theorem 	��� Let �R�� ��� and �R�� ��� be non�atomic �nite measure spaces� Let m �
IN� j� � � and ��� � Rm

	 � Suppose A is an operator whose domain is M��R�� ��� and
whose range is contained in M�R�� ��� such that


�i� for every possible representation of f �M��R�� ��� by f 

	�X
j�j�

fj �convergent ���

a�e� on R��� with ffjgj 	 M��R�� ���� we have
	�X
j�j�

Afj convergent �� � a�e� on

R� and the inequality

jAf j � j
	�X
j�j�

Afj j �� � a�e� on R�������

�ii� for all p � ������ and all f � Lp�R���

kAfkp�R�
� c �m� �

�

p � �
� kfkp�R�

������

where c is independent of f � p and ��

Then

kAfk������R�
� c�kfk�����	��R�

������

for all f � L�����	��R��� for some constant c� independent of f � � and ��



ON DECOMPOSITIONS IN GENERALISED LORENTZ
ZYGMUND SPACES ��

Proof� Let j� � �� Fix f � L�����	��R�� and f 

	�X
j�j�

fj � with

	�X
j�j�

�m�	��j�kfjkj��R�
� ��������

We remark that
	�X
j�j�

Afj converges �� � a�e� on R�� because by H�older�s inequality

and ����� we get

	�X
j�j�

Z
R�

jAfj j d�� � c
	�X
j�j�

�m�	��j�kfjkj��R�
�

and the rest it follows from ����� and from Theorem ���� in �Rud��� p� ����
Now� by ������ ����� and Theorem ����

kAfk������R�
� k

	�X
j�j�

Afjk������R�
� c�

	�X
j�j�

�m� �j�kAfjkj��R�

� c�

	�X
j�j�

�m� �j� �m� �
�

j� � �
�kfjkj��R�

� c�

	�X
j�j�

�m�	��j�kfjkj��R�
������

Taking the in�mum over all the decompositions of f we get ������ �

Remark 	��� In the Theorem above we only need the condition ���
� be satis�ed for
all p such that � � p � p�� for some p� � ������� because in that case we can consider
j� large enough� We could also replace ���
� by the condition

kAfkp�R�
� c �m� �

p

p� �
�kfkp�R�

�

for all p � ������ � or p � ��� p��� and for all f � Lp�R��� where c is independent of
f � p and ��

Since the Hardy
Littlewood maximal operator satis�es part �i� of the previous The

orem trivially and condition ����� with m 
 � and � 
 �� we recover the result already
known for the maximal operator� i�e�

M � L��logL�a	���� �� L��logL�a����

and

kMf jL��logL�a���k � c�kf jL
��logL�a	����k�

for all f � L��logL�a	����� where a � �� see the literature mentioned in the Introduc

tion�
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