ON DECOMPOSITIONS IN GENERALISED LORENTZ-ZYGMUND
SPACES

J. S. NEVES

ABSTRACT. Various characterisations are given of the generalised Lorentz-Zygmund
(GLZ) spaces Ly g;a(R), with p,g € (0,4c0], m € IN, @« € R™ and (R, 1) a finite
measure space. Given a measure space (R, 1) and o € R™, we obtain equivalent
representations for the (quasi-) norm of the GLZ space Log,o0;cx (R). Moreover,
when (R, 1) is a finite measure space and o € RT, we present an equivalent norm
for the space Lj 1;a(R) in terms of decompositions. We show how the equiva-
lent norms considered for Lo, co;cx (R), with (R, 1) a finite measure space, and the
decomposition norm in Li 1, (R) can be employed to get simple proofs of some
extrapolation results involving these spaces.

1. INTRODUCTION

In [EK], Edmunds and Krbec obtained some decompositions for the exponential
Orlicz space Lg,(f2), usually denoted by F(€2), with Young function ®; given by
Dy (1) = expt® for large t, where @ > 0 and £ is a measurable subset of IR" with
finite n-dimensional Lebesgue measure |2],. Without loss of generality, it was assumed
that |©2|, = 1. They showed that considering a suitable decomposition of (0, 1) into a
union of disjoint intervals {(tx,%x—1) tren it is enough to control only the blow up of the
norms || f*||L, (t4,tx_1), Where f* is the non-increasing rearrangement of f, by the same
power k=1 to have Lg, (). The proof was based on the fact that Lg, () coincides
with the Zygmund space L® (log L)~"*(Q) (see [BR80, Theorem D] or [BS88, Lemma
IV.6.2]). In Section 3, we extend this result to the generalised Lorentz-Zygmund (GLZ)
spaces L, g (R), with p,¢ € (0,400], m € IN, a € IR™, and (R, ) a finite measure
space, cf. Theorem 3.2. The method of the proof is different from, and in our opinion
easier than, that used in [EK].

In [Tri93], Triebel gave an equivalent norm for the exponential Orlicz space Lg, (£2),
where Q is a measurable subset of IR" with finite volume; see also [EGO98]. With
this equivalent norm, he proved that the embeddings id : ng/p(Q) — F,(Q) and
id : H;,L/p(Q) — Fo(Q), with 1 < p < 400, 0 < a < p’ and Q a bounded C*°-domain in
IR", are compact and obtained estimates for the approximation and entropy numbers of
those embeddings. Let us just mention that ng/p(Q) and H;,L/p(Q) are classical Besov
spaces and fractional Sobolev spaces, respectively. We refer to [Tri93] for more details.
Equivalent norms for the double exponential Orlicz space Lg,(€2), usually denoted by
EE4(§), with Young function ®5 given by ®4(t) = expexpt® for large ¢, where o > 0
and € is a measurable subset of IR" with finite volume, were obtained by Edmunds,
Gurka and Opic in [EGO98]. The proof was also based on the fact that Lg,(£2) coincides
with the GLZ space L 1), see [EGO95, Lemma 3.9]. Following the same tech-
nique as in [EGO98], we obtain in Section 4 equivalent representations for the (quasi-)
norms of the GLZ spaces Log 0. (R), with (R, 1) a measure space and a € R7”, i.e.
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a=(a,...,an) ER™, a,...,0m-1 <0and o, < 0, cf. Theorem 4.1 and its Corol-
laries. In particular, when (R, ¢) has finite measure we obtain equivalent norms for the
GLZ spaces Log oo.x (R), with a € R, extending in this way the results in [Tri93] and
[EGO98]. Still in Section 4, we give an equivalent norm for the spaces L1 1. (R), with
(R, ) a non-atomic finite measure space and a € RY, i.e. a = (a1,..., ;) € IR™,
a1,...,0m—1 > 0 and a,, > 0, in terms of decompositions. This result extends a re-
sult obtained by Edmunds and Triebel, cf. [ET96, Theorem 2, p. 72], for the spaces
Lt(log L)*(Q), with o > 0 and Q a measurable subset of IR"™ with finite volume. We
refer to [FK98, Theorem 3.4] for a different proof of this result.

In Section 5, we show how the equivalent norms obtained in Section 4 for Lo 0. (R),
with a € R™, and the decomposition norm in Ly 1,a (1), with o € R, can be employed
to get simple proofs of some extrapolation results involving these spaces. Let us remark
that we do not follow a general setting in terms of abstract extrapolation methods
considered by Jawerth and Milman, cf. [JM91] (see also [Mil94]). We mention that the
starting point of the extrapolation theory was the Theorem of Yano [Yan51] which can
be described as follows. Suppose that 7' is a bounded linear operator on L,(0,1) for
p > 1 with |[T|z,~z, = O((p—1)7%) as p | 1, for some o > 0; then these estimates
can be extrapolated to L!(log L)*(0,1) — L1(0,1); see [Zygh9, Theorem XII1.4.11 (ii),
p. 119] for a more general formulation. We refer to [Tor86, Theorem IV.5.3, p.92] where
T was supposed to be sublinear. We also refer to [FK98, Theorem 4.2] where T was
supposed to be subadditive. In [Ste70, p. 23] and [ET96, p. 74] the case was considered
when 7' is the Hardy-Littlewood maximal operator. It should be emphasised that the
decomposition approach, used in [ET96] and [FK98], skips completely the machinery
of weak type inequalities and the Marcinkiewicz interpolation Theorem, since it follows
at once from the expression of the norm in L!(log L)*(2), with a > 0. There is also a
dual statement for operators acting from L, (Ry) into L, (R ), with (Ro, o) and (R, g1)
finite measure spaces, for p close to 400, such that |||z, 1z, = O(p**) as p = +oo, for
some a > 0; then there exist positive constants A, K such that le exp(A|Tf|%) dpy < K
for each f with |f] < 1; see [Zygh9, Theorem XI1.4.11 (i), p. 119]. There is also a version
of this result for sublinear operators. We refer to Section b for more details.

2. NOTATION AND PRELIMINARIES

As usual, IR" denotes Euclidean n-dimensional space. Let (R, X, y), usually denoted
by (R, it), be a totally o-finite measure space and referred in the sequel only as a measure
space. A set F € ¥ is called an atom of (R, X, ) if u(F) > 0and FF C E, F' € ¥ implies
either u(F) = 0 or pu(E\F) = 0. If there are no atoms, then (R, X, ) is called non-
atomic. A measure space (R, pt) is called resonant if it is one of the following two types:
(1) non-atomic; (ii) completely atomic, with all atoms having equal measure. We refer to
[BS88, pp.45—51] for more details and for a different, but equivalent, definition. When
R = TR" we shall always take p to be Lebesgue measure y,,, and shall write |Q],, = 1, (£2)
for any measurable subset € of IR". The family of all extended scalar-valued (real or
complex) p-measurable functions on R will be denoted by M (R, pt); Mo(R, ) will stand
for the subset of M (R, ) consisting of all those functions which are finite p-a.e.

Definition 2.1. Let f € Mo(R, p). The distribution function py of f is defined by

(2.1) ur(A) =p{z € R |f(x)] > A}, forall X >0,
and the non-increasing rearrangement of f is the function f* defined on [0, +00) by
(2.2) F @) =inf{A>0: pue(N) <t}, forall t>0.

If (R, ) is a finite measure space, then the distribution function uy is bounded by
#(R) and so f*(t) = 0 for all t > p(R). In this case we may regard f* as a function
defined on the interval [0, u(R)); for more details we refer to [BS88].
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Definition 2.2. Two functions f € Mo(R,pu) and g € My(S,v) are said to be
equimeasurable if they have the same distribution function, i.e., if up(A) = vy(A) for
all X > 0.

Now let m € IN and & = («a1,...,am) € IR™. Let us denote by ¥ and w? the real
functions defined by

(2.3) () = ﬁl?’(t), for all t € (0,+00),
i=1
and
(2.4) wh(t) = ﬁlf‘_’l(t), for all t € [1,+00),
i=1
where g, [y, ..., Iy are non-negative functions defined on (0, +o0) by

(25)  lo(t) =1, () = 1+ [logt], L:(t) = 1 +logli_1(t), i€ {2,...,m}.

Definition 2.3 (cf. [EGO97]). Let p,q € (0,4o0], m € IN and a = (a1,...,0m) €
IR™. The generalised Lorentz-Zygmund (GLZ) space Ly, .o (R) is defined to be the set
of all functions f € My(R, pt) such that

(2.6) 1 llpgim = 177598 (0) 7 (O)llg,0,420)

is finite. Here ||.||4 0,400) stands for the usual L, (quasi-) norm over the interval

(0, +00).

We remark that in [EGO97], the space L . (R) and the quasi-norm ||.||p,q.c:r
defined above are denoted by Ly 4.0, .. o, (B) and ||.||p,g:01,... am: R, Lespectively. We use
the notation in [EGO97] only when we are considering particular cases.

Let us observe that when we consider &« = (0,...,0) in the previous Definition, we
get the Lorentz space L, ,(R) endowed with the (quasi-) norm ||.||; 4;r, Which is just
the Lebesgue space L,(R) endowed with the (quasi-) norm ||.||p;r when p=¢; if p = g,
m =1 and (R, u) = (Q, ), we get the Zygmund space LF (log L)** () endowed with
the (quasi-) norm ||.||p;ar:0-

Let us introduce some more notation, that will be needed in Section 4. Let m € IN
with m > 2. We define the numbers expq, ..., expn by

expg =1, exp; = Pi-1 g {l,...,m}.

Let a = (a1, ...,am) € IR™. Let us denote by 7 the non-negative function defined by

(2.7) yor(t) = Hﬁf‘_’l(t), for all ¢ € [expp—a, +0),
i=1
where £y, ..., ¢, are the non-negative functions defined by

Go(t) =1, t>1; 6;(t) =logli_i(t), t > expi_y, i € {1,...,m}.

We are going to need in Section 3 the following Lemma, which is very easy to prove.

Lemma 2.1. (i} Let m,k € IN. Then
L ("N = 11 (K).
(ii) Let m € Ny and k € IN. Then
In(k) <lp(k+1) <ely(k).
(i1i) Let a € IR and m, k € IN. Then for eacht € (e™* e=**1), we have the inequalities
min{1, e} 12_, (k) < 15 (1) < max{1, e} 15, (k).

m—1
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(iv) Let « € R, m € IN and k > 2. Then the inequalities
min{l,e=%} I, (k) <I2(t) <max{l,e“} > _, (k)

m—1 m—1

hold for each t € (e=k*1 e=h+2).
The following Lemma, with an obvious proof, will be used later on.

Lemma 2.2. Let k € IN and g9 > expi_1. Then

(i) 6u(0) < lla), for cach g € [eapy_1,+00);
(11) Ui (q) < el (q), for each q € [expy,+00);

(iii) I(q) < (ﬁJr 1) le(a), Jor each g € [go, +0).

By a Young function ® we mean a continuous non-negative, strictly increasing and
convex function on [0, +00) satisfying

lim %: lim L:0.
t—0t ¢ t—>+oo O(1)
Given a Young function @ and any measurable subset Q of IR", Lg(§2) will denote
the corresponding Orlicz space, i.e. the collection of functions f € Mg (2, ptp,) for which

there is a A > 0 such that fﬂ P (M) dz < 400, equipped with the Luxemburg norm

||f||q>,n=inf{/\>0:/ﬂ<l><@) dxgl}.

We refer to [Ada75, Chapter VIII] and [KJF77, Chapter III] for more details.
Let @7 and ®; be Young functions. Recall that ®; dominates ®, globally if there is
a positive constant k such that

(2.8) By (1) < By(st)

|)le.q given by

for all ¢ > 0. Similarly, ®> dominates ®1 near infinity if there are positive constants «
and tp such that (2.8) holds for all ¢ € [y, +00). Two Young functions are said to be
equivalent globally (near infinity) if each dominates the other globally (near infinity).
We have from [AdaT7h, Theorem 8.12, pp. 234-235] the following result: If ®; and ®
are equivalent globally (or near infinity and ||, < +o0), then L, (2) = Lg,(€2) and
the corresponding norms are equivalent.

Lemma 2.3 (cf. [EGO98]). Let 2 be a measurable subset of IR™ with finite volume and
let > 0. Then
(i) the space L™= (log L)~ (Q) = Loy com2(2) coincides with the Orlicz space
Lg, (), where ®1(t) = expt® for all t Za to with some tg € (0,400), and the
corresponding (quasi-) norms are equivalent;
(ii) the space L™ (loglog L)~1/*(Q) = Lo co0,—1(2) coincides with the Orlicz space
L, (), where ®5(t) = expexpt® for all ¢ Zato with some 1y € (0,+00), and the
corresponding (quasi-) norms are equivalent.

We will denote the Orlicz spaces Lg, (2) and Lg,(£2), considered in Lemma 2.3, by
Eq(2) and EFE, (L), respectively. In view of the same Lemma, we may endow these
spaces with the quasi-norms ||.||g, ) = ||~||oo,oo;—§;ﬂ and ||.||ge. (o) = ||~||oo,oo;0,—§;ﬂ~
For more details we refer to [EGO98].

Let m € IN. We denote by R} and R™ the following subsets of IR":

RY ={(a1,...,0m) ER" 1y, .. .,app_1 >0 and a,, > 0}

R™” ={(a1,...,am) ER™ tag,...,am_1 <0 and ay, <0}
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Given a Banach space X let us denote by X* its dual space.
Let jo € IN and let {A;};>;, be a sequence of Banach spaces. We denote by {1(A;)
the space of all sequences a = {a;};>;, with a; € A;, j > jo, such that

+ oo
lalliay = D llajlla, < +eo.
J=Jjo
By lo (A;) we denote the space of all sequences a = {a;};>;, with a; € A;, j > jo, for
which ||alli, (a,) = sup;s;, lla;j|la, is finite. The space co(A;) is the subspace of I (4;)
consisting of all sequences a = {a;};>;, such that
A flajlla; = 0.

By Lemma 1.11.1 in [Tri78, pp.68-69], generalised in an obvious way,
(2.9) [co(A)]™ = L(A7),

with the usual interpretation (not only isomorphic but also isometric); see [Tri78] for
more details.

For two non-negative expressions (i.e. functions or functionals) A, B we use the
symbol A < B to mean that A < ¢ B, for some positive constant ¢ independent of the
variables in the expressions A and B. If A < B and B =< A, we write A & B.

We adopt the convention that 5 = 0 and § = +oo foralla > 0. If p € [1, 4o0],
the conjugate number p’ is given by zl? + 1% =1.

3. DECOMPOSITIONS

As was said in the Introduction, the following results extend the decompositions
considered in [EK] for the exponential Orlicz spaces Fq ().

Let us assume, in this Section, that (R, u) is a finite measure space. Without loss of
generality we suppose that p(R) = 1; see Remark 3.1. In the sequel, we shall consider
the decomposition of (0, 1) into {(e™*, e‘k“)}kzl.

Theorem 3.1. Let p,q € (0,4], m € N and o« = (@1, ..., am) € R". Then for each
f €L, qa(R) we have
(i) if 0 < g < oo,

1/q
(3.1) 1l g ~ [ (e-k/pw$<k>f*<e-’“>)q]

N NgT)

1/q
(32) ~ [ (e-k/pw$<k>f*<e-k+1>)q] ;

(i) if ¢ = 400,

X
Il
b

(3.3) llpgen A sup{ e/ wl (k) (%) }
E>1

(3.4) N sup e—k/ng(k)f*(e—k+1)}.
E>2

Proof. (1) Let 0 < ¢ < +00 and suppose f € L, 5. (R). Then by Lemma 2.1 it follows
that

+o0
I e > 1y (e"“(%—é)qygj(e—kﬂ) f*(e_kﬂ))q ok
k=2
+oo . .
> CZZ (6_; wgb(k») f*(e—k)) .
k=1
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Conversely, for f € L, .« (R), we have again by Lemma 2.1

q

+oo too
I e < o> (75wt £(e™) < ea ) (75w h) 17 (7))
k=2 E—1

which gives the desired inequalities.
(i) The proof of the case ¢ = 400 is similar to the previous one. a

Let © be a measurable subset of IR”™ such that |2, = 1. By Theorem 3.1 we conclude

that
f*(e_k) N f*(e—k+1)
kl/oc > 2 kl/oc )

1fll £, ) ~ Zlili for each f € Fu(£2),

and

f*( —k) f*(e—k+1)
————— aysup ———=, for each € FEL(Q).
1 (1 +logk)t/« ,Qg log"/® k ! ()

The next Lemma, with an easy proof, will be used to prove the last result of this
Section.

fllEE. 2) R sup

Lemma 3.1. Let f € Mo(R, p), Ji = (e7%,e7#+1), k> 1. Then
(i) for each k € N we have

(3.5) el f (€™ <N Mg < eaf (75,

where c1 and cq are positive constants independent of f and k;
(ii) for each k > 2 we have

(3.6) e f (€ ) <P Mleginy < eaf* (774,

where ¢1 and cq are positive constants independent of [ and k.

Theorem 3.2. Let p,q € (0,4o0], m € N and o = (a1,...,am) € R". Let Ji =
(e7F e=**Y), k> 1, and Iy = Jy_1, k > 2. Then for each f € L, g (R) we have

(i) if 0 < g < oo,

(3.7) fllp,gsr & [

+oo 1/q
2;(-“p7“ |vnkh)]
>

1/q
(3.8) [_ (7w |u|mh)] ;

(i) if ¢ = 400,

(5.9) Il sup {e™ Wl (k) 17|, |
E>1

(3.10) A sup e_k/pwﬁ(k)||f*||k,1k}~
E>2

Proof. (1) Suppose 0 < ¢ < 400 and let f € L, ;. (R). Then by (3.1) and by (3.5), we
have

=2 k q
W1 geor = e D (75l 771,

k=1
y (3.2) and by (3.6), we also have

A2 e > @23( () 17 M)
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Conversely, for f € L, ;.o(R), by (3.2) and by (3.5), we have

AU o < csZ(e F w0 17 )

By (3.2), by Lemma 2.1 and by (3.6), we have

+oo

-2 m * 0 — d -2 m * d

1 o < a3 (75 @l th) Fe) < es Y0 (7% Wl ) 1 Ners)
k=3

k=2
which gives the desired inequalities.
(i) The proof of the case ¢ = 400 is similar to the previous one. a

Let 2 be a measurable subset of IR" such that |2],, = 1. By Theorem 3.2 we conclude
that for each f € F,(Q)

BRI BN
3.11 5 ~ k.
(310 11l 221 ki« 232 ki

The first estimate in (3.11) is given in [EK] by Corollary 2.3. The counterpart for
the spaces FF, () is given by

[ /S | i ¥
1+ log )t/ kgz]ogl/“k

A lEE. (o) )RS , forall fe EE,(Q).

Remark 3.1. If (R, pt) is a finite measure space with measure p(R), m € IN and o €
IR™, we have 97 (s) & Ve (s p(R)), for all s € (0,1). This follows from the estimates
eI 1i(s) < li(sp(R)) < el l;(s), for all s € (0,1) and i = 1,...,m where j is a positive
integer such that ¢/~ < {;(u(R)) < /.

With the previous considerations, it is easy to see that the estimates in Theorem 3.1
and Theorem 3.2 still hold, up to constants, if we replace f*(e™*) by f*(e=* u(R)), for
each k € IN, and Ji, = (e7*,e7#+1) by Jp = (e7% u(R), e %+ u(R)), for each k € IN,

respectively.
4. EQUIVALENT (QUASI-) NORMS FOR SOME GENERALISED LORENTZ-ZYGMUND
SPACES

In this Section, we are going to consider in the first part the GLZ spaces Loo,oo;a(R),
with a € R™, and in the second part the GLZ spaces L1 1,a(R), with o € R},

4.1. The GLZ spaces Lo oo.cx(R).
First we are going to recall a Lemma.

Lemma 4.1 (cf. [GO98], Lemma 5.1). Let m € IN and v > 0. Then there is a constant
¢ € (0,400) such that for all s € (0,1),

sup l;llil(q)sl/q <el2V(s).
g€[1,+c0)

With the help of the previous result, it is not difficult to prove the next Lemma.

Lemma 4.2. Let m € IN and a € R™. Let ty € (0,400). Then there is a positive
constant ¢ such that w7 (q)s*? < ¢ 9™ (s), for all s € (0,15) and all ¢ € [1,400).

The following result generalises Theorem 3.1 in [EGO98].
Theorem 4.1. Let m € IN and a € R™. Let ty € (0, +00).
(i) Let p € (0,+00]. Then for each f € Lp oc.a(R),
(41 oo & sup Wit (@) 1F Nz costo0) + sUp {EPOR (O (1)),

q€[l,+c0) to<t<+o00
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(ii) Then for each f € Log oo (R),

(4.2) | £lloo 0050 & f*(t0) +  sup W (q) ||/ gs0,t0)-
g€[1,+c0)

Proof. We follow the proof of Theorem 3.1 in [EGO98], where the case p = +00, m = 2,
a1 =0, ag < 0 and p(R) < oo with ¢g = p(R) was considered.
(i) Let tg € (0,+00) and A := B+ C where
Bi= sup wl'(@) 1Sl oy coiione) and  Ci=  sup  {tPOT (1) (1))
g€[l,400) to<t<+oo

Suppose f € L, oo (R). By Lemma 4.2 there is a constant ¢; > 0 such that for all
q € [1, +00),

oy < e sup {97(s) 57 ().

q/p+1’ 0<s<to

wa (a) 17711

Passing to the supremum over all ¢ € [1,400), we get the inequality B < ¢1 || f]|p,00.cx:R-
Hence

(4.3) A < 2max{L, e}l fllp, 0500
Conversely, suppose the right hand-side of (4.1) is finite. Fix s € (0,%y) and set ¢ =
1+ |logs|. Then B > w7 (q) 5%+%f*(5) > e_lﬁgl(s)s%f*(s). Taking the supremum
over all s € (0,tg), we obtain the inequality
B>et sup {tYP0T(t) (1)}
0<t<to
So A > e | fllp,co:cx;r, which together with (4.3) gives the estimate (4.1).
(i) Let tg € (0,400). First we prove the following estimate
(4.4) A+Br [ (to)+  sup wi(g) [/ llgs0,0)
q€[l,+00)

where

A= sup Wl (q) [[f"llg00i000) and B:= sup {97()f (1)}
g€[l,400) to<t<+oo

Suppose the right hand-side of (4.4) is finite. Since ||f*||gc0i0,t0) < 1fMlg:(0,t0)5
cf. Proposition 1V.4.2 of [BS88], and B < f*(tg), we immediately obtain the inequality
A+ B < f(to)+ sup wil(g) [ |lg;0,00)-
q€[l,+00)

Now we prove the converse inequality. Suppose that A+ B < +oo. If 1 < ¢ < ¢ then
* %_% q._

(4.5) 1 g0, < I aro0s0,0)t ™ (1 = q_l) i,

Let ¢ € [1,400). Since [;(g) < 1;(2¢) < el;(g), for all j € INg we have by (4.5), with

g1 = 2q, the following inequalities

wo (@) 1 Ngsoe0) < 1w (20) 177 M2g,00500,00) < 1 sup )wZ”(r) 11 00500,t0) -
rel[2,+o0

Therefore, passing to the supremum over all ¢ € [1,4+00), we get the inequality

(4.6) sup - wy (9) |1/ Mgy0,00) < 1 A
g€[1,+c0)

Now it easily follows from (4.6) that

S (o) + sup )w?(q) £ gs500,60) < max{er, 97, (o)} (A + B)
g€[l,+o0

and (4.4) is proved. The estimate (4.2) follows from (4.1), with p = +oo, and from
(4.4). O
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When (R, ;1) is a finite measure space the previous estimates are much nicer.

Corollary 4.1. Suppose (R, p) is a measure space such that p(R) < 4o00. Let m € IN
and o € R™.

(i) Let p € (0,+00]. Then for each f € Lp oc.a(R),

(4.7) 1fllp,coscr 2 sup wi (@) [/l S2 00ir-
q€[1,+00)
(ii) Then for each f € Log oo (R),
(4.8) |/ lleo 0000 & sup  wit(9) || lg;r-
q€[1,+00)

Proof. The results follow from the theorem with t; = p(R) and from the fact that
f*(t) =0,t > pu(R). For the part (ii) we use also Proposition I1.1.8 in [BS88]; see also
Theorem 1.8.5 in [Zie89]. O

From (ii) of Corollary 4.1 we recover the results of Theorem 3.1 in [EGO98] for the
spaces Fo(Q) and EE,(), where Q is a measurable subset of IR" with ||, < +oc0.

Corollary 4.2. Let m € IN and o € R™. Letty € (0,400). If jo € N and qo > 1 then
forall f € Log oo.ax(R),

(4.9) 1 flloo,coiesr m [ (to) + sup  wi (7) 117 lj500,00)
JEN,G>jo

(4.10) ~ f(to)+ sup wi (@) 17 g0,
q€[go0,400)

Proof. We follow the proof of Corollary 3.2 in [EGO98], where the case m = 2, oy = 0,
ay < 0 and p(R) < +oo with tg = p(R) was proved. For f € Log oo (R), jo € IN and
qo > 1 we denote

Sl(f) = f*(tO)‘i‘ sup w?(q) ||f*||q;(0,to)a
q€[l,+c0)

So(f) = [+ sup 2 (a) 60N Naso,te)s
q€[l,+c0)

SB(f) = f*(tO)‘i‘ sup w?(q) ||f*||q;(0,to)a
q€[g0,+00)

oi(f) = )+ sup W) I Ni0,00)
JEN5>jo

oo(f) = o)+ sup W) 6 o),
JEN5>jo

os(f) = f)+  sup w2 () 10,00

JEN,j>[go]+1

where [gg] denotes the integer part of ¢q.
(1) Let tg € (0,40), jo € N and f € Lo, 00,0 (R). First we prove that
110 00;06m & 7 (t0) + sup — wg' (5) 1157 M5500,0) -
JEN,G>jo
If ¢ € [1,400), we put j = max{jo,[q] + 1} and choose n € IN such that e"~! > jg.
Then
J <ol +1) <jog < e"Hg+1) <"l < ey
and hence
leo1(d) < e™ly_a1(q), k=2,...,m.
Therefore

(4.11) erleatten)y(g) < wil'(j)-

(a4
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Since j > [¢] + 1 > ¢, we get by Holder’s inequality together with (4.11) the inequality
m -1 * myNg—L1/3 px
()5 Moo < el ()15 I e
where ¢ = e~(@1F+am) 5 1 and hence
(4.12) Sa(f) < caa(f).

It is easy to see that S1(f) ~ Sa2(f), o1(f) ~ o2(f), and since o1(f) < S1(f) we have,
together with (4.12), the estimates

(4.13) o1(f) < 51(f) m S2(f) < coa(f) = ou(f).

So (4.9) it follows from (4.2) and (4.13).
(ii) Let tg € (0,400), g0 > 1 and f € Log oo:x (R). From (4.2) it follows that

(4.14) Ss(f) < S1(f) ~ || fleo 00,00,R-

Since o3(f) = o1(f) if jo = [qo] + 1, we have by (4.9)

(4.15) 1/ lloo,c0sc;r A a3(f) < S3(f)-

Therefore, by (4.14) and (4.15) we get (4.10) and the proof is finished. O

When (R, p) is a measure space of finite measure we obtain simple equivalent norms.

Corollary 4.3. Suppose (R, p) is a measure space such that p(R) < 4o00. Let m € IN
and a € R7”. If jo € IN and qo > 1 then for all f € Lo oo.a(R),

(4.16) 1 lloo,cosqir A~ sup Wit (5) [1flr
JEN,G>jo
(4.17) ~  sup wi(q) Ifllgr-
q€[go,+o0)
Proof. The results follow from Corollary 4.2 with t; = p(R) and Proposition I1.1.8 in
[BS88]; see also Theorem 1.8.5 in [Zie89]. O

If we consider m = 1, a; < 0 and © a measurable subset of IR" with |Q], < 40 in
the above Corollary we recover part (i) of Corollary 3.2 in [EGO98].

Corollary 4.4. Let m € IN, m > 2 and a € R™. Let tg € (0,+00). If jo € IN,
Jo > [expm—s] + 1 and qo > expm_o then for all f € Lo oo:a(R),

(4.18) I fllcocosasr & f(to)+  sup 2 () I1Fj50.00)
JEN,j>jo

(4.19) ~ [t + sup 2 (g) 1 g0,
q€[go,+00)

Proof. (i) Let jo € IN, jo > [expm—2]+1. Since jy > expm_2, it follows from (i) and (iii)
of Lemma 2.2 that, for each k € {1,...,m— 1}, i (j) ~ lx(j), for all j > j;. Therefore,
the estimate (4.18) follows from (4.9).

(i) Let go > expm—o. Then for k = 1,...,m — 1, the estimate £;(q) =~ l;(q), for all
q > qo, follows from (i) and (iii) of Lemma 2.2. Therefore, the estimate (4.19) follows
from (4.10). O

Corollary 4.5. Suppose (R, jt) is a measure space such that p(R) < +oo. Let m € IN,
m>2and a € R™. If jo € N, jo > [expm—2] + 1 and qo > expm—2 then for all
f S Loo,oo;a(R)7

(4.20) | flleo,cocr & sup 2 (5) 1 flljm
JEN,j 2o
(4.21) ~  sup . () 1fllgr-

q€[q0,+00)
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Proof. The results follow from Corollary 4.4 with t5 = p(R) and Proposition I1.1.8 in
[BS88]; see also Theorem 1.8.5 in [Zie89]. O

If we consider m = 2, a3 = 0, as < 0, and £ a measurable subset of IR" with
||, < 400 in the above Corollary we recover part (ii) of Corollary 3.2 in [EGO98].

4.2. The GLZ spaces L 1,a(R).

Let us assume, in this Subsection, that (R, u) is a finite measure. Again, without
loss of generality we suppose that u(R) = 1. Let m € IN and a € R'. Let us con-
sider the spaces L1 1.a(R) and Lo, c0;—x (R) endowed with ||.|[11.c:r and ||.||ec,00— R,
respectively.

The triangle inequality for ||.||1 1,a:r follows immediately by the property,

[ s+ < |

whenever ¢ is a non-negative decreasing function on (0, 1), cf. [Lor51, p. 38] or [BR&0,
p.23].
Let us introduce the functional ||f|/(co coi—a:r) = sup 97, (¢)f*"(t). Then by

0<i<1
Lemma 3.2 in [EGO97], we have

t

o(s)f™(s)ds —1—/0 p(s)g™(s)ds, 0 <t <1,

[1£lloo,00-atsr < I fll(00,00,-ctsr) 11 Flloo c0i-cvirs

for all f € Leo,co;—a(R). The triangle inequality for ||.||(co,c0;—cx;r) it follows from the
sub-additivity of f +— f** cf. Theorem I11.3.4 in [BS88].

Before we give the next result, we refer to [BS88] for the definitions of mutually
associate and rearrangement-invariant Banach function spaces. Given a Banach function
space X let us denote by X' its assoclate space.

Lemma 4.3. Let m € IN and o« € R . If (R, ) is a resonant measure space, then
X =(I1a(R) |l veur)
and
Y = (Loo,coi—a(R), || (00,00- 7))

are rearrangement-invariant Banach function spaces and they are mutually associate
(up to equivalence of norms).

Proof. There 1s no difficulty in verifying that X and Y are Banach function spaces and
the rearrangement invariance is obvious, since two equimeasurable functions have the
same non-increasing rearrangement.

Now we are going to prove that X and Y are mutually associate. We follow the proof
of Theorem IV.6.5 in [BS88] and the proof of Lemma 3.4 in [EGO97].

Suppose ¢ € Y. Then for any f € X with ||f]|x < 1, we have by the Hardy-Littlewood
inequality, cf. Theorem I1.2.2 in [BS88],

/legldu < /Of*(t)g*(t) dt < sup {g™ ()97, (O fllx = llglly [ f1lx-

0<t<1

Hence taking the supremum over all f € X with ||f||x < 1, we get

(4.22) lgllxr = sup /R Fal du: e X|If1x < 1} < llglly.

To establish an inequality reverse to (4.22), it is sufficient by the Luxemburg repre-
sentation Theorem (see [BS88, Theorem I11.4.10, p. 62]) to do so for the measure space
(IR"',ul) and functions ¢ in IRT for which ¢ = g*. Suppose g belongs to the associate
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space X' of X, and also under the previous conditions, then by Hdolder’s inequality, cf.
Corollary 11.4.5 in [BS88], for 0 < ¢ < 1,

1
tg**(t)Z/O X[o,1(5)97 (s) ds < [Ixpo,allx[lgllx-

Since
1 ¢
lIxo,0llx :/ X[0,:1(5)V% (5) dS:/ Rl (s) ds o~ R,
0 0
we get
(4.23) llglly 3 Mgl

The estimates (4.22) and (4.23) together show that Y is equivalent to the associate of
X and hence, by the Lorentz-Luxemburg Theorem, cf. Theorem 1.2.7 in [BS88], the
spaces X and Y are mutually associate. a

Proposition 4.1. Suppose (R,p) is a non-atomic measure space. Let m € IN and
a € R™”. Then, up to equivalence of norms,

(4.24) (L2 005 (R)" = Li,1;-ax(R),
where LY (R) is the completion of Log(R) in Loo oo (R).

00,00; X
Proof. We apply Theorem I1.5.5 in [BS88, pp. 67-68] to the space X = Log oo:ax(R).

It is easy to see that 1im+ ¢x(t) =0, where ¢x is the fundamental function of X, see
t—0

[BS88, p. 65]. Therefore, by Theorem I1.5.5 in [BS88], (X3)* = X’. But by Lemma 4.3,
X' coincides with L1 1._«(R) up to equivalence of norms and, by Proposition 1.3.10 in
[BS88, p. 17], X, coincides with the space L° (R). d

00,00; X

Let jo,m € IN and a € R”. We denote by ¢§(L;(R)) the subspace of ¢o(L;(R))
which consists of all elements {F;};>;, of eo(L;(R)) with F; = w2(j) f, for all j > jo,
where f € Log oo (R). In what follows, and according to Corollary 4.3, we consider
the space Log oo;ax(R) endowed with the norm

1% ooz = sup o (4) [1-llj5-
JEN,j > 3o
Proposition 4.2. Let jo,m € IN and o« € R™. Then

L cosa(R) = {f € Loscosa(R) + 1imw i (7) || flj;r = 0}
J—+oo
and (Lgoyoo;a(R), ||||d) is isometric to (cj(L;(R)), ||~||l<x,(Lj(R)))~
Proof. If f € L? (R), the results follow easily.

00,00; X

Conversely, suppose f € Lo co:a(R) with lim w'(j)||f]lj;rg = 0. Let € > 0. Then
J—+oo
there is j1 € IN, with j; > jo, such that for all j > j; we have the inequality

my - €

(4.25) wao DIFllir < 5
Since f € Logoo:ax(R), f is finite u — a.e. For each n € IN let us consider the set
R, ={z € R:|f(x)| > n}. Now we introduce a sequence {f, }neN in Leo (R) by fn(z) =
f(z) if £ € R\R,, and f,(z) = 0 otherwise. Then, for each n € IN, we have by (4.25)

T m(; , E_m , €
@20) = fll an < s TGS, + 5 =R B n, + 5.
Now .

lwi (k) £l e, = Il (w3 (B).)" xR, s

Let us consider, for each n € IN, a function defined y — a.e. on R by

gn = (@ (R F)* xR, -
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We note that for all n € IN, |gn| <k, p—a.e on R, where h = (wgl(k)|f|)k , p—a.e

on R, is a function in Ly (R). Since lir_lr_l Xr, = 0, p—a.e. it follows from the Lebesgue
n——+00

dominated convergence Theorem that lir_lr_l lw™ (k) f|%. z. = 0. Hence, there is ng € IN
n—4oo e
such that

(4.27) wi () £k, < %, for each n > ng.
Therefore, from (4.26) and (4.27), we get lir_lr_l If = Fall o ce.r = 0, which shows that
n—+o00 R
f € Lgo,oo,a(R)
Now we can define a linear mapping H from Lgo,oo;a(R) onto ¢§(L;(R)) by

H(f) ={wl () f}izjo, forall fe Ll . aR)

We also have ||H (f)l[c:(z;r) = ||f||colo,oo;a;R’ for all f € Lgo,oo;a(R)’ and the proof is
finished. d

The next result gives an equivalent norm for the GLZ spaces L1 1.a(R), with « € R,
in terms of decompositions.

Theorem 4.2. Suppose (R, ) is a non-atomic measure space. Let m € IN and o €
RTY. Let jo € IN with jo > 2. Then L1 1,a(R) is the set of all measurable functions
g : R — C which can be represented as

+oo
(4.28) g= Z gj,

J=Jjo

with g; a measurable function on R that belongs to L;/(R), for each j > jo, such that

+oo
(4.29) > W Dllgsllyr < oo

J=Jjo
The infimum of the expression (4.29) taken over all admissible representations (4.28)
is an equivalent norm on L1 1.a(R)

Proof. Let jo € IN. Let us consider a measurable function A : R — C that can be
represented as

+oo
(4.30) =3y,

J=Jjo

with g; a measurable function on R that belongs to L;:(R), for each j > jy, such that

+oo
> Wl ()lgslling < +oo

Jj=jo
and let us define
(4.31) Dy (f) :/ hf du, forall fe Lgoyoo;_a(R),
R
Then @ € (LY ;- (R))* and
+o0
(4.32) 194 (L% oo - (R) Nl < inf D @l (Dlgilliir,

J=Jjo
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where the infimum is taken over all admissible representations (4.30). In fact, for all
ferl o~ (1), we have by Theorem 1.27 in [Rud86, p.22] and by Hélder’s inequality,
the follovvmg

|[@n(f legylllelfIIyR< [111% o aRZw sl r-

J=Jo J=Jjo

Thus, ® is a bounded linear functional on LY, ., o (R) (the linearity of ®, is obvious)
such that

[[Pn] (L2 oo - (R)7II < Zw (D115

J=Jjo

and we get (4.32).

Now we follow the reasoning in the proof of Theorem 2.6.2/2 in [ET96, pp. 72-74].
Let G € (LY, . (R))*. Since LY, o, _q(R) is isometric to ¢§(L;(R)), cf. Proposition
42 GoH 'e (CO(L'(R))) , Where H is the isometry considered in the referred propo-

——

sition. By Hahn-Banach theorem, there exists a bounded linear functional G o H=1 on
co(L;(R)), which is an extension of G o H™! to ¢o(L;(R)) and has the same norm

1G o H=1(eo(Li (R))"|| = IG o H™|(c3(L; (R)))" -

But by (2.9), Go H-1 can be identified with an element {éj}iju € Li((L;(R))") such
that

(433) |G o H (ch(L; (R))Il = 1IG o H="|(eo(L; (R))|| = Z 1GH1(L; (R))"].

J=Jjo

Since each éj can be identified with a §; € L;/(R) by
Gi(f) = / Gi [du, forall fe Li(R),
R

with ||(~}]|(L](R))*|| = ||4;|;" r, it follows from (4.33) that

(4.34) IGHLSs oo (R) I = [IG o HH|(e5( )l = legyllyR

J=Jjo

Using Theorem 1.38 in [Rud86, p. 29] we get

+o0
Z@j(wTa(j)f)Z/Rhfdﬂ, forall f €12 . w(R).
ji=jo

with
+ oo
h=> g; and g; =g (j), i > jo,
J=jo
because, for each f € LY, ., _q(R),

+ oo

3 / o™ sl A < I e S N5 lln < 4o,
j=jo j=jo

From (4.34), we get

(4.35) IGI(LY o (R))] > Hlfzw Dl g

J=Jjo
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where the infimum is taken over all admissible representations of h that satisfy (4.29).
But since G = ®p,, we have from (4.32) and (4.35) that

+oo
G orma(R)Il = inf >~ w ()llg; 0.k,
J=Jjo
where the infimum is taken over all admissible representations of h that satisfy (4.29).

Now given a function h represented as (4.28) and satisfying (4.29), we infer by (4.24)
that there is a ¢ € L1 1. (R) such that

@h(f):/ng dp, forall fe LIl . o(R),

with
g/l 1500r & 1A (L2 aorma (R))7].
Then it follows, by Theorem 1.39 in [Rud86, p. 30], that ¢ = h p — a.e., because it is

easy to see that g, h € L1(R).
Conversely, let ¢ € Li1.«(R). By (4.24), g defines a linear functional Ay, on

Lgo,oo;—a(R) such that
Ay(f) :/ fodu, forall feLl . o(R),
R
with

19111 10 2 1A (Lo oo (R))II-

Since there is a function A that can be represented as (4.28) and satisfying (4.29) for
which A, = @, it follows as above that g = h u — a.e. a

5. APPLICATIONS

As was referred in the Introduction, there is a version of the extrapolation result in
[Zygh9, Theorem XIT.4.11 (i), p. 119] for sublinear operators. Therefore we start this
section by defining sublinear operator and by recalling that extrapolation result; see
[Tor86, Theorem V.3.3, p.124] or [FK98, Theorem 4.1] for instance.

Definition 5.1. Let (Rg, pto) and (Ry, 1) be measure spaces. Let T be an operator
whose domain is some linear subspace of Mo(Ro, po) and whose range is contained in
M(Ry, p11). Then T is said to be sublinear if the relations

T(f+ ) <[Tf[+|Tgl and |TAf)]| = AT
hold 11 — a.e on Ry for all f and g in the domain of T' and for all scalars A.
Theorem 5.1. Suppose £ is a measurable subset of IR™ with finite volume. Let a > 0

and qp € [1,400). If A is a bounded sublinear operator in Lqy(2), qo < ¢ < 400, such
that

1Aflg < e g fllg, 0> q0 > 1,
then
Afl B () < ellfllos, for all f € Lo ().

Now, by the results of Section 4, the following Theorem is an obvious generalisation
of the previous one.

Theorem 5.2. Let m € N and o« € R™. Suppose (R, po) and (Ry, p1) are finite
measure spaces.
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(i) Suppose A is a bounded sublinear operator from Lq(Ry) into Ly(R1) such that
etther

1A lgry < e W@ fllgiro,  for all [ € Lq(Ro),

for each q € [qo, +00) with qo > 1, or
A4S lgir: < V2ol llgire, for all f € Lq(Ro),

for each q € [qo, +00) with qp > expm—_2 and m > 2. Then
A Loo(Ro) — Log oo (R1),

and

1Af oo 0006, < €l fllooiry, for all f € Loo(Ro)

(ii) Suppose A is a bounded sublinear operator from Lq(Rg) into Ly(R1) such that

etther

IAS lgir,y < cwg? (@) fllgre, for all f € Lq(Ro),
for each q € [qo, +00) with qo > 1, or

1A lgry < e va (DNf gy, for all f € Lq(Ro),

for each q € [qo, +00) with qp > expm—_2 and m > 2. Then
A Lo co.x(Ro) — Loo (R1),

and
[Aflloory < ellflloo,cosq;re, for all € Loo cosa(Ro).

Proof. The proof is a consequence of Corollaries 4.3, 4.5 and [KJF77, Theorem 2.11.4,
p. 84]. O

If we take m = 1, &« = —1/c, with & > 0 in part (i) of the previous Theorem, we
recover Theorem 5.1.

Now we present an extrapolation result involving the GLZ spaces L1 1. (R), with
a € RY.

Theorem 5.3. Let (R, pto) and (R, 1) be non-atomic finite measure spaces. Let m €
IN, jo > 2 and o, 3 € R?. Suppose A is an operator whose domain is Mo(Ro, pto) and
whose range is contained in M(Ry, 1) such that:

+ oo
(i) for every possible representation of f € My(Ru, pto) by f = Z f; (convergent po-
J=Jjo
+ oo
a.e. on Ry), with {f;}; C Mo (Ro, po), we have Z Af; convergent pq — a.e. on
J=Jjo
Ry and the inequality
+ oo
(5.1) |Af|§|ZAf]| 11— a.e. on Ry;
J=Jjo
(i) for all p € (1,400) and all f € L,(Ro),
m, 1
(5.2) A4S sy < € wj (p—_ ) 1F 5o
where ¢ 1s independent of f, p and 3.
Then
(5.3) 1AL sosr, < NI B,

forall f € L1,1;a+B(R0)f for some constant ¢’ independent of f, o and 3.
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+oo
Proof. Let jo > 2. Fix f € Ly, o, g(Ro) and f = Z fj, with

J=Jjo

(5.4) Z Wa+ﬁ Il Ry < 400,

J=Jjo

+oo
We remark that Z Af; converges p; — a.e. on Ry, because by Holder’s inequality
J=Jjo
and (5.2) we get

+oo
Z/ AR di < S s Dlm.

J=Jo J=Jjo

and the rest it follows from (5.4) and from Theorem 1.38 in [Rud86, p. 29].
Now, by (5.1), (5.2) and Theorem 4.2,

IAS esr, < | Z Afill e, <@ Z wa (DAL |78
J=Jjo J=jo
< CZZW )HfJHJ’Ro
J=Jjo
(5.5) < e ZWOH-@ M illir zo-
J=Jjo
Taking the infimum over all the decompositions of f we get (5.3). a

Remark 5.1. In the Theorem above we only need the condition (5.2) be satisfied for
all p such that 1 < p < py, for some py € (1,400), because in that case we can consider
Jo large enough. We could also replace (5.2) by the condition

A llpsr, < ewps (p DI llpira

forallp € (1,400) (orp € (1,po]) and for all f € L,(Ry), where ¢ is independent of
f,pand B.

Since the Hardy-Littlewood maximal operator satisfies part (i) of the previous The-
orem trivially and condition (5.2) with m =1 and 8 = 1, we recover the result already
known for the maximal operator, i.e.

M : L'(log L)**H(Q) — L'(log L)*(Q),
and
M fIL" (log L)* (Q)]| < e2||fIL" (log L) ()],
for all f € L'(log L)*T(Q2), where a > 0; see the literature mentioned in the Introduc-

tion.
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