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Abstract

We show that the diagonal Padé approximants methods, both for computing
the principal logarithm of matrices belonging to the Lie group S E'(n, IR) of special
Euclidean motions in IR” and to compute the matrix exponential of elements in
the corresponding Lie algebra se(n, R), are structure preserving. Also, for the
particular cases when n = 2,3 we present an alternative closed form to compute
the principal logarithm. These low dimensional Lie groups play an important
role in the kinematic motion of many mechanical systems and, for that reason,
the results presented here have immediate applications in robotics.
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1 Introduction

It is well known that under some spectral conditions any invertible real matrix has a
real logarithm (Culver, [3]). Lately, there has been an increasing interest in developing
computational techniques for real logarithms of real matrices, the most significant work
in this area being Kenney and Laub [13], [14] and [15] and Dieci, Morini and Papini
[7]. An important focus of recent work is on developing approximating methods for
matrix Lie groups that are structure preserving, in the sense that they produce a
matrix in the corresponding Lie algebra. For instance, Dieci [6], showed that some
of the methods already developed, when applied to an orthogonal matrix, respectively
symplectic matrix, always produce a real logarithm that is skewsymmetric, respectively
hamiltonian. Cardoso and Silva Leite [4] extended the results of Dieci to a much vaster
class of Lie groups. This article continues in the same direction and the main objective
is to show that the Padé approximants method is structure preserving for the Lie group
of special Euclidean motions in IR”. We also present closed forms for computing the
real logarithm for the special cases when n = 2,3. Our motivation comes from the
importance that these Lie groups play in applications to Engineering.

We now introduce some notation that will be used throughout the whole paper.

Let gl(n,IR) denote the real vector space consisting of all n x n matrices with real
entries. gl(n,R) equipped with the commutator operation (A, B) - AB— BA, forms
a Lie algebra, which is the Lie algebra of the Lie group G'L(n,IR) consisting of all
invertible matrices in gl(n,IR). The n x n identity matrix will be denoted by I. Details
about the theory of matrix Lie groups and corresponding Lie algebras may be found
in Sattinger and Weaver [19]. Now, the rotation group in IR™ may be defined as

SO(n,R) = {X € GL(n,R): XTX =1 A det(X) =1}
and the special group of Fuclidean motions in R™ by

SE(n,IR):H]j H : ReSO(n,IR)/\vEIR“”}.

Both, SO(n,R) and SE(n,R) are Lie groups with corresponding Lie algebras de-
fined respectively by

so(n,R) = {A € gl(n,R) : AT = —A}

and

se(n,R) = {[ i 8 ] : S eso(n,R)yAue€ |R1X”}.

One important issue in the control of mechanical systems it that of path planning
trajectories. Park and Ravani [17] and Crouch, Kun and Silva Leite [5] generalized the
classical De Casteljau algorithm for constructing Bézier curves on Lie groups. For the
classical algorithm see, for instance, Farin [9]. It turns out that the implementation
of the De Casteljau algorithm on Lie groups depends on sucessive computations of
matrix logarithms and exponentials. Since displacements of a rigid body form a Lie



group, these interpolation techniques may be an efficient way to path planning. In
this context the Lie group of special Euclidean motions in IR", when n = 2,3, plays an
important role. For instance, the motion (at every instant of time) of a unicycle which
rolls without slipping on a plane, is described by a matrix

X(t) = [ 0 1 ] € SE(2,R),

where z(t) € R'™? describes the position at time ¢ of the center of mass of the unicycle,
with respect to an orthonormal fixed frame in the plane, and A(t) € SO(2, R) describes
its orientation at time ¢, with respect to the same inertial frame.

Similarly, the kinematic motion of an autonomous underwater vehicle is described
by a matrix

X(1) = [ 0 1 ] € SE(3,R),

where z(t) € R'? describes the position, at time ¢, of the center of mass of the vehicle
in 3-space and A(t) € SO(3,IR) describes its orientation at time ¢, with respect to an
inertial frame.

The organization of the paper is as follows. We start with some basics about
logarithms of matrices and show that the principal logarithm of elements in SFE(n, R)
belong to the corresponding Lie algebra. Section 3 is devoted to show that the Padé
approximants methods for computing the principal logarithm is structure preserving
for the special Euclidean group. We also prove a dual result for the exponential of
elements in the Lie algebra se(n, R). An algorithm to compute the principal logarithm
of a matrix in SFE(n,IR) is included. Finally we present closed forms for the principal

logarithm of elements in SE(2,R) and SFE(3,IR).

2 The principal logarithm in SE(n, R)

Consider the matrix equation e* = T', where T is a given matrix belonging to the
general linear Lie group G'L(n,IR). All solutions X of this equation, not necessarily
real, are called logarithms of T. It turns out however, (see, for instance, Culver [3]
or Horn and Johnson [11]), that if the spectrum of T, denoted by o(T'), does not
intersect IR™, then T has a unique real logarithm whose spectrum lies in the strip
{z € C:—m < Im(z) <r}. This logarithm is called the principal logarithm of T and
will be denoted by Log(T). It also happens that if | — T'|| < 1, for any matrix norm

|||, then the power series 22, ﬁ%ﬁ converges to the principal logarithm of 7. So,

it makes sense to write

Log(T) = i %, |l -T| < 1. (1)

k=1

We also recall a result about matrix square roots, namely that if a real matrix
T satisfies o(T) N IRy = B, then there exists a unique real square root of 7" having



eigenvalues with positive real part (see, for instance, De Prima and Johnson [8]). This
square root of T" will be the only one used along the paper and will be denoted by T%,
without any further reference. In the particular situation when

R 0
T = [ . 1]ESE(n,IR),

then )
1 Rz 0
T7 — ,
Lt 1
and using the fact that R? € SO(n,R) whenever R € SO(n,IR), we conclude that
Tz € SE(n,R).
The next result stresses the importance of the principal logarithm of a matrix

belonging to the Lie group SE(n, R).
Theorem 2.1 IfT € SE(n,R) and o(T)NIR™ =0 then Log(T) € se(n,R).

Proof - We first note that, as proved in Dieci [6], the analogue of this theorem, for
the case when the Lie group SE(n,IR) is replaced by the rotation group SO(n,R), is
also true. (For a generalization to other Lie groups see also Cardoso and Silva Leite
[4]). If || = T|| < 1 the theorem follows by applying this result after having used the
series expansion of Log(T'). On the other hand, if ||/ — T|| > 1, there exists a positive

integer k such that ||I — T2Lk|| < 1, where T3 is obtained from T after k sucessive
square roots. So, Log(T %) € se(n,R). Now, since Log(T) = 2 Log(T?" ), (see Kenney
and Laub [14]), it follows that Log(T') € se(n, R).

O

3 Padé approximants method

We refer to Baker [1] and Baker and Graves-Morris [2] for more details concerning
to general theory of Padé approximants. Here we recall how to obtain the diagonal
Padé approximants of a scalar function.

Assume that f(z) = Y22, ¢;a' is the MacLaurin series of f and that R,,.,.(z) =
SAZ(%, with @, (0) = 1, is the (m,m) diagonal Padé approximant of f. Then, one may
write

_ P, () _ Gt a4t apa” @)
Qm(x) L+bix+-+bypam’

where the constants b;, : = 1,---,m, are uniquely determined by solving the system

of linear algebraic equations A; X = By, with

Ry ()

I B by Crmt1

€2 C3 Cq 0 Ol b1 Cm+2

A= | 6 Cq ¢t Oy | X = b2 , By =— | ¢m+3
| ¢m Cm+1 Cmy2 7 Com-1 | L by ] | Com |




and the a;’s, 1 = 1,---,m, are then obtained through the following formulas:

ag = (g, '
i .
a; = ci+2k:1 bkci_k, 1 = 1,---,m.

(3)

The following result will be essencial to prove the main result in this section.

Lemma 3.1 If f is an odd function, then the coefficients of the diagonal Padé approx-
imants of f satisfy: az; = byiyr = 0, V.

Proof - If f is odd, then the even coefficients c¢y; in its MacLaurin series vanish. In
this situation, a simple manipulation with properties of determinants will show that
any matrix obtained from A; above, by replacing each of its even columns by column
By, will have zero determinant. It then follows from applying Cramer’s rule to the
system A1 X = By that by;11 = 0,Vi. Replacing this in (3) we also get az; = 0, Vi.
O
It is well known that square Padé approximants R,,.,(A) of the matrix function
f(A) = Log(I — A) may be used to approximate the principal logarithm of any matrix
T =1— Awith [ = T| < 1. It turns out that some important simplifications take
place if instead of using the (m,m) diagonal Padé approximant of f(A) = Log(I — A)
one uses the (m,m) diagonal Padé approximant of ¢g(B) = Log[(I + B)(I — B)™],
where B = A(A — 21)~'. We denote this approximant by S,.,.(B). These two Padé
approximants are related through the identity

R (A) = Sy [A(A — 21)71]. (4)

The following result shows the advantage of working with S,,,,[A(A — 27)7'] instead
of R,.m(A) as an approximation for Log(I —1').

Lemma 3.2 The Padé approzimant S,m(X) of the matriz function g(X) = Log[(I +
X)(I — X))~ is of the form g(X) = o(X)[B(X)]™, where a is a polynomial function
of the odd powers of X and 3 is a polynomial function of the even powers of X, both
of degree < m.

Proof - The result is an immediate consequence of the lemma 3.1, applied to the
odd function g(x) = LogiEE.

O
We are now ready to present the main result.

Theorem 3.3 If T'€ SE(n,R) and || —T|| <1, then R,,,,,({ = T) € se(n,R).

Proof - Let A=1—T and B = A(A —2I)~". Due to the relation (4), we just have
to prove that S, (B) belongs to se(n,R). We first show that if T € SFE(n,R), then
B € se(n,R). We then proceed to show that se(n,IR) is invariant under Sy, which
will conclude the proof.

A simple calculation shows that if



where R € SO(n,R) and v € R™", then

o[ ]

(Note that, since we are assuming that ||/ — T'|| < 1, this implies p({ — T') < 1, where
p(X) denotes the spectrum radius of X, and so R+ [ is always invertible). It turns
out however that, since RIT R = I, (I — R)(R+I)~! € so(n,R) and, as a consequence,
B € se(n,IR). Now, let us prove that if B € se(n,IR) so does Sy (B). Assume that

S 0
B =
for some n x n skewsymmetric matrix S and some u € IR'*". Now, applying the last
lemma together with the fact that all odd powers of a skewsymmetric matrix are still

skewsymmetric, while its even powers are symmetric, it is an easy exercise to check
that a(B) € se(n, R), say

oo
amy=| ¢ 0, 8
with CT = —C and = € R"™" and that
Vool
ﬁ(B) - i w ’

where V is symmetric and invertible, w € R and ¢ is a nonzero real number. Since

V—l

=] Ly v )

o= O

it follows from (5) and (6) that

-1

S ()= BB = | ©

Now, since ' and V' are polynomials in S, we have CV = V(C, CV™' = V~I(C

and also, using the skewsymmetry of €' and the symmetry of V7!, it follows that
CV~! € so(n,R) and therefore S,,,,(B) € se(n,R), as required.

O

Using this theorem and the explanation during its proof, together with the theorem

in the last section and the fact that R,.,,(I —T) ~ Log(T), it is clear that when T

satisfies the norm condition ||/ —T'|| < 1, an efficient way to find the principal logarithm

of T € SE(n,R), is by computing S,..,(B), where B = (I — T)(—I —T)~*. In the

case when ||[I —T| > 1, and o(T) N IRy = @, one combines, in the usual way, the

previous method with the so called inverse squaring and scaling technique. For that

1
find an nonnegative integer k& such that the matrix T'2% satisfies the norm assumptions



of the last theorem, then apply the Padé approximants method to obtain Log(Tz%k)
and finally recover Log(T') using the identity Log(T) = ZkLog(Tfk).

Note that when we apply the inverse squaring and scaling technique to matrices in
SE(n,R) no structure is lost. In fact, as we have already pointed out at the end of
the last section, T% is always in SFE(n,IR) whenever T' is. So, theorem 3.3 guarantees
that the approximating value of Log(T%) belongs to se(n, IR) and, since this is a vector
space, rescaling is not going to change the structure of the final result.

We now summarize the main steps for computing the principal logarithm of T' €
SE(n,R). Although the accuracy of the Padé approximation increases with m, it
has been shown by Kenney and Laub [13], that Rgs(/ — T') is already within 107'#
of Log(T), whenever ||[I — T < 0.25. So, having in mind implementations of this
algorithm, we work bellow with the (8,8) diagonal Padé approximant.

According to the discussion presented before the statement of the lemma 3.2, we
use the Padé approximant Sgg instead of Rgg in the next algorithm. Using the Derive
program to compute Sgg, one obtains

Sss(A) = a(A)[B(A)],

where

a(A) = 2(225225A — 345345A% + 14745545 — 15159A7)
B(A) = 35(64351 — 12012A% + 6930 A* — 1260A° + 35A%).

Algorithm

Suppose that T € SE(n,R) and o(T)NIR™ = (.
1. Compute k successive square roots of T until ||1 — T2Lk|| < 0.25;
9. Take A:= [ — T% and B := A(A =20~

3. Compute Sgs(B) = o B)[3(B)]~" where a and 3 are given by (8).

.

. Approximate Log(T) using the following relation

Log(T) ~ 2" Sgs(B) € se(n, R).

For the sake of completeness we include here a result which is the dual of theorem
3.3, in the sense that it provides a stable method to compute the exponential of a
matrix in the Lie algebra se(n,IR).

One the most effective ways to compute the exponential of a matrix (see, for in-
stance, Moler and Van Loan [16]), is to use the method of Padé approximants together
with scaling and squaring techniques. This consists in approximating the exponential,
e, of a matrix A, by

A (R () (9)

7



where R,,,,(X) is the (m,m) diagonal Padé approximant of ¢X and j is a nonnegative
integer such that ||2AJ|| < 1. It happens that the exponential of a matrix in se(n, IR)
belongs to the corresponding Lie group SF(n,IR) and so it is important to be able to
guarantee that the procedure just described, to approximate the exponential, always
produces a matrix in that Lie group, no matter what order of the Padé approximant
is taken. The next theorem ensures that is always the case, and the proof is based on
a similar result for the orthogonal group.

Theorem 3.4 If A € se(n,R), then R,,(A) € SE(n,R).
Proof - The (m,m) diagonal Padé approximant of ¢ is given by
R (A) = Qu(A)[Qu(=A)] 7,
where Q,,(A) is a polynomial of degree m in A, the coefficient of A* being

_ (2m —E)Im! L= 0
C T m)km— k)
Now, since
S 0
o)

for some S € so(n,R) and u € R'", we obtain after some algebraic computations

() = | On($) 0] Qu(=5) 0]_1

wh 1_ i Wy 1

[ Qu(S) 0] [Qu(=5)" 0]
w1 || —wa[Qu (=97 1

B Rym(S) 0
- w 1]’
for some wy,wy € R™™ and w = (w; + wy)[Qm(—5)]7F € R™™. Now use the fact

that S is skew-symmetric and a result in Cardoso and Silva Leite [4], to conclude that

Rym(S) is orthogonal. Therefore R, (A) € SE(n,R).
O

Since se(n,IR) is a Lie algebra, and so closed under scalar multiplication, and
SE(n,R) is closed under matrix multiplication, it follows from the previous theorem
that (9) gives an approximation to e#* which belongs to the right Lie group, SFE(n, R).

4 Closed forms for logarithms in SE(2, R) and SE(3,

In this section, we derive formulas that provide an alternative way to compute the
principal matrix logarithm for the most important Euclidean groups in applications,

SE(2,R) and SE(3,R).



w7 = | 0 ¢ SE@R) and o(T) N R™ = @, then B = | 0 sind
v o1 —sinf  cos
€ SO(2,R), for some 0 €] — 7, w[. In this case Log(R) = _00 g and if we assume

further that 6 ## 0, then I — R is invertible and it results from applying the series
expansion (1) that

B [ Log(R) 0
Log(T) = _U([_R)g—lLog(R) 0]

i 0 0 0 (10)
B —40 0 0
- fsin b N fsind 0 ’

i U12(1 — cos b)) v2oa U22(1 — cosf)

with v = (vq, v2).

Although, as stated in section 2, the convergence of the series is only guaranteed
when ||[I —T|| < 1, it turns out however that the eigenvalues of the matrix in (10)
satisfy —m < Im(z) < 7 and its exponential is equal to T'. So, we have the guarantee
that the formula (10) always gives the principal logarithm of T' € SFE(n, R).

Now, suppose that

R 0
T—[ " 1] € SE(3,R),
so that R € SO(3,R) and v € IR'™ . It happens that 1 is always an eigenvalue of R €
SO(3,IR) and, consequently, the matrix (I — R) is never invertible. So the technique
used for the case n = 2 can not be applied. However, assuming the convergence of the
series defining the logarithm we may write

oty = [0 [Fo0).

o ([ — k—1
where V 1= — Z %

k=1
In order to deal with this series we use the Schur decomposition of R to reduce to
the situation of the previous example. Since the eigenvalues of R are {1,e*"’},

1 0 0
R=Q| 0 cosf —sinf | QT,

0 sinf cosf

is the real Schur decomposition of R, where () is an orthogonal matrix and § =

trace(R)—1
arccos( === ) is assumed nonzero. So,

00 0
Log(R)Q{O 0 0]@T (11)
060 0

Ne)



and

0 0
[_R:Qlo [—R(@)]QT’

where R(0) = cosf —sin . Since I — R(#) is invertible, we may now apply the

sinf) cosf |
techniques used for the case n = 2. A simple calculation shows that

_ 1 0 T
V= @lo (1= R9) Log(R(0)) ] “
= Q|0 2(10513020) 5 QT.
0 8 Gsin g
L 2 2(1—cosf)
: . : : R 0
Thus, for computing the principal logarithm of a matrix 7' = o 1€ SE(3,R),
we suggest the following formula:
_ | Log(R) 0
Log(r) = | P4 (13)

where Log(R) and V are given respectively by (11) and (12).
Similarly to the case n = 2, the eigenvalues {0, 4+:6} of this matrix are always in
the range —m < Im(z) < m, its exponential is the matrix 7', so (13) always gives the

principal logarithm of 7' € SE(3,R).

We may also derive closed forms for the principal logarithm using the Lagrange-
Hermite interpolation formula. We start with SFE(2,R), just for the sake of complete-
ness.

The principal matrix logarithm is a primary matrix function and, as a consequence,
given a matrix 7" such that o(7T) N IRy = @, there exists a scalar polynomial p(z) in the
complex variable z such that Log(T) = p(T). This polynomial interpolates the scalar
logarithm Log(z) and its derivatives at the eigenvalues of T, that is, Log®)();) =
p®(N), for k = 0,1,--+, 7y, where r; is the multiplicity of the eigenvalue \;, and
may be computed through the Lagrange-Hermite formula, (Horn and Johnson [11]).
In general, computing p(z) is hard. However, when the size is small it is possible to
find the expression of p(z) after some algebraic manipulations. This is now illustrated

for the case when T' € SE(n,R) with n = 2,3.

Assume that 7' € SE(2, R) satisfies the condition o(T)NIR™ = () and the eigenvalues

of T"are 1 and cos @ £sinf, with § = arccos(%) # 0. By applying the Lagrange-

Hermite formula, we obtain the following polynomial representation for Log(T), T €
SE(2,R):
Log(T) = h(0)I — (h(0) + 9(0))T + g(0)T7,

10



where

0
) = ————
9(0) 2sinf’
0 sin #
h(@) = —§(C0t(9 —|— m)

If T"e SE(3,R) satisfies o(T) N IRy = @, then T has a double eigenvalue equal to

. . t TV—2+ .
1 and a pair cosf £ isinf, where § = arccos(%) is assumed to be nonzero.

Now, the polynomial representation for Log(T), T € SFE(3,R), obtained from the
Lagrange-Hermite formula, is given by

Log(T) = (h(0) = 1)I + (1 + g(0) — 2h(0))T + (h(0) — 29(0))T* + g(0)T",

where
0) = 0 N 1 B fsin
g ~ 4sinéd 2(1 —cosf)  4(1 — cosh)?’
1 6Osinf+cosh 0 # sin 20
h) = = —————  — —cotf + —M .
(0) 2 2(1 — cos §) 4 cotv+ 8(1 — cos 0)?
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