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A B S T R A C T

In this study we investigate the use of a laser scanner/range-finder and inertial measurement units (IMUs) for the
application of human-robot interaction in a dynamic environment with moving obstacles/humans. Humans and
robots are represented by capsules, allowing to calculate the human-robot minimum distance on-the-fly. A major
challenge is to capture the capsules pose. Data from a laser scanner and IMUs attached to the human body are
fused to define the torso relative position and the upper body (arms and chest) configuration, respectively.
Collision avoidance is achieved with a customized potential field’s method that allows to adjust the pre-defined
robot paths established off-line while keeping the task target. The proposed framework is validated in real
environment using a SICK laser scanner, IMUs and a KUKA iiwa robot. Experiments demonstrated the robustness
of the proposed approach in capturing human motion, calculating the human-robot minimum distance and the
robot behavior that smoothly avoids collisions with the human.

1. Introduction

Robots operating around humans and sharing the workspace will
become a reality in a near future. However, robots need to become safe
in the way they interact and collaborate with humans. Safety is a major
concern in collaborative robotics since robots and humans will coexist
and share the same workspace. A collaborative robot shall be capable of
detecting obstacles (including dynamic obstacles such as humans) by
acquiring and processing sensor data related to the robot surrounding
environment. These data can be used to calculate the proximity be-
tween robots and humans. The proximity is measured by the human-
robot minimum distance, which is the main input for most of the al-
gorithms related to collision avoidance.

Industrial collaborative robots are a key element in the materi-
alization of the Industry 4.0 concept. Safety issues are one of the main
factors which can break down the boundaries that limit the direct
contact between humans and robots. Nowadays, in the factory floor,
manipulators have to be separated behind guarding fences and humans
are not allowed to enter into the working area of the robot while the
robot is in operation. This is due to the fact that industrial manipulators
are still blind to their surroundings and pose a fundamental danger to
humans.

The standard ISO 10218 and the technical specification TS 15066
provide guidelines for risk assessment implementation and define the

safety requirements for collaborative robots. An overview for the speed
and separation monitoring (SSM) methodology according to the TS
15066 is presented in [1]. This study includes analytical analyses and
discusses considerations for implementing SSM in collaborative ro-
botics. The directions for technological advancements toward standar-
dization are also discussed. Different approaches to risk assessment for
collaborative robots are presented in [2]. Risk assessment is required to
evaluate and anticipate risks for the human in human-robot colla-
boration. The safety requirements and the potentialities of systems
engineering allowing faster and more reliable deployment of colla-
borative robotics are discussed in [3]. Application use cases are de-
tailed, namely for machine tending, automotive assembly and palle-
tizing applications.

A method for controlling the velocity of a collaborative robot to
ensure human safety even when the human-robot distance is smaller
than the safe separation distance is proposed in [4]. The allowable
maximum safe velocity is calculated using a collision model that pre-
dicts the collision peak pressure and the peak force in case of collision.
The pressure and force threshold from ISO/TS 15066 are used to esti-
mate the allowable maximum velocity of the robot as a function of the
distance between the robot and the human. In [5], an optimization of
safeguarded workspaces is introduced under the ISO/TS 15066 SSM
mode. A trajectory-dependent dynamic speed and separation mon-
itoring volume is considered for establishing the minimum safety
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volume. An interesting study addresses human localization to enable
SSM safety according to ISO/TS 15066 [6]. Wireless sensor networks
distributed in fixed positions inside the robotic cell are proposed to
localize operators.

The number of existing studies approaching on-line collision
avoidance according to ISO/TS 15066 is very limited. Most of them
present results in simulation or do not discuss the implications of the
ISO/TS 15066 in their laboratory setups. In this paper we partially
address the ISO 10218 and TS 15066 in the sense that the collaborative
scenario type is ruled by SSM. The robot on-line reacts to keep a se-
paration distance to the human by on-line adjusting the nominal path
and speed.

The potentialities of collaborative robots are not yet fully explored,
opening a world of research and technology development opportu-
nities. To achieve the long-sought goal of having robots in human
centred environments, human safety shall be guaranteed, and the
possibilities of collision shall be eliminated. Thus, the subject of colli-
sion avoidance is one of the essential questions that need to be ad-
dressed for assuring the safety of the human co-worker when inter-
acting with a robot. Yet, collision avoidance algorithms are hard to
develop, especially due to the lack of reliable sensor data to estimate
the human-robot minimum distance on-line. Capturing accurate in-
formation from multiple sensor systems in real-time and in an un-
structured environment is still difficult to achieve. Existing solutions
relying on marker-based visual tracking such as Vicon system are ac-
curate but limited to relatively small areas and with significant cost [7].

Wearable inertial sensors have been used for human motion
tracking [8], not requiring external cameras or markers. They can be
used in both outdoor and indoor environment, with no light restrictions
nor suffering from occlusions. Nevertheless, drift is a major problem
associated to these sensors, especially over long periods of time. Some
authors propose to correct the estimated quantities (for example the
position of the body with respect to a coordinate system not fixed to the
body) by updating these quantities based on biomechanical character-
istics of the human body, detection of contact points of the body with
an external world and adding other sensors to the system [9]. Our ex-
perience indicates that drift is a real problem if not correctly addressed.

In our study, the IMUs from TECHNAID are MEMS-based sensors,
which are able to provide accurate data over short time intervals.
However, over long time intervals accuracy degrades due to the effect
of MEMS characteristic errors. The determination and compensation of
these characteristic errors (random noise, bias, drifts, orthogonality
between axes, etc.) are contemplated in our TECHNAID IMUs [10].
Measuring the earth’s magnetic field enables an estimate of the or-
ientation without drift. However, its measurement may be affected by
the presence of metal objects and electromagnetic noise. To solve this
problem, the TECHNAID IMUs incorporate a compensation system that
compensates the estimation of the orientation during transient mag-
netic disturbances.

A human motion tracking approach combining a mobile robot
(equipped with a laser scanner) and an inertial motion capture system is
proposed in [11]. The mobile robot is used to anchor the pose estimates
of the human which is wearing a motion capture suit equipped with 17
Xsens IMUs to estimate the body posture. The system captures the
motion of a human in large areas (outdoor) fusing data from laser and
IMUs for more accurate tracking. The study presents the trajectory of
the human in meters scale (outdoor) but the entire skeleton pose is not
detailed. In our proposed approach we are using similar sensors, laser
and IMUs, but with only 5 IMUs for upper-body tracking. Our aim is to
detect the position of the entire human body in an area of about 2m
maximum around the robot (the maximum reach of the robot manip-
ulator is around 1m). In this context, it is relevant to have accuracies in
centimetres scale for the whole human body tracking because, for ex-
ample, the human chest can be at 1m of the robot but the arm if ex-
tended can be very close to the robot. A simple methodology to estimate
the human torso position from the legs position is proposed, so that the

information related to human tracking is used to define the pose in
space of the capsules representing the human. The human-robot
minimum distance is estimated and a customized potential fields
method is implemented for human-robot collision avoidance.

Different methods for representing humans and robots geometry
(normally using spheres and capsules) have been proposed in literature.
A computationally efficient way to represent robots and obstacles relies
on the use of primitive shapes [12,13]. Ellipses and spheres were used
to represent robots and obstacles, as in [14]. In [15], a humanoid is
represented by cylinders since that such representation allows for effi-
cient calculation of the minimum distance between geometries to per-
form self-collision avoidance. In [16], the GPU processing power was
used to calculate the minimum distance between objects represented by
meshes. This method provides a precise representation of objects, but it
is hard to implement. The skeletal algorithm proposed in [17] re-
presents a framework for self-collision avoidance of a humanoid robot
represented by spheres and cylinders. A robot represented by twelve
bounding boxes (mainly cylinders) was proposed in [13]. An advanced
collision map for performing point-to-point motion with collision
avoidance capability in a robotic cell with two robotic manipulators in
which each robot is represented by four cylinders is presented in [18].
In [19], the use of depth cameras is studied to improve the monitoring
in a human-robot collaborative environment. This is important since
the lack of sensors reporting reliable data is a major problem in this
kind of applications. Different sensors have been developed for human
tracking applied to robotics field. Many solutions are based on vision
sensing, including RGB-D sensor tracking [19,20]. An increasing
number of approaches are using laser scanners, 2D and 3D [21–23].
From the previous studies, it can be concluded that the choice of the
geometric primitive to represent humans and robots in a given en-
vironment is important for the accuracy of the representation and the
computational cost required to compute the minimum distance. Critical
importance is also associated to the sensors for human motion tracking.

An obstacle avoidance approach based on the artificial potential
fields (PF) concept is introduced in the pioneering work of Khatib [24].
The robot is in a hypothetical vector field influenced by forces of at-
traction that guide the robot towards the target and forces of repulsion
that repel it away from humans/obstacles. Subjected to these forces the
robot finds its way to the target while avoiding collisions. Recently, a
depth space approach for collision avoidance proposes an improved
implementation of the potential fields method in which an estimation of
obstacles velocity was taken into consideration when computing the
repulsion vector [20]. Robot self-collision avoidance has been studied,
as well as the development of collision avoidance techniques for re-
dundant robots [25]. A general framework for movement generation
and mid-flight adaptation to obstacles is presented in [26]. Dynamic
movement primitives are extended such that arbitrary movements in
end-effector space can be represented. A method for motion generation
and reactive collision avoidance is proposed in [27]. The method relies
on physical analogies for defining attractor dynamics to generate
smooth paths. The algorithm can run in the internal control loop of the
robot, which is an important issue for safety. An on-line collision
avoidance system is proposed in [28]. Virtual 3D models of robots and
real images of human operators from depth cameras are used for
monitoring and collision detection purposes. It is presented a prototype
for adaptive robot control in which the result of collision detection has
four safety strategies: the system can alert an operator, stop a robot,
move away the robot, or modify the robots trajectory away from an
approaching operator. These strategies are activated based on the op-
erators existence and location with respect to the robot. Collision
avoidance algorithms imply complex computations applied on large
amount of variables acquired in real-time from multiple sensors.

A reinforcement learning method applied to collision avoidance for
manipulators using neural networks is proposed in [29], the networks
were trained using data from simulations in Virtual Reality (VR), ex-
perimental tests were carried out on a 6 DOF manipulator where the
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position of the end-effector is controlled while the orientation of the
end-effector is not taken into consideration. The application of Particle
Swarm Optimization (PSO) on the problem of collision avoidance of
redundant manipulators was studied in [30], tests were carried out in
simulation using a 5 DOF planar manipulator where the position of the
end-effector was controlled to reach a target position while avoiding
collision with obstacles and the orientation of the end-effector was not
taken into consideration. A method for discrete collision detection and
obstacles proximity computation applied to collision avoidance of ro-
botic manipulators is proposed in [31], the robot is approximated using
flat end cylinders, obstacles are detected using Kinect camera and re-
presented using convex hulls. Tests were carried out in simulation im-
plementing Baxter robot in ROS (Moveit! and RViz are used for the
simulation). Many of existing studies in human-robot collision avoid-
ance still present results in simulation environment.

An alternative approach to solve the collision avoidance problem is
proposed in [32]. However, such approach is restrictive since it assumes
a priori complete knowledge of obstacles trajectory. A study dedicated
to collision avoidance between two manipulators is in [33]. The pro-
blem was addressed by dividing the work space of the manipulators
into a shared work area, accessible to both manipulators, and an ex-
ternal work area accessible to only one manipulator. The authors added
a processing layer into the control structure, in which point to point
control commands are processed before being sent to the controllers. As
consequence, the manipulators are allowed to operate in their own
external work area at any time. However, the presence of one of the
manipulators inside the shared work area will deny access to the other
manipulator, causing it to wait until the shared work area is free from
the other manipulator. In [34] it is proposed the Representation of Body
by Elastic Elements (RoBE), which is a method used for avoiding robot
self-collisions. In this method each link is covered by a fictitious elastic
element, whenever the elements touch, a force is generated and colli-
sion avoidance is achieved.

In this paper we propose to fuse IMUs and laser scanner data for
human tracking and consequent estimation of the human-robot
minimum distance on-line for collision avoidance purposes. Human and
robot are represented by capsules. Section 2 details how the poses of the
capsules are defined in space using sensors data, where the position of
the torso and the configuration of the upper body (arms and chest) are
established. Section 3 discusses the proposed method to compute the
capsule-capsule minimum distance. In Section 4, starting from the robot
pre-defined paths established off-line during the teach-in phase, the
proposed PF-based collision avoidance controller adjusts such paths to
avoid collisions. When the obstacle goes away the robot keeps the
target and continues the task. Section 5 presents the experiments and
results obtained in real world experiments. Finally, conclusions are
presented in Section 6.

2. Geometric representation

The human and the robot are represented in space by capsules. The
more capsules we use, the higher is the accuracy and more challenging
is to acquire sensor data to define the pose of each capsule and more
computational power is required. Capsules are considered a good geo-
metric primitive to represent a human. A human can be represented by
a single capsule, Fig. 1(a). In this scenario the arms are exposed such
that the diameter of the capsule is greater and the collision avoidance
has to be setup for a larger human-robot minimum distance. For this
study, the torso and the arms are represented by 5 capsules, each arm is
represented by 2 capsules and the torso and head by 1 capsule (we
assume that the human is always standing straight), Fig. 1(b). The robot
(KUKA iiwa with 7 DOF) is described by 3 capsules representing the
main robot links of this robot arm model, Fig. 1(c). The pose of the
robot capsules in space is obtained from the measured robot joint an-
gles, establishing the beginning and end of each capsule.

The upper body configuration is captured using five IMUs attached

to the chest and arms. The position of the legs is captured using a laser
scanner (SICK TiM5xx) installed at the base of the robot working table.
Assuming the human is standing straight, the position of the torso can
be estimated from the legs positions.

2.1. Torso capsule position

Data from the laser scanner mounted at the level of the operator’s
legs, Fig. 2, are utilized to define the relative position of the capsule
representing the torso. Through TCP/IP connection the sensor (SICK
TiM5xx) provides the radius measurements along the scan-angle with a
range of 270°, a scan-angular precision of 1° and with a maximum
measurement radius range of 8m. The methodology behind the algo-
rithm for calculating the torso position is divided into two steps:

1. Data acquisition and filtering;
2. Calculating the minima and the position of the torso.

2.1.1. Data acquisition and filtering
A TCP/IP server is implemented in MATLAB to acquire the mea-

surements from the laser sensor and decodes the received message. The
result is stored in an array of radius measurements against scan-angle.
Fig. 3 shows the radius measurements along the scan-angle as acquired
from the laser sensor corresponding to a scene where a human is
standing in the scan field of the sensor. The radius measurements are
clipped to 1400mm away from the sensor and the contour of legs are
projected into the plot as two minima. It is noticed that the data are
noisy so that two filtering methods are proposed: (1) filtering through
time and (2) filtering along the scan-angle.

2.1.2. Filtering through time
To filter noise in the measurements from the laser sensor a finite

impulse response (FIR) filter is utilized:

= +r r r(1 )t t
m

t dt( , ) ( , ) ( , ) (1)

Where r(θ,t) is the filtered measurement value of the radius at angle θ
and time t, r t

m
( , ) is the measurement value of the radius at angle θ and

time t, α is a scalar from zero to one (defined by an iterative process
according to actual response), and dt is the update time interval be-
tween two consecutive scans. The results of the application of the FIR
filter are in Fig. 3.

2.1.3. Filtering along the scan-angle
To smooth out short term fluctuations of the radius measurements

along the scan-angle, a moving average (MVA) filter is used:

= +r r
r

n
r

nt
f

d t
f nd t t

( , ) ( , )
( , ) ( , )

(2)

Where r t
f

( , ) is the value of the MVA at angle θ and time t, dθ is the
angular resolution of the scanner, r d t

f
( , ) the value of the MVA at angle

d and time t, and n is the number of averaging steps.

2.1.4. Calculating the minima and the position of the torso
The xy (floor plane) position of the torso capsule is calculated based

on the position of the legs. The polar coordinates of the legs correspond
to the minima in the plot. The minima can be calculated from peak
analysis on the plot, Fig. 4, mirrored with respect to the axes of the
scan-angle θ. Using the peak analysis, the angle and the radius asso-
ciated with the first leg (θ1, r1) and the second leg (θ2, r2) are acquired.
Afterwards, the position of the first leg x1 in Cartesian space is calcu-
lated:

= +x cos
sin

r( )
( )

( )l1
1

1
1

(3)

Where ρl is the radius of the leg. The Cartesian position of the second
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leg x2 can be calculated in the same manner. The position of the torso
capsule xt can be approximately considered to be at the middle distance
between the two legs:

= +x x x( )
2t

1 2
(4)

Fig. 5shows a laser scan with a human in the scan field of the sensor.
The scan field span of 270° is satisfactory given that the sensor is
mounted at the corner of the robot table. Using the proposed algorithm
the position of the legs is detected, red and green dots, and from the legs
coordinates the torso position is approximated, black circle in Fig. 5.

2.2. Upper body configuration

To capture the configuration of the capsules representing the human
upper body, an IMU sensor is attached to the chest (IMU 1) and the
other four sensors are attached to the arms and the forearms (IMU 2,

IMU 3, IMU 4 and IMU 5), Fig. 6. Each capsule is described by two
vectors and a radius. The vectors represent the position of the beginning
and end of each capsule.

The quaternion measurements provided by the IMU sensors coupled
with the geometric information from the human co-workers body di-
mensions are used to estimate the position of the capsules covering the
coworker’s limbs in relation to robot base. The procedure for per-
forming the calculations is divided into the following steps:

Fig. 1. (a) Human represented by 1 capsule, (b) human represented by 5 capsules and (c) robot represented by 3 capsules.

Fig. 2. Laser scanner mounted at the level of the operator’s legs in the base of
the robot table. If the robotic arm is installed on a mobile platform the solution
is similar.

Fig. 3. Raw data and FIR filtered of radius measurement with scan-angle, close
ups show filtered data are smoother in the critical parts of the curves.

Fig. 4. Filtered radius measurement with scan-angle. Minima are marked with
green and red dots representing the human legs. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)
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1. Calibration phase;
2. Calculating rotations of limbs with respect to base frame of the

robot;
3. Calculating the position of the limbs capsules with respect to the

base frame of the robot.

2.2.1. Calibration
Each IMU measurement gives its orientation, in quaternion wimu

ref 1,
with respect to a pre-defined reference frame. For the collision avoid-
ance algorithm the rotations shall be described in relation to the robot
base frame using the quaternion wimu

b . To calculate w ,imu
b the rotation

quaternion from the reference frame to the robot base frame wref
b shall

be calculated. This is achieved by performing an initial calibration
phase. The IMUs are placed in a predefined orientation with respect to

the robot base before the system is initiated. In such case the initial
rotation quaternion wb

imu init, of the IMU frame with respect to robot base
is already known. By reading the initial IMU measurement w ,imu init

ref
, the

quaternion wb
ref is calculated:

=w w wb
ref

imu init
ref

b
imu init

,
, (5)

As a result of the calibration phase, the rotation quaternion from the
reference frame of the IMU to the base of the robot wref

b is calculated as
the inverse of the quaternion wb

ref .

2.2.2. Limbs rotation
After calculating the orientation of the reference frame with respect

to robot base w ,ref
b the quaternion measurements describing the IMU

orientation with respect to base frame of the robot wimu
b is calculated

from the orientation measurement of the IMU w ,imu
ref as the following:

=w w wimu
b

ref
b

imu
ref

(6)

2.2.3. Limbs position
Five vectors on the human co-worker body are considered, Fig. 6.

Owing to the symmetry of the human body, the following elaboration
and equations are given for the right half of the co-worker’s body. For
the other half of the body identical methodology is applied. For the
right half of the body three vectors are considered:

1. Vector v3: a vector that spans the length of the right forearm, from
the elbow up to the wrist;

2. Vector v2: a vector that spans the right upper arm of the co-worker,
from the shoulder up to the elbow;

3. Vector v1: a vector that spans from the chest up to the shoulder.

The IMUs are mounted firmly on the body of the co-worker ac-
cording to:

• The chest’s IMU is mounted such that the x axis of the IMU is
pointing vertically down when the co-worker is standing straight up.
In such case the coordinates of the vector v imu

1
1 as described in upper

chest’s IMU frame are d d[ 0]1 2 for the left shoulder and
d d[ 0]1 2 for the right shoulder. d2 is the width of the co-

worker shoulder divided by two and d1 is the length of co-worker’s
body taken vertically from the chest up to the shoulder.
• The upper arm’s IMU is mounted such that the x axis of the IMU is
aligned with the upper arm’s length, in such case the coordinates of
the vector v imu

2
2 as described in upper arm’s IMU frame are d[ 0 0]3 .

d3 is the length of the upper arm measured from the shoulder to the
elbow.
• The forearm’s IMU is mounted such that the x axis of the IMU is
aligned with the forearm’s length. In such case the coordinates of the
vector v imu

3
3 as described in forearm’s IMU frame are d[ 0 0]4 . d4 is

the length of the forearm measured from the elbow to the wrist.

The previous vectors are rotated back to the base frame of the robot:

= ( )v w v wi
b

imu
b

i
imu

imu
b 1

i
i

i (7)

Where v ,i
imui = …i 1, 2, 5, is the vector of human part described in

the i imuth frame. wimu
b

i is the quaternion describing the rotation of
i imuth in relation to base frame of the robot Eq. (6) and w( )imu

b 1
i is

the complex conjugate wimu
b

i .
The position vector of the shoulder point in the base frame of the

robot p b
1 is calculated:

= +p v pb b b
1 1 0 (8)

Where p b
0 is the position of the chest point with respect to the base

frame of the robot, given that the co-worker is standing up all the time
the xy position of the co-worker’s chest point is the same as the position

Fig. 5. Human legs detected in the laser scan field. Red and green dot represent
the legs and the black circle represents the torso. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 6. Minimum distance between two capsules.

1 The superscript ref stands for reference frame, and the subscript imu stands
for the frame of the IMU.
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of the torso acquired from the laser scanner. If we denoted l to the
height of the co-worker’s chest point from the xy plane of the base
frame of the robot, then p b

0 is calculated:

=p x
l

b t
b

0 (9)

Where xt
b is the xy position of the torso of the co-worker with re-

spect to the base frame of the robot, calculated by transforming the
torso position estimation (acquired from laser scanner measurement) xt
into the base frame of the robot. In this study the frame of the laser
scanner is parallel to the base frame of the robot such that xt

b is given
by:

= +x x c
ct

b
t

1
2 (10)

Where c1 is the x coordinate of the origin Ol of the scanner’s-mea-
surement-frame in the base frame of the robot, and c2 is the y co-
ordinate of the origin Ol of the scanner’s-measurement-frame in the
base frame of the robot. The origin Ol and the dimensions (c1, c2) are
shown in Fig. 6.

The position vector of the elbow point in the base frame of the robot
p b

2 is given by:

= +p v pb b b
2 2 1 (11)

Accordingly, the position vector of the wrist point in the base frame
of the robot p b

3 is:

= +p v pb b b
3 3 2 (12)

3. Minimum distance between capsules

The analytical minimum distance between capsules representing
robot and human(s) is calculated recurring to QR factorization. The
method is detailed in [35,36]. The process of calculating the minimum
distance between two capsules is reduced to the calculation of the
minimum distance between two line segments at the capsules axis. Each
capsule can be defined by two vectors and a radius ρ. One vector defines
the beginning of the capsules axes-segment p and the other at the end of
that capsules axes-segment u. After mathematical manipulation, the
minimum distance is calculated from:

= +u u y y y yd QQmin minmin
T T T T

1 2 (13)

Where umin is a 2× 1 vector representing the point of the region of
feasible solutions closest to the origin, Q is a 3× 2 matrix whose
column vectors are of unit length and mutually orthogonal, and ρ1 and
ρ2 are the capsules radius. The QR method code is available in github.2

The algorithm was implemented in MATLAB with a graphical user
interface (GUI) to help to visualize the minimum distance between a
human and a robot represented by capsules for any selected pose of
both human and robot, Fig. 7.

4. Collision avoidance

Inspired by the potential fields (PF) method [24], we propose a
customized version of the collision avoidance algorithm. Using this
method the robot is moving in a potential field, where the attraction
vectors attract the end-effector towards the target and vectors of re-
pulsion repel the robot away from obstacles. In this study the attraction
vector acts on the end-effector and attracts it to the target. The target is
the pre-established nominal path defined off-line in the robot teaching
process (robot path considering that collision will not occur). This error
vector is a function of the error:

= p pe e target (14)

Where e is the error vector between the end-effector and the target
point in the nominal path, pe is the position vector of the end-effector
(updated from the nominal path to avoid collision), and ptarget is the
position vector of the target (in the nominal path defined off-line). After
calculating the error vector, an anti-windup [37] proportional integral
controller Φ is utilized for calculating attraction vector vatt:

=v eK K( , , )att p i (15)

Where Kp and Ki are the matrices of the proportional and integral
coefficients.

Using inverse kinematics methodologies [38], the angular velocities
qatt of the robot joints due to the attraction vector are calculated using
the damped least squares [39]:

= +q vJ JJ I( )att
T T

att
1 (16)

Where J stands for the Jacobian of the robot associated with the
Tool Center Point (TCP), the symbol T in the superscript stands for the
matrix transpose operator, λ is a damping coefficient and I is the
identity matrix.

For achieving collision avoidance, a repulsion vector shall act on the
point of the robot closest to the obstacle/human. This vector repels the
robot away from obstacles. The main input for calculating the repulsion
vector is the minimum distance dmin between the obstacle and the
robot, Eq. (13). After calculating the minimum distance, and the points
of the robot and the obstacle associated with this minimum distance,
the repulsion vector can be specified. The direction of the repulsion
vector s is calculated:

=s
p p
p p

r o

r o (17)

Where pr is the position vector of the point of the robot closest to the
obstacle and po is the point of the obstacle closest to the robot. After
calculating the direction of the repulsion vector, its magnitude is cal-
culated:

= < +

> +
( )f k if d d d

if d d d

1

0
rep

rep
d

d d min o cr

min o cr

o
min cr

(18)

Where frep is the magnitude of the repulsive force, krep a repulsion
constant, dcr a critical distance below which the robot cannot be near
the human, and +d do cr is the distance at which the repulsion vector is
activated. The repulsion vector is calculated:

=v sfrep rep (19)

And the angular velocities due to the repulsion vector are:

= +q vJ J J I( )rep repcp
T

cp cp
T 1

(20)

Where qrep are the angular velocities due to the repulsion vector and
Jcp the Jacobian associated with the point of the robot closest to the
obstacle. Then, the total angular velocities are calculated:

= +q q qatt rep (21)

Subjected to the angular velocities vector, the robot moves towards
the target while avoiding collisions with the obstacles.

The architecture of the proposed approach is detailed in Fig. 8.

5. Experiments, results and discussion

The control algorithms were implemented in MATLAB and the in-
terface with the KUKA iiwa was established using the KUKA Sunrise
Toolbox provided by us in GitHub [40]. The proposed collision avoid-
ance framework was evaluated in a real world experiment using the
collaborative manipulator KUKA iiwa 7 R800 with a pneumatic flange.
Measurements from the sensors are interpolated with time considering2 https://github.com/Modi1987/Minimum-distance-between-capsules
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the limitation of the slower device, the laser scanner, which provides
data at 50 Hz. The IMUs provide data at about 300 Hz so that the
implemented algorithms allow updating the robot state at a frequency
of 275 Hz.

A pneumatic suction-pad is attached at the flange of the robot.
Three capsules cover the links of the robot and the suction-pad under
any configuration, Fig. 9. The upper arm and the lower arm of the robot
are covered tightly with two identical capsules (height 400mm and
diameter 230mm) and a third capsule is used to cover the suction-pad
(height 250mm and diameter 115mm). The capsules fit the robot
tightly, yet there is some error in the representation due to the devia-
tion between the geometric surface of the robot and the surface of the
capsules. To quantify those errors the dimensions are presented in
Table 1.

In Experiment 1 the robot is operating in a pick-and-place

operation, moving a box from a known location to another. The video
that accompanies this article shows the experiment. Detailing, the ex-
perimental process is divided into 3 sub-tasks:

1. The human co-worker approaches the robot to place the box to be
manipulated by the robot in a known pose. The robot is in a static
home position and smoothly reacts to avoid collision. When the
human co-worker goes away, the robot automatically returns to the
pre-planned path to pick up the box, Fig. 10.

2. The robot picks up the box and moves it to another location. During
robot motion the human co-worker approaches the robot to pick up
a tool on the top of the table. Again, the robot reacts to avoid col-
lision, Fig. 10.

3. When the human goes way the robot continues the task and places
the box in the desired position, Fig. 10.

When the human approaches the robot to place the box or to do any
other task the robot automatically reacts by adjusting the pre-planned
path (planned off-line) in what we call agile-smooth behavior to avoid
collision, Fig. 10. This means that the robot is agile to avoid collision
when the human is at a given distance to the robot arm and presents a
smooth behavior as the human approaches the robot (the minimum
distance decreases). When the human goes away the robot auto-
matically continues its work, keeping the task target. If the robot is in a
situation in which the collision is unavoidable the robot stops.

We conducted a quantitative analysis by recording the human-robot
minimum distance, robot velocity and the robot end-effector position,
Fig. 11. In Fig. 12, it is shown the paths of the Tool Center Point (TCP)
of the end-effector, and the path of the torso of the human. At the be-
ginning of the test the robot is stationary. When the human approaches
the robot to place the box on the table the human-robot minimum
distance decreases to a minimum of 431mm. The robot velocity in-
creases, maximum reached of 355mm/s, to compensate the human
approach, smoothly reacting to avoid collision with the co-worker.
When the human moves away the robot returns back to the pick-and-
place operation. When the human approaches the robot again to pick
up the tool the process is similar. Experimental tests also indicated that

Fig. 7. Human-robot minimum distance visualization in MATLAB GUI.

Fig. 8. Collision avoidance general architecture.

Fig. 9. KUKA iiwa robot equipped with a suction-pad covered by three cap-
sules.

Table 1
Clearance values between the surface of the robot
and the capsules covering it as shown in Fig. 9.

Clearance values

Dimension Value (mm)
δ0 45
δ1 143
δ2 124
δ3 47
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the system is well perceived by the human. The collision avoidance
motion is smooth and natural, so that the human does not perceive
danger. The error from the representation of the human and robot by

capsules exists. However, since the separation distance is higher than
that error, it can be considered not problematic for the collision
avoidance. The capsules length and radius have to be adapted to each
different human and robot.

The proposed solution was also tested considering a human that
passes in front of the robot (approaching the robot from the side) while
the robot is working, Experiment 2, Fig. 13. The human will not directly
interact with the robot but this is a common flexible manufacturing
scenario where humans and robots share the workspace. In this context,
the robot has to react to respect SSM and to avoid collision. At the
beginning the robot is stationary in home configuration and the human
is walking in the negative y direction towards the robot, Fig. 13. In such
a case, the minimum distance decreases to a minimum of 393 mm and
the robot reacts to avoid collision in which the maximum end-effector
velocity reached is 548mm/s, Fig. 14. According to ISO/TS 15066,
safety requirements for collaborative robots indicate a maximum robot
velocity of 250mm/s. In our study, the robot reaches velocities superior
to 250mm/s in both experiments. These velocity values are reached
when the robot is moving away from the human to avoid collision. ISO/
TS 15066 defines a velocity threshold not distinguishing if the robot is
moving in the human direction or in the opposite direction to avoid
collision. By defining 250mm/s as the maximum robot velocity the
human may collide with the robot or at least the human has to reduce
the walking and/or arms velocity. Experiments also demonstrate that
the human-robot minimum distance is never less than 450mm in Ex-
periment 1 and 400mm in Experiment 2. It is desirable that a future
revision of ISO/TS 15066 can contemplate the direction of robot mo-
tion, i.e., if the robot is moving towards the human or if the robot is
moving away from the human to avoid collision. If it is ensured that the
robot is moving away from the human the maximum velocity allowed
should be superior to 250mm/s. Moreover, such maximum velocity
value should be defined according to the actual human-robot minimum
distance.

The experiments demonstrated the following contributions:

1. Efficient representation of the human(s) upper body and robot using
5 and 3 capsules, respectively;

2. IMUs and laser scanner demonstrated accuracy and reliability to
define each capsule pose in space and time. Error exists but is
manageable for the collision avoidance success;

3. Agile-smooth robot reaction to collision avoidance in which the

Fig. 10. Experiment 1: the robot smoothly avoids collision when the human co-worker approaches and continues with the pick-and-place operation when the human
goes away. This experiment is in the video that accompanies this article. 3D trajectories are shown in Fig. 12.

Fig. 11. Human-robot minimum distance, robot end-effector position and ve-
locity recorded during Experiment 1.

Fig. 12. Robot end-effector path and the human torso trajectory related to
experimental tests (Experiment 1) in Fig. 10, points (a)–(h). It is possible to
visualize that the robot path is modified when the human approaches the robot
and then the robot returns back to the nominal path. The human approaches the
robot twice, to place the box on the table and to take the screwdriver from the
table.
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robot adapts the pre-established nominal paths (defined in the in-
itial robot program off-line) while keeping the task target un-
changed. The robot finds a way to get around the obstacles/humans
and not to stop when they are nearby;

4. Successfully testing with a real collaborative robot for a pick-and-
place operation. According to our knowledge, until now, very few
studies have implemented collision avoidance in real robot manip-
ulators [16,19,20,27], being this study a novel contribution in that
domain.

6. Conclusion

This article successfully proposed utilizing a laser scanner and IMUs
sensing technology for minimum distance calculation, an important
input for the human-robot collaboration applications. The proposed
methodology integrates into collision avoidance problem for colla-
borative robots sharing the space with humans. Humans and robots
were successfully represented by capsules with data from a laser
scanner and IMUs. QR factorization method was successfully applied to
compute the minimum distance between capsules representing human
and robot. A customized potential fields method that allows to adjust
the pre-defined robot paths established off-line while keeping the task
target was proposed for collision avoidance. Although the number of
studies reporting collision avoidance with real collaborative robots
while performing industrial tasks is low, the proposed framework was
validated in real environment, using a real robot and sensors.
Experiments demonstrated the robustness of the proposed approach in
which the robot smoothly avoids collisions with the human co-worker
while continues working keeping the task target.
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