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Abstract

The availability of information on the spatial distribution of agricultural crops
is a critical factor in supporting the decision-making process. However, provid-
ing this information in the post-agricultural season compromises its utility in ad-
dressing technical issues related to agricultural production itself, as well as in
administrative and policy decisions whose timing occurs before the crop harvest.

Despite this need, studies indicate that while the distinction between agricul-
tural crops is most effective at the end of the season, rapid and automated early
mapping techniques using satellite imagery and advanced methods like machine
learning are enabling high classification accuracies and can significantly improve
agricultural planning and optimization of practices, policies and resource alloca-
tion.

The objective of this study was to automate the early mapping of maize and rice
agricultural plots using satellite imagery, with the utilization of time series of po-
larimetric and multispectral data, and the combination of geospatial intelligence
and supervised learning in a cloud computing environment.

The study is situated within the context of Portugal, where the mapping of agri-
cultural crops from satellite images has been in the experimental phase for less
than five years. The study was applied to the agricultural plots of the Baixo-
Mondego valley, which is located in the central region of Portugal.

To establish a robust and effective methodology for crop mapping from satellite
data, a thorough review of 70 relevant articles was conducted. This review re-
vealed that, in recent years, the most effective approach to agricultural mapping
from satellite images involves the fusion of time series data from different sensors
and the use of supervised computational learning.

The applied methodology consisted of the incremental classification of time se-
ries of satellite images throughout the summer agricultural season, using SVM
and RF algorithms. The methodology combines geospatial intelligence and su-
pervised learning in a approach that fuses SAR and multispectral data, and an-
other in parallel that uses only multispectral data. This methodology permits the
monitoring of the performance evolution of classification models (in accordance
with the metrics accuracy and F1 score), the discriminative power of features de-
rived from satellite images, and the contribution of the fusion of optical and radar
images in the context of early agricultural mapping.

The findings indicated that the methodology employing fused data can enhance
the efficacy of classification models by up to 6.26%. Moreover, the magnitude
of classification improvement was observed to increase with the proximity to
spring. This is supported by the paucity of high-quality optical images and the
incorporation of radar data with geometric information about crops at their early
stages.

The classification line with models trained using the RF algorithm proved to be
more efficient in minimizing the time required to achieve acceptable performance
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(equal to or greater than 90%), as evidenced by an accuracy of 91.45% on June 20th
and an F1-Score of 90.88% on June 30th. In contrast, the classification line with
models trained using the SVM algorithm only reached an accuracy of 92.33% on
July 10th and an F1-Score of 91.86% on July 30th, resulting in a delay of approxi-
mately 20-30 days in achieving acceptable performance.

The proposed approach proved to be relevant, as the precise and timely classi-
fication of agricultural crops not only allows for the optimization of agricultural
production processes and resources but also facilitates inclusive technological ad-
vancement. This advancement maximizes the economy and minimizes the envi-
ronmental impact, thereby contributing to food security. Future research should
continue to refine the use of data obtained through space technology and pro-
cessed through cloud computing environments, with a view to improving inclu-
sive support for precision agriculture.

Keywords

Early Crop Mapping, Remote Sensing, Supervised Learning, Time Series, Satellite
data Fusion, Incremental Classification, Maize, Rice.
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Resumo

A disponibilização de informação sobre a distribuição espacial das culturas agrí-
colas é um fator crítico no apoio ao processo de tomada de decisão. A disponi-
bilização dessa informação no período pós-temporada agrícola compromete a
sua utilização em problemas técnicos relacionados com a própria produção agrí-
cola, bem como em decisões administrativas e políticas cujo momento de decisão
ocorre antes da colheita das culturas.

Apesar desta lacuna, alguns estudos indicam que, embora a distinção entre cul-
turas agrícolas seja mais eficaz no final da temporada, técnicas rápidas e autom-
atizadas de mapeamento precoce, utilizando imagens de satélite e e métodos de
classificação avançados, como a aprendizagem automática, permitido obter clas-
sificações com exatidões elevadas e podem, consequentemente, melhorar sub-
stancialmente o planeamento agrícola e a otimização de práticas, políticas e alo-
cação de recursos.

O objetivo deste estudo foi automatizar o mapeamento precoce das parcelas agrí-
colas de milho e arroz a partir de imagens de satélite, utilizando séries temporais
de dados polarimétricos e multiespectrais, e combinando inteligência geoespacial
e aprendizagem supervisionada em ambiente de computação na nuvem.

O estudo insere-se no contexto de Portugal, onde o mapeamento de culturas agrí-
colas a partir de imagens de satélite está em fase experimental há menos de 5
anos, e foi aplicado às parcelas agrícolas do vale do Baixo-Mondego, localizado
na região central de Portugal.

Para estabelecer uma metodologia robusta e eficaz para o mapeamento de cul-
turas a partir de dados de satélite, foi realizada uma revisão aprofundada de 70
artigos relevantes. Esta revisão revelou que, nos últimos anos, a abordagem mais
eficaz para o mapeamento agrícola a partir de imagens de satélite envolve a fusão
de dados de séries temporais de diferentes sensores e o uso de aprendizagem
computacional supervisionada.

A metodologia aplicada consistiu na classificação incremental de séries temporais
de de imagens de satélite ao longo da temporada agrícola de verão, utilizando al-
goritmos SVM e RF. A metodologia combina inteligência geoespacial e aprendiza-
gem supervisionada numa abordagem com fusão de dados SAR e multiespectral,
e noutra, que utiliza apenas dados multiespectrais. Esta metodologia permite
monitorizar a evolução do desempenho dos modelos de classificação (de acordo
com as métricas de precisão e F1 score), o poder discriminativo das características
derivadas de imagens de satélite e a contribuição da fusão de imagens óticas e de
radar no contexto do mapeamento agrícola precoce.

Os resultados obtidos mostraram que a abordagem com dados combinados pode
melhorar o desempenho dos modelos de classificação até 6,26% e que o grau de
melhoria da classificação aumenta quanto maior for a proximidade da primav-
era, o que é justificado pela escassez de disponibilidade de imagens ópticas de
qualidade e pelo complemento dos dados de radar com informação geométrica
sobre as culturas em estado inicial.
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A linha de classificação com modelos treinados com o algoritmo RF demonstrou
ser mais eficiente ao minimizar o tempo necessário para alcançar um desem-
penho aceitável (igual ou superior a 90%), registando uma precisão de 91,45%
a 20 de junho e uma pontuação F1-Score de 90,88% a 30 de junho. Em contraste, a
linha de classificação com modelos treinados com o algoritmo SVM só alcançou
uma precisão de 92,33% a 10 de julho, e uma pontuação F1-Score de 91,86% a 30
de julho, atrasando o alcance do desempenho aceitável em 20-30 dias.

A abordagem proposta revelou-se relevante, pois a classificação precisa e atem-
pada das culturas agrícolas não só permite a otimização da gestão dos processos
e recursos de produção agrícola, como também promove um avanço tecnológico
inclusivo. Este avanço maximiza a economia e minimiza o impacto ambiental,
contribuindo assim para a segurança alimentar. Investigações futuras devem
continuar a aperfeiçoar a utilização de dados obtidos através de tecnologia espa-
cial e processados por aprendizagem em ambientes computacionais na nuvem,
visando melhorar o suporte inclusivo à agricultura de precisão.

Palavras-Chave

Mapeamento Prococe de Culturas Agrícolas, Deteção Remota, Aprendizagem Su-
pervisionada, Séries Temporais, Fusão de Dados de Satélite, Classificação Incre-
mental, Milho, Arroz.
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Chapter 1

Introduction

1.1 Motivation

In light of the rapid population growth and the subsequent need to increase agri-
cultural production, humanity is confronted with the challenge of increasing food
production in a sustainable manner. The 2017 Food and Agriculture Organization
(FAO) report highlighted that the food production of that year would not be suf-
ficient to meet the needs of over 10 billion people by 2060, particularly in light of
the extreme climate variations affecting ecosystems, water resources, and arable
lands, which could potentially jeopardize food security.

In response to this issue, the FAO’s 2022 report emphasizes the importance of
digital automation and its inclusion in precision agriculture as innovative solu-
tions that significantly contribute to the sustainable production and distribution
of food. This process involves both technical and political aspects, and among
other considerations, it relies on the spatial distribution of agricultural crops.

From a technical standpoint, information about the spatial distribution of agricul-
tural crops allows for the development of sustainable strategies to manage pro-
duction costs. These strategies include optimizing irrigation or energy, adapting
crops to climate changes, and protecting ecosystems. Politically, the data facili-
tates the implementation of policies related to the market pricing of agricultural
products, disaster management, regulation of foreign trade, management and
control of subsidies to farmers, and the construction of infrastructure for storing
products.

As stated in Rahmati et al. (2022), the spatial distribution of crop types and their
respective areas can be collected in three distinct ways:

• Expert Estimates

• Field Surveys

• Use of new technologies such as Remote Sensing Surveys
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In the realm of new technologies, computational learning techniques are increas-
ingly utilized in various engineering fields to automate processes that previously
required significant time and energy. This is also true of advances in precision
agriculture. Consequently, in the domain of remote sensing surveys applied to
precision agriculture, the production of spatial distribution maps of agricultural
crops from intelligent classification models trained with satellite data has seen
significant growth over the past decade. This growth is justified by two factors:
the increase in the number of Earth observation satellites and the popularity and
advancement of artificial intelligence techniques.

In this context, the scientific community has been confronted with three signifi-
cant challenges:

1. The first challenge, as previously noted by Santos (2021), pertains to the
processing of voluminous data (on the order of terabytes) generated by ob-
servation satellites. One solution to this challenge is the utilization of cloud
computing technologies.

2. In the context of machine learning algorithms, the second challenge, per-
tains to the Hughes effect, also known as the "curse of dimensionality." This
phenomenon indicates that an increase in the number of features does not
necessarily lead to an increase in classification accuracy. This issue has led
to the common practice of feature engineering, which involves reducing or
selecting the most relevant variables for classifying crops (Yi et al., 2022).

3. The third challenge pertains to the temporality of the production and dis-
semination of spatial information about crops. The timing of this produc-
tion, occurring post-agricultural season, can impede its application in tech-
nical issues related to agricultural production itself, as well as in adminis-
trative and political decision-making processes whose timing precedes the
crop harvest moment.

In this context, Google Earth Engine’s cloud computing technology was employed
to automate the preliminary mapping of maize and rice plots in the Baixo-Mondego
region. This was achieved through the use of intelligent models trained on a time
series of polarimetric and multispectral data from Sentinel-1 and Sentinel-2 satel-
lites, respectively.

The development of these intelligent models entails the integration of supervised
learning and geospatial intelligence. Geospatial intelligence is a field of intelli-
gence that employs the analysis and interpretation of events and patterns in geo-
referenced data to inform decision-making processes. This multidisciplinary field
encompasses techniques from data science, geographic information systems, and
remote sensing. On the other hand, supervised learning is a machine learning
technique that develops algorithms enabling computers to identify patterns in
data and map inputs (data) to feature space and their respective known outputs
(classes).

2



Introduction

1.2 Context and Justification of the Research

With regard to the spatial distribution of agricultural crops in the study area (de-
scribed in chapter 3), as well as in Portugal in general, the (MACAT) Annual
Map of Temporary Agricultural Crops from portuguese “Mapa Anual de Cul-
turas Agrícolas" (MACAT) produced by the Directorate-General for Territory is
available for consultation. This map can be accessed through Land Use Moni-
toring System from portuguese “Sistema de Monitorização da Ocupação do Solo
(SMOS).

The MACAT represents an innovative cartographic product developed for pe-
riodic release, occurring annually (following the agricultural season) and com-
prising 30 distinctive classes delineated by the type of agricultural crop. This
novel approach combines advanced spatial technologies and machine learning
algorithms to address the challenge of supervised classification of time series of
multispectral Sentinel-2 imagery.

From the perspective of decision-making, the availability of MACAT in the post-
production phase renders it unsuitable for use in the context of issues such as
water and fertilizer management by farmers, production estimates and construc-
tion of storage structures, market price control and imposition of new export and
import rules by policy makers, among others, which require access to information
in a timely manner (during production). The topic has been widely discussed in
the literature, and among the proposed solutions are early mapping (in the early
stages of the growth cycle) of agricultural crops, as suggested by authors such as
Hao et al. (2018), yu HAO et al. (2020) and Inglada et al. (2016).

Conversely, as indicated in its datasheet, MACAT is manufactured exclusively
with optical data from Sentinel-2. The production of cartographic information
from optical images is constrained by rainy seasons (winter and spring), dur-
ing which the quality of the images deteriorates due to the presence of clouds.
The presence of clouds affects the images due to the reflection and scattering of
visible light (400nm-700nm) and near-infrared (700nm-1400nm) light, the elec-
tromagnetic regions in which multispectral satellites operate. This effect results
from interactions with cloud particles of a similar size, which can range from
micrometers to millimeters.

This issue has also been discussed in the literature, and authors such as Asam
et al. (2022) and Inglada et al. (2016) propose integrating polarimetric and mul-
tispectral data as a potential solution. This proposal is based on the ability of
polarimetric data to undergo minimal or no dispersion by water droplets or ice
crystals in clouds. This is due to the fact that SAR satellites operate in the mi-
crowave band (radio waves with shorter wavelengths), where the wavelength
(not less than 1 cm) is larger than the size of cloud particles (usually ranging from
micrometers to millimeters).

In this context, the justification for this research is twofold. Firstly, there is a need
to develop a supervised classification approach that allows for the assessment of
how early maize and rice can be classified with considerable performance met-

3



Chapter 1

rics (performance ≥ 90%), thus enabling the timely availability of information.
Secondly, there is a need to explore the contribution of radar data in the early
agricultural crop mapping.

1.3 Objectives

The primary objective of the study was to automate the early mapping of maize
and rice plots in the Baixo-Mondego region. This was achieved through the use
of cloud computing technology and intelligent classification models, which were
trained on a time series of polarimetric and multispectral data from Sentinel-1
and Sentinel-2 satellites, respectively.

The study focused on the following interests:

1. Identify best practices for classifying agricultural crops using satellite data
and artificial intelligence;

2. Determine the earliest time at which the accuracy curve of the classification
reaches an accuracy of 90% or higher;

3. Explore the contribution of SAR data to the accuracy of classification mod-
els;

4. Identify the more effective satellite-derived features that allow distinguish-
ing maize and rice crops throughout the spring-summer agricultural sea-
son;

5. Explore the capabilities of Google Earth Engine (GEE) for constructing in-
telligent models for cartographic mapping of land use.

1.4 Structure of the Dissertation

The dissertation is comprised of seven chapters. Introduction; 2. Review Out-
comes; 3. Study Area and Data; 4. Methodology; 5. Results; 6. Discussion; 7.
Conclusion and Future Works. The content of each of these chapters is outlined
below:

• In the Introduction, the research is introduced and contextualized. This in-
cludes a presentation of the context, justification, and objectives of the in-
vestigation.;

• The Review Outcomes presents a literature review of remote sensing ap-
plied to agriculture, crop mapping, and key challenges. Additionally, the
chapter presents a strategy and results of a review of 70 publications on the
mapping of agricultural crops using satellite data and artificial intelligence
over the past 20 years. This review identifies the most effective practices
and an understanding of the principal concepts and challenges;
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• The third, Study Area and Data, provides an overview of the study area and
the data utilized in this study;

• The methodology chapter outlines the applied methodology;

• The findings on the monitoring of the performance evolution of the classi-
fication models, the identification of the early mapping model with accept-
able performance, feature efficiency, and the contribution of data fusion are
presented in the results chapter;

• The fifth chapter presents a discussion of the aforementioned results, con-
textualizing them within the existing literature;

• The seventh chapter presents the principal findings of the study, together
with their implications for agricultural monitoring.
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Review Outcomes

This chapter presents a review surrounding the main topics, methodologies, and
results found in recent literature on agricultural crop mapping, using a combina-
tion of remote sensing data and computational learning techniques. Divided into
two parts, the first aims to explain the process of obtaining and selecting articles
for the literature review. The second focuses on presenting the results and the
main discussions of the authors on the key topics, with the objective of identify-
ing best practices.

2.1 Agriculture Crop Mapping Using Remote Sens-
ing

This section provide an overview of agricultural mapping with remote sensing
and the main challenges are presented.

2.1.1 Overview of Remote Sensing in Agriculture

The field of remote sensing has played a pivotal role in the advancement of pre-
cision agriculture, a contemporary approach to agricultural practice. This field
necessitates the utilization of sophisticated technologies to model field conditions
and optimize resource management.

In the context of precision agriculture, remote sensing represents a significant
advancement in the collection of data on the presence and health status of crops,
obviating the need for direct contact. This process allows for the optimization of
time and resources.

The underlying physical principle of this process is based on the capture and
processing of electromagnetic energy reflected or emitted by crops using sensors
mounted on aerial platforms (such as drones) or satellites. This electromagnetic
energy is transformed into digital signals, which are then compared to standard
digital signals for each crop in order to identify the presence or condition of the
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crop. The integration of remote sensing in precision agriculture enables the im-
plementation of applications such as the mapping of crop distribution, the moni-
toring of crop health, and the management of irrigation.

2.1.2 Key Challenges in Crop Mapping

The principal challenges encountered in the process of crop mapping using satel-
lite images can be classified into two main categories. The first category of chal-
lenges pertains to data-related issues, while the second category encompasses
processing-related challenges.

2.1.2.1 Data-Related Challenges

One of the most significant data-related challenges is that the spatial, temporal,
spectral, and radiometric resolutions of the sensors limit the accuracy of mapping
and identification. For example, low spatial resolution may result in inaccuracies
in mapping in areas with small agricultural plots. With regard to temporal resolu-
tion, the temporal resolution of satellites is frequently insufficient for time series
mapping, where the minimum temporal unit is the crop cycle. In such instances,
the cycles are aggregated into a single stage of the time series. The radiometric
resolution of sensors determines the type of crop information that can be captured
and the range of values that can be sensed (the sensitivity of the information).

Moreover, Joshi et al. (2023) identify the availability and cost of ground truth data
for use in training and validation as another significant challenge in the field of
data science.

2.1.2.2 Processing-Related Challenge

With regard to processing-related challenges, the findings of Joshi Joshi et al.
(2023) indicate that the model architecture, which depends on the choice of fea-
tures and algorithm, can also be a limiting factor in mapping accuracy. Moreover,
the increasing prevalence of integrating data from disparate satellites and em-
ploying time series analysis has led to the integration of these data sets and the
availability of computing platforms to reduce the associated computational costs.
Finally, Joshi et al. (2023) also discusses the interpretability of certain processing
models, such as deep learning algorithms. These models may be perceived as
opaque, obscuring valuable insights about the data.
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2.2 Systematic Review of Crop Mapping Approaches

2.3 Article Selection Strategy

To initially narrow the scope of the bibliographic survey, the first step involved
defining generic search strings according to the research interest. These search
strings were employed primarily to identify meta-analyses on the identification
of agricultural crops using remote sensing and machine learning in databases
such as Web of Science, Science Direct, and Google Scholar. Three meta-analysis
articles were then selected that met the research interest expressed in the initial
search strings. The meta-analysis articles served to identify the principal topics
of discussion on the subject. This process allowed the identification and choice of
more specific strings that, when applied to the same databases, directed the lo-
cation of over 100 publications containing the principal topics. A temporal filter
(selection of publications with a publication date between 2000 and 2023) and a
filter related to the sensor’s deployment platform (selection of publications where
the sensor was deployed on a satellite) were then applied to these publications.
After the exclusion of publications that did not meet both criteria, 70 publications
were selected for consultation in the State of the Art Database 1. These publica-
tions concern the use of satellite data and machine learning for crop mapping,
and were published between 2000 and 2023.

The literature review strategy is illustrated in Figure 2.1.

2.4 Results from the Review

This section aims to present the results of the literature review and will be di-
vided into the following subsections: 2.4.1. Spatial and Temporal Distribution of
Selected Articles; 2.4.2. Satellite Technology; 2.4.3. Mapping Approaches; 2.4.4.
Satellite-Derived Features; 2.4.5. Machine Learning Algorithms in Crop Map-
ping; 2.4.6. Best Practices in Agricultural Crop Mapping and 2.4.7. Fundamentals
of the Support Vector Machine and Random Forest Algorithms.

2.4.1 Spatial and Temporal Distribution of Selected Articles

To initially narrow the scope of the bibliographic survey, the first step involved
defining generic search strings according to the research interest. These search
strings were employed primarily to identify meta-analyses on the identification
of agricultural crops using remote sensing and machine learning in databases
such as Web of Science, Science Direct, and Google Scholar. Three meta-analysis
articles were then selected that met the research interest expressed in the initial
search strings. The meta-analysis articles served to identify the principal topics
of discussion on the subject. This process allowed the identification and choice

1Connection to State of the Art Database (click on word to open the link)
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Figure 2.1: Literature Review Strategy

of more specific strings that, when applied to the same databases, directed the
location of over 100 publications containing the principal topics. A temporal filter
(selection of publications with a publication date between 2000 and 2023) and a
filter related to the sensor’s deployment platform (selection of publications where
the sensor was deployed on a satellite) were then applied to these publications.
After the exclusion of publications that did not meet both criteria, 70 publications
were selected for consultation in the State of the Art Database. These publications
concern the use of satellite data and machine learning for crop mapping, and
were published between 2000 and 2023.

The spatial distribution map of selected articles (Figure 2.2) illustrates that the
mapping of agricultural cultures using Earth observation data and processing
through artificial intelligence is dominated by major powers and is under-explored
globally. This is also evident in Portugal, where there remains much to be done.

With regard to the temporal distribution of the articles in Figure 2.3, it is observed
that the highest frequencies are associated with the last decade. Machichi et al.
(2023) propose that the increasing popularity of machine learning algorithms,
population growth, food scarcity, and climate change are explanations for this
surge, particularly in the second half of the decade.
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Figure 2.2: Spatial Distribution Map of Selected Articles

Figure 2.3: Temporal Distribution of Selected Articles

2.4.2 Satellite Technology

The selection of satellite technology represents one of the most pivotal elements
in the conceptualization of a satellite-based agricultural crop mapping project, as
its specifications directly influence the project’s overall efficacy. As evidenced by
the literature, the two most pertinent parameters regarding satellite technology
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are spectral and spatial resolutions. Spectral resolution is a parameter that is
unique to the sensor, while spatial resolution is a parameter that is relative to the
platform-sensor system, depending on the Instantaneous Field of View (IFOV),
which is a magnitude related to the sensor (detector diameter and focal distance),
but also the flight altitude, which is related to the platform (generally considered
negligible for space platforms).

With regard to the wavelengths at which the sensor is capable of detecting elec-
tromagnetic energy, the spectral resolution of the sensor in question determines
the feasibility of implementing it in a given project. This is because the sensor’s
ability to acquire electromagnetic energy in the bands reflected by the objects to
be mapped ultimately determines its suitability for use in the project. This pa-
rameter allows for the differentiation of four technologies:

1. Synthetic Aperture Radar (SAR) Technology: This technology is implemented
in active sensors that detect only the radio wave band of the electromagnetic
spectrum reflected by objects on the surface;

2. Multispectral Technology: This technology is implemented in passive sen-
sors that capture and record electromagnetic energy reflected by objects in
multiple wavelengths;

3. Hyperspectral Technology: This technology is implemented in passive sen-
sors capable of capturing and recording electromagnetic energy reflected by
objects in various wavelengths;

4. Light Detection and Ranging (LIDAR) Technology: This technology is im-
plemented in active sensors that capture the laser reflected by objects on the
surface.

A review of the literature from the past twenty years has permitted an assessment
of the most commonly used satellite technologies in the mapping of agricultural
crops in recent years. This is illustrated in Figure 2.4.

The prevalence of multispectral technology can be attributed to the fact that veg-
etation reflects electromagnetic energy in the visible, near-infrared, and short-
wave infrared bands. Nevertheless, certain authors, such as Santos (2021), Kussul
et al. (2016), and Verma et al. (2019), have combined SAR and multispectral tech-
nology in vegetation mapping and demonstrated that the incorporation of SAR
data, due to its insensitivity to clouds, can enhance classification accuracy by ap-
proximately 5%, particularly in instances where images were captured during
rainy seasons. In agreement, Blickensdörfer et al. (2022) and Asam et al. (2022)
conducted studies that demonstrated improvements in classification accuracy of
between 6% and 10% and 6% and 9%, respectively.

Spatial resolution is defined as the minimum size of an object that a satellite is
capable of distinguishing. Consequently, given a specific spatial resolution, only
objects with a size equal to or greater than that of the spatial resolution of the
platform-sensor system can be identified. It is therefore evident that spatial reso-
lution can be adjusted to suit the specific requirements of a given study, area, and
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Figure 2.4: Percentage of Satellite Technology Application in Selected Articles

agricultural plot complexity. It is crucial to exercise sound judgment to ensure
that classification is not compromised by selecting an acquisition system with an
inadequate spatial resolution, one that is insensitive to the agricultural complex-
ity of the region, or a system with an excessively high spatial resolution, which
would result in an increased computational cost for classification.

In the majority of studies, the vast extent of agricultural areas necessitated the
utilisation of satellites equipped with low spatial resolution sensors (such as Mod-
erate Resolution Imaging Spectroradiometer (MODIS) with a resolution of 250
metres). Nevertheless, the utilization of satellites equipped with sensors of 10,
20, and 60 meters of spatial resolution, such as those employed by the Sentinel
and Landsat missions, is a prevalent practice.

In conclusion, the principal findings of this literature review are as follows: 1.
The spectral resolution of the sensor is the most crucial parameter to be taken
into account when designing a satellite-based agricultural crop mapping project.
2. Over the past 20 years, multispectral technology has been the most prevalent,
followed by SAR technology. 3. The combination of the two technologies has
demonstrated the potential to achieve high levels of accuracy in cloud-covered
areas.

2.4.3 Mapping Approaches

Mapping approaches can be distinguished according to three different criteria:
(1) Temporal range of data acquisition; (2) Minimum image classification unit; (3)
Moment of mapping. The three different criteria are described below.
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2.4.3.1 Mapping Approaches Based on Temporal Range of Data Acquisition

Over the past two decades, two distinct approaches have emerged in the analysis
of satellite images based on the temporal range of the images:

Single-Date Image Classification

This approach is based on single-date images and is less commonly used due to
the difficulty in identifying the optimal point of distinction between the phonolo-
gies of different crops over time. Different crops may exhibit the same spectral re-
sponse at certain phenological stages, leading to confusion in classification mod-
els. Regarding the causes of spectral confusion, Potgieter et al. (2021) cites the
bandwidths around the central wavelength of some satellites (such as Landsat,
for example). Despite the difficulties, the fact that some authors, such as Jayaku-
mari et al. (2021), Heinl et al. (2009), and Immitzer et al. (2016), have achieved
maximum overall accuracies of 81%, 94.4%, 89.2%, and 83%, respectively, demon-
strates that moderately high accuracies can be achieved with single-date images.
The results demonstrate that moderately high accuracies can be achieved with
single-date images, with overall accuracies of 81%, 94.4%, 89.2%, and 83% being
achieved, respectively.

Multi-temporal Satellite Image Series Classification

This is based on the classification of a set of images acquired throughout the
plant’s phenological cycle. Currently, it has been the most recurrent and promis-
ing approach due to the capacity of feature densification following the pheno-
logical cycle to resolve the problem of identifying the optimal temporal point
to distinguish agricultural crops, a challenge present in the single-date image ap-
proach. However, Langley et al. (2001) and Niel and McVicar (2004) warn that the
success of this approach depends on the use of limited observations that include
the main phenological stages, risking leading the model to overfitting through
the addition of redundant (auto-correlated) information.

This approach is based on the classification of a set of images acquired throughout
the plant’s phenological cycle or agricultural season. Currently, it has been the
most recurrent and promising approach due to the capacity of feature densifica-
tion following the phenological cycle to resolve the problem of identifying the op-
timal temporal point to distinguish agricultural crops, a challenge present in the
single-date image approach. Nevertheless, as observed by Langley et al. (2001)
and Niel and McVicar (2004), the efficacy of this approach is contingent upon the
utilization of a limited number of observations encompassing the principal phe-
nological stages. This may potentially lead to the model becoming overly fitted
through the introduction of superfluous (auto-correlated) information, thereby
compromising its accuracy.

A review of the literature revealed that in 83% of the 70 studies, multitemporal
series were utilized, while in only 17% of the studies single-date images were
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employed. This indicates a clear predominance of multitemporal images, as il-
lustrated in Figure 2.5.

Figure 2.5: Mapping Approaches Based on the Data Acquisition Timing

2.4.3.2 Mapping Approaches Based on Minimum Unit of Image Classification

The minimum unit of classification is defined as the smallest disaggregation unit
of the data to be classified. According to this criterion, three distinct approaches
can be identified: 1. Pixel-Based Approach; 2. Object-Based Approach and 3.
Hybrid Pixel and Object-Based Approach.

Pixel-Based Approach

In this approach, the minimum unit of classification is identical to the image’s
minimum unit, namely the pixel. In the discourse among authors, the principal
disadvantage of this technique is attributed to salt-and-pepper noise resulting
from the absence of contextual information about the pixel, which impairs the
model’s performance. This is in accordance with the findings of Potgieter et al.
(2021). As a solution, the application of spatial filtering techniques, such as the
Savitzky-Golay filter, is a common approach. This was demonstrated by Chen
et al. (2004). The primary advantage is the enhanced capacity to identify minute
and slender objects in settings devoid of significant topographical intricacies.

Object-Based Approach

This approach employs the object as the fundamental unit of classification, de-
fined as a cluster of pixels with spatial relation. This approach overcomes the
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limitations of the pixel-based approach by allowing for a more nuanced under-
standing of the spatial relationships between objects. The primary challenge in
implementing this methodology is the accurate determination of segmentation
size. As elucidated by Xue et al. (2023), this parameter is contingent upon the
dimensions of the study area, the spatial resolution of the sensor, and the topog-
raphy. To ensure the integrity of the plot, the segmentation size must be calibrated
to avoid errors due to insufficient resolution or over-segmentation. Accordingly,
Xue et al. (2023)) propose a gradual increase in the size of segmentation, guided
by the factors on which it depends and the objectives of the research.

Hybrid Pixel and Object-Based Approach

The review of publications in which both approaches were applied (Kussul et al.
(2016), Immitzer et al. (2016), Qadeer et al. (2021), and Xue et al. (2023)) proved
useful in that it allowed the understanding that it is not possible to absolutely
rank the two approaches, as their influence does not play a deterministically iso-
lated role in the overall classification accuracy. The relative accuracy of the two
approaches may vary depending on a number of factors, including the quality of
the segmentation, the choice of algorithms, the quantity and representativeness
of the training data, and the feature selection.

In Figure 2.6, a summary of the reviewed articles is presented based on the mini-
mum classification unit.

Figure 2.6: Mapping Approaches Based on the Minimum Data Classification Unit
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2.4.3.3 Mapping Approaches Based on Mapping Time

With regard to the mapping of temporal data, two distinct methodologies may
be identified: end-of-season mapping and early mapping, which occurs at the
inception of the agricultural season. As illustrated in Figure 2.7, a review of the
literature revealed that only five of the 70 authors employed an early mapping
approach, which involves the identification of crops at the beginning of the agri-
cultural season. As indicated by I Inglada et al. (2016), this is due to the fact that
Sentinel 2 images demonstrate greater efficacy at the end of the season when the
crops are mature, thereby exhibiting more distinct spectral signatures.

Figure 2.7: Mapping Approaches Based on the Data Acquisition Timing

However, given the significance of the timing of agricultural crop distribution in
the decision-making process, there has been a growing necessity in recent years
to develop methodologies that permit the early mapping of agricultural crops.

2.4.4 Satellite-Derived Features

Feature selection represents a pivotal stage in the model, as it determines the data
from which the machine learning model will learn patterns. As stated in He et
al. (2022), there is a correlation between the quantity of features, their type, and
the model’s performance. It is important to note that if a large number of fea-
tures are utilized randomly during the training process, the model’s prediction
accuracy may be negatively impacted by the redundancy of the features. Con-
versely, if only a few features are selected at random, there is a risk of selecting
features with minimal discriminatory power, which could result in a decline in
classification accuracy. Consequently, the objective of optimizing models is to se-
lect non-redundant features with strong data discrimination power and guide the
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model towards accurate learning.

The discriminatory power of a feature in crop mapping through machine learn-
ing is directly linked to its sensitivity in describing the changes in the phenolog-
ical characteristics of the crops throughout the phenological cycle. A variety of
techniques for identifying features with greater discriminatory power, such as
Recursive Feature Elimination (RFE), Random Forest Average Impurity (RFAI),
and Average Precision Reduction (RFAI), are described in the literature.

In this sense, according to the systematic review of the literature, the most com-
mon features in crop mapping are the Spectral Bands (SB) from the VIS, NIR, and
SWIR regions, backscattering data or Parametric Feature (PF), Spectral Index (SI),
Phenology Index (PI), and Texture (T). The percentages of feature type usage are
presented in Figure 2.8.

Figure 2.8: Ranking of the 5 Most Utilized Features in Selected Articles

The identification of the most effective features is a contentious topic in the lit-
erature, as it appears to fluctuate contingent on the agricultural crop, study con-
text, and the specific characteristics of the classification. Despite the controversy
surrounding this topic, an attempt was made to identify which of the five most
frequently occurring features were associated with the highest efficacy rates. In
order to achieve this, the methodology proposed by Machichi et al. (2023) was
employed. In accordance with this methodology, efficacy is defined as the ratio
between the frequency of use of a feature and the number of times this feature
was part of the set of features that generated the best result. Consequently, the ef-
ficiency ranking of the five most frequently utilized feature types, as determined
by the application of this concept to the reviewed publications, is presented in
Figure 2.9.
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Figure 2.9: Efficiency of the 5 Most Utilized Features in Selected Articles

2.4.5 Machine Learning Algorithms in Agricultural Crop Map-
ping

From the literature review, it is evident that, although there is a growth in the use
of deep learning algorithms, the majority trend still leans towards the application
of machine learning algorithms - Random Forest (RF), Support Vector Machine
(SVM), k-Nearest Neighbors (k-NN), Decision Tree (DT), Maximum Likelihood
Estimation (MLE) - as demonstrated in Figure 2.10.

A review of the literature reveals that, although there has been a notable increase
in the utilization of deep learning algorithms, the majority of studies still employ
machine learning algorithms, including RF, SVM, k-NN, DT, MLE. This is evi-
denced by Figure 2.10, which ranks the five most commonly used algorithms in
selected articles.

As with features, there is no clear consensus in the literature regarding the rank-
ing of the most effective algorithms. However, as was done in the analysis of
features, the methodology of Machichi et al. (2023) was applied to construct a
ranking of the efficiency rate of the five most used algorithms. This analysis was
based on the relationship between the frequency of use of an algorithm and the
number of times it generated the optimal classification model in the same con-
text (with the same data). Consequently, the efficiency ranking of the five most
utilized algorithms is presented in Figure 2.11. The efficiency of the five most
utilized algorithms in selected articles is presented in the following Figure.

In addition to representing 74% of the usage of the five most recurrent algorithms,
this review also notes that RF and SVM stand out as the two most efficient algo-
rithms. In favor of the RF algorithm, Qadir and Mondal (2020) justifies its success
due to its robustness against overfitting, as it can handle a large amount of data
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Figure 2.10: Ranking of the 5 Most Used Algorithms in Selected Articles

from various sources. Furthermore, Chabalala et al. (2022) asserts that the algo-
rithm is well-suited to heterogeneous landscapes due to its capacity to effectively
manage noise and intrinsic correlations inherent in satellite data. In contrast, the
SVM is also a viable option. As demonstrated by HU et al. (2017), it performs
well in high-dimensional problems and has good generalization ability from a
few training data, making it suitable for mapping various crops.

2.4.6 Best Practices in Agricultural Crop Mapping

A systematic review of the literature has enabled the identification of best prac-
tices for mapping agricultural crops using satellite data and processing through
machine learning algorithms over the past 20 years (Figure 2.12). These practices
integrate criteria related to multimodal data and temporal dimensions (which
pertain to the information present in the data and the timing of acquisition, re-
spectively), and the computational dimension concerning the data processing
through computational learning.

It can be concluded that, over the past 20 years, the most effective approach to
mapping agricultural crops using machine learning from satellite data in the mul-
timodal data dimension is one that combines the spectral bands from the visible,
near-infrared, and short-wave infrared (SB) regions, spectral indices (SI), pheno-
logical indices (PI), texture information (T), and radar backscatter data (PF).

In the temporal dimension, the use of multitemporal data has yielded the most
favorable outcomes. With regard to the computational dimension, the random
forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN) algo-
rithms have demonstrated superior performance in machine learning, while the
convolutional neural network (CNN) and long short-term memory (LSTM) algo-
rithms have exhibited exceptional capabilities in deep learning.
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Figure 2.11: Efficiency of the 5 Most Utilized Algorithms in Selected Articles

2.4.7 Fundamentals of the Support Vector Machine and Random
Forest Algorithms

2.4.7.1 Support Vector Machines (SVM)

As outlined by Cristianini & Shawe-Taylor (2000), Support Vector Machines (SVMs)
represent a supervised learning method employed for classification and regres-
sion problems. The underlying principle of SVMs is to identify a hyperplane that
optimizes the margin between classes while minimizing the classification error,
as illustrated in 2.13.

Given a binary problem, where xn are feature vectors and yi ∈ {−1, 1} are the
classes corresponding to the vectors, the objective of an SVM for a binary problem
is defined as follows:

w · x + b = 0 (2.1)

where:

• w is the weight vector;

• x is the feature vector;

• b is the bias.

Prior to any further explication, it is essential to clarify that the term "Support
Vector Machines" encompasses a broader range of applications than those tra-
ditionally associated with support vector classifiers. SVMs can be classified as
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Figure 2.12: Best Practices for Mapping Agricultural Crops Using Remote Sensing
Data with Machine Learning

either linear or non-linear, depending on the presence of outliers in the data or
the nature of the problem itself.

Both linear and non-linear SVMs can employ either fixed-margin or soft-margin
classifiers. In the context of SVMs, the margin is defined as the distance between
the hyperplane and the support vector of each class (sample of the class closest
to it).

Since the margin is inversely proportional to the norm of w, the general optimiza-
tion problem is defined by:

min
w,b

1
2
∥w∥2 (2.2)

subject to yi(w · xi + b) ≥ 1, for i = 1, . . . , n. (2.3)

During the training phase, the presence of samples positioned between the mar-
gins (samples incorrectly classified in the training data) results in the use of a
soft-margin support classifier. In the absence of margin violations, one is dealing
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Figure 2.13: Generic Illustration of SVM (Lorena & De Carvalho, 2007)

with a fixed-margin support classifier. Consequently, fixed-margin support clas-
sifiers posit that the data are perfectly linearly separable and devoid of outliers.

Given that real-world problems rarely exhibit a perfectly linear and unidimen-
sional structure, it is necessary to consider the use of soft-margin SVMs. Mathe-
matically, with αi, yi, xi and C representing the Lagrange multipliers associated
with each point, the labels, feature vectors, and the parameter that balances mar-
gin maximization and model complexity, respectively, a soft-margin SVM is for-
mulated for a linear binary problem (not perfectly linear).

max
α

(
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj(xi · xj)

)
(2.4)

n

∑
i=1

αiyi = 0 e 0 ≤ αi ≤ C, para i = 1, . . . , n. (2.5)

where:

• αi and αiare the Lagrange multipliers for the feature vectors xi and xj;

• C, as previously mentioned, is the parameter that controls the trade-off be-
tween the complexity and the generalization capability of the model;

• The first condition allows the hyperplane to be positioned neutrally. The
second condition requires each Lagrange multiplier to adhere to the con-
straint within the interval from 0 to C.
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In contrast to fixed-margin classifiers, soft-margin classifiers permit a certain pro-
portion of training samples to transgress the margins through the use of a slack
variable (ϵi) and a penalty parameter (C) for misclassifications. These parame-
ters enable the optimization of the margin while minimizing classification error.
Graphically, a soft-margin SVM is illustrated in Figure 2.14.

Figure 2.14: Illustration of a Soft Margin SVM (Lorena & De Carvalho, 2007)

Consequently, the Lagrange multipliers permit the identification of the hyper-
plane vectors (support vectors), where α is greater than 0, as well as the orien-
tation of the hyperplane based on the values of the multipliers’ coefficients that
satisfy the constraint.

In the event that the data is not linearly separable, Support Vector Machines em-
ploy kernel functions that "map" the data into a higher-dimensional space. This
allows them to utilize the relationship between variables in order to identify sup-
port vectors that are capable of linearly separating the data. This process is illus-
trated in Figure 2.15.

The essence of the kernel functions magic can be described as a method of work-
ing with data that avoids any direct transformation of the data to the mentioned
higher-dimensional space. This means that the coordinates of the points in this
space are never calculated. Instead, it is sufficient to map how these data points
would relate to each other in the higher-dimensional space. This is achieved by
calculating the inner product between the feature vectors in the higher-dimensional
space.

Once the inner product has been calculated, it provides information about the
similarity of the feature vectors during the training phase. This calculation is
performed between all pairs of sample combinations. The patterns in the data
are thus elucidated, and a hyperplane that separates the classes in the high-
dimensional space is identified. Consequently, for a nonlinear problem, the deci-
sion function from equation 1 assumes the following form:
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Figure 2.15: Kernel mapping from a 2D space to a 3D space: (a) Nonlinear dataset;
(b) Non-linear Boundary in the Transformed Feature Space; (c) Linear Boundary
in the Transformed Feature Space (Lorena & De Carvalho, 2007).

f (x) =
n

∑
i=1

αiyiK(xi, x) + b (2.6)

where:

• K(x, xi) is the kernel function;

• xixi is the new feature vector to be classified;

• x s the support vector.

In the testing phase, each sample is mapped to the high-dimensional space, and
the inner product between the sample’s feature vector and the support vectors is
calculated. The classifier is then defined by the following sign function:

f (x) = sgn

(
n

∑
i=1

αiyiK(x, xi) + b

)
(2.7)

Regarding the parameters of an SVM (C and kernel parameters), listed in the
table below, these can be determined through various methods such as Convex
Optimization and Approximate Methods. However, a common practice has been
to search for them using cross-validation.

Kernel Type Function K(xi, xj) Parameters

Polynomial (δ⟨xi · xj⟩+ κ)d δ, κ e d
Gaussian exp

(
−σ∥xi − xj∥2) σ

Sigmoidal tanh
(
δ⟨xi · xj⟩+ κ

)
δ e κ

Table 2.1: Kernel Types, Functions and Parameters
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2.4.7.2 Random Forest (RF)

As outlined by Breiman (2001), the Random Forest represents a supervised ma-
chine learning approach. Its operational framework entails the construction of
multiple decision trees based on training data, with the subsequent identification
of the mode or mean of each tree for the classification and regression of new data,
respectively.

Thus, the decision function of this algorithm is given by:

H(x) = arg max
K

∑
i=1

I(hi(x) = Y) (2.8)

where:

• H(x) is the final classification of a new feature vector;

• I is an indicator function that quantifies how many trees classified x as Y;

• hi is the ith classifier (decision tree).

Graphically, this is illustrated in Figure 2.16:

Figure 2.16: Diagram of a Random Forest (Liu et al., 2012)

Two fundamental aspects of this algorithm are the selection of samples and fea-
ture vectors for training each tree. Regarding sampling, the Random Forest (RF)
employs Bootstrap Sampling, a random sampling of the same size with replace-
ment of samples for each tree. This method of sampling allows a sample to appear
multiple times in the training data subset for a tree. This sampling allows each
tree to train with distinct data, thereby reducing model overfitting by capturing
diverse information about the data.

In terms of feature selection, for each tree, features are chosen randomly from a set
specified by the user, with the number of features chosen for each tree determined
randomly. The selection of features at each node of the decision tree is commonly
performed using the Gini impurity or information gain based on entropy. Both
criteria aim to quantify the quality of the split.

Mathematically, for a set S with n classes, the Gini impurity is defined by:
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Gini(S) = 1 −
n

∑
i=1

p2
i (2.9)

where:

• pi is the proportion of samples belonging to class in the set.

The Gini value ranges from 0 to 1, with values closer to 0 indicating lower impu-
rity in the feature. For a feature, the calculation of information gain is performed
as follows:

Gain(S, A) = Entropy(S)−
k

∑
i=1

(
|Si|
|S|

)
(2.10)

with,

Entropy(S) = −
n

∑
i=1

pi log2(pi) (2.11)

where:

• pi represents the proportion of instances of class i relative to the total num-
ber of instances in the training set (S);

• Entropy (Si) refers to the entropy of the training set;

• Si/Si s the ratio between the number of samples in the subset Si and the
total number of samples in training set;

• Entropy (S) is the entropy of the feature.

The most important hyper-parameters of this algorithm are:

1. Number of Trees;

2. Number of Features;

3. Maximum Depth of Trees.

Similar to the hyper-parameters of SVM, among many techniques, these can also
be determined through cross-validation.

27





Chapter 3

Study Area and Data

3.1 Study Area

The study area corresponds to the Baixo-Mondego Valley, located in Coimbra,
in the central region of Portugal. It covers an area of 13.34 hectares and extends
through the municipalities of Coimbra, Figueira da Foz, and Montemor-o-Velho.

As it is traversed by the Mondego River, the fifth largest river in Portugal with
a course entirely within the country, the valley of the Baixo-Mondego sub-region
(see Figure 3.1) is distinguished by its rich water potential, making it suitable for
agricultural practices. Indeed, according to Soares (2011), it has been the target
of development projects by the Ministry of Agriculture such as the “General Plan
for the Utilization of the Baixo-Mondego” in 1962 or the “Secondary Irrigation
Network” in 2010. These projects not only highlight its fertile potential but also
its consequent importance as a regional input to the food and economic sectors,
particularly in its main productions—maize of the species Zea mays L. and rice of
the Japonica subspecies of Oryza Sativa L., as described in the product datasheet
of the Montemor-o-Velho Cooperative 2.

3.2 Data

This section, where the data used and the corresponding acquisition setups are
described, is divided into two subsections: 3.2.1 Satellite Data, and 3.2.2 Ground
Truth Data.

2Connection to Product Datasheet of the Montemor-o-Velho Cooperative
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Figure 3.1: Geographic Framework of the Region of Interest

3.2.1 Satellite Data

3.2.1.1 Description of Satellite Data

Backscatter Data

Given the moderate density found in rice and maize crops, C-band SAR float
data from Sentinel-1 were used to balance depth and sensitivity. Since the leaves
of rice and maize crops have a narrow and vertical configuration, and broad and
more robust, respectively, to map this geometric difference, a configuration of
cross-polarizations VV and HV was utilized. This configuration enhances the po-
larimetric information of the models, as VV polarization (Vertical Transmit, Ver-
tical Receive) is sensitive to surface roughness, capturing information about the
density of objects, and VH polarization (Vertical Transmit, Horizontal Receive) is
sensitive to orientation and vertical structure. The acquisition of Sentinel-1 data
was done in IW mode (Interferometric Wide swath), which balances resolution
and coverage.
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Multispectral Data

Regarding spectral data, bands were used in regions where vegetation shows sig-
nificant reflectance—Visible (400-700nm), Near-Infrared (700-1300nm), and Short-
Wave Infrared (1300-2500nm), which in Sentinel-2 correspond to bands B2 (Blue),
B3 (Green), B4 (Red), B8 (NIR), B11 (SWIR), and B12 (SWIR).

In addition to the bands, two spectral indices (Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Water Index (NDWI)) were used be-
cause they allow for the analysis of the presence and condition of vegetation, and
the moisture content of vegetation, respectively, variables that make them useful
in distinguishing agricultural crops. Although these are calculated by combin-
ing visible and near-infrared bands, their combination with the bands has been a
recurrent practice as seen in section 2.4.4.

To reduce complexity in the data processing stage, Sentinel-2 data processed at
SR Harmonized Level (L2A ) with a cloud cover of less than 10%.

3.2.1.2 Sampling Interval of the Satellite Data Time Series

The sampling interval of the satellite data time series is a critical issue in the early
mapping of agricultural crops using satellite data and artificial intelligence due
to the trade-off of the "curse of dimensionality,". The curse of dimensionality also
known as the Hughes effect describes the deterioration of classifier performance
when the number of features is increased beyond an optimal value for a fixed
training set size.

On one hand, shorter intervals that allow for a finer temporal series capture sub-
tle temporal variations between crops and, theoretically, maximize classification
accuracy. However, in models that do not alter the nature of the data during the
learning phase (such as SVM and RF) and seek deep complex relationships as
deep neural networks do due to their deep architecture, shorter intervals may
introduce noise to the data due to the informative redundancy of features.

On the other hand, as demonstrated by Yi et al. (2022), longer intervals may fail to
capture important details and delay early mapping, thus necessitating a balance
between maximizing classification accuracy and reducing noise.

In fact, the findings of Yi et al. (2022) indicated that the optimal results for classical
machine learning models (SVM and RF) were achieved with a 10-day sampling
interval, utilising data interpolation to address the issue of missing observations.
This represented the optimal trade-off between model complexity and temporal
detail.

Therefore, for this research, a 10-day satellite data sampling interval was used
within the bounds of the spring-summer agricultural season, which according
to the Regional Directorate of Agriculture and Fisheries of Central Portugal, in a
specialized consultation, runs from April/May to September/October.
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3.2.2 Ground Truth Data

These data correspond to the ground truth obtained by delineating and moni-
toring 31 plots in the Baixo Mondego from May to September. The delineation
was performed using two GNSS receivers (Geomax Zenith 10 from GeoMax and
the rtkREP—a homemade Global Navigation Satellite System (GNSS) receiver),
both in Real Time Kinematic (RTK) mode, with corrections from the observations
of the Montemor Correction Station of the ReNEP network (a public geoprocess-
ing service in Portugal, provided by the Directorate General of Territory) which
allowed for achieving positioning accuracy of 2 centimeters in the coordinate sys-
tems EPSG: 3763 and EPSG: 25829 for Zenith 10 and rtkREP, respectively 3

These plots, sampled according to their prevalence in the field, are described in
the table that follows:

Table 3.1: Description of Monitored Crops

Description of the Crop Number of Monitored Plots

Maize 11
Rice 12
Potatoes 3
Chestnut Trees 1
Nurseries 2
Bare Soil 2

In the Figure 3.2, the general scheme for acquiring satellite and field data through-
out the spring-summer agricultural season in the Baixo-Mondego valley is sum-
marized.

Figure 3.2: Sample Acquisition Scheme for Model Training

3See appendix D.1
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Methodology

This chapter describes the methodology applied in this study. The chapter is di-
vided into seven sections: 4.1. Overview of the Methodological Framework; 4.2.
Feature Extraction; 4.3. Building the Reference Database; 4.4. Feature Selection;
4.5. Model Development; 4.6. Post-Classification with Stratified Random Sam-
pling; 4.7. Implementation: System Architecture.

4.1 Overview of the Methodological Framework

Aligned with the best practices for automation of crop mapping from satellite
data, identified in section 2.4.6, and the research objectives outlined in section 1.3,
an incremental classification methodology of satellite data was applied through-
out the spring-summer agricultural season in the Baixo-Mondego Valley.

In each iteration, this methodology involved the use of geospatial intelligence and
supervised machine learning for training classification models with the RF (Ran-
dom Forest) and SVM (Support Vector Machine) algorithms. Thus, for each 10-
day throughout the spring-summer agricultural season, each model was trained
according to two approaches:

1. Approach A - involved supervised classification with time series of fused
data from Sentinel-1 and Sentinel-2 satellites;

2. Approach B - employed supervised classification with time series of exclu-
sive data from the Sentinel-2 satellite. The term "incremental" refers to the
iterative growth of 10 days in the length of the time series data in both ap-
proaches.

From May to September, this methodology permitted the training of 15 mod-
els across two classification lines (RF Classification Line and SVM Classification
Line). In each classification line, each model was trained on one version based
on Approach A with fused data and another version based on Approach B with
only optical data.
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To determine the most effective features for training each model at each 10-day
interval of the agricultural season, feature selection with the Recursive Feature
Elimination with Cross Validation (RFECV) algorithm was employed. Subse-
quently, the performance of each model was evaluated in terms of overall accu-
racy and F1-score. Consequently, the identification of the early mapping model
entailed the determination of the model that minimizes the time at which perfor-
mance reaches an acceptable level (set at 90% in this study), as demonstrated in
Eq. 4.1.

Once an performance of 90% or above had been achieved in the initial stages of
the season, a post-classification was conducted using the IFAP monitoring map
as a reference. This allowed for the evaluation of the model’s performance on a
sample that reflected the actual distribution of classes in the data.

tmin = min{t | P(t) ≥ 0.9} (4.1)

with

• t time in units of 10 days;

• P is model performance.

This methodology permitted the identification of the early stage at which accu-
racy reached or exceeded 90%, the mapping of the significance of features derived
from satellites throughout the agricultural season, and the assessment of the con-
tribution of SAR data in optimizing early mapping.

An overview illustration is presented in the flowchart in Figure 4.1. 4

Figure 4.1: Flowchart of the Methodological Framework. The letters ’i’, ’a’, A, and
B represent the number of classifications, accuracy, and accuracy for approach A,
end accuracy for approach B , respectively.

The following section provides a detailed account of the specific elements pertain-
ing to each stage of the methodology, as outlined in the preceding sections. These

4Tap Here to See the Flowchart in a Larger Scale. A landscape visualization of this flowchart
is available in the Appendix B.
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stages include feature extraction, the construction of the reference database, fea-
ture selection, the training of models, the testing of models, the evaluation of
models, and post-classification with stratified random sampling.

4.2 Feature Extraction

The stage involved the filtration and reduction of data from the Sentinel-1 and
Sentinel-2 satellites, as detailed below.

4.2.0.1 Filtering

In this task, an iterative temporal filter was applied to Sentinel-1 and Sentinel-
2 data, incremented every 10 days, in conjunction with a spatial filter that re-
stricted the search to the study area. Consequently, each iteration yielded as many
Sentinel-1 and Sentinel-2 images as were available during the preceding 10-day
period and the subsequent periods. The overlap in data has the advantage of den-
sifying the time series and capturing detailed temporal variations in the crops,
thereby enhancing the richness of information available for model training.

A detailed account of the number of Sentinel-1 and Sentinel-2 images utilised in
each iteration and the respective capture dates of each image can be found in Data
Extraction Report in 5.

4.2.0.2 Reduction

In order to mitigate the presence of redundant features and outliers in the data, a
reduction was applied to the filtered data every 10 days. This involved calculat-
ing the median of each band individually based on the satellite observations in
that band over the 10-day period.

Consequently, the data structure at each time point in the time series corresponds
to a multi-band image comprising the medians of the optical bands, radar bands,
and spectral indices (described in Section 3.2), sampled every 10 days. This re-
duction achieved a balance between the robustness and detail of the time series
data.

4.3 Building the Reference Database

4.3.1 Determination of Sample Size

In this task, random sampling of points within the reference plots described in
section 3.1.2 was conducted, with each point being assigned to the class of the

5See Appendix E
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surrounding plot. Since the number of plots for each crop type in the field was
sampled according to their prevalence, this sampling incorporates a stratified de-
sign by class and preserves the probability of their occurrences in the field.

The number of samples per plot was determined based on the convergence calcu-
lation of classification accuracy with data corresponding to the maximum dura-
tion of the time series (150 days). Four options for the number of points per plot
(10, 20, 30, 50) were tested, and it was found that while increasing the number
of points from 20 per plot increases computational cost, it does not enhance the
accuracy of the models. Therefore, considering the computational power of the
Google Earth Engine (GEE), a value of 50 points per plot was adopted, resulting
in a total of 1.550 reference points. This testing with data corresponding to the
maximum length of the time series (150 days) ensures that none of the classifica-
tions with shorter temporal sub-series suffer from decreased accuracy due to an
insufficient number of samples.

Consequently, the distribution of the 1,550 reference points across each class is
presented in Table 4.1 and can be seen in Figure 4.2.

Table 4.1: Imbalanced Sampling (Sample Points Stratified by Each Class)

Description of the Crop Number of Sampled Points

Maize 550
Rice 600
Potatoes 150
Chestnut Trees 50
Nurseries 100
Bare Soil 100

4.3.2 Splitting Data into Training and Test Sets

Given the possibility of spatially correlated samples within the same plot, which
could bias the models, a method was introduced to randomize the data by shuf-
fling the samples. This was accomplished by incorporating a column of randomly
generated values, ranging from 0 to 1, with 1 representing an exclusive value.
Based on the column of random values added in the previous step, the reference
database was divided into two partitions: a training partition (values less than
0.70) and a test partition (values greater than 0.70).

4.3.3 Oversampling of Training Data Partition

With the objective of reducing model bias (better learning of the majority classes),
giving the model the opportunity to learn the patterns of all classes, thereby max-
imizing its generalization capability on new data, oversampling was applied to
the training set using the Synthetic Minority Over-sampling Technique (SMOTE)
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Figure 4.2: Sampling Points In Plots

algorithm from the Python imbalanced-learn library 6.

The logic of SMOTE lies in using linear interpolation to create synthetic points
for the minority classes iteratively until the dataset is balanced. For each point in
the minority class (x), its k-nearest neighbors belonging to the same class in the
feature space are identified. For a new synthetic point (xs) in the feature space,
the distance between x and one of the chosen nearest neighbors is calculated. A
random number between 0-1 is used, and the synthetic point (xs) is calculated
based on the following expression:

xs = x + λ(xneighbor − x) (4.2)

Thus, a k of 5 was defined, and from the application of SMOTE, a balanced train-
ing dataset with 3624 training points was obtained (Table 4.2).

The objective of this task was to create a database for training and evaluating
models. Each instance in the database is a vector of satellite features associated
with a label (agricultural land use class). It is essential to clarify that each value in
this feature vector is not an observation from a single band. Rather, it represents
the median of reflectance or backscatter values observed in a band over a 10-day
period.

6Oversampling was applied only to the training data to avoid affecting the real probability
occurrence of classes in the test data, which reflects the reality of the study area.
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Table 4.2: Balanced Sampling (Sample Points Balanced by Each Class+ Synthetic
Points)

Description of the Crop Number of Sampled Points

Maize 604
Rice 604
Potatoes 604
Chestnut Trees 604
Nurseries 604
Bare Soil 604

4.4 Feature Selection

Feature selection was conducted using the RFECV algorithm from the scikit-learn
library. The algorithm employed an RF or SVM classifier to select the optimal
features from the time series in each approach, as illustrated in Figure 4.3 7.

The rationale behind this algorithmic approach was to generate a ranking of the
relative importance of individual features within the initial dataset, and then to
assess the performance of the model using this initial set of features.

Subsequently, the features were removed one by one in a recursive manner, and
the impact on the model’s performance was evaluated. If the removal of a fea-
ture resulted in a decline in model performance, that feature was included in the
optimal feature set. In the event that the feature did not meet the aforementioned
criteria, it was eliminated. The following image presents this approach.

Figure 4.3: Feature Selection Using the RFECV Algorithm

In the case of RF, the feature importance was based on Gini Importance (that ex-
presses how well each feature separates the data relative to the target classes. This
information is derived from quantifying the reduction in impurity in the boot-
strap data whenever a feature is selected during the feature bagging process). In
contrast, for SVM, which does not provide a direct measure of importance, the
magnitude and direction of each feature’s contribution in determining the hyper-

7Tap Here to See the Flowchart in a Larger Scale
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planes that separate the classes in the data were used. The principal advantage
of this technique is that it combines three distinct analyses.

The analysis of feature importance was conducted on an individual basis and
within the context of the entire dataset. Additionally, the evaluation of feature
correlation and the impact on model performance were considered.

4.5 Model Development

This subsection explains the model’s training and testing setup and performance
evaluation metrics.

4.5.1 Training and Testing Setup

The data from the reference database were divided into training and test sets
with a ratio of 70% and 30%, respectively. This ratio is applied to the column of
random values ranging from 0-1 that was added during the reference database
construction process.

4.5.2 Model Training

In each approach, each model was trained on the GEE with the best feature set for
a time t of the agricultural season. The training parameters described in Section
2.4.7 were computed using the randomized search algorithm from the scikit-learn
library distributed in Python.

As in the feature selection process, for the models trained with the SVM algo-
rithm, a Z-score normalization was applied to the training partition, where the
S-1 and S-2 data were normalized independently.

Consequently, 30% was used to evaluate the performance of the model. The test
data for the SVM models were normalized separately from the training data. This
approach reduces what is known in the machine learning literature as data leak-
age.

4.5.3 Model Evaluation Metrics

Each model was evaluated using the Accuracy and F1 Score metrics. The accu-
racy metric is calculated according to the following expression:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

where:
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• TP means True Positive;

• TN means True Negative;

• FP means False Positive;

• FN means False Negative.

The F1-Score metric is calculated according to the following expression:

F1-Score = 2 ×
(

Precision × Recall
Precision + Recall

)
(4.4)

where precision and recall is given by the following equations:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(4.5)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(4.6)

4.6 Post-Classification with Stratified Random Sam-
pling

In this phase, a post-classification process was performed on the most accurate
early map to evaluate its accuracy across all parcels in the study area. The sam-
pling and validation strategy used is detailed below.

4.6.1 Post-Classification Sampling Design

Accordingly, the overall expected standard error parameter was defined in the
AcATaMa plugin of QGIS with a default value of 0.0050. This parameter facil-
itated the generation of 396 randomly stratified points across the three classes
throughout the entire Baixo Mondego valley area, thereby enabling the early agri-
cultural map to be validated with 95% confidence (z-score = 1.96). The number
of points per class is presented in the table below.

Table 4.3: Description of Crop Statistics

Class Number of Samples Standard Deviation

Maize 193 0.01
Rice 188 0.01
Other Occupations 15 0.01
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As stated in Fonte et al. (2024), this stratified sampling design considers the di-
versity of the landscape and the probability of occurrence of the classes, is cost-
effective and practical due to the reduction in the number of sampling points, and
allows for the collection of data from samples in rare classes.

4.6.2 Post-Classification Response Design

As a reference, the 2023 agricultural land monitoring map from Institute of Fi-
nancing for Agriculture and Fisheries, Public Institute (Portugal) (IFAP) was em-
ployed, which was derived through a supervised classification of Sentinel- 2 im-
ages and corrected using information from field visits and geo-referenced photo-
graphic evidence provided by farmers. The AcATaMa plugin of QGIS was em-
ployed to cross-reference the data from the most accurate early classification map
and the IFAP agricultural land monitoring map, thereby constructing a confusion
matrix and calculating producer and user accuracies.
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4.7 Implementation: System Architecture

At the architectural level, there are three components: Google Earth Engine (GEE),
Colab, and QGIS. The latter is the only platform accessed on a local machine and
is used solely for the creation of points with the crop classes. However, the major-
ity of the processing is carried out through scripting in Python and JavaScript on
GEE and Colab, both of which are part of Google LLC’s suite of cloud computing
services.

Below, the relationship between these three components is described in the Figure
4.4 below:

Figure 4.4: Classification System Architecture

The GEE, designed for cloud analysis and visualization of large amounts of geospa-
tial data, is the primary component of the system where satellite data extraction,
filtering, reduction, and the training and validation of intelligent models are de-
veloped. The system then receives the points from the stratified sampling within
the plots, produced in QGIS, through an upload of a shapefile (which must be
zipped). Once the satellite data has been collected, it is exported to Google Drive
in the form of a CSV file, thereby making it accessible from Colab, a cloud-based
Python notebook. Two essential functions of the system that are not available in
GEE can be applied in Colab: oversampling of data with synthetic points and hy-
perparameter estimation, using the imbalanced-learn and scikit-learn libraries.
This integration, illustrated in Figure 4.5 exploits the processing capabilities of
Google Earth Engine and the adaptability of these libraries.
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Figure 4.5: Data workflow
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Results

5.1 Proposed Approach

The presentation of the results in this subsection is divided into 5.1.1. Feature Se-
lection Results; 5.1.2. Model Performance Over Time, 5.1.3. Early Crop Mapping
Identification, and 5.1.4. Post-Classification Results.

5.1.1 Feature Selection Outcomes

Before presenting these results, it is important to clarify that the information cho-
sen to train the models was extracted from features (observations in each satellite
band over a given time period). To make the analysis easier and to assess the
usefulness of each satellite band, the results are grouped together and presented
based on each individual band.

In essence, the key to understanding these results has to do with the frequency
and number of times each type of data is selected for the set of best features, such
that the more frequently a type of data is selected, the more efficient it is for crop
mapping.

This information is presented for each algorithm used in RFECV.

5.1.1.1 Feature Effectiveness Using Random Forest Models

In this section the average graphs of Gini importance present the univariate con-
tribution of features from each band in the automatic classification of crops.

As the Gini Importance values of each feature (observation in each band) are
originally normalized between 0 and 1, where values close to 0 represent higher
informative power and values close to 1 represent lower informative power, the
normalization of the observations from each band by the total number of obser-
vations, despite reducing the scale of the values, preserves the original interpre-
tation of the Gini Importance.
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The impact graphs on model performance in this section illustrate the mean varia-
tion in model performance when the features from each band were either selected
or excluded during the training of RF models. The performance evaluation metric
employed in RECV was classification accuracy. Given that RFECV was applied to
the training set with balanced data, the evaluation metric was also classification
accuracy, without prejudice to potential data bias towards the majority classes.

The frequency with which features from each band are selected by RFECV indi-
cates a balance between three factors:

1. The individual informative power of the band;

2. How the band relates to other bands;

3. The overall impact of the band on the classification accuracy.

In simpler terms, if a band is selected frequently, it means that it provides use-
ful information on its own, works well in combination with other bands, and
significantly improves the model’s accuracy when used. This frequent selection
robustly represents the overall importance and contribution of that band when
using the Random Forest algorithm.

Radar Features

The results of the multivariate analysis (Figure 5.1) of radar features derived from
the Sentinel-1 satellite using the Random Forest algorithm indicated that the VV
and VH polarizations exhibited Gini importance scores of 0.065 and 0.066, respec-
tively. This result suggests that the univariate contribution of these bands to the
mapping of agricultural crops is highly comparable.

Figure 5.1: Univariate Contribution of Radar Features in RF Models Based on
Gini Importance

However, the results of the impact on model performance (Figure 5.2) demon-
strated that the impact caused by the introduction of VH polarization features
was significantly greater than the impact caused by the introduction of VV polar-
ization features, with average Gini importance scores of 0.042 and 0.006, respec-
tively.

These graphs also demonstrated that when the VV features are not selected, there
is no significant decay in model performance.
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Figure 5.2: Impact of Radar Features on RF Performance Model (Red Dot Repre-
sents a Value Equal to or Below 0)

The balance of these two scenarios is summarized by the number of times each
radar feature was selected or discarded from the dataset optimized by RFECV
using the RF algorithm, as illustrated in Figure 5.3. These results demonstrate
that VH polarization features were chosen 107 times for the set of best features,
while VV features were chosen 100 times.

Figure 5.3: Ranking of Radar Feature Effectiveness for RF Models Based on the
Number of Times Each Band’s Features are Selected or Not Selected in the RFECV
Process (Red Dot Represents a Value Equal to 0)

Optical Features

The univariate importance analysis (Figure 5.4) revealed that the univariate infor-
mative power of the features of each band decreases in the following sequence:
B8 (0.0510), NDVI (0.04142), NDWI (0.0383), B3 (0.0259), B4 (0.0254), B2 (0.0189),
B1 (0.0182), B12 (0.0131), and B11 (0.0089).
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Figure 5.4: Univariate Contribution of Optical Features in RF Models Based on
Gini Importance

The graphs of impact on model performance (Figure 5.5) demonstrated that the
sequence from the features of bands with the greatest impact to those with the
least impact can be defined as follows: The results indicated that the follow-
ing bands exhibited the greatest impact on model performance: B11 (0.067), B12
(0.0374), B1 (0.0064), B2 (0.0020), B3 (0.0011), B8 (0.0004), NDVI (0.0003), B4 (0.0001),
and NDWI (-0.000050393).

Figure 5.5: Impact of Optical Features on RF Performance Models (Red Dot Rep-
resents a Value Equal to or Below 0)

However, the ranking of the efficiency of the optical band features (Figure 5.6)
revealed that the sequence from the most effective to the least effective features
is as follows: The following order of efficiency was observed for the optical band
features: B8 (56), NDWI (48), B3 (45), B11 (40), NDVI (39), B1 (33), B2 (33), B12
(33), B4 (30).

The discrepancy between the ranking sequences, which consider only the uni-
variate relationship (Figure 5.4) and those that take into account the multivariate
relationships (Figure 5.6), underscores the significance of striking a balance be-
tween the individual ability of each attribute to discriminate data and its impact
on the performance of the classification model when it interacts with other at-
tributes in the dataset.

Moreover, the selection of attributes through RFECV has the advantage of being
carried out within the specific context of the machine learning algorithm, result-
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Figure 5.6: Ranking of Optical Feature Effectiveness for RF Models Based on the
Number of Times Each Band’s Features are Selected or Not Selected in the RFECV
Process

ing in outputs whose interpretation is more intuitive compared to dimensional
reduction techniques such as principal component analysis Principal Component
Analysis (PCA). It is also important to highlight that this method incorporates
cross-validation, providing more robust and reliable solutions.

5.1.1.2 Feature Effectiveness in Support Vector Machine Models

In this subsection, the importance graphs illustrate the univariate contribution of
each band’s features in defining the hyperplane that separates the classes through-
out the classification process. This value is extracted from the average of the sum
of the coefficients of each feature in the support vectors. These coefficients were
normalized by the number of observations (features) of each data type (radar and
optical).

The absolute values resulting from normalization by the number of observations
represent the magnitude (contribution of each band) in solving the classification
problem. This is because the vectors represented by the coefficients indicate the
weight of each feature in defining the hyperplanes that separate each binary prob-
lem in the multi-class classification scenario.

The impact graphs on the model’s performance in this section represent the av-
erage variation in model accuracy whenever the features of each band were in-
cluded or excluded from the training of the SVM models.

Finally, as with the feature selection process using RF, the number of times the
features of each band were selected represents a balance between the individual
informative capacity of this band, its relationship with other bands, and its impact
on classification. This generates a robust feature selection process.
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Radar Features

The univariate contribution of radar features, as illustrated in Figure 5.7, revealed
that radar features with vertical polarization (VV) exhibited a slightly higher uni-
variate contribution to the classification of agricultural crops compared to radar
features with horizontal polarization (VH).

Figure 5.7: Univariate Contribution of Radar Features in SVM Models Based on
the Mean Value of the Support Vector Coefficients (Magnitude)

This result is contrary to the result obtained by the RF algorithm. The discrepancy
can be attributed to the differing approaches employed by each algorithm in data
exploration.

However, the impact on model accuracy (Figure 5.8) aligns with the findings
of the RF algorithm, with features with VH polarization (0.0418) demonstrating
a greater influence on model performance than features with VV polarization
(0.0074) when integrated into the SVM model.

Figure 5.8: Impact of Radar Features on SVM Models

Consequently, the efficacy results (Figure 5.9) of the radar features between the
two algorithms also converge, highlighting cross-polarized radar features as the
best radar features, with a selection frequency for the optimal feature set equal to
116, while VV-polarized radar features had a selection frequency equal to 112.
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Figure 5.9: Ranking of Radar Feature Effectiveness for SVM Models Based on the
Number of Times Each Band’s Features are Selected or Not Selected in the RFECV
Process

Optical Features

The univariate analysis of optical features (Figure 5.10) revealed that the univari-
ate contribution ranking of features follows this sequence: B8, B11, B2, NDWI, B1,
B3, B12, B4, and NDVI exhibited the highest scores, with values of 0.3117, 0.2616,
0.2142, 0.1725, 0.1445, 0.1419, 0.1295, and 0.0737, respectively.

Figure 5.10: Univariate Contribution of Optical Features On SVM Models Based
on the Mean Value of the Support Vector Coefficients (Magnitude)

The results of the impact on model performance (Figure 5.11) revealed contri-
butions of 0.0610, 0.0457, 0.0140, 0.0042, 0.0038, 0.0030, and 0.0000. The optimal
feature set was selected based on the following values: 0.0005 for B11, 0.005 for
B12, 0.0140 for B1, 0.0042 for B2, 0.0038 for B3, 0.0030 for B4, 0.00 for B8, 7.7960e-05
for NDVI, and 7.7960e-05 for NDWI.
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Figure 5.11: Impact of Optical Features on SVM Models Performance (Red Dot
Represents a Value Equal to or Below 0)

These results align with those obtained in the RFECV with the RF algorithm,
which demonstrated a greater impact of spectral band features, particularly bands
B11 and B12, and a minimal impact of spectral indices.

Lastly, with regard to the efficacy of features in relation to other features, the re-
sults (Figure 5.12) align with the RF algorithm selection for bands B8 and B11,
which were ranked in the top positions with a selection frequency of 57 and 43
times, respectively, for the optimal feature set. However, the results were equally
noteworthy with the scores of the bands from the visible region of the electro-
magnetic spectrum exceeding those of the spectral indices.

Figure 5.12: Ranking of Radar Feature Effectiveness for SVM Models Based on
the Number of Times Each Band’s Features are Selected or Not Selected in the
RFECV Process
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5.1.2 Model Performance Over Time

This section presents an analysis of the metrics (accuracy and F1-score) employed
in the validation of RF and SVM models throughout the spring-summer agricul-
tural season. Each metric is evaluated in accordance with the two approaches
delineated in Section 4.1.

5.1.2.1 Performance Metrics in RF Models

Accuracy

The accuracy results of each model over time are presented in Table 5.1. The
results are organized according to the approaches described in Section 4.1. This
table also includes the respective dates associated with each model. These dates
relate to the cumulative data intervals used for training each model.

Table 5.1: Accuracy of RF Models

Model ID Data Time Range Accuracy in A (%) Accuracy in B (%) A-B (%)

RF Model 1 May 01st - May 10th 74.49 70.13 4.36
RF Model 2 May 01st - May 20th 84.81 82.57 2.24
RF Model 3 May 01st - May 30th 86.21 82.39 3.82
RF Model 4 May 01st - Jun 10th 88.36 82.56 5.80
RF Model 5 May 01st - Jun 20th 91.45 85.17 6.28
RF Model 6 May 01st - Jun 30th 92.71 86.69 6.02
RF Model 7 May 01st - Jul 10th 95.47 89.11 6.36
RF Model 8 May 01st - Jul 20th 95.81 93.89 1.92
RF Model 9 May 01st - Jul 30th 96.49 96.11 0.38
RF Model 10 May 01st - Aug 10th 97.25 97.02 0.23
RF Model 11 May 01st - Aug 20th 98.12 98.01 0.11
RF Model 12 May 01st - Aug 30th 98.08 97.78 0.30
RF Model 13 May 01st - Sep 10th 97.61 96.54 1.07
RF Model 14 May 01st - Sep 20th 97.15 96.92 0.23
RF Model 15 May 01st - Sep 30th 96.64 95.21 1.43

The results indicate that the total number of correct predictions by the RF mod-
els increases from spring to summer. This is due to the maturation process of
agricultural crops and the clarity of the spectral response from the targets.

Moreover, it was demonstrated in Figure 5.13 that models belonging to Approach
A exhibited higher accuracy values at the outset of the season, with the number
of correct predictions by models belonging to Approach B becoming comparable
to those belonging to Approach A as of July 30.

According to this metric, the number of days required for classifications to reach
a correct classification rate of 90% or higher is 30 days. This information can be
verified in 5.1, where models 5 and 6, highlighted in gray, demonstrate that for
Approach A, an accuracy of 91.45% is achieved by June 29, while Approach B
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only reaches an accuracy level above 90% by July 20, at which point the accuracy
values tend to converge.

However, it is important to note that the test set was not balanced and repre-
sents a scenario of unbalanced classes. Therefore, it is essential to exercise caution
when using this metric for early mapping identification, as it may provide a false
perception of accuracy in minority classes and bias the model toward majority
classes. Nevertheless, the use of this metric is highly recommended in scenarios
where reality reflects a balance in the occurrence of agricultural classes.

For these reasons, subsequent analyses will focus more on the F-score metric,
which provides a balance between precision and recall, given that the reality of
the Baixo Mondego presents two predominant classes.

Figure 5.13: Evolution of RF Models’ Accuracy Over Time

F1-Score

The results of this metric are described in Table 5.2.

According to these results, the greatest differences in the F1-score values of the
models are observed at the beginning of the season, and there is a trend of con-
vergence from spring to summer (Figure 5.14).

The fusion of radar and optical data was also found to result in an improvement
in the balance between precision and sensitivity (recall).

This balance represents the model’s ability to produce a classification that mini-
mizes both false positives and false negatives simultaneously.

A 90% F1-Score was identified as an acceptable early value. It was found that
Approach A minimized the time needed to achieve a value equal to or greater
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Table 5.2: F1-Score of RF Models

Model ID Data Time Range F1-Score in A (%) F1-Score in B (%) A-B (%)

RF Model 1 May 01st - May 10th 72.2 67.28 4.92
RF Model 2 May 01st - May 20th 83.57 80.63 2.94
RF Model 3 May 01st - May 30th 84.28 79.91 4.37
RF Model 4 May 01st - Jun 10th 87.14 81.02 6.12
RF Model 5 May 01st - Jun 20th 89.36 83.1 6.26
RF Model 6 May 01st - Jun 30th 90.88 85.61 5.27
RF Model 7 May 01st - Jul 10th 93.5 87.53 5.97
RF Model 8 May 01st - Jul 20th 94.41 91.46 2.95
RF Model 9 May 01st - Jul 30th 93.91 94.7 -0.79
RF Model 10 May 01st - Aug 10th 95.96 95.44 0.52
RF Model 11 May 01st - Aug 20th 96.97 96.69 0.28
RF Model 12 May 01st - Aug 30th 96.94 95.1 1.84
RF Model 13 May 01st - Sep 10th 95.64 94.54 1.1
RF Model 14 May 01st - Sep 20th 95.53 95.4 0.13
RF Model 15 May 01st - Sep 30th 95.04 93.04 2.00

than 90%. In this approach, the model achieves an F1-score of 90.88% by June 30,
whereas for Approach B, it reaches a score on July 20.

Figure 5.14 further illustrates that if the acceptable performance value for the
model is reduced to an F1-score below 90%, with 85% as an example, the dif-
ference in the time needed to achieve this accuracy level in the two approaches
tends to increase, being greater for the approach that uses only optical data.

5.1.2.2 Performance Metrics in SVM Models

Accuracy

The results of the model evaluation using the accuracy metric are presented in
Table 5.3.

These results, when compared to those in Table 5.1, reveal that the classification
line with SVM models takes longer to achieve an accuracy of 90% or higher.

While the classification line with RF models (Table 5.1) reaches this value for the
first time in the fifth classification on June 20th (accuracy equal to 91.45%), the
classification line with SVM algorithms only reaches it in the seventh classifica-
tion on July 10th (94.31%).

Nevertheless, analogous to the classification with RF models, for the SVM mod-
els, there is also a 20-day discrepancy in the time required for the approach utiliz-
ing solely optical data to achieve an accuracy of 100%. The results are presented
in Figure 5.15.
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Figure 5.14: Evolution of RF Models’ F1-Score Over Time

Figure 5.15: Evolution of SVM Models’ Accuracy Over Time

F1-Score

The results of the model evaluation using the F1-Score metric are presented in
Table 5.4. These results demonstrated that, in comparison to RF models (Table
5.2), the models require a longer time to achieve an F1-Score of 90% or higher.
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Table 5.3: Accuracy of SVM Models

Model ID Data Time Range Accuracy in A (%) Accuracy in B (%) A-B (%)

SVM Model 1 May 01st- May 10th 67.37 65.13 2.24
SVM Model 2 May 01st - May 20th 73.45 71.29 2.16
SVM Model 3 May 01st - May 30th 76.53 72.31 4.22
SVM Model 4 May 01st - Jun 10th 73.48 72.81 0.67
SVM Model 5 May 01st - Jun 20th 79.34 76.21 3.13
SVM Model 6 May 01st - Jun 30th 86.72 83.56 3.16
SVM Model 7 May 01st - Jul 10th 92.33 86.53 5.80
SVM Model 8 May 01st - Jul 20th 93.78 88.61 5.17
SVM Model 9 May 01st - Jul 30th 94.31 92.79 1.52
SVM Model 10 May 01st - Aug 10th 95.81 95.70 0.11
SVM Model 11 May 01st - Aug 20th 97.27 96.14 1.13
SVM Model 12 May 01st - Aug 30th 97.61 97.12 0.49
SVM Model 13 May 01st - Sep 10th 96.23 96.02 0.21
SVM Model 14 May 01st - Sep 20th 96.89 96.42 0.47
SVM Model 15 May 01st - Sep 30th 96.30 95.07 1.23

Table 5.4: F1-Score of SVM Models

Model ID Data Time Range F1-Score A (%) F1-Score B (%) Difference (%)

SVM Model 1 May 01st - May 10th 64.72 62.96 1.76
SVM Model 2 May 01st - May 20th 72.03 68.36 3.67
SVM Model 3 May 01st - May 30th 74.85 70.91 3.94
SVM Model 4 May 01st - Jun 10th 76.58 70.85 5.73
SVM Model 5 May 01st - Jun 20th 77.67 73.97 3.70
SVM Model 6 May 01st - Jun 30th 85.17 81.23 3.94
SVM Model 7 May 01st - Jul 10th 90.58 85.43 5.15
SVM Model 8 May 01st - Jul 20th 92.47 86.67 5.80
SVM Model 9 May 01st - Jul 30th 91.86 90.79 1.07
SVM Model 10 May 01st - Aug 10th 94.16 92.72 1.44
SVM Model 11 May 01st - Aug 20th 96.04 94.58 1.46
SVM Model 12 May 01st - Aug 30th 95.97 94.89 1.08
SVM Model 13 May 01st - Sep 10th 94.12 93.70 0.42
SVM Model 14 May 01st - Sep 20th 94.55 94.86 -0.31
SVM Model 15 May 01st - Sep 30th 93.64 92.35 1.29

While the RF model classification line records 91.45% for the F1-Score metric on
June 20th, the SVM models only register 90.58% on July 10th. With regard to
the two approaches, it was also determined that there is a 20-day discrepancy in
the classification line when only optical data is utilized to achieve an accuracy of
90.79%. The aforementioned results are depicted in Figure 5.16.
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Figure 5.16: Evolution of SVM Models’ F1-Score Over Time

5.1.3 Model Tuning

The results of hyperparameter optimization with randomized search and cross-
validation for SVM revealed that the SVM’s C parameter ranged from 3.85 to 9.60.
This adjustment to the permissiveness of correct classifications during training
resulted in better generalizability on the test set.

For the RF, the number of trees varied from 317 to 316, the number of variables
considered at each split varied between 3 and 6, the minimum number of samples
varied between 26 and 30, and the maximum number of nodes varied between
18 and 24. These results highlight the necessity for model tuning as the amount
of time series data grows.
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5.1.4 Early Crop Mapping Identification

The comparison of the times in which each of the 60 models achieves a perfor-
mance equal to or greater than 90%, according to the F1 score metric that best
matches the reality of the test data in this study, revealed that the model with the
ID ’RF Model 6’, trained using Approach A (see Figures 5.14 and 5.16), is the one
that minimizes the time the most, achieving an F1 score on June 30th.

Figure 5.17 shows the time required for the models to achieve an F1 score per-
formance of 90% or higher during the iterative classification process. For each
model, the performance in both approaches is shown.

Figure 5.17: Comparison of Classification Models Where an F1-Score of 90% or
Higher is First Achieved in Both Approaches, Considering the RF and SVM Clas-
sification Lines

The spatial distribution map generated by the application of the early mapping
model (RF Model 6) is shown in Figure 5.18.

In regard to the preliminary mapping framework within the phenological cycle
of rice and maize crops in Baixo-Mondego, the evolution of classification model
performance over time and the onset and phenological stages of the two crops, as
documented by the Coimbra Agricultural Innovation Center and the Food and
Food and Agriculture Organization (FAO), were considered. It was determined
that the early agricultural mapping approach utilizing the RF 6 model enables the
attainment of a classification with an F1-Score metric value of 90.88% when rice
plants are in the vegetative stage and maize plants are in the initial reproductive
phase. This information is illustrated in Figure 5.19.
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Figure 5.18: Early Crop Mapping of the Mondego Valley as of July 30th

Figure 5.19: Phenological Stages of Rice and Maize
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5.1.5 Post-Classification Results

This section presents the results of the post-classification of the agricultural crop
spatial distribution map.

5.1.5.1 Sampling Design

The spatial distribution of the 396 points utilized for post-classification of the
agricultural crops map is illustrated in Figure 5.20. The methodology employed
in delineating the sample is delineated in Section 4.6.1.

Figure 5.20: Post-Classification Sampling Design

5.1.5.2 Response Design

As described in Section 4.6.2, the response design used the IFAP map, shown in
Figure 5.21.

5.1.5.3 Post-Classification Metrics

The confusion matrix presented in Table 5.5 was derived from the validation pro-
cess of the early mapping of the spatial distribution of agricultural crops in the
Baixo Mondego region. This process utilized monitoring information from IFAP.
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Figure 5.21: Post-Classification Response Design

5.1.5.4 Confusion Matrix

Table 5.5: Confusion Matrix

Maize (1) Rice (2) Others Occupations (3) Total User Accuracy

1 174 9 10 193 0.90155
2 3 182 3 188 0.96809
3 0 2 13 15 0.86667

Total 177 193 26 396
Producer Accuracy 0.98299 0.94316 0.50000

5.1.5.5 Post-Classification Metrics

The post-classification metrics demonstrated that the map exhibited an overall
accuracy of 93.19%.

Regarding the robustness of the model from the perspective of the likelihood
of field verification of the information on the map, translated by user accuracy
(precision), the results show a high reliability above 85%, with emphasis on the
classes of interest in this study, showing accuracy values of 90.16% and 96.81%
for rice and maize, respectively.

For the producer’s accuracy (recall), despite the high values recorded for the
maize and rice classes at 98.30% and 94.32%, the results also show that the model
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could be improved for the minority classes, where it registers an accuracy of
50.01%.

Table 5.6: Post-Classification Metrics

Category Accuracy Standard Deviation

Overall 0.93187 0.0126

User’s Accuracy
Maize 0.90155 0.0215
Rice 0.96809 0.01285
Others Occupations 0.86667 0.09085

Producer’s Accuracy
maize 0.98299 0.00961
Rice 0.94316 0.01599
Others Occupations 0.5007 0.06295

According to these results, the estimated area of each of the classes and their
respective margins of error are shown in Table 5.7.

Table 5.7: Class Area Adjusted

Class Area Adjusted (ha) Error (ha) Lower Limit (ha) Upper Limit (ha)

Maize 4 590,65 116,58 4 362,15 4 819,16
Rice 5 022,69 104,96 4 816,97 5 228,40
Others Occupations 675,81 98,38 482,98 868,64

Total 10 289,15
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Discussion

The presentation of the results discussion in this chapter is divided into 6.1. Ef-
fectiveness of Selected Features; 6.2. Contribution of Optical Radar Fusion; 6.3.
Fused Data Exploration Capability and 6.4 Comparison with Previous Studies.

6.1 Effectiveness of Selected Features

With regard to the efficacy of the features, the enhanced performance of the cross-
polarization features can be attributed to their heightened sensitivity to the geom-
etry and orientation of the vegetation, coupled with a diminished responsiveness
to soil state returns. These returns can exhibit variability across plots with iden-
tical crops. Consequently, this radar feature was selected to a slightly greater
extent than any other by both RFECV with RF models (Figure 5.3) and RFECV
with SVM models (Figure 5.9).

With regard to the optical image features, the results of the RFECV with RF (Fig-
ure 5.6) and RFECV with SVM (Figure 5.12) are in agreement with regard to the
placement of bands in the infrared, shortwave infrared, and the green channel of
the visible, which are identified as the most efficient bands.

These results demonstrate that the vegetation vigor of band 3 and the water con-
tent were crucial for distinguishing agricultural crops. This is corroborated by
the fact that NDWI occupies an intermediate to high position and NDVI in the
selection rankings of the RFECV processes with SVM models (Figure 5.12) and
RF (Figure 5.6), respectively.

The observation that NDVI and band 4 (the red channel of the visible region of the
electromagnetic spectrum) occupy intermediate to low positions in the selection
rankings of RFECV processes with RF models (and SVM models) indicates that
biomass quantity was not as crucial as water content in vegetation and soil.

It is also worth noting the utility of the RFECV analysis process. Rather than se-
lecting features based solely on their univariate importance (discriminative power
when considered individually), this process weighs this information according to
its impact on model performance and its relationship to other features. As a result
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of this weighting, the selection outcomes of the same features may vary between
models due to the differing architectural characteristics of each. However, cross-
analyses such as the one presented above can facilitate the interpretation of the
relative value of the information for the specific problem at hand.

6.2 Contribution of Optical and Radar Data Fusion

This subsection presents an analysis of the contribution of data fusion to early
mapping.

As evidenced in Tables 5.2 and 5.4, the fusion of radar and optical data yielded
a F1-Score metric exceeding 90% with a 30-20 day lead time, surpassing the per-
formance of the approach utilizing solely optical data. This outcome was partic-
ularly pronounced when a lower performance threshold was deemed acceptable.

These results demonstrate that the integration of radar and optical data optimizes
the process of early mapping, thereby minimizing the time required to achieve
the desired level of performance at the outset of the agricultural season.

The primary reason for this is the limited availability of high-quality optical data
at the conclusion of spring and the advent of summer. As illustrated in Figure
6.1, there is a period of stagnation in the quantity of optical images with less than
10% cloud coverage from May 1 to June 20, with only three high-quality optical
images available during this interval.

Figure 6.1: Cumulative Availability of Sentinel-1 and Sentinel-2 Images Over
Time

However, from June 20 onward, there is an increase in the availability of high-
quality optical images. This increase is one of the reasons for the trend of increas-
ing accuracy convergence observed in classification lines with RF and SVM algo-
rithms after June 20. This analysis justifies the fact that the fused data approach
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minimizes the time to reach the performance of models in both the classification
line with ML algorithms and the classification line with SVM algorithms.

6.3 Capability to Explore the Fused Data

This subsection presents an analysis of the capacity of two algorithms to identify
patterns in merged data.

The statistical calculations presented in Table 6.1, which include the maximum,
minimum, average, and standard deviation of the difference curves for the F1-
Score in each classification line approach using the RF and SVM algorithms, allow
us to draw the following results regarding the pattern exploration capacity in
merged data:

Table 6.1: Difference Between F1-Score Ratings in Two Approaches (A and B)
Mapped According to Classification Lines (RF and SVM)

Model Mean Difference Max Difference Min Difference Standard Deviation

RF 2.93 6.26 -0.79 2.34
SVM 2.68 5.80 0.11 1.76

The mean values of the two curves (2.93 and 2.68 for the RF and SVM curves,
respectively) suggest that the RF algorithm may have a slight advantage in ex-
ploring patterns in the merged data, particularly when the time period is shorter
(Figure 6.2).

Figure 6.2: Development of the Improvement of the Classification Resulting from
Data Fusion in the Two Classification Lines

The maximum values (6.26 and 5.80) for RF and SVM curves, respectively, and
the tendency of the RF curve to overlap the SVM curve at the start of the season
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(Figure 6.2) reveal a superior capacity of the RF algorithm to explore the merged
data early in the season, when radar data still had limited spectral clarity, caused
by the low detail in the three-dimensional structure of crops that were still in an
early phase of development.

The standard deviation values of each curve indicate that the exploration of the
merged data by the SVM algorithm was more stable throughout the season, al-
though slightly lower. This explains why the difference curve in the F1-Score
value of models trained by the SVM algorithm did not register any negative val-
ues.

These analyses assist in elucidating the rationale behind the observation that
models trained with the RF algorithms exhibited a minimal requirement for per-
formance equal to or greater than 90% over the course of the study, given that
SVM algorithms were also trained with an approach utilizing merged data.

6.4 Comparison with Previous Studies

6.4.1 Methodological Perspective

As in prior studies conducted by Inglada et al. (2016), Rahmati et al. (2022), Hao et
al. (2018), and Skakun et al. (2017), this study employed an incremental classifica-
tion approach, enabling the tracking of the classification’s evolution throughout
the spring-summer agricultural season.

This study demonstrated that the methodology employed enables the mapping
of the evolution of the classification throughout the agricultural season and the
identification of the early temporal window in which classification models reach
acceptable performance. This approach not only saves time but also reduces the
computational resources required for classifying images from the entire agricul-
tural season.

Table 6.2 presents a comparison of the value of the increment of the time series of
satellite data (in days) used in this study with those of other studies on the early
mapping of agricultural crops from satellites.

Table 6.2: Time Series Increment Across Various Studies

Study Time Series Increment Overall Accuracy (%)

This Study 10 days 90.88
Inglada et al. (2016) 14 days 75.00
Rahmati et al. (2022) Whenever a Quality Image Was Available 80.12
Hao et al. (2018) 8, 16 and 32 days 91.89
Skakun et al. (2017) 8 days 95.00
Navarro et al. (2021) 5 days 86
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6.4.2 Data Fusion Improvements Perspective

As in the studies by Santos (2022), Blickensdörfer et al. (2022), Asam et al. (2022),
and Qadir & Mondal (2020), this study used the fusion of radar data with optical
data and found that it could improve classification by up to 6.26%.

A mapping of the maximum improvement percentages resulting from the fusion
of optical and radar data is presented in Table 6.3.

Table 6.3: Enhanced classification through the fusion of optical and radar images

Study Crops Studied Improvement (%)

This Study Maize, Rice 6.26
Santos (2021) Oat, Ryegrass, Barley, Rapeseed,

Pea, Broad Bean, Birdsfoot Trefoil,
Wheat, Triticale

2.2

Blickensdörfer et al. (2022) Grassland, Winter Wheat, Win-
ter Rye, Winter Barley, Spring
Oat, Spring Cereals, Other Cere-
als, Rapeseed, Silage Maize, Grain
Maize, Potato, Sugar Beet, Legume,
Sunflower, Strawberry, Asparagus,
Onion, Other Vegetables, Carrot,
Hops, Vineyard, Orchard, Small
Woody Features

10

Asam et al. (2022) Winter Wheat, Maize, Sugar beet,
Rapeseed

9

Qadir and Mondal (2020) Soybean, Rice 3

6.4.3 Algorithm Performance Perspective

Similar to the studies by Zhou et al. (2017), Qadir & Mondal (2020), Xue et al.
(2023), and Erdanaev et al. (2022), this study compared the performance of the
RF and SVM algorithms and found that the RF algorithm demonstrated a greater
ability to exploit the time series of the merged data, outperforming SVM with an
average and maximum improvement of 0.25% and 0.98%, respectively.

A comparative mapping between this study and other studies in which both al-
gorithms have been tested in the classification of agricultural crops from satellite
imagery is shown in Table 6.4.

6.4.4 Enhancements to the Surface Surveillance System in Por-
tugal

The implementation of the Common Agricultural Policy (CAP) of the European
Union in Portugal saw the introduction of the Surface Surveillance System (SVS).
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Table 6.4: Best Machine Learning Algorithm in Different Studies

Study Algorithms Best Machine Learning Algorithm

This Study RF and SVM RF
Zhou et al. (2017) RF and SVM SVM
Qadir and Mondal (2020) RF and SVM RF
Xue et al. (2023) RF and SVM RF
Erdanaev et al. (2022) RF and SVM RF

As outlined by Navarro et al. (2021) on the IFAP portal 8, the SVS is based on
the classification of series of satellite images interpolated every five days, high-
resolution images, field views, and georeferenced photographs sent by farmers
themselves.

In this context, the fusion of data from Sentinel-2 satellites with radar data from
Sentinel-1 would provide two contributions to the Surface Surveillance System:

1. An enhanced ability to discriminate agricultural crops, as radar data in-
cludes new information based on the structure and moisture content of veg-
etation;

2. The fusion of data would make the system less dependent on optical data,
thereby reducing the need for field visits, particularly during critical peri-
ods when cloud coverage is higher. As stated by Navarro et al. (2021), the
existing system addresses the deficiency in quality optical data by employ-
ing linear interpolation.

8Surface Surveillance System
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Conclusions and Future Work

This chapter presents the principal findings of the study, the implications of the
results in the agricultural context, and an outlook for future work.

7.1 Summary of Key Findings

The principal findings of this study are presented in the following list:

• Over the past two decades, the most effective methodologies for agricul-
tural mapping have involved the integration of time-series satellite data;

• In the field of applying artificial intelligence for mapping automation, there
has been a slight increase in the application of deep learning algorithms.
However, the majority of applications continue to be machine learning al-
gorithms, notably SVM, RF, ML, k-NN, and DT;

• The application of incremental classification methodology has the advan-
tage of identifying the early temporal window in which classification mod-
els reach acceptable performance, saving both time and computational re-
sources that would be used to classify images from the entire agricultural
season;

• The feature selection process using the RFECV algorithm provided three
benefits:

1. Robust reduction based on balancing the univariate relevance of each
feature, the multivariate relevance of the features, and the impact on
model performance;

2. Contextual reduction for each model, taking into account the architec-
ture of the model. This factor is critical because different models may
assign slightly different relevance weights to the same information;

3. More intuitive interpretability of feature selection than other techniques
such as PCA.
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• The cross-polarization features were the most efficient among the radar data
for distinguishing corn and rice, as these features allow the mapping of the
three-dimensional structure of the crop and are minimally influenced by soil
return, which can differ between plots with the same crop and add noisy
information.;

• Among the optical features in the "raw" bands, the most pertinent were
those associated with the reflectance of the near-infrared and short-wave
infrared, which are sensitive to the moisture content in the soil and vegeta-
tion. For spectral indices, NDWI demonstrated greater efficacy than NDVI.
These findings underscore the pivotal role of optical information pertain-
ing to soil and vegetation water content in differentiating between corn and
rice. Additionally, it is noteworthy that these results indicate that while
NDVI and NDWI indices are derived from the "raw" bands, they may not
supplant the necessity for combining them with bands in the classification
process;

• Data fusion improved classification due to the addition of complementary
information related to the geometry and orientation of the crops, and pene-
trating power over clouds. For these reasons, for the distinction of corn and
rice, the improvement is greater the lower the availability of quality optical
images, which in this case study occurs in the spring and early summer;

• The RF algorithm was more effective in identifying the pattern in both ap-
proaches (radar data fused with optical data and only optical data);

• Google Earth Engine facilitates access to and processing of various satel-
lite data impressively and is practical for classification tasks of these data.
However, from a processing standpoint, it sacrifices some flexibility in favor
of computational power. For this reason, integration with Colab via Google
Drive was beneficial for implementing Oversampling, Parameter Optimiza-
tion, and Recursive Feature Elimination functions through cross-validation.

7.2 Implications for Agricultural Monitoring

The findings of this study, which focused on the early mapping of rice and corn
crops using optimized models of Random Forest (RF) and Support Vector Ma-
chine (SVM) with multispectral and radar satellite data, have significant impli-
cations for agricultural monitoring. These implications extend to various aspects
related to the optimization of the agricultural management process, economic
impacts, and advancements in agricultural technology.

7.2.1 Agricultural Management Optimization

The improved accuracy and reliability of early classification allows farmers and
agricultural stakeholders to make timely decisions. Each case describes the con-
tributions of accurate early mapping:
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• From a production point of view, findings demonstrate that proposed ap-
proach allows early accurate classification of agricultural crops during the
late vegetative and early reproductive phases;

• From the perspective of support from governmental and non-governmental
organizations, findings also demonstrate that proposed approach allows
development of resilient monitoring systems for farmers’ declarations based
on satellite image classifications.

Regarding the construction of these monitoring systems, in the context of Portu-
gal, where a system based on the classification of interpolated optical image time
series is used every 5 days, the proposed approach would not only increase the
system’s capacity to discriminate crops, but also reduce the system’s dependence
on optical data.

7.2.2 Economic and Environmental Impacts

In terms of economic and environmental impact, the approach is cost-effective as
it permits the processing of substantial quantities of data at no additional expense
and on remote servers. This circumvents the potential for increased production
costs while also contributing to the reduction of environmental impact.

7.2.3 Technological Advancements in Agriculture

The successful integration of GEE with Colab for automating agricultural crop
mapping through machine learning demonstrates the potential of advanced com-
putational tools, setting a precedent for the adoption of sophisticated, cost-effective,
flexible technologies capable of handling large volumes of information in agricul-
ture. The scalability of this methodology to other crops and the accessibility of
satellite data for different geographic regions ensure that even small farmers can
benefit from these technologies, promoting inclusive agricultural development.

7.3 Recommendations for Future Research

Future work involves the following tasks:

1. Improve the model’s capability for classifying minority classes, which was
a limitation of the early mapping model;

2. Explore the application of the early mapping model using approaches such
as transfer learning, fine-tuning, and integration of auxiliary data (such as
meteorological information);

3. Experiment with different time series increments as done in the studies by
Hao et al. (2018);
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4. Explore the capabilities of deep learning algorithms;

5. Create an independent ground truth data for evaluating the 2024 crop sea-
son.
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Appendix A

Glossary

• RF Classification Line - Continuous classification throughout the season us-
ing the RF algorithm;

• SVM Classification Line - Continuous classification throughout the season
using the SVM algorithm;

• Approach A - Classification using merged data (radar + optical);

• Approach B - Classifications that use only optical data;

• Machine Learning Algorithms - A set of mathematical functions used by the
computer to learn patterns in data.

• Model - Algorithms + Features + Parameters (Internal Model Parameters) +
Hyperparameters (External Model Parameters);
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Flowchart of the Methodological
Framework in Landscape Orientation
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Coding

C.1 Coding in GEE

C.1.1 Prepare Samples to Oversampling

1 var imbalaced_points = rojects/ee-adalbertodissertation/assets/imbalaced_points
2

3 var ROI = projects/ee-adalbertodissertation/assets/ROI
4 var initial_time = ’yyyy-mm-dd’;
5 var final_time = ’yyyy-mm-dd’;
6 var cloud_cover_thrshold = 10;
7 var sentinel_1_bands = [’VV’, ’VH’];
8 var sentinel_2_bands = [’B1’, ’B2’, ’B3’, ’B4’, ’B8’, ’B11’, ’B12’];
9

10

11 function calculate_ndvi(image) {
12 var ndvi = image.normalizedDifference([’B8’, ’B4’]).rename(’NDVI’);
13 return image.addBands(ndvi);
14 }
15

16 function reproject_to_10m(image) {
17 return image
18 .reproject({crs: ’EPSG:32629’, scale: 10})
19 .reduceResolution({
20 reducer: ee.Reducer.mean(),
21 maxPixels: 1024
22 });
23 }
24

25 function calculate_ndwi(image) {
26 var ndwi = image.normalizedDifference([’B3’, ’B8’]).rename(’NDWI’);
27 return image.addBands(ndwi);
28 }
29

30 function reduce_to_10_days_mean(collection_name, start_date, end_date,
interval_days) {

31 var ee_start_date = ee.Date(start_date);
32 var ee_end_date = ee.Date(end_date);
33 var total_days = ee_end_date.difference(ee_start_date, ’day’);
34 var sequence = ee.List.sequence(0, total_days, interval_days);
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35

36 var medians_of_collection = sequence.map(function(i) {
37 var start_of_stage = ee_start_date.advance(i, ’day’);
38 var end_of_stage = start_of_stage.advance(interval_days, ’day’);
39 var median_of_stage = collection_name.filterDate(start_of_stage,

end_of_stage)
40 .median()
41 .set(’system:time_start’, start_of_stage.millis());
42 return reproject_to_10m(median_of_stage);
43 });
44 return medians_of_collection;
45 }
46

47 function add_features_date_to_name(image, medians_of_collection) {
48 var new_band_names = medians_of_collection.map(function(img) {
49 var date = ee.Image(img).date().format(’YYYY-MM-dd’);
50 return ee.Image(img).bandNames().map(function(bandName) {
51 return ee.String(bandName).cat(’_’).cat(date);
52 });
53 }).flatten();
54

55 return image.rename(new_band_names);
56 }
57

58 var filtered_sentinel_2_imgs_resampled = filtered_sentinel_2_imgs_and_SI.map(
reprojectTo10m);

59 var filtered_sentinel_1_imgs_resampled = filtered_sentinel_1_imgs.map(
reprojectTo10m);

60 var s1_images = filtered_sentinel_1_imgs_resampled;
61 var s2_images = filtered_sentinel_2_imgs_resampled;
62 var reduced_s1_images = reduce_to_10_days_mean(

filtered_sentinel_1_imgs_resampled, initial_time, final_time, 10);
63 var reduced_s2_images = reduce_to_10_days_mean(

filtered_sentinel_2_imgs_resampled, initial_time, final_time, 10);
64 var s1_bands = add_features_date_to_name(ee.ImageCollection.fromImages(

reduced_s1_images).toBands(), reduced_s1_images);
65 var s2_bands = add_features_date_to_name(ee.ImageCollection.fromImages(

reduced_s2_images).toBands(), reduced_s2_images);
66 var fused_satellite_data = s1_bands.addBands(s2_bands);
67 var s1_s2_data = fused_satellite_data.clip(ROI)
68

69

70 var sampleData = s1_s2_data.sampleRegions({
71 collection: sample_points,
72 properties: [’class_ID’],
73 scale: 10,
74 geometries: true
75 });
76 var sampleData_ = sampleData.randomColumn(’random’)
77 var split_threshold = 0.7
78 var training = sampleData_.filter(ee.Filter.lt(’random’, split_threshold));
79 var testing = sampleData_.filter(ee.Filter.gte(’random’, split_threshold));
80

81 var number_of_sentinel_1_imgs = filtered_sentinel_1_imgs.size();
82 var S1_list = filtered_sentinel_1_imgs.toList(filtered_sentinel_1_imgs.size());
83 var S1_dates = S1_list.map(function(image) {
84 return ee.Image(image).date().format();
85 });
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86

87 var number_of_sentinel_2_imgs = filtered_sentinel_2_imgs_and_SI.size();
88 var S2_list = filtered_sentinel_2_imgs.toList(filtered_sentinel_2_imgs.size());
89 var S2_dates = S2_list.map(function(image) {
90 return ee.Image(image).date().format();
91 });
92

93 Export.table.toDrive({
94 collection: training,
95 description: ’imbalanced_training_data’,
96 folder: ’GEE_Exports’,
97 fileNamePrefix: ’training_data’,
98 fileFormat: ’CSV’
99 });

C.1.2 Classification

1 var balanced = projects/ee-adalbertodissertation/assets/balanced_points
2 var ROI = projects/ee-adalbertodissertation/assets/ROI
3 var initial_time = ’yyyy-mm-dd’;
4 var final_time = ’yyyy-mm-dd’;
5 var cloud_cover_thrshold = 10;
6 var sentinel_1_bands = [’VV’, ’VH’];
7 var sentinel_2_bands = [’B1’, ’B2’, ’B3’, ’B4’, ’B8’, ’B11’, ’B12’];
8

9

10 function calculate_ndvi(image) {
11 var ndvi = image.normalizedDifference([’B8’, ’B4’]).rename(’NDVI’);
12 return image.addBands(ndvi);
13 }
14

15 function reprojectTo10m(image) {
16 return image
17 .reproject({crs: ’EPSG:32629’, scale: 10})
18 .reduceResolution({
19 reducer: ee.Reducer.mean(),
20 maxPixels: 1024
21 });
22 }
23

24 function calculate_ndwi(image) {
25 var ndwi = image.normalizedDifference([’B3’, ’B8’]).rename(’NDWI’);
26 return image.addBands(ndwi);
27 }
28

29 function reduce_to_10_days_mean(collection_name, start_date, end_date,
interval_days) {

30 var ee_start_date = ee.Date(start_date);
31 var ee_end_date = ee.Date(end_date);
32 var total_days = ee_end_date.difference(ee_start_date, ’day’);
33 var sequence = ee.List.sequence(0, total_days, interval_days);
34

35 var medians_of_collection = sequence.map(function(i) {
36 var start_of_stage = ee_start_date.advance(i, ’day’);
37 var end_of_stage = start_of_stage.advance(interval_days, ’day’);
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38 var median_of_stage = collection_name.filterDate(start_of_stage,
end_of_stage)

39 .median()
40 .set(’system:time_start’, start_of_stage.millis());
41 return reprojectTo10m(median_of_stage);
42 });
43 return medians_of_collection;
44 }
45

46 function add_features_date_to_name(image, medians_of_collection) {
47 var new_band_names = medians_of_collection.map(function(img) {
48 var date = ee.Image(img).date().format(’YYYY-MM-dd’);
49 return ee.Image(img).bandNames().map(function(bandName) {
50 return ee.String(bandName).cat(’_’).cat(date);
51 });
52 }).flatten();
53

54 return image.rename(new_band_names);
55 }
56

57 function Z_Score_to_Image(image, bands, region) {
58 var mean = image.select(bands).reduceRegion({
59 reducer: ee.Reducer.mean(),
60 geometry: region,
61 scale: 10,
62 maxPixels: 1e9
63 });
64 var stdDev = image.select(bands).reduceRegion({
65 reducer: ee.Reducer.stdDev(),
66 geometry: region,
67 scale: 10,
68 maxPixels: 1e9
69 });
70 return image.select(bands).subtract(mean.toImage(bands)).divide(stdDev.

toImage(bands));
71 }
72

73 function calculate_stats(collection, bands) {
74 var means = {};
75 var stdDevs = {};
76

77 bands.forEach(function(band) {
78 var mean = collection.reduceColumns(ee.Reducer.mean(), [band]).get(’mean’);
79 var stdDev = collection.reduceColumns(ee.Reducer.stdDev(), [band]).get(’

stdDev’);
80 means[band] = mean;
81 stdDevs[band] = stdDev;
82 });
83

84 return {means: means, stdDevs: stdDevs};
85 }
86

87 function Z_Score_to_Bands(feature, bands, stats) {
88 var normDict = {};
89 bands.forEach(function(band) {
90 var value = ee.Number(feature.get(band));
91 var mean = ee.Number(stats.means[band]);
92 var stdDev = ee.Number(stats.stdDevs[band]);
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93 var normalizedValue = value.subtract(mean).divide(stdDev);
94 normDict[band] = normalizedValue;
95 });
96 return feature.set(normDict);
97 }
98

99 function Z_Score_to_Collections(feature) {
100 feature = Z_Score_to_Bands(feature, sentinel1Bands, S_1_Stats); //Cooment

this line in case of approach B
101 feature = Z_Score_to_Bands(feature, sentinel2Bands, S_2_Stats);
102 return feature;
103 }
104

105 var filtered_sentinel_2_imgs = ee.ImageCollection(’COPERNICUS/S2_SR_HARMONIZED’
)

106 .filterBounds(ROI)
107 .filterDate(ee.Date(initial_time), ee.Date(final_time))
108 .filter(ee.Filter.lt(’CLOUDY_PIXEL_PERCENTAGE’, cloud_cover_thrshold))
109 .select(sentinel_2_bands);
110

111 var filtered_sentinel_2_imgs_and_SI = filtered_sentinel_2_imgs.map(
calculate_ndvi).map(calculate_ndwi);

112

113 var filtered_sentinel_1_imgs = ee.ImageCollection(’COPERNICUS/S1_GRD_FLOAT’)
114 .filterBounds(ROI)
115 .filterDate(ee.Date(initial_time), ee.Date(final_time))
116 .filter(ee.Filter.eq(’instrumentMode’, ’IW’))
117 .select(sentinel_1_bands);
118

119 var filtered_sentinel_2_imgs_resampled = filtered_sentinel_2_imgs_and_SI.map(
reprojectTo10m);

120 var filtered_sentinel_1_imgs_resampled = filtered_sentinel_1_imgs.map(
reprojectTo10m);

121 var s1_images = filtered_sentinel_1_imgs_resampled;
122 var s2_images = filtered_sentinel_2_imgs_resampled;
123 var reduced_s1_images = reduce_to_10_days_mean(

filtered_sentinel_1_imgs_resampled, initial_time, final_time, 10);
124 var reduced_s2_images = reduce_to_10_days_mean(

filtered_sentinel_2_imgs_resampled, initial_time, final_time, 10);
125 var s1_bands = add_features_date_to_name(ee.ImageCollection.fromImages(

reduced_s1_images).toBands(), reduced_s1_images);
126 var s2_bands = add_features_date_to_name(ee.ImageCollection.fromImages(

reduced_s2_images).toBands(), reduced_s2_images);
127 var fused_satellite_data = s1_bands.addBands(s2_bands);
128 var s1_s2_data = fused_satellite_data.clip(ROI);
129

130 var multiespectral_band_indexis = ee.List.sequence(’int_number’,’int_number’);
131 var multiespctral_set_bands = s1_s2_data.select(multiespectral_band_indexis);
132

133 //RANDOM FOREST CASE
134 var sampleData = s1_s2_data.sampleRegions({ //Change s1_s2_data to

multiespctral_set_band in case of Approach B
135 collection: sample_points,
136 properties: [’class_ID’],
137 scale: 10,
138 geometries: true
139 });
140
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141 var sampleData_ = sampleData.randomColumn(’random’)
142 var split_threshold = 0.7
143 var training = sampleData_.filter(ee.Filter.lt(’random’, split_threshold));
144 var testing = sampleData_.filter(ee.Filter.gte(’random’, split_threshold));
145 var balanced_training_set = balanced;
146 var best_features_for_RF = s1_s2_data.select([’Best Feature Names’])
147 var nomes_s1_s2_data = s1_s2_data.bandNames()
148

149

150 var trainedClassifier = ee.Classifier.smileRandomForest({
151 numberOfTrees: 307,
152 variablesPerSplit: 3,
153 minLeafPopulation: 26,
154 bagFraction: 1.0,
155 maxNodes: 18,
156 seed: 0
157 }).train({
158 features: balanced,
159 classProperty: ’class_ID’,
160 inputProperties: best_features_for_RF.bandNames()
161 });
162 var crop_map = s1_s2_data.classify(trainedClassifier); //Change s1_s2_data to

multiespctral_set_band in case of Approach B
163

164

165 //SUPPORT VECTOR MACHINE CASE
166 var s1_s2_data_without_normalization = s1_s2_data
167 var s1_normalized_data = Z_Score_to_Image(s1_s2_data_without_normalization, [’S

-1 Best Features’], ROI);
168 var s2_normalized_data = Z_Score_to_Image(s1_s2_data_without_normalization, [’S

-2 Best Features’], ROI);
169 var s1_s2_normalized_data = s1_normalized_data.addBands(s2_normalized_data);
170 var spectral_index = s1_s2_data_without_normalization.select([’SIs’]) //In

order to maintain the index scales
171 var s1_s2_IS_normalized = s1_s2_normalized_data.addBands(spectral_index);
172

173 var only_s2_and_IS = s2_normalized_data.addBands(spectral_index); //In Case of
Aproach B

174

175 var sampleData = s1_s2_data_without_normalization.sampleRegions({ //to avoide
data leakage...,

176 //...sampling is not performed on the normalized multiband image
177 collection: sample_points,
178 properties: [’class_ID’],
179 scale: 10,
180 geometries: true
181 });
182 var sampleData_ = sampleData.randomColumn(’random’)
183 var split_threshold = 0.7
184 var training = sampleData_.filter(ee.Filter.lt(’random’, split_threshold));
185 var testing = sampleData_.filter(ee.Filter.gte(’random’, split_threshold));
186 var balanced_training_set = balanced;
187

188 var S_1_Bands = [’S-1 Best Features’];
189 var S_2_Bands = [’S-2 Best Features’,];
190 var indices = [’SI Best Features’];
191 var S_1_Stats = calculate_stats(balanced_training_set, S_1_Bands);
192 var S_2_Stats = calculate_stats(balanced_training_set, S_2_Bands);
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193 var normalized_training = balanced_training_set.map(Z_Score_to_Collections);
194

195

196 var trainedClassifier = ee.Classifier.libsvm({
197 kernelType: ’linear’,
198 cost: 9.6
199 }).train({
200 features: normalized_training,
201 classProperty: ’class_ID’,
202 inputProperties: s1_s2_IS_normalized.bandNames() //change to only_s2_and_IS.

bandNames() in case of approach B
203 });
204

205 var crop_map = s1_s2_IS_normalized.classify(trainedClassifier); //change to
only_s2_and_IS in case of approach B

206

207

208 var classes = [1, 2, 3, 4, 5, 6];
209 var testingSample = crop_map.sampleRegions({
210 collection: testing,
211 properties: [’class_ID’],
212 scale: 10
213 });
214

215 var error_matrix = testingSample.errorMatrix(’class_ID’, ’classification’,
classes);

216 print(’Confusion Matrix’, error_matrix);
217 print(’Accuracy’, error_matrix.accuracy());
218 var producerAccuracy = error_matrix.producersAccuracy();
219 var consumerAccuracy = error_matrix.consumersAccuracy();
220 print(’Producer Accuracy (Recall)’, producerAccuracy);
221 print(’Consumer Accuracy (Precision)’, consumerAccuracy);
222 var F1_score = error_matrix.fscore()
223 print(’F1 Score’, F1_score)
224 var f1ScoreGeneral = ee.Array(F1_score).reduce(ee.Reducer.mean(), [0]).get([0])

;
225 print(’General F1 Score’, f1ScoreGeneral);
226

227

228 // var rgb_view = s1_s2_data.visualize({
229 // bands: [’B4’, ’B3’, ’B2’],
230 // min: 0,
231 // max: 3000,
232 // gamma: [0.95, 0.95, 0.95]
233 // });
234 // Map.addLayer(rgb_view, {}, ’RGB Data View’)
235

236 //Plot Classified Map
237

238 Map.addLayer(crop_map, {
239 min: 1,
240 max: 6,
241 palette: [’yellow’, ’green’, ’blue’, ’grey’,’red’, ’cyan’,’green’]
242 }, ’Crop Map’);
243

244

245 Export.image.toDrive({
246 image: crop_map,
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247 description: ’crop_map’,
248 scale: 10,
249 region: ROI,
250 maxPixels: 1e13,
251 crs:’EPSG:3763’
252 });
253
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C.2 Coding in Colab

C.2.1 Oversampling

1 import pandas as pd
2 from imblearn.over_sampling import SMOTE
3 import geopandas as gpd
4 from shapely.geometry import Point
5 import json
6

7 umbalanced_training_set = pd.read_csv(’training_data.csv’)
8

9 umbalanced_training_set[’geometry’] = umbalanced_training_set[’.geo’].apply(
lambda x: Point(json.loads(x)[’coordinates’]))

10 umbalanced_training_set[’LAT’] = umbalanced_training_set[’geometry’].apply(
lambda g: g.y)

11 umbalanced_training_set[’LON’] = umbalanced_training_set[’geometry’].apply(
lambda g: g.x)

12

13 X = umbalanced_training_set.drop([’class_ID’, ’.geo’, ’geometry’, ’random’, ’
system:index’], axis=1)

14 y = umbalanced_training_set[’class_ID’]
15

16 smote = SMOTE(random_state=42)
17 X_resampled, y_resampled = smote.fit_resample(X, y)
18

19 balanced_training_set = pd.DataFrame(X_resampled, columns=X.columns)
20 balanced_training_set[’class_ID’] = y_resampled
21 balanced_training_set[’lat’] = umbalanced_training_set.iloc[:len(y_resampled)][

’LAT’]
22 balanced_training_set[’lon’] = umbalanced_training_set.iloc[:len(y_resampled)][

’LON’]
23

24 balanced_training_set[’lat’] = pd.to_numeric(balanced_training_set[’LAT’],
errors=’coerce’)

25 balanced_training_set[’lon’] = pd.to_numeric(balanced_training_set[’LON’],
errors=’coerce’)

26

27 balanced_training_set.to_csv(’balanced_data.csv’, index=False)

C.2.2 Hyperparameters Optimization and Feature Selection

C.2.2.1 In Random Forest Models

1 from sklearn.ensemble import RandomForestClassifier
2 import pandas as pd
3 from sklearn.model_selection import RandomizedSearchCV
4 from scipy.stats import randint, uniform
5 from sklearn.svm import SVC
6 from sklearn.model_selection import train_test_split
7 from sklearn.feature_selection import RFECV
8 import numpy as np
9
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10 df = pd.read_csv(’/content/drive/MyDrive/Dados/balanced_data_.csv’)
11 clean_data = df.drop(columns= [’LAT’,’LON’,’lat’,’lon’])
12

13 #Feature Selection
14 #S1
15 sentinel_1_df = clean_data.loc[:, clean_data.columns.str.startswith(’V’)]
16 sentinel_1_df[’class_ID’] = clean_data[’class_ID’]
17 X_s1 = sentinel_1_df.drop(’class_ID’, axis=1)
18 y_s1 = sentinel_1_df[’class_ID’]
19 Xs1_train, Xs1_test, ys1_train, ys1_test = train_test_split(X_s1, y_s1, test_size

=0.30, random_state=42)
20

21 RF_base_model_s1 = RandomForestClassifier(random_state=42)
22 rfecv_RF_1 = RFECV(estimator=RF_base_model_s1, step=1, cv=5, scoring=’accuracy’)
23 rfecv_RF_1.fit(Xs1_train, ys1_train)
24

25 s1_feature_names = Xs1_train.columns
26 cv_scores_RF = rfecv_RF_1.cv_results_[’mean_test_score’]
27 s1_accuracy_changes = np.ediff1d(cv_scores_RF, to_begin=cv_scores_RF[0] -

cv_scores_RF[0])
28

29 s1_feature_names = Xs1_train.columns
30 s1_feature_importances = rfecv_RF_1.estimator_.feature_importances_
31 feature_data = pd.DataFrame({
32 ’Feature’: s1_feature_names,
33 ’Importance’: np.concatenate(([0] * (len(s1_feature_names) - len(

s1_feature_importances)), s1_feature_importances)),
34 ’Selected’: [’Yes’ if x else ’No’ for x in rfecv_RF_1.support_],
35 ’Accuracy Change’: s1_accuracy_changes
36 })
37 s1_feature_data = feature_data[[’Feature’, ’Selected’, ’Importance’, ’Accuracy

Change’]]
38

39

40 #S2
41 sentinel_2_df = clean_data.loc[:, ~clean_data.columns.str.startswith(’V’)]
42 sentinel_2_df[’class_ID’] = clean_data[’class_ID’]
43 sentinel_2_df[’class_ID’] = clean_data[’class_ID’]
44 X_s2 = sentinel_2_df.drop(’class_ID’, axis=1)
45 y_s2 = sentinel_2_df[’class_ID’]
46

47 RF_base_model_2 = RandomForestClassifier(random_state=42)
48 rfecv_RF_2 = RFECV(estimator=RF_base_model, step=1, cv=5, scoring=’accuracy’)
49 rfecv_RF_2.fit(Xs2_train, ys2_train)
50

51

52 cv_scores_RF_2 = rfecv_RF_2.cv_results_[’mean_test_score’]
53 s2_accuracy_changes = np.ediff1d(cv_scores_RF_2, to_begin=cv_scores_RF_2[0] -

cv_scores_RF_2[0])
54 s2_feature_names = Xs2_train.columns
55 s2_feature_importances = rfecv_RF_2.estimator_.feature_importances_
56 feature_data_2 = pd.DataFrame({
57 ’Feature’: s2_feature_names,
58 ’Importance’: np.concatenate(([0] * (len(s2_feature_names) - len(

s2_feature_importances)), s2_feature_importances)),
59 ’Selected’: [’Yes’ if x else ’No’ for x in rfecv_RF_2.support_],
60 ’Accuracy Change’: s2_accuracy_changes
61 })
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62 s2_feature_data_2 = feature_data_2[[’Feature’, ’Selected’, ’Importance’, ’
Accuracy Change’]]

63

64

65 s2_feature_data_2.to_csv(’/content/drive/MyDrive/Dados/S1_feature_selection.csv’)
66 s1_feature_data.to_csv(’/content/drive/MyDrive/Dados/sS2_feature_selection.csv’)
67

68

69 #RF HYPERPARAMTER OPTIMIZATION
70 X = clean_data.drop(’class_ID’, axis=1)
71 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30,

random_state=42)
72

73 p_distributions_RF = {
74 ’n_estimators’: randint(100, 500),
75 ’max_features’: uniform(0.1, 0.9),
76 ’max_depth’: randint(5, 50),
77 ’min_samples_split’: uniform(0.01, 0.1),
78 ’min_samples_leaf’: uniform(0.01, 0.1),
79 ’bootstrap’: [True, False]
80 }
81

82 RF_classifier = RandomForestClassifier()
83

84 random_search_RF = RandomizedSearchCV(
85 estimator=RF_classifier,
86 param_distributions=p_distributions_RF,
87 n_iter=10,
88 cv=5,
89 random_state=42,
90 n_jobs=-1
91 )
92

93 random_search_RF.fit(X_train, y_train)
94

95 best_RF_model = random_search_RF.best_estimator_
96 best_RF_model_score = best_RF_model.score(X_test, y_test)
97 print("Performance of the best RF model on the test set:", best_RF_model_score)
98 best_RF_parameters = random_search_RF.best_params_
99 print(’Best_Hyperparameter:’, best_RF_parameters)

100

101 #Standardization Min Leaf Population and Variables Per Split for Entry into GEE
102 total_samples = len(X_train)
103 min_leaf_fraction = best_RF_parameters[’min_samples_leaf’]
104 min_leaf_population = int(round(total_samples * min_leaf_fraction))
105 print(min_leaf_population)
106 total_features = X_train.shape[1]
107 fration = best_RF_parameters[’max_features’]
108 variablesPerSplit = int(round(total_features * fration))
109 variablesPerSplit

C.2.2.2 In Random Support Vector Machine Models

1 import numpy as np
2 import pandas as pd
3 from sklearn.model_selection import RandomizedSearchCV
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4 from scipy.stats import randint, uniform
5 from sklearn.svm import SVC
6 from sklearn.model_selection import train_test_split
7 from sklearn.feature_selection import RFECV
8 from sklearn.svm import SVC
9 from sklearn.preprocessing import StandardScaler

10 from sklearn.pipeline import Pipeline
11 from sklearn.preprocessing import StandardScaler
12

13 df = pd.read_csv(’/content/drive/MyDrive/Dados/balanced_data.csv’)
14 clean_data = df.drop(columns= [’LAT’,’LON’,’lat’,’lon’])
15

16 #FEATURE SELECTION
17 sentinel_1_df = clean_data.loc[:, clean_data.columns.str.startswith(’V’)] #

Because of all Sentinel-1 Features Starts with ’V’.
18 sentinel_1_df[’class_ID’] = clean_data[’class_ID’]
19 X_s1 = sentinel_1_df.drop(’class_ID’, axis=1)
20 y_s1 = sentinel_1_df[’class_ID’]
21 Xs1_train, Xs1_test, ys1_train, ys1_test = train_test_split(X_s1, y_s1, test_size

=0.30, random_state=42)
22

23 pipe_s1 = Pipeline([
24 (’scaler’, StandardScaler()),
25 (’svm’, SVC(kernel=’linear’, random_state=42))
26 ])
27 rfecv_SVM_for_s1 = RFECV(
28 estimator=pipe_s1,
29 step=1,
30 cv=5,
31 scoring=’accuracy’,
32 importance_getter=’named_steps.svm.coef_’
33 )
34 rfecv_SVM_for_s1.fit(Xs1_train, ys1_train)
35

36

37 s1_feature_names = Xs1_train.columns
38 cv_scores_SVM_1 = rfecv_SVM_for_s1.cv_results_[’mean_test_score’]
39

40 kernel = pipe_s1.named_steps[’svm’].kernel
41 if kernel == ’linear’:
42 svm_model = rfecv_SVM_for_s1.estimator_.named_steps[’svm’]
43 coef_matrix_1 = svm_model.coef_
44 importance_s1 = np.mean(np.abs(coef_matrix_1), axis=0)
45 selected_features = Xs1_train.columns[rfecv_SVM_for_s1.support_]
46 feature_importance = dict(zip(selected_features, importance_s1))
47 feature_data_1 = pd.DataFrame({
48 ’Feature’: Xs1_train.columns,
49 ’Importance’: [feature_importance.get(x, 0) for x in Xs1_train.columns],
50 ’Selected’: [’Yes’ if x else ’No’ for x in rfecv_SVM_for_s1.support_],
51 ’Accuracy Change’: np.ediff1d(rfecv_SVM_for_s1.cv_results_[’mean_test_score’],

to_begin=0)
52 })
53 else:
54 feature_data_1 = pd.DataFrame({
55 ’Feature’: Xs1_train.columns,
56 ’Importance’: [0] * len(Xs1_train.columns),
57 ’Selected’: [’Yes’ if x else ’No’ for x in rfecv_SVM_for_s1.support_],
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58 ’Accuracy Change’: np.ediff1d(rfecv_SVM_for_s1.cv_results_[’mean_test_score’],
to_begin=0)

59 })
60

61

62 sentinel_2_df = clean_data.loc[:, ~clean_data.columns.str.startswith(’V’)]
63 sentinel_2_df[’class_ID’] = clean_data[’class_ID’]
64 sentinel_2_df[’class_ID’] = clean_data[’class_ID’]
65 X_s2 = sentinel_2_df.drop(’class_ID’, axis=1)
66 y_s2 = sentinel_2_df[’class_ID’]
67 Xs2_train, Xs2_test, ys2_train, ys2_test = train_test_split(X_s2, y_s2, test_size

=0.30, random_state=42)
68

69 pipe_s2 = Pipeline([
70 (’scaler’, StandardScaler()),
71 (’svm’, SVC(kernel=’linear’, random_state=42))
72 ])
73

74 rfecv_SVM_for_s2 = RFECV(
75 estimator=pipe_s2,
76 step=1,
77 cv=5,
78 scoring=’accuracy’,
79 importance_getter=’named_steps.svm.coef_’
80 )
81 rfecv_SVM_for_s2.fit(Xs2_train, ys2_train)
82

83 s2_feature_names = Xs2_train.columns
84 cv_scores_SVM_2 = rfecv_SVM_for_s2.cv_results_[’mean_test_score’]
85

86 kernel_2 = pipe_s2.named_steps[’svm’].kernel
87

88 if kernel == ’linear’:
89 svm_model_2 = rfecv_SVM_for_s2.estimator_.named_steps[’svm’]
90 coef_matrix_2 = svm_model_2.coef_
91 importance_s2 = np.mean(np.abs(coef_matrix_2), axis=0)
92 selected_features = Xs2_train.columns[rfecv_SVM_for_s2.support_]
93 feature_importance = dict(zip(selected_features, importance_s2))
94 feature_data_2 = pd.DataFrame({
95 ’Feature’: Xs2_train.columns,
96 ’Importance’: [feature_importance.get(x, 0) for x in Xs2_train.columns],
97 ’Selected’: [’Yes’ if x else ’No’ for x in rfecv_SVM_for_s2.support_],
98 ’Accuracy Change’: np.ediff1d(rfecv_SVM_for_s2.cv_results_[’mean_test_score’],

to_begin=0)
99 })

100 else:
101 feature_data_2 = pd.DataFrame({
102 ’Feature’: Xs2_train.columns,
103 ’Importance’: [0] * len(Xs2_train.columns),
104 ’Selected’: [’Yes’ if x else ’No’ for x in rfecv_SVM_for_s2.support_],
105 ’Accuracy Change’: np.ediff1d(rfecv_SVM_for_s2.cv_results_[’mean_test_score’],

to_begin=0)
106 })
107

108

109 feature_data_1.to_csv(’/content/drive/MyDrive/Dados_SVM/s1_fetaure_selection.csv’
)
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110 feature_data_2.to_csv(’/content/drive/MyDrive/Dados_SVM/s2_feature_selection.csv’
)

111

112 #HYPERPARAMTERS OPTIMIZATION
113 scaler = StandardScaler()
114 X_s1_scalested = scaler.fit_transform(X_s1)
115 X_s1_scalested = pd.DataFrame(X_s1_scalested, columns=X_s1.columns)
116 X_s2_scalested = scaler.fit_transform(X_s2)
117 X_s2_scalested = pd.DataFrame(X_s2_scalested, columns=X_s2.columns)
118 s1_s2_df = pd.concat([X_s1_scalested, X_s2_scalested], axis=1)
119 s1_s2_df[’class_ID’] = y_s1
120

121 X_train_scalested, X_test_scalested, y_train_scalested, y_test_scalested =
train_test_split(

122 s1_s2_df.drop(’class_ID’, axis=1), s1_s2_df[’class_ID’], test_size=0.30,
random_state=42

123 )
124

125 svm_classifier = SVC(kernel=’linear’)
126 param_distributions = {
127 ’C’: uniform(0.1, 10)
128 }
129 random_search = RandomizedSearchCV(
130 estimator=svm_classifier,
131 param_distributions=param_distributions,
132 n_iter=10,
133 cv=5,
134 random_state=42,
135 n_jobs=-1
136 )
137 random_search.fit(X_train_scalested, y_train_scalested)
138 best_parameters = random_search.best_params_
139 print(’Best SVM Hyperparameters:’, best_parameters)
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Reference Data Acquisition
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Figure D.1: Reference Data Acquisition Equipment
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Appendix E

Satellite Image Acquisition

1 Satellite Image Time Series
2

3 Iteration 1
4 Interval of Days (May 1st to May 10th)
5 Times Series
6

7 Sentinel-1
8 Number of Images:
9 4

10 Acquisition Date:
11 0: 2023-05-01T18:27:42
12 1: 2023-05-01T18:28:07
13 2: 2023-05-06T18:36:09
14 3: 2023-05-07T06:34:54
15

16 Sentinel-2:
17 Number of Images
18 2
19

20 Acquision Date:
21 0: 2023-05-04T11:30:15
22 1: 2023-05-07T11:40:10
23

24

25 Iteration 2
26 Interval of Days (May 1st to May 20th)
27 Times Series
28 Sentinel-1
29 Number of Images:
30 9
31 Acquisition Date:
32 0: 2023-05-01T18:27:42
33 1: 2023-05-01T18:28:07
34 2: 2023-05-06T18:36:09
35 3: 2023-05-07T06:34:54
36 4: 2023-05-12T06:43:08
37 5: 2023-05-13T18:27:43
38 6: 2023-05-13T18:28:08
39 7: 2023-05-18T18:36:10
40 8: 2023-05-19T06:34:55
41 Sentinel-2:
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42 Number of Images
43 3
44 Acquision Date:
45 0: 2023-05-12T11:40:13
46 1: 2023-05-17T11:40:12
47 2: 2023-05-19T11:30:19
48

49 Iteration 3
50 Interval of Days (May 1st - May 30th)
51 Times Series
52 Sentinel-1
53 Number of Images:
54 12
55 Acquisition Date:
56 0: 2023-05-01T18:27:42
57 1: 2023-05-01T18:28:07
58 2: 2023-05-06T18:36:09
59 3: 2023-05-07T06:34:54
60 4: 2023-05-12T06:43:08
61 5: 2023-05-13T18:27:43
62 6: 2023-05-13T18:28:08
63 7: 2023-05-18T18:36:10
64 8: 2023-05-19T06:34:55
65 9: 2023-05-24T06:43:09
66 10: 2023-05-25T18:27:43
67 11: 2023-05-25T18:28:08
68 Sentinel-2:
69 Number of Images
70 3
71 Acquision Date:
72 0: 2023-05-12T11:40:13
73 1: 2023-05-17T11:40:12
74 2: 2023-05-19T11:30:19
75

76 Iteration 4
77 Interval of Days (May 1st to June 10th)
78 Times Series
79 Sentinel-1
80 Number of Images:
81 17
82 Acquisition Date:
83 0: 2023-05-01T18:27:42
84 1: 2023-05-01T18:28:07
85 2: 2023-05-06T18:36:09
86 3: 2023-05-07T06:34:54
87 4: 2023-05-12T06:43:08
88 5: 2023-05-13T18:27:43
89 6: 2023-05-13T18:28:08
90 7: 2023-05-18T18:36:10
91 8: 2023-05-19T06:34:55
92 9: 2023-05-24T06:43:09
93 10: 2023-05-25T18:27:43
94 11: 2023-05-25T18:28:08
95 12: 2023-05-30T18:36:10
96 13: 2023-05-31T06:34:56
97 14: 2023-06-05T06:43:09
98 15: 2023-06-06T18:27:44
99 16: 2023-06-06T18:28:09
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100 Sentinel-2:
101 Number of Images:
102 3
103 Acquision Date:
104 0. 2023-05-12T11:40:13
105 1. 2023-05-17T11:40:12
106 2. 023-05-19T11:30:19
107

108 Iteration 5
109 Interval of Days (May 1st - June 20th)
110 Times Series
111 Sentinel-1
112 Number of Images:
113 22
114 Acquisition Date:
115 0: 2023-05-01T18:27:42
116 1: 2023-05-01T18:28:07
117 2: 2023-05-06T18:36:09
118 3: 2023-05-07T06:34:54
119 4: 2023-05-12T06:43:08
120 5: 2023-05-13T18:27:43
121 6: 2023-05-13T18:28:08
122 7: 2023-05-18T18:36:10
123 8: 2023-05-19T06:34:55
124 9: 2023-05-24T06:43:09
125 10: 2023-05-25T18:27:43
126 11: 2023-05-25T18:28:08
127 12: 2023-05-30T18:36:10
128 13: 2023-05-31T06:34:56
129 14: 2023-06-05T06:43:09
130 15: 2023-06-06T18:27:44
131 16: 2023-06-06T18:28:09
132 17: 2023-06-11T18:36:11
133 18: 2023-06-12T06:34:56
134 19: 2023-06-17T06:43:10
135 20: 2023-06-18T18:27:45
136 21: 2023-06-18T18:28:10
137 Sentinel-2:
138 Number of Images
139 3
140 Acquision Date:
141 0: 2023-05-12T11:40:13
142 1: 2023-05-17T11:40:12
143 2: 2023-05-19T11:30:19
144

145 Iteration 6
146 Interval of Days (May 1st - June 30th)
147 Times Series
148 Sentinel-1
149 Number of Images:
150 22
151 Acquisition Date:
152 0: 2023-05-01T18:27:42
153 1: 2023-05-01T18:28:07
154 2: 2023-05-06T18:36:09
155 3: 2023-05-07T06:34:54
156 4: 2023-05-12T06:43:08
157 5: 2023-05-13T18:27:43
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158 6: 2023-05-13T18:28:08
159 7: 2023-05-18T18:36:10
160 8: 2023-05-19T06:34:55
161 9: 2023-05-24T06:43:09
162 10: 2023-05-25T18:27:43
163 11: 2023-05-25T18:28:08
164 12: 2023-05-30T18:36:10
165 13: 2023-05-31T06:34:56
166 14: 2023-06-05T06:43:09
167 15: 2023-06-06T18:27:44
168 16: 2023-06-06T18:28:09
169 17: 2023-06-11T18:36:11
170 18: 2023-06-12T06:34:56
171 19: 2023-06-17T06:43:10
172 20: 2023-06-18T18:27:45
173 21: 2023-06-18T18:28:10
174 22: 2023-06-23T18:36:12
175 23: 2023-06-24T06:34:57
176 24: 2023-06-29T06:43:10
177 Sentinel-2:
178 Number of Images
179 6
180 Acquision Date:
181 0: 2023-05-12T11:40:13
182 1: 2023-05-17T11:40:12
183 2: 2023-05-19T11:30:19
184 3: 2023-06-23T11:30:18
185 4: 2023-06-26T11:40:14
186 5: 2023-06-28T11:30:19
187

188 Iteration 7
189 Interval of Days (May 1st - July 10th)
190 Times Series
191 Sentinel-1
192 Number of Images:
193 29
194 Acquisition Date:
195 0: 2023-05-01T18:27:42
196 1: 2023-05-01T18:28:07
197 2: 2023-05-06T18:36:09
198 3: 2023-05-07T06:34:54
199 4: 2023-05-12T06:43:08
200 5: 2023-05-13T18:27:43
201 6: 2023-05-13T18:28:08
202 7: 2023-05-18T18:36:10
203 8: 2023-05-19T06:34:55
204 9: 2023-05-24T06:43:09
205 10: 2023-05-25T18:27:43
206 11: 2023-05-25T18:28:08
207 12: 2023-05-30T18:36:10
208 13: 2023-05-31T06:34:56
209 14: 2023-06-05T06:43:09
210 15: 2023-06-06T18:27:44
211 16: 2023-06-06T18:28:09
212 17: 2023-06-11T18:36:11
213 18: 2023-06-12T06:34:56
214 19: 2023-06-17T06:43:10
215 20: 2023-06-18T18:27:45
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216 21: 2023-06-18T18:28:10
217 22: 2023-06-23T18:36:12
218 23: 2023-06-24T06:34:57
219 24: 2023-06-29T06:43:10
220 25: 2023-06-30T18:27:45
221 26: 2023-06-30T18:28:10
222 27: 2023-07-05T18:36:12
223 28: 2023-07-06T06:34:58
224

225 Sentinel-2:
226 Number of Images
227 9
228 Acquision Date:
229 0: 2023-05-12T11:40:13
230 1: 2023-05-17T11:40:12
231 2: 2023-05-19T11:30:19
232 3: 2023-06-23T11:30:18
233 4: 2023-06-26T11:40:14
234 5: 2023-06-28T11:30:19
235 6: 2023-07-01T11:40:15
236 7: 2023-07-03T11:30:19
237 8: 2023-07-06T11:40:15
238

239

240 Iteration 8
241 Interval of Days (May 1st to July 20th)
242 Times Series
243 Sentinel-1
244 Number of Images:
245 34
246 Acquisition Date:
247 0: 2023-05-01T18:27:42
248 1: 2023-05-01T18:28:07
249 2: 2023-05-06T18:36:09
250 3: 2023-05-07T06:34:54
251 4: 2023-05-12T06:43:08
252 5: 2023-05-13T18:27:43
253 6: 2023-05-13T18:28:08
254 7: 2023-05-18T18:36:10
255 8: 2023-05-19T06:34:55
256 9: 2023-05-24T06:43:09
257 10: 2023-05-25T18:27:43
258 11: 2023-05-25T18:28:08
259 12: 2023-05-30T18:36:10
260 13: 2023-05-31T06:34:56
261 14: 2023-06-05T06:43:09
262 15: 2023-06-06T18:27:44
263 16: 2023-06-06T18:28:09
264 17: 2023-06-11T18:36:11
265 18: 2023-06-12T06:34:56
266 19: 2023-06-17T06:43:10
267 20: 2023-06-18T18:27:45
268 21: 2023-06-18T18:28:10
269 22: 2023-06-23T18:36:12
270 23: 2023-06-24T06:34:57
271 24: 2023-06-29T06:43:10
272 25: 2023-06-30T18:27:45
273 26: 2023-06-30T18:28:10
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274 27: 2023-07-05T18:36:12
275 28: 2023-07-06T06:34:58
276 29: 2023-07-11T06:43:12
277 30: 2023-07-12T18:27:42
278 31: 2023-07-12T18:28:07
279 32: 2023-07-17T18:36:13
280 33: 2023-07-18T06:34:58
281 Sentinel-2:
282 Number of Images:
283 13
284 Acquision Date:
285 0: 2023-05-12T11:40:13
286 1: 2023-05-17T11:40:12
287 2: 2023-05-19T11:30:19
288 3: 2023-06-23T11:30:18
289 4: 2023-06-26T11:40:14
290 5: 2023-06-28T11:30:19
291 6: 2023-07-01T11:40:15
292 7: 2023-07-03T11:30:19
293 8: 2023-07-06T11:40:15
294 9: 2023-07-11T11:40:15
295 10: 2023-07-13T11:30:19
296 11: 2023-07-16T11:40:15
297 12: 2023-07-18T11:30:20
298

299 Iteration 9
300 Interval of Days (May 1st to July 30th)
301 Times Series
302 Sentinel-1
303 Number of Images:
304 37
305 Acquisition Date:
306 0: 2023-05-01T18:27:42
307 1: 2023-05-01T18:28:07
308 2: 2023-05-06T18:36:09
309 3: 2023-05-07T06:34:54
310 4: 2023-05-12T06:43:08
311 5: 2023-05-13T18:27:43
312 6: 2023-05-13T18:28:08
313 7: 2023-05-18T18:36:10
314 8: 2023-05-19T06:34:55
315 9: 2023-05-24T06:43:09
316 10: 2023-05-25T18:27:43
317 11: 2023-05-25T18:28:08
318 12: 2023-05-30T18:36:10
319 13: 2023-05-31T06:34:56
320 14: 2023-06-05T06:43:09
321 15: 2023-06-06T18:27:44
322 16: 2023-06-06T18:28:09
323 17: 2023-06-11T18:36:11
324 18: 2023-06-12T06:34:56
325 19: 2023-06-17T06:43:10
326 20: 2023-06-18T18:27:45
327 21: 2023-06-18T18:28:10
328 22: 2023-06-23T18:36:12
329 23: 2023-06-24T06:34:57
330 24: 2023-06-29T06:43:10
331 25: 2023-06-30T18:27:45
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332 26: 2023-06-30T18:28:10
333 27: 2023-07-05T18:36:12
334 28: 2023-07-06T06:34:58
335 29: 2023-07-11T06:43:12
336 30: 2023-07-12T18:27:42
337 31: 2023-07-12T18:28:07
338 32: 2023-07-17T18:36:13
339 33: 2023-07-18T06:34:58
340 34: 2023-07-23T06:43:12
341 35: 2023-07-24T18:27:47
342 36: 2023-07-24T18:28:12
343 37: 2023-07-29T18:36:14
344

345 Sentinel-2:
346 Number of Images:
347 16
348 Acquision Date:
349 0: 2023-05-12T11:40:13
350 1: 2023-05-17T11:40:12
351 2: 2023-05-19T11:30:19
352 3: 2023-06-23T11:30:18
353 4: 2023-06-26T11:40:14
354 5: 2023-06-28T11:30:19
355 6: 2023-07-01T11:40:15
356 7: 2023-07-03T11:30:19
357 8: 2023-07-06T11:40:15
358 9: 2023-07-11T11:40:15
359 10: 2023-07-13T11:30:19
360 11: 2023-07-16T11:40:15
361 12: 2023-07-18T11:30:20
362 13: 2023-07-23T11:30:19
363 14: 2023-07-26T11:40:15
364 15: 2023-07-28T11:30:20
365

366 Iteration 10
367 Interval of Days (May 1st to August 10th)
368 Times Series
369 Sentinel-1
370 Number of Images:
371 42
372 Acquisition Date:
373 0: 2023-05-01T18:27:42
374 1: 2023-05-01T18:28:07
375 2: 2023-05-06T18:36:09
376 3: 2023-05-07T06:34:54
377 4: 2023-05-12T06:43:08
378 5: 2023-05-13T18:27:43
379 6: 2023-05-13T18:28:08
380 7: 2023-05-18T18:36:10
381 8: 2023-05-19T06:34:55
382 9: 2023-05-24T06:43:09
383 10: 2023-05-25T18:27:43
384 11: 2023-05-25T18:28:08
385 12: 2023-05-30T18:36:10
386 13: 2023-05-31T06:34:56
387 14: 2023-06-05T06:43:09
388 15: 2023-06-06T18:27:44
389 16: 2023-06-06T18:28:09
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390 17: 2023-06-11T18:36:11
391 18: 2023-06-12T06:34:56
392 19: 2023-06-17T06:43:10
393 20: 2023-06-18T18:27:45
394 21: 2023-06-18T18:28:10
395 22: 2023-06-23T18:36:12
396 23: 2023-06-24T06:34:57
397 24: 2023-06-29T06:43:10
398 25: 2023-06-30T18:27:45
399 26: 2023-06-30T18:28:10
400 27: 2023-07-05T18:36:12
401 28: 2023-07-06T06:34:58
402 29: 2023-07-11T06:43:12
403 30: 2023-07-12T18:27:42
404 31: 2023-07-12T18:28:07
405 32: 2023-07-17T18:36:13
406 33: 2023-07-18T06:34:58
407 34: 2023-07-23T06:43:12
408 35: 2023-07-24T18:27:47
409 36: 2023-07-24T18:28:12
410 37: 2023-07-29T18:36:14
411 38: 2023-07-30T06:34:59
412 39: 2023-08-04T06:43:13
413 40: 2023-08-05T18:27:48
414 41: 2023-08-05T18:28:13
415 Sentinel-2:
416 Number of Images
417 19
418

419 Acquision Date:
420 0: 2023-05-12T11:40:13
421 1: 2023-05-17T11:40:12
422 2: 2023-05-19T11:30:19
423 3: 2023-06-23T11:30:18
424 4: 2023-06-26T11:40:14
425 5: 2023-06-28T11:30:19
426 6: 2023-07-01T11:40:15
427 7: 2023-07-03T11:30:19
428 8: 2023-07-06T11:40:15
429 9: 2023-07-11T11:40:15
430 10: 2023-07-13T11:30:19
431 11: 2023-07-16T11:40:15
432 12: 2023-07-18T11:30:20
433 13: 2023-07-23T11:30:19
434 14: 2023-07-26T11:40:15
435 15: 2023-07-28T11:30:20
436 16: 2023-07-31T11:40:15
437 17: 2023-08-05T11:40:15
438 18: 2023-08-07T11:30:20
439

440 Iteration 11
441 Interval of Days (May 1st to August 20th)
442 Times Series
443 Sentinel-1
444 Number of Images:
445 47
446 Acquisition Date:
447 0: 2023-05-01T18:27:42
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448 1: 2023-05-01T18:28:07
449 2: 2023-05-06T18:36:09
450 3: 2023-05-07T06:34:54
451 4: 2023-05-12T06:43:08
452 5: 2023-05-13T18:27:43
453 6: 2023-05-13T18:28:08
454 7: 2023-05-18T18:36:10
455 8: 2023-05-19T06:34:55
456 9: 2023-05-24T06:43:09
457 10: 2023-05-25T18:27:43
458 11: 2023-05-25T18:28:08
459 12: 2023-05-30T18:36:10
460 13: 2023-05-31T06:34:56
461 14: 2023-06-05T06:43:09
462 15: 2023-06-06T18:27:44
463 16: 2023-06-06T18:28:09
464 17: 2023-06-11T18:36:11
465 18: 2023-06-12T06:34:56
466 19: 2023-06-17T06:43:10
467 20: 2023-06-18T18:27:45
468 21: 2023-06-18T18:28:10
469 22: 2023-06-23T18:36:12
470 23: 2023-06-24T06:34:57
471 24: 2023-06-29T06:43:10
472 25: 2023-06-30T18:27:45
473 26: 2023-06-30T18:28:10
474 27: 2023-07-05T18:36:12
475 28: 2023-07-06T06:34:58
476 29: 2023-07-11T06:43:12
477 30: 2023-07-12T18:27:42
478 31: 2023-07-12T18:28:07
479 32: 2023-07-17T18:36:13
480 33: 2023-07-18T06:34:58
481 34: 2023-07-23T06:43:12
482 35: 2023-07-24T18:27:47
483 36: 2023-07-24T18:28:12
484 37: 2023-07-29T18:36:14
485 38: 2023-07-30T06:34:59
486 39: 2023-08-04T06:43:13
487 40: 2023-08-05T18:27:48
488 41: 2023-08-05T18:28:13
489 42: 2023-08-10T18:36:14
490 43: 2023-08-11T06:34:59
491 44: 2023-08-16T06:43:13
492 45: 2023-08-17T18:27:48
493 46: 2023-08-17T18:28:13
494 Sentinel-2:
495 Number of Images:
496 22
497 Acquision Date:
498 0: 2023-05-12T11:40:13
499 1: 2023-05-17T11:40:12
500 2: 2023-05-19T11:30:19
501 3: 2023-06-23T11:30:18
502 4: 2023-06-26T11:40:14
503 5: 2023-06-28T11:30:19
504 6: 2023-07-01T11:40:15
505 7: 2023-07-03T11:30:19
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506 8: 2023-07-06T11:40:15
507 9: 2023-07-11T11:40:15
508 10: 2023-07-13T11:30:19
509 11: 2023-07-16T11:40:15
510 12: 2023-07-18T11:30:20
511 13: 2023-07-23T11:30:19
512 14: 2023-07-26T11:40:15
513 15: 2023-07-28T11:30:20
514 16: 2023-07-31T11:40:15
515 17: 2023-08-05T11:40:15
516 18: 2023-08-07T11:30:20
517 19: 2023-08-10T11:40:16
518 20: 2023-08-12T11:30:19
519 21: 2023-08-17T11:30:20
520 Iteration 12
521 Interval of Days (May 1st to August 30th)
522 Times Series
523 Sentinel-1
524 Number of Images:
525 52
526 Acquisition Date:
527 0: 2023-05-01T18:27:42
528 1: 2023-05-01T18:28:07
529 2: 2023-05-06T18:36:09
530 3: 2023-05-07T06:34:54
531 4: 2023-05-12T06:43:08
532 5: 2023-05-13T18:27:43
533 6: 2023-05-13T18:28:08
534 7: 2023-05-18T18:36:10
535 8: 2023-05-19T06:34:55
536 9: 2023-05-24T06:43:09
537 10: 2023-05-25T18:27:43
538 11: 2023-05-25T18:28:08
539 12: 2023-05-30T18:36:10
540 13: 2023-05-31T06:34:56
541 14: 2023-06-05T06:43:09
542 15: 2023-06-06T18:27:44
543 16: 2023-06-06T18:28:09
544 17: 2023-06-11T18:36:11
545 18: 2023-06-12T06:34:56
546 19: 2023-06-17T06:43:10
547 20: 2023-06-18T18:27:45
548 21: 2023-06-18T18:28:10
549 22: 2023-06-23T18:36:12
550 23: 2023-06-24T06:34:57
551 24: 2023-06-29T06:43:10
552 25: 2023-06-30T18:27:45
553 26: 2023-06-30T18:28:10
554 27: 2023-07-05T18:36:12
555 28: 2023-07-06T06:34:58
556 29: 2023-07-11T06:43:12
557 30: 2023-07-12T18:27:42
558 31: 2023-07-12T18:28:07
559 32: 2023-07-17T18:36:13
560 33: 2023-07-18T06:34:58
561 34: 2023-07-23T06:43:12
562 35: 2023-07-24T18:27:47
563 36: 2023-07-24T18:28:12
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564 37: 2023-07-29T18:36:14
565 38: 2023-07-30T06:34:59
566 39: 2023-08-04T06:43:13
567 40: 2023-08-05T18:27:48
568 41: 2023-08-05T18:28:13
569 42: 2023-08-10T18:36:14
570 43: 2023-08-11T06:34:59
571 44: 2023-08-16T06:43:13
572 45: 2023-08-17T18:27:48
573 46: 2023-08-17T18:28:13
574 47: 2023-08-22T18:36:15
575 48: 2023-08-23T06:35:00
576 49: 2023-08-28T06:43:14
577 50: 2023-08-29T18:27:49
578 51: 2023-08-29T18:28:14
579 Sentinel-2:
580 Number of Images
581 2
582 Acquision Date:
583 0: 2023-05-12T11:40:13
584 1: 2023-05-17T11:40:12
585 2: 2023-05-19T11:30:19
586 3: 2023-06-23T11:30:18
587 4: 2023-06-26T11:40:14
588 5: 2023-06-28T11:30:19
589 6: 2023-07-01T11:40:15
590 7: 2023-07-03T11:30:19
591 8: 2023-07-06T11:40:15
592 9: 2023-07-11T11:40:15
593 10: 2023-07-13T11:30:19
594 11: 2023-07-16T11:40:15
595 12: 2023-07-18T11:30:20
596 13: 2023-07-23T11:30:19
597 14: 2023-07-26T11:40:15
598 15: 2023-07-28T11:30:20
599 16: 2023-07-31T11:40:15
600 17: 2023-08-05T11:40:15
601 18: 2023-08-07T11:30:20
602 19: 2023-08-10T11:40:16
603 20: 2023-08-12T11:30:19
604 21: 2023-08-17T11:30:20
605 22: 2023-08-20T11:40:15
606 23: 2023-08-22T11:30:21
607 24: 2023-08-27T11:30:19
608 Iteration 13
609 Interval of Days (May 1st to September 10th)
610 Times Series
611 Sentinel-1
612 Number of Images:
613 55
614 Acquisition Date:
615 0: 2023-05-01T18:27:42
616 1: 2023-05-01T18:28:07
617 2: 2023-05-06T18:36:09
618 3: 2023-05-07T06:34:54
619 4: 2023-05-12T06:43:08
620 5: 2023-05-13T18:27:43
621 6: 2023-05-13T18:28:08
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622 7: 2023-05-18T18:36:10
623 8: 2023-05-19T06:34:55
624 9: 2023-05-24T06:43:09
625 10: 2023-05-25T18:27:43
626 11: 2023-05-25T18:28:08
627 12: 2023-05-30T18:36:10
628 13: 2023-05-31T06:34:56
629 14: 2023-06-05T06:43:09
630 15: 2023-06-06T18:27:44
631 16: 2023-06-06T18:28:09
632 17: 2023-06-11T18:36:11
633 18: 2023-06-12T06:34:56
634 19: 2023-06-17T06:43:10
635 20: 2023-06-18T18:27:45
636 21: 2023-06-18T18:28:10
637 22: 2023-06-23T18:36:12
638 23: 2023-06-24T06:34:57
639 24: 2023-06-29T06:43:10
640 25: 2023-06-30T18:27:45
641 26: 2023-06-30T18:28:10
642 27: 2023-07-05T18:36:12
643 28: 2023-07-06T06:34:58
644 29: 2023-07-11T06:43:12
645 30: 2023-07-12T18:27:42
646 31: 2023-07-12T18:28:07
647 32: 2023-07-17T18:36:13
648 33: 2023-07-18T06:34:58
649 34: 2023-07-23T06:43:12
650 35: 2023-07-24T18:27:47
651 36: 2023-07-24T18:28:12
652 37: 2023-07-29T18:36:14
653 38: 2023-07-30T06:34:59
654 39: 2023-08-04T06:43:13
655 40: 2023-08-05T18:27:48
656 41: 2023-08-05T18:28:13
657 42: 2023-08-10T18:36:14
658 43: 2023-08-11T06:34:59
659 44: 2023-08-16T06:43:13
660 45: 2023-08-17T18:27:48
661 46: 2023-08-17T18:28:13
662 47: 2023-08-22T18:36:15
663 48: 2023-08-23T06:35:00
664 49: 2023-08-28T06:43:14
665 50: 2023-08-29T18:27:49
666 51: 2023-08-29T18:28:14
667 52: 2023-09-03T18:36:16
668 53: 2023-09-04T06:35:01
669 54: 2023-09-09T06:43:15
670 Sentinel-2:
671 Number of Images
672 25
673 Acquision Date:
674 0: 2023-05-12T11:40:13
675 1: 2023-05-17T11:40:12
676 2: 2023-05-19T11:30:19
677 3: 2023-06-23T11:30:18
678 4: 2023-06-26T11:40:14
679 5: 2023-06-28T11:30:19
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680 6: 2023-07-01T11:40:15
681 7: 2023-07-03T11:30:19
682 8: 2023-07-06T11:40:15
683 9: 2023-07-11T11:40:15
684 10: 2023-07-13T11:30:19
685 11: 2023-07-16T11:40:15
686 12: 2023-07-18T11:30:20
687 13: 2023-07-23T11:30:19
688 14: 2023-07-26T11:40:15
689 15: 2023-07-28T11:30:20
690 16: 2023-07-31T11:40:15
691 17: 2023-08-05T11:40:15
692 18: 2023-08-07T11:30:20
693 19: 2023-08-10T11:40:16
694 20: 2023-08-12T11:30:19
695 21: 2023-08-17T11:30:20
696 22: 2023-08-20T11:40:15
697 23: 2023-08-22T11:30:21
698 24: 2023-08-27T11:30:19
699

700 Iteration 14
701 Interval of Days (May 1st to September 20th)
702 Times Series
703 Sentinel-1
704 Number of Images:
705 59
706 Acquisition Date:
707 0: 2023-05-01T18:27:42
708 1: 2023-05-01T18:28:07
709 2: 2023-05-06T18:36:09
710 3: 2023-05-07T06:34:54
711 4: 2023-05-12T06:43:08
712 5: 2023-05-13T18:27:43
713 6: 2023-05-13T18:28:08
714 7: 2023-05-18T18:36:10
715 8: 2023-05-19T06:34:55
716 9: 2023-05-24T06:43:09
717 10: 2023-05-25T18:27:43
718 11: 2023-05-25T18:28:08
719 12: 2023-05-30T18:36:10
720 13: 2023-05-31T06:34:56
721 14: 2023-06-05T06:43:09
722 15: 2023-06-06T18:27:44
723 16: 2023-06-06T18:28:09
724 17: 2023-06-11T18:36:11
725 18: 2023-06-12T06:34:56
726 19: 2023-06-17T06:43:10
727 20: 2023-06-18T18:27:45
728 21: 2023-06-18T18:28:10
729 22: 2023-06-23T18:36:12
730 23: 2023-06-24T06:34:57
731 24: 2023-06-29T06:43:10
732 25: 2023-06-30T18:27:45
733 26: 2023-06-30T18:28:10
734 27: 2023-07-05T18:36:12
735 28: 2023-07-06T06:34:58
736 29: 2023-07-11T06:43:12
737 30: 2023-07-12T18:27:42
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738 31: 2023-07-12T18:28:07
739 32: 2023-07-17T18:36:13
740 33: 2023-07-18T06:34:58
741 34: 2023-07-23T06:43:12
742 35: 2023-07-24T18:27:47
743 36: 2023-07-24T18:28:12
744 37: 2023-07-29T18:36:14
745 38: 2023-07-30T06:34:59
746 39: 2023-08-04T06:43:13
747 40: 2023-08-05T18:27:48
748 41: 2023-08-05T18:28:13
749 42: 2023-08-10T18:36:14
750 43: 2023-08-11T06:34:59
751 44: 2023-08-16T06:43:13
752 45: 2023-08-17T18:27:48
753 46: 2023-08-17T18:28:13
754 47: 2023-08-22T18:36:15
755 48: 2023-08-23T06:35:00
756 49: 2023-08-28T06:43:14
757 50: 2023-08-29T18:27:49
758 51: 2023-08-29T18:28:14
759 52: 2023-09-03T18:36:16
760 53: 2023-09-04T06:35:01
761 54: 2023-09-09T06:43:15
762 55: 2023-09-10T18:27:49
763 56: 2023-09-10T18:28:14
764 57: 2023-09-15T18:36:16
765 58: 2023-09-16T06:35:02
766 Sentinel-2:
767 Number of Images
768 2
769 Acquision Date:
770 0: 2023-05-12T11:40:13
771 1: 2023-05-17T11:40:12
772 2: 2023-05-19T11:30:19
773 3: 2023-06-23T11:30:18
774 4: 2023-06-26T11:40:14
775 5: 2023-06-28T11:30:19
776 6: 2023-07-01T11:40:15
777 7: 2023-07-03T11:30:19
778 8: 2023-07-06T11:40:15
779 9: 2023-07-11T11:40:15
780 10: 2023-07-13T11:30:19
781 11: 2023-07-16T11:40:15
782 12: 2023-07-18T11:30:20
783 13: 2023-07-23T11:30:19
784 14: 2023-07-26T11:40:15
785 15: 2023-07-28T11:30:20
786 16: 2023-07-31T11:40:15
787 17: 2023-08-05T11:40:15
788 18: 2023-08-07T11:30:20
789 19: 2023-08-10T11:40:16
790 20: 2023-08-12T11:30:19
791 21: 2023-08-17T11:30:20
792 22: 2023-08-20T11:40:15
793 23: 2023-08-22T11:30:21
794 24: 2023-08-27T11:30:19
795 25: 2023-09-14T11:40:14
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796 26: 2023-09-19T11:40:14
797 Iteration 15
798 Interval of Days (May 1st to September 30th)
799 Times Series
800 Sentinel-1
801 Number of Images:
802 64
803 Acquisition Date:
804 0: 2023-05-01T18:27:42
805 1: 2023-05-01T18:28:07
806 2: 2023-05-06T18:36:09
807 3: 2023-05-07T06:34:54
808 4: 2023-05-12T06:43:08
809 5: 2023-05-13T18:27:43
810 6: 2023-05-13T18:28:08
811 7: 2023-05-18T18:36:10
812 8: 2023-05-19T06:34:55
813 9: 2023-05-24T06:43:09
814 10: 2023-05-25T18:27:43
815 11: 2023-05-25T18:28:08
816 12: 2023-05-30T18:36:10
817 13: 2023-05-31T06:34:56
818 14: 2023-06-05T06:43:09
819 15: 2023-06-06T18:27:44
820 16: 2023-06-06T18:28:09
821 17: 2023-06-11T18:36:11
822 18: 2023-06-12T06:34:56
823 19: 2023-06-17T06:43:10
824 20: 2023-06-18T18:27:45
825 21: 2023-06-18T18:28:10
826 22: 2023-06-23T18:36:12
827 23: 2023-06-24T06:34:57
828 24: 2023-06-29T06:43:10
829 25: 2023-06-30T18:27:45
830 26: 2023-06-30T18:28:10
831 27: 2023-07-05T18:36:12
832 28: 2023-07-06T06:34:58
833 29: 2023-07-11T06:43:12
834 30: 2023-07-12T18:27:42
835 31: 2023-07-12T18:28:07
836 32: 2023-07-17T18:36:13
837 33: 2023-07-18T06:34:58
838 34: 2023-07-23T06:43:12
839 35: 2023-07-24T18:27:47
840 36: 2023-07-24T18:28:12
841 37: 2023-07-29T18:36:14
842 38: 2023-07-30T06:34:59
843 39: 2023-08-04T06:43:13
844 40: 2023-08-05T18:27:48
845 41: 2023-08-05T18:28:13
846 42: 2023-08-10T18:36:14
847 43: 2023-08-11T06:34:59
848 44: 2023-08-16T06:43:13
849 45: 2023-08-17T18:27:48
850 46: 2023-08-17T18:28:13
851 47: 2023-08-22T18:36:15
852 48: 2023-08-23T06:35:00
853 49: 2023-08-28T06:43:14
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854 50: 2023-08-29T18:27:49
855 51: 2023-08-29T18:28:14
856 52: 2023-09-03T18:36:16
857 53: 2023-09-04T06:35:01
858 54: 2023-09-09T06:43:15
859 55: 2023-09-10T18:27:49
860 56: 2023-09-10T18:28:14
861 57: 2023-09-15T18:36:16
862 58: 2023-09-16T06:35:02
863 59: 2023-09-21T06:43:15
864 60: 2023-09-22T18:27:50
865 61: 2023-09-22T18:28:15
866 62: 2023-09-27T18:36:16
867 63: 2023-09-28T06:35:02
868 Sentinel-2:
869 Number of Images
870 29
871 Acquision Date:
872 0: 2023-05-12T11:40:13
873 1: 2023-05-17T11:40:12
874 2: 2023-05-19T11:30:19
875 3: 2023-06-23T11:30:18
876 4: 2023-06-26T11:40:14
877 5: 2023-06-28T11:30:19
878 6: 2023-07-01T11:40:15
879 7: 2023-07-03T11:30:19
880 8: 2023-07-06T11:40:15
881 9: 2023-07-11T11:40:15
882 10: 2023-07-13T11:30:19
883 11: 2023-07-16T11:40:15
884 12: 2023-07-18T11:30:20
885 13: 2023-07-23T11:30:19
886 14: 2023-07-26T11:40:15
887 15: 2023-07-28T11:30:20
888 16: 2023-07-31T11:40:15
889 17: 2023-08-05T11:40:15
890 18: 2023-08-07T11:30:20
891 19: 2023-08-10T11:40:16
892 20: 2023-08-12T11:30:19
893 21: 2023-08-17T11:30:20
894 22: 2023-08-20T11:40:15
895 23: 2023-08-22T11:30:21
896 24: 2023-08-27T11:30:19
897 25: 2023-09-14T11:40:14
898 26: 2023-09-19T11:40:14
899 27: 2023-09-26T11:30:18
900 28: 2023-09-29T11:40:13
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