
R in literary analysis in English
Diego Giménez
R codes used for distant reading analysis in English (Giménez, 2024). This document updates and expands a
previous version developed by Diego Giménez and Andresa Gomide in 2022, which focused on the analysis of
“The Book of Disquiet”. In this new version, works by James Joyce are analyzed, including “Ulysses”, “Dubliners”
and “A Portrait of the Artist as a Young Man”.

1 Tools and Data Preparation
1.1 Installation
Quanteda (Quantitative Analysis of Textual Data) is an R package for the manipulation and analysis of textual
data.

The installation of R varies according to the operating system (e.g., Windows, Mac, Linux), as well as its different
versions. There are several sources where you can get updated instructions on how to install R
(e.g., https://didatica.tech/como-instalar-a-linguagem-r-e-o-rstudio/). The Comprehensive R Archive Network
(CRAN), the official distribution network of R, offers reliable instructions for this, although perhaps not as detailed
as in other sources.

Another suggestion is to install a Graphical User Interface (GUI). GUIs considerably facilitate user interaction with
the computer. RStudio is the most used GUI for R and, like R, it is free and open-source.

1.2 Configuration: preparing the environment
When reusing codes, it is good practice to be aware of the installed version of both R and the libraries used. It is
not necessary for the versions to be the same as those used during the creation of the codes; however, in some
cases, there may be incompatibility between different versions, and some functions or packages may have been
discontinued. This article was written using version 4.3.3 of R.

Check the R version

R.version.string

[1] "R version 4.3.3 (2024-02-29 ucrt)"

For our analysis, we will use some existing packages. These packages are nothing more than extensions for R
that usually contain data or codes. To use them, we need to install them on the computer, if it has not already
been done, and load them into R. One advantage of loading only the necessary packages (rather than all
installed packages) is to avoid unnecessary computational processing. The code below creates a list of the
packages used in the present analysis and loads them, installing those that were not present.

We list the packages we need

packages = c("quanteda", # Quantitative analysis of textual data.
 "quanteda.textmodels", # Complements Quanteda, providing specific functionalities
for text modeling.
 "quanteda.textstats", # This package contains functions to calculate descriptive s
tatistics and measures of text complexity, such as lexical diversity and lexical density.
 "quanteda.textplots", # This package offers tools for visualizing textual data, in
cluding word scatter plots, word clouds, and heatmaps.
 "newsmap", # For document classification, based on "seed words," i.e., predefined
keywords indicating topics or categories.
 "readtext", # For reading different text formats.
 "spacyr", # For grammatical class annotation, entity recognition, and syntactic an

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 1/25

https://quanteda.io/
https://didatica.tech/como-instalar-a-linguagem-r-e-o-rstudio/

notation (Python must be installed).
 "ggplot2", # For simple frequency graphs.
 "seededlda", # For topic modeling.
 "stringr", # For regular expressions.
 "dplyr", # This package is part of the tidyverse and offers a set of functions fo
r tabular data manipulation in R, allowing operations like filtering, selection, aggregation, a
nd data merging easily and efficiently.
 "tidytext", # This package complements tidyverse, providing tools for text analysi
s along with tidyverse's data organization principles, allowing easy integration of text analys
is into data analysis pipelines.
 "knitr", # This package is used for producing dynamic documents in R, allowing int
egration of R code and analysis results into Markdown, HTML, PDF, and other formats.
 "stringr", #This package provides functions for text string manipulation in R, fac
ilitating tasks such as pattern matching, substring extraction, and text manipulation.
 "igraph", # This package is used for network analysis and visualization in R, offe
ring functions for creating, manipulating, and representing graphs and complex networks.
 "topicmodels" # This package is used for topic modeling in texts, offering impleme
ntations of algorithms like LDA (Latent Dirichlet Allocation) and LSA (Latent Semantic Analysi
s) for topic inference in collections of documents.
)

We install (if necessary) and load the packages.
package.check <- lapply(
 packages,
 FUN = function(x) {
 if (!require(x, character.only = TRUE)) {
 install.packages(x, dependencies = TRUE)
 require(x, character.only = TRUE)
 }
 }
)

The codes below were implemented in version 4.0.2 of Quanteda. Using a different version may result in errors or
undesired results. To check the version of the packages, we use the packageVersion function. To check the
version of R, we use R.version.string .

Check the version of Quanteda.

packageVersion("quanteda")

[1] '4.0.2'

Finally, we need to establish what our working directory will be. This will be the location where the results will be
saved. To identify what the current working directory is, we use the getwd() function, which returns the absolute
path, i.e., the complete address of the directory. To set a new working location, we use the setwd() function. Files
saved in this directory can be read by simply indicating the file name because we can use the relative path, i.e.,
the file address from the directory we are working in.

1.3 Data
Once the necessary packages are installed, we can proceed with the analysis of the corpus. For this, we need to
load the corpus into R. If we are working with data stored locally, that is, available on the computer where the
analyzes will be performed, simply use the readtext() function, indicating the location (relative or absolute) of the
desired file.

The book ‘Ulysses’ can be read as a single file,

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 2/25

To read a single file with all the content of the book

ulysses <- readtext("~/corpora/Ulysses.txt", encoding = "utf-8")

Returns the structure of the created object

str(ulysses)

Classes 'readtext' and 'data.frame': 1 obs. of 2 variables:
$ doc_id: chr "Ulysses.txt"
$ text : chr "Ulysses\n\n\nby James Joyce\n\n\nContents\n\n — I —\n\n [1]\n [2]\n [3
]\n\n — II —\n\n [4]\n [5]\n ["| __truncated__

Or considering the book as a unit within a corpus formed by several documents:

Read all files in the ldod folder of the corpora directory

joyce_files <- readtext("~/corpora/joyce", encoding = "utf-8")

Returns the structure of the created object

str(joyce_files)

Classes 'readtext' and 'data.frame': 4 obs. of 2 variables:
$ doc_id: chr "A Portrait of the Artist as a Young Man.txt" "Dubliners.txt" "PPn25_01.pdf"
"Ulysses.txt"
$ text : chr "A Portrait of the Artist as a Young Man\n\nby James Joyce\n\n\nContents\n\n
Chapter I\n Chapter II\n Chapter II"| __truncated__ "Dubliners\n\nby James Joyce\n\n\nContents
\n\n The Sisters\n An Encounter\n Araby\n Eveline\n After the Race\n T"| __truncated__ "
n. 25\n "| __truncated__ "Ulysses\n\n\nby James
Joyce\n\n\nContents\n\n — I —\n\n [1]\n [2]\n [3]\n\n — II —\n\n [4]\n [5]\n ["| __t
runcated__

The texts above derive from the work by James Joyce, available in Project Gutenberg.

The files were saved with utf-8 encoding, and pre-textual and editorial information (such as editors’ notes) that
could interfere with the software’s automatic search were eliminated.

The analyzes below will be demonstrated using the two corpora, at different times.

1.3.1 Cleaning
The cleaning below was applied only to the texts saved separately
(´joyce_files). The file with the book in a single text (Ulysses`) had already been cleaned previously.

We create a copy to recover the original in case there are errors in the regex

joyce_clean <- joyce_files

Removal of unwanted elements

Remove numbers at the beginning of lines (indices)

joyce_clean$text <- str_replace_all(joyce_clean$text, "\\n\\d", "\n")

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 3/25

https://www.gutenberg.org/ebooks/author/1039

Remove dates

joyce_clean$text <- str_replace_all(joyce_clean$text, "\\d{1,2}-(\\d{1,2}|[IVX]{1,4})-19\\d
{2}", "")

1.4 Research with Quanteda
After the files are loaded into the system, we need to create a “corpus” object, that is, the format necessary for
Quanteda to process and generate information about the text(s). To do this, just apply the ‘corpus’ function.
Automatically, the text is segmented into tokens and sentences. Tokens correspond to all occurrences (including
repetitions) of words, as well as other items such as punctuation, numbers, and symbols. When we investigate
the corpus with the ‘summary’ function, we obtain the count of sentences, tokens, and types (the number of
distinct tokens in a corpus).

Create the corpus from multiple files

corpus_clean <- corpus(joyce_clean)

Present a summary of the corpus

summary(corpus_clean)

Text
<chr>

Typ…
<int>

Toke…
<int>

Sentences
<int>

1 A Portrait of the Artist as a Young Man.txt 9944 96592 4601

2 Dubliners.txt 8165 79650 4736

3 PPn25_01.pdf 589 3367 41

4 Ulysses.txt 35108 318968 22729

4 rows

Create a corpus from the single file

corpus_unico <- corpus(ulysses)

Present a summary of the corpus

summary(corpus_unico)

Text
<chr>

Types
<int>

Tokens
<int>

Sentences
<int>

1 Ulysses.txt 35104 318975 22730

1 row

If necessary, we can change the structure of our corpus. In ‘corpus_unico’, we have a corpus made with only one
text. With ‘corpus_reshape’, we can create a new corpus where each sentence is considered a text, that is, a
unit.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 4/25

Next1 2 3 4 5 6 ... 10Previous

Reveal the number of texts in the corpus

ndoc(corpus_unico)

[1] 1

Restructure the corpus, converting each sentence into a unit

corpus_sents <- corpus_reshape(corpus_unico, to = "sentences")

Present a summary of the corpus

summary(corpus_sents)

Text
<chr>

Types
<int>

Tokens
<int>

Sentences
<int>

1 Ulysses.txt.1 51 99 1

2 Ulysses.txt.2 16 17 1

3 Ulysses.txt.3 14 14 1

4 Ulysses.txt.4 19 20 1

5 Ulysses.txt.5 7 7 1

6 Ulysses.txt.6 10 10 1

7 Ulysses.txt.7 15 18 1

8 Ulysses.txt.8 24 29 1

9 Ulysses.txt.9 36 47 1

10 Ulysses.txt.10 19 20 1

1-10 of 100 rows

Total number of units in the new corpus structure

ndoc(corpus_sents)

[1] 22730

The examples above show us that a corpus is a set of texts with information about each text (metadata), from
which we can easily extract the count of tokens, types, and sentences for each text. However, to perform
quantitative analyzes on the corpus, we need to break the texts into tokens (tokenization). It is also possible to
filter them, removing elements such as punctuation, symbols, numbers, URLs, and separators.

Tokenize our three corpora

toks_unico <- tokens(corpus_unico)
toks_sents <- tokens(corpus_sents)
toks_files <- tokens(corpus_clean)

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 5/25

Next, we filter the three corpora in various ways, for demonstration

Remove punctuation (clean corpus with regex)

toks_nopunct_files <- tokens(corpus_clean, remove_punct = TRUE)
toks_nopunct_unico <- tokens(corpus_unico, remove_punct = TRUE)

Remove numbers (corpus with only one file)

toks_nonumbr <- tokens(corpus_unico, remove_numbers = TRUE)

Remove separators (Unicode categories "Separator" [Z] and "Control" [C]) (corpus made by sent
ences)

toks_nosept <- tokens(corpus_sents, remove_separators = TRUE)

Remove various elements at the same time (corpus with only one file)

toks_simples <- tokens(corpus_unico, remove_numbers = TRUE, remove_symbols = TRUE, remove_punct
= TRUE)

It is also possible to remove unwanted tokens. Quanteda offers a list of ‘stopwords’ for different languages.
Stopwords, or empty words in Portuguese, are words to be removed during text processing for computational
analyses. There is no standard list, but generally stopwords are the most frequently used words in a language,
such as prepositions and articles. The block below eliminates the words included in the list of stopwords for
Portuguese and also includes other words that are repeated in the corpus in question.

Remove stopwords from the corpus made with a single file

toks_nostop <- tokens_select(toks_unico, pattern = stopwords("en"), selection = "remove")

Remove specific tokens from the corpus made with multiple files and cleaned with regex, after
removing punctuation

toks_selected_files <- tokens_select(toks_nopunct_files, pattern = c("o", "said", "say", "say
s", "like", "come", "get", "us", "go", "must", "put", "can", "j", "let", "came", "ask", "aske
d", "don't", "went", "got", "give", "much", "it's", "that's", "I'm", "he’s", "she's", "give",
"gave", "told", "tell", "mr", "one", "two", "three", "don't", "sir", "mrs", "just", "might", "i
t’s", "don’t", "that’s", "I’m", "he’s", "she’s", stopwords("en")), selection = "remove")

Remove specific tokens from the corpus made with one file, after removing punctuation

toks_selected_unico <- tokens_select(toks_nopunct_unico, pattern = c("o", "said", "say", "say
s", "like", "come", "get", "us", "go", "must", "put", "can", "j", "let", "came", "ask", "aske
d", "don't", "went", "got", "give", "much", "it's", "that's", "I'm", "he’s", "she's", "give",
"gave", "told", "tell", "mr", "one", "two", "three", "don't", "sir", "mrs", "just", "might", "i
t’s", "don’t", "that’s", "I’m", "he’s", "she’s", stopwords("en")), selection = "remove")

After tokenization, the next step is to create a table with the frequency of each token for each text, or, in
Quanteda’s terms, a document-feature-matrix (DFM). The DFM is a prerequisite for several other functions in
Quanteda, such as topfeatures , which returns the most frequent tokens in a corpus.

Here we can see the 20 most frequent words when removing numbers, symbols, and punctuation

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 6/25

dfm_simples <- dfm(toks_simples)
print("With the removal of numbers, symbols, and punctuation")

[1] "With the removal of numbers, symbols, and punctuation"

topfeatures(dfm_simples, 20)

the of and a to in he his i that with it was
14882 8138 7206 6488 4953 4909 4028 3328 2681 2603 2514 2349 2131
on for you her him is all
2108 1932 1889 1783 1522 1432 1317

dfm_nostop <- dfm(toks_nostop)
print("Removal of stopwords")

[1] "Removal of stopwords"

topfeatures(dfm_nostop, 20)

. , _ : — ?) (! said
22185 16361 2720 2568 2318 2233 1788 1776 1574 1208
bloom like mr one stephen old says now see man
933 731 717 703 503 487 473 438 432 410

dfm_selected_unico <- dfm(toks_selected_unico)
print("Removal of selected tokens in the corpus previously cleaned with regex and without stopw
ords")

[1] "Removal of selected tokens in the corpus previously cleaned with regex and without stop
words"

topfeatures(dfm_selected_unico, 20)

bloom stephen old now see man time back yes eyes
933 503 487 438 432 410 376 361 358 329
know good hand street little first father way well never
327 321 302 293 290 278 277 276 273 251

dfm_selected_files <- dfm(toks_selected_files)
print("Removal of selected tokens in the single file corpus and without stopwords")

[1] "Removal of selected tokens in the single file corpus and without stopwords"

topfeatures(dfm_selected_files, 20)

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 7/25

Next1 2 3 4 5 6 ... 9Previous

bloom stephen old man now little time eyes see back
934 874 740 730 716 631 608 598 597 570
know good yes father face first well hand god day
541 513 489 479 472 463 451 448 442 412

After generating the token list, we can explore the corpus. One of the simplest and most used techniques for
corpus investigation is through concordance lines, also known as concordance lines or keywords in context
(kwic). Concordance lines show fragments of the corpus where the searched terms occur. The number of words
in the context can be stipulated by the user, with 5 tokens to the left and 5 to the right being the standard. The
first column indicates the name of the file where the searched word occurs. There are several options for
searches. They can be made by words or by fragments, sequences, or combinations thereof.

Occurrences of words that start with "feli*"
kwic(toks_unico, pattern = "happ*")

docname
<chr>

from
<int>

to
<int>

pre
<chr>

keyword
<chr>

Ulysses.txt 2413 2413 sensations . Why ? What happened

Ulysses.txt 6940 6940 , his wellshaped mouth open happily

Ulysses.txt 6984 6984 to chant in a quiet happy

Ulysses.txt 13608 13608 free . — I am happier

Ulysses.txt 22523 22523 often as he walked in happy

Ulysses.txt 27004 27004 ? No , nothing has happened

Ulysses.txt 27222 27222 backbone , increasing . Will happen

Ulysses.txt 27239 27239 sweet light lips . Will happen

Ulysses.txt 30458 30458 and the peri . Always happening

Ulysses.txt 31535 31535 their haunches . Might be happy

1-10 of 84 rows | 1-5 of 7 columns

We can also search for more than one word at the same time
kwic(toks_unico, pattern = c("happ*", "joy*"))

docname
<chr>

from
<int>

to
<int>

pre
<chr>

keyword
<chr>

Ulysses.txt 4 4 Ulysses by James Joyce

Ulysses.txt 2413 2413 sensations . Why ? What happened

Ulysses.txt 6940 6940 , his wellshaped mouth open happily

Ulysses.txt 6984 6984 to chant in a quiet happy

Ulysses.txt 11981 11981 you couldn’t , he said joyously

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 8/25

Next1 2 3 4 5 6 ... 13Previous

docname
<chr>

from
<int>

to
<int>

pre
<chr>

keyword
<chr>

Ulysses.txt 13608 13608 free . — I am happier

Ulysses.txt 22523 22523 often as he walked in happy

Ulysses.txt 27004 27004 ? No , nothing has happened

Ulysses.txt 27222 27222 backbone , increasing . Will happen

Ulysses.txt 27239 27239 sweet light lips . Will happen

1-10 of 123 rows | 1-5 of 7 columns

By sequence of more than one token
kwic(toks_unico, pattern = phrase("I dream*"))

docname
<chr>

from
<int>

to
<int>

pre
<chr>

keyw…
<chr>

post
<chr>

Ulysses.txt 161066161067, all is prepared . I dreamt . What ? Worst is

Ulysses.txt 232076232077STEPHEN : Mark me . I dreamt of a watermelon . ZOE

Ulysses.txt 314577314578look at that and didnt I dream something too yes there was

3 rows

1.4.1 N-grams
Word frequency lists can be useful for identifying common elements in a text. However, in many cases, it is
equally important to know in what context these words are. Identifying which words frequently co-occur in a
corpus can provide us with even more information about the text. For example, knowing that the sequence ‘I am
sad’ frequently occurs in the corpus gives us richer insights than just the frequency of the word ‘sad’ alone. The
sequence ‘I am sad’ is an example of what we call n-grams, or, in this specific case, bigrams. N-grams are
sequences of two or more words that occur in a text. To generate lists of n-grams, we start from a list of tokens
and specify the minimum and maximum number of tokens in each n-gram.

Create a list of bigrams, trigrams, and tetragrams
toks_ngram <- tokens_ngrams(toks_simples, n = 2:4)

Visualize only the 30 most frequent
head(toks_ngram[[1]], 30)

[1] "Ulysses_by" "by_James" "James_Joyce"
[4] "Joyce_Contents" "Contents_I" "I_II"
[7] "II_III" "III_I" "I_Stately"
[10] "Stately_plump" "plump_Buck" "Buck_Mulligan"
[13] "Mulligan_came" "came_from" "from_the"
[16] "the_stairhead" "stairhead_bearing" "bearing_a"
[19] "a_bowl" "bowl_of" "of_lather"
[22] "lather_on" "on_which" "which_a"

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 9/25

[25] "a_mirror" "mirror_and" "and_a"
[28] "a_razor" "razor_lay" "lay_crossed"

1.4.2 Dictionary
Another way to extract information from a text is through the creation of “dictionaries”. The dictionary function
in Quanteda allows grouping tokens by categories. This categorization can then be used for searches in the
corpus. For example, we can create the categories “joy” and “sadness” containing words related to these
feelings, respectively. With the dictionary created, we can identify the distribution of these terms in a corpus.

Create a dictionary from the corpus formed by a single document

dict <- dictionary(list(happiness = c("happ*", "joy*", "smil*", "content*", "cheer*", "delig
*"),
 sadness = c("sad*", "unhapp*", "soorw*", "depress*", "dejec*", "misera
*")))

dict_toks <- tokens_lookup(toks_unico, dictionary = dict)
print(dict_toks)

Tokens consisting of 1 document.
Ulysses.txt :
[1] "happiness" "happiness" "happiness" "happiness" "happiness" "happiness"
[7] "sadness" "happiness" "happiness" "happiness" "happiness" "happiness"
[... and 405 more]

dfm(dict_toks)

Document-feature matrix of: 1 document, 2 features (0.00% sparse) and 0 docvars.
features
docs happiness sadness
Ulysses.txt 341 76

Create a dictionary from the corpus formed by multiple documents

dict <- dictionary(list(happiness = c("happ*", "joy*", "smil*", "content*", "cheer*", "delig
*"),
 sadness = c("sad*", "unhapp*", "soorw*", "depress*", "dejec*", "misera
*")))

dict_toks <- tokens_lookup(toks_files, dictionary = dict)
print(dict_toks)

Tokens consisting of 4 documents.
A Portrait of the Artist as a Young Man.txt :
[1] "happiness" "happiness" "happiness" "happiness" "happiness" "happiness"
[7] "happiness" "happiness" "happiness" "sadness" "sadness" "sadness"
[... and 168 more]

Dubliners.txt :
[1] "happiness" "happiness" "happiness" "happiness" "happiness" "happiness"
[7] "happiness" "happiness" "happiness" "happiness" "happiness" "happiness"

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 10/25

[... and 117 more]

PPn25_01.pdf :
[1] "happiness"

Ulysses.txt :
[1] "happiness" "happiness" "happiness" "happiness" "happiness" "happiness"
[7] "sadness" "happiness" "happiness" "happiness" "happiness" "happiness"
[... and 405 more]

dfm(dict_toks)

Document-feature matrix of: 4 documents, 2 features (12.50% sparse) and 0 docvars.
features
docs happiness sadness
A Portrait of the Artist as a Young Man.txt 148 32
Dubliners.txt 117 12
PPn25_01.pdf 1 0
Ulysses.txt 341 76

2 Data Visualization and Analysis
2.1 Word Cloud and Frequency Graph
In 1.4, we created a DFM with the frequency of tokens. To absorb these frequencies more quickly, we can
generate visualizations. One option is the word cloud, a graph that allows for quick visualization of the most
frequent terms.

Demonstration of how word frequencies change depending on the corpus preparation

set.seed(100) # For the reproduction of the results

textplot_wordcloud(dfm_selected_unico, min_count = 6, random_order = FALSE, rotation = .25, col
or = RColorBrewer::brewer.pal(8, "Dark2"))

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 11/25

set.seed(100)
textplot_wordcloud(dfm_selected_files, min_count = 6, random_order = FALSE, rotation = .25, col
or = RColorBrewer::brewer.pal(8, "Dark2"))

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
followed could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
friends could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
beautiful could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
beauty could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
drink could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
person could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 12/25

breath could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
won’t could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
smiling could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
suddenly could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
taking could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
simon could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
large could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
certain could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
henry could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
private could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
different could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
passing could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
really could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
opened could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
getting could not be fit on page. It will not be plotted.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 13/25

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
smiled could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
school could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
daughter could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
college could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
yellow could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : chap
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
turning could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
heavy could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
around could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
language could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
business could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : fall
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
smile could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
number could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
making could not be fit on page. It will not be plotted.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 14/25

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
whether could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : neck
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
present could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
couldn’t could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
since could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : pass
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
given could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
closed could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
married could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : ago
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
boots could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
bring could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
blessed could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
conmee could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
bridge could not be fit on page. It will not be plotted.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 15/25

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
leopold could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
raised could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
laughter could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
taken could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
simply could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
temple could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : jack
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
thinking could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
sleep could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
understand could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
dignam could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
sight could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
square could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
twice could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
faces could not be fit on page. It will not be plotted.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 16/25

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
heaven could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
chapel could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : meet
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
stopped could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
wrote could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
moved could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
shadow could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
tongue could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
gentlemen could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
however could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
m’coy could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
sound could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
bread could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
laugh could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
written could not be fit on page. It will not be plotted.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 17/25

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, : help
could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
quick could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
shook could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
broke could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
molly could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
remembered could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
bright could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
grace could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
speech could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
bloom’s could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
telling could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
quietly could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
trying could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
haines could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
cissy could not be fit on page. It will not be plotted.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 18/25

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
somewhere could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
please could not be fit on page. It will not be plotted.

Warning in wordcloud(x, min_size, max_size, min_count, max_words, color, :
seeing could not be fit on page. It will not be plotted.

set.seed(100)
textplot_wordcloud(dfm_nostop, min_count = 6, random_order = FALSE, rotation = .25, color = RCo
lorBrewer::brewer.pal(8, "Dark2"))

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 19/25

Another solution is to use the ´ggplot` library and represent in a graph the number of occurrences of the most
frequent words.

From the corpus formed by a single document

dfm_selected_unico %>%
 textstat_frequency(n = 20) %>%
 ggplot(aes(x = reorder(feature, frequency), y = frequency)) +
 geom_point() +
 coord_flip() +
 labs(x = NULL, y = "Frequência") +
 theme_minimal()

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 20/25

From a corpus formed by multiple documents

dfm_selected_files %>%
 textstat_frequency(n = 20) %>%
 ggplot(aes(x = reorder(feature, frequency), y = frequency)) +
 geom_point() +
 coord_flip() +
 labs(x = NULL, y = "Frequência") +
 theme_minimal()

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 21/25

2.2 Topic Modeling (LDA)
Another function frequently used in Natural Language Processing (NLP) is topic modeling (TM). Topic modeling
applies a statistical model that seeks to understand the structure of the corpus and identify and group words that
are related in some way. TM uses a semi or unsupervised technique to identify these topics. In other words, the
program learns to recognize patterns in the data without the need for prior annotations. The code below
demonstrates the application of the Latent Dirichlet Allocation (LDA) model.

Topic modeling from the corpus formed by a single document

lda <- LDA(dfm_selected_unico, k = 10)
terms(lda, 10)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
[1,] "back" "back" "bloom" "bloom" "bloom" "bloom" "bloom"
[2,] "stephen" "old" "old" "stephen" "now" "old" "now"
[3,] "now" "bloom" "stephen" "old" "way" "eyes" "see"
[4,] "time" "now" "time" "now" "man" "see" "stephen"
[5,] "first" "see" "eyes" "man" "see" "man" "know"
[6,] "voice" "stephen" "going" "hand" "well" "know" "never"
[7,] "father" "time" "hand" "back" "yes" "good" "man"
[8,] "old" "first" "look" "yes" "first" "day" "poor"
[9,] "street" "good" "round" "little" "john" "hand" "hat"
[10,] "little" "little" "john" "see" "street" "long" "street"
Topic 8 Topic 9 Topic 10
[1,] "bloom" "man" "stephen"
[2,] "stephen" "well" "time"
[3,] "yes" "old" "father"
[4,] "back" "bloom" "man"

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 22/25

[5,] "see" "way" "way"
[6,] "good" "thing" "see"
[7,] "old" "time" "old"
[8,] "know" "eyes" "john"
[9,] "well" "yes" "street"
[10,] "face" "now" "now"

Topic modeling from a corpus formed by multiple documents

lda <- LDA(dfm_selected_files, k = 10)
terms(lda, 10)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
[1,] "eyes" "stephen" "never" "de" "man" "bloom" "see"
[2,] "stephen" "god" "bloom" "pessoa" "well" "old" "bloom"
[3,] "now" "soul" "now" "fernando" "time" "good" "stephen"
[4,] "air" "first" "stephen" "recensão" "along" "see" "man"
[5,] "dedalus" "father" "time" "e" "house" "now" "now"
[6,] "heart" "life" "yes" "um" "miss" "well" "life"
[7,] "upon" "mind" "head" "não" "head" "father" "old"
[8,] "passed" "little" "man" "filme" "fellow" "thing" "day"
[9,] "face" "hell" "way" "2023" "world" "know" "eyes"
[10,] "back" "old" "eyes" "boca" "day" "street" "long"
Topic 8 Topic 9 Topic 10
[1,] "back" "little" "made"
[2,] "stephen" "gabriel" "man"
[3,] "bloom" "now" "upon"
[4,] "hand" "old" "stephen"
[5,] "time" "aunt" "life"
[6,] "eyes" "know" "turned"
[7,] "call" "young" "god"
[8,] "yes" "began" "face"
[9,] "name" "good" "now"
[10,] "god" "face" "heard"

2.3 Semantic Network
The Feature Co-occurrence Matrix (FCM) is similar to the DFM but considers co-occurrences, presenting a
graph with semantic networks.

Network from the corpus formed by a single document

Create FCM from DFM
fcm_nostop <- fcm(dfm_selected_unico)

List the top features
feat <- names(topfeatures(dfm_selected_unico, 50))

Select
fcm_select <- fcm_select(fcm_nostop, pattern = feat, selection = "keep")

size <- log(colSums(dfm_select(dfm_selected_unico, feat, selection = "keep")))

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 23/25

textplot_network(fcm_select, min_freq = 0.8, vertex_size = size / max(size) * 3)

Network from a corpus formed by multiple documents

Create a Feature Co-occurrence Matrix (FCM) from DFM
fcm_nostop <- fcm(dfm_selected_files)

List the top features
feat <- names(topfeatures(dfm_selected_files, 50))

Select features for the FCM
fcm_select <- fcm_select(fcm_nostop, pattern = feat, selection = "keep")

Calculate vertex sizes
size <- log(colSums(dfm_select(dfm_selected_files, feat, selection = "keep")))

textplot_network(fcm_select, min_freq = 0.8, vertex_size = size / max(size) * 3)

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 24/25

Data and Repository
The data and codes are available via GitHub https://github.com/DiegoEGimenez/R_literatura_Quanteda

The code can be viewed at https://rpubs.com/DiegoEGimenez/1192115

Acknowledgments
This document (2024) contains a review and expansion of codes originally prepared by Diego Giménez and
Andressa Gomide in 2022 for the analysis of “The Book of Disquiet”. Some of the codes described in the 2022
document used the codes kindly provided by Mark Alfano, used in his work “Nietzsche corpus analysis”.

24/10/24, 14:28 RPubs - R in literary analysis in English

https://rpubs.com/DiegoEGimenez/1192115 25/25

https://github.com/DiegoEGimenez/R_literatura_Quanteda
https://rpubs.com/DiegoEGimenez/1192115

