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A B S T R A C T

With the ongoing digitization of the manufacturing industry and the ability to bring together data from specific
manufacturing processes, there is enormous potential to use machine learning (ML) techniques to improve
such processes. In this context, the competitive automotive industry can take advantage of the ML power by
predicting defects before they occur, aiming to reduce the scrap rate and increase the robustness and reliability
of the production processes. In a real world scenario, small and medium size companies do not have the
amount of data the big companies have, which can prevent the usage of ML models in this vital niche for
the industry. A collaboration in terms of data usage to develop powerful and general industry solutions is
hindered by data privacy concerns despite similar problems. This paper addresses these concerns by providing
a framework based on the Federated Learning (FL) method combined with Digital Envelopes (DE) to allow the
ML models training while keeping the data of the partners and the models parameters private and protected
against external cyber-attacks, which is one of the weaknesses of FL as of now. A case study was carried out
to demonstrate the effectiveness of the proposed framework on handling data poisoning attacks to the training
data and also the models’ weights.
1. Introduction

Sheet metal forming process is one of the necessary processes used
in the automotive industry to produce car components. In this process,
metal sheets are plastically deformed into a desired shape by the action
of forming tools, which typically consist of a punch, a die, and a blank
holder. Firstly, a blank (i.e., non-deformed metal sheet) is placed over
the die, and then it is pressed into the die by the motion of the punch
to obtain the desired shape; the flow of the sheet material into the die
is typically controlled with a blank holder (Hattalli & Srivatsa, 2020).
In general, sheet metal forming processes allow obtaining high quality
components with high cadence and low cost; however, the variability
inherent to mechanical properties, tool geometry and process parame-
ters makes formed components often prone to defects such as wrinkling,
tearing, excessive thinning and springback.

Forming processes, in general, are often susceptible to the occur-
rence of defects, which can make the overall procedure very costly;
the numerous variables involved in forming processes, related to the
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material properties, tooling geometry and process parameters makes it
difficult for engineers to accurately predict the occurrence of forming
problems, such as springback (Firat, 2007), among others. In this
context, ML techniques may aid to solve this issue, since they can
be trained with available data for building accurate defects prediction
models. The rationale is that the models can generalize in unseen data
and successfully identify and check such defect patterns.

Although ideal, the applicability and success of ML models to solve
problems are highly dependable of the amount and quality of the
available data. This may prevent medium and small companies to fully
adopt the concept of smart manufacturing, which could mean a lost
in competitiveness in an ever-increasing competitiveness in the auto-
motive industry that has demanded very high quality and robustness
requirements, particularly in components that have a direct impact on
occupant safety.

One possible solution would be the collaboration among manu-
facturing companies, where they would share their data to create a
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Table 1
Experiment result obtained by executing the FL algorithm with corrupted datasets and SecFL activated.

Reference Sub-section Outcome

Inamdar et al. (2000) Machine Learning for
Defect Prediction

ANN + bending forming process + real data

Gisario et al. (2011) Machine Learning for
Defect Prediction

ANN + V-shaped bending forming process + experimental data

Liu et al. (2007) Machine Learning for
Defect Prediction

ANN and GA + U-shaped bending forming process + real data

Miranda et al. (2018) Machine Learning for
Defect Prediction

ANN + press break air bending forming process + experimental data

Lei et al. (2021) Machine Learning for
Defect Prediction

SVM + sheet forming process + real Data

Chen et al. (2022) Machine Learning for
Defect Prediction

SVM and KNN and RF + sheet forming process + real Data

Romero et al. (2021) Machine Learning for
Defect Prediction

SVM + Mold forming process + real Data

Dib et al. (2019a) Machine Learning for
Defect Prediction

Single and ensemble classifiers + U-channel forming process + experimental Data

Han et al. (2013) Machine Learning for
Defect Prediction

ANN and PSO algorithm + incremental forming process + experimental data

McMahan et al. (2016) Federated Learning Introduction of federated learning algorithm
Shokri and Shmatikov
(2015)

Federated Learning SGD model used for privacy-preserved deep learning algorithm

Dib et al. (2021b) Federated Learning Federated learning for springback defect prediction in U-channel forming process
Hao et al. (2020) Federated Learning Privacy optimization of federated learning parameters
Phong et al. (2018) Federated Learning Privacy optimization of federated learning parameters
Zhang et al. (2017) Federated Learning Privacy optimization of federated learning parameters
Bonawitz et al. (2017) Federated Learning Privacy optimization of federated learning parameters
Karankar et al. (2014) Digital Envelopes Novel for digital envelopes + digital signatures to provide data integrity,

confidentiality, and non-repudiation
Guo et al. (2010) Digital Signature Scheme of signed digital envelopes
Sun et al. (2020) Data Poisoning Efficient method to perform a poison attack on federated learning
Yerlikaya and Bahtiyar
(2022)

Data Poisoning Analysis of the robustness and performances of several machine learning algorithms
against data poisoning attacks
common solution to be used by them. However, one major obstacle is
the data privacy and data security policies of each company and their
desire to not shared their sensitive information with other companies.
One method that would help in this scenario is the FL, which decouples
the model training from the need for direct access to the raw training
data (McMahan et al., 2016). FL allows users to collectively reap the
benefits of shared models trained from private data, without the need
to centrally store it, where each client train their models with local
datasets, that are never sent to the central server, and only the updates,
or trained weights, are communicated, empowering models with the
amount of data that was not possible to be used before (McMahan et al.,
2016).

FL offers a way for companies to collaborate and create solutions
while preserving their data privacy. However, despite FL’s default
privacy protection, there are still concerns regarding data security
as the FL approach can be vulnerable to cyber-attacks such as data
poisoning (Sun et al., 2020). These attacks can disrupt the training
process and even result in the theft of sensitive information.

The main contribution of this paper is establishing a framework,
called SecFL, that combines the traditional FL method with DE to
provide a private and secure environment for a distributed ML training.
The structure of the paper is as follows. First, a description of related
works is presented. Second, the used algorithms are described. Third,
the proposed approach and experimental settings are presented and
explained. Fourth, the proposed work is applied in a case study and
the findings are discussed. Finally, the experiences, limitations of the
proposed framework and future works are reviewed, concluding this
work.

2. Background and related works

The background and related works of this study are presented in
the sub-sections below. In order to contextualize the work undertaken
in this paper, Table 1 shows an overview of related works comparison
addressed in this section.
2

2.1. Machine learning for defect prediction

ML has been used in manufacturing with different aims such as
process optimization and manufacturing defect detection. Table 1 lists
the available works that can be seen as using ML for defect prediction
with their corresponding objectives. They mainly focus on using ML to
improve or optimize the process parameters to springback predict de-
fects in sheet metal forming, which is the focus of this work, considering
different setups.

Inamdar et al. (2000) used artificial neural networks (ANN) to the
control of the sheet metal bending process in an attempt to restrict
springback occurrence and consequently the final angle of bend to
within a small tolerance. Gisario et al. (2011) predicts and control the
springback in V-shape bending of aluminum alloy sheets by also using
ANN, although using experimental data. Liu et al. (2007) applied a
generic algorithm (GA) to optimize the topological of an ANN struc-
ture to optimize a U-shaped bending forming process, preventing the
occurrence of springbacks. Miranda et al. (2018) combined ANN with
simulated data that enabled modeling the complex nonlinear behavior
of the forming process and springback effect, including the validation of
results obtained to predict springback effects in Press brake air bending
process.

Lei et al. (2021) proposed a forecast method based on support
vector machines (SVM) to accurately predict the maximum thinning
ratio of the sheet forming process of zirconium alloys, to avoid the
occurrence of cracks. Chen et al. (2022) explored a method based on
hyper-parameters search in the field of defect depth classification, using
k-nearest neighbors (KNN) algorithm, random forest and SVM to also
overcome the lack of crack detection in steel. Romero et al. (2021)
also used SVM algorithm, however his goal is to allow the prediction
of the geometrical accuracy of molds manufactured via single point
incremental forming using aluminized steel sheets.

Dib et al. (2019a) experimented springback prediction in U-channel
and square cup forming processes using different ML methods, but the
ANN method seems to be preferred and has been proven to be a great
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Fig. 1. Standard digital envelope approach.

ool for solving defect prediction in manufacturing because of its ability
o approximate non-linear functions in the absence of closed form
olutions by providing a way to solve complex, non-linear, polytropic
nd complex springback problems (Han et al., 2013).

The common approach of the mentioned works is the usage of the
entralized learning method, that requires large amount of data for
raining and validation and where all the data must be aggregated in a
ingle node and then used in the ML training, not preserving the privacy
f the data.

.2. Federated learning

The term federated learning was first introduced by McMahan et al.
2016) and the idea is to provide a central node, or central server, to
rchestrate the communication among all the clients’ nodes, that would
e part in the ML training. The orchestrator creates the first version of
he Stochastic Gradient Descent-Based (SGD) ML model and make it
vailable for all clients, that train their own version of the model with
heir own private data. The choice for the SGD model can be explained
y the fact that it can be parallelized and executed asynchronously and
pdated in the mentioned central server, as described by Shokri and
hmatikov (2015). The FL method also uses the SGD approach, and
nce the local models are trained inside each client, in parallel, only
he models’ parameters, or weights, are sent back to the central server,
here the weights will be aggregated by the named federated averaging
lgorithm.

This approach preserves the privacy of the data once it is never
xposed to external audience, remaining inside the clients’ nodes. The
L proposal is intended to allow the collaboration of different groups
ith similar problem to solve, regarding data usage, and provide a
owerful solution that would be, otherwise, very difficult to achieve.
lthough the FL method was not initially created focusing on manu-

acturing, Dib et al. (2021b) adapted it to predict springback defects
n U-channel forming process achieving satisfactory results, but the
emaining issues of cyber-attacks were not explored. Several privacy
ptimized FL frameworks were proposed. Hao et al. (2020), Phong et al.
2018), Zhang et al. (2017) and Bonawitz et al. (2017) focused on
nhancing privacy by protecting only the models’ parameters, where
he data was still exposed inside the clients’ nodes.

.3. Digital envelopes

Digital Envelope is a data container used to its content over un-
rusted network based on asymmetric cryptography and consists in
he usage two layers of encryption to secure a message (Karankar
t al., 2014). First, a random generated key, called secret key or
ymmetric, is created and used by the sender to encrypt the message,
amely symmetric encryption. Then, the symmetric key is encrypted
y the receiver’s public key. Finally, the encrypted document and the
ncrypted symmetric key are packaged together in a called DE and
ent to the receiver, and only the owner of the corresponding receiver’s
3

rivate key has access to the content of the DE, represented in Fig. 1.
Fig. 2. Digital envelope combined with digital signature.

A caveat regarding DE usage is the fact that while this approach
can provide data privacy, it does not assure data integrity, authenticity,
nonrepudiation and undeniability (Guo et al., 2010; Karankar et al.,
2014).

2.4. Digital signatures

DE can be combined with a mathematical scheme, called Digital
Signature (DS), to fix its flaws. The sender makes the message digest
from the data using the hash algorithm, which is a one-way algorithm
that reads a message of any length and produces a unique output
message of a fixed length and generate the DS with its private key. The
receiver retrieves the message digest from the DE also using a hash
algorithm and uses the sender’s public key to verify if both digests are
equal, represented in Fig. 2.

The combination of DS and DE, namely signed DE, provides the
missing data authenticity, non-repudiation, undeniability and, while
it still cannot guarantee data integrity, it is possible to verify if the
original data was not modified.

2.5. Data poisoning

Data poisoning represents external attacks aiming in maliciously
manipulate the datasets in order to disturb the ML training and can
occur in two ways: causative attacks, where the attacker alters the train-
ing process through influence over the training data; and exploratory
attacks, where the attacker does not alter the training process, but can
use of misclassifications to compromise the model’s performance (Sun
et al., 2020), such as the change of correctly labeled output with
incorrect labels to disrupt performance and preventing the achievement
of the desired objective.

Data poisoning attacks has been proved a big threat to ML models
and become a topic of interest in the field of adversarial ML (Sun
et al., 2020). Yerlikaya and Bahtiyar (2022) analyzed empirically the
robustness and performances of several ML algorithms against data
poisoning attacks by using four different datasets and three metrics. The
final observation is that different types of ML models have different per-
formance results, but all of them sustained decreases for all evaluation
metrics.

Sun et al. (2020) provides the most relevant work to our in the
context data poisoning and FL, where they effectively launched data
poisoning attacks on federated machine learning, by exploiting the
existing FL communication protocol.

3. Machine learning algorithms

The main ML algorithms used in this study are presented in the

sub-sections below.
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Fig. 3. Scheme of ANNs; Fig. 3(a) base ANN equation; Fig. 3(b) example of a more complex ANN structure that is based on the ANN used in this work.
3.1. Artificial Neural Network

Artificial Neural Network (ANN) is a network containing layers
nodes, often called neurons, that connect with the neurons of the next
layer from the beginning to end, where the neurons of the same layers
cannot be interconnected. The network architecture includes one input
layer, an arbitrary number of hidden layers, that are determined by the
size and complexity of the relationships being modeled, and one output
layer. The main goal of an ANN is to adapt the nodes values to obtain a
minimal difference between the network output and the desired output.
This is achieved by using three components: the weighted sum of the
inputs’ values, an activation function 𝜃 and a bias 𝑏. Eq. (1) shows the
base ANN equation, where 𝑦 is the output of the correspondent node,
while the graphic representation of the equation is shown in Fig. 3(a).

𝑦 = 𝜃

( 𝑙
∑

𝑗=1
𝑤𝑗𝑥𝑗 + 𝑏

)

(1)

The input values 𝑥𝑗 in each node from previous connected nodes
are multiplied with a weight 𝑤𝑗 , and then summed. The result is then
added by a bias 𝑏, that is an additional parameter in the neural network
that works like the intercept added in a linear equation, which is used
to adjust the output along with the weighted sum of the inputs to the
neuron. The last step is to pass the final value of a node though an
activation function, that has the objective to define the output of the
given node based on the type of activation, such as ReLU, sigmoid,
softmax or Tanh. In this work we focused on ReLU for the hidden
layers and sigmoid for the output layer. As shown in Eq. (2), ReLU
returns an output equal to the input for all positive input values, while
returning zero for all other input values with the advantage of being
4

faster than other activation functions and has no vanishing gradient
problem (Dubey et al., 2021).

𝑅𝑒𝐿𝑈 (𝑥) =

{

𝑥 if 𝑥 ≥ 0
0 otherwise

(2)

The choice for sigmoid function in the output layer is due to the
classification nature of the defect prediction problem and the expected
output exists only between 0 and 1 (Dubey et al., 2021). The sigmoid
output produce a vector where each element is a probability. In other
words, both probabilities of the input to be defective of non-defective,
as shown in Eq. (3).

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

(3)

Due to the complexity of the problems an ANN is designed to solve,
a deeper network architecture is needed to achieve the desired results,
which means the more input features and/or output features, the more
hidden layers will be necessary, that can be optimized through testing.
Fig. 3(b) shows an example of the defined ANN architecture for this
work.

3.2. Federated Averaging Algorithm (FAA)

The FL algorithm is based on SGD because it allows an adaptation
of the loss function to be more amenable to optimization by simple
gradient-based methods. In other words, SGD can be applied naively
to the federated optimization problem where a single batch gradient
calculation is done per round of communication, meaning one for each
client, and it is proved to be computationally efficient (McMahan et al.,
2016).
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Fig. 4. Digital envelope combined with digital signature.
The loss function can be understood as the function to validate
the best set of weights of a model to solve a given problem, meaning
the calculated error of the predictions made using a given set of
weights. The SGD based algorithm then changes the weights so that the
next evaluation reduces the error, meaning the optimization algorithm
is navigating down the gradient of error (Goodfellow et al., 2017).
In this work, the expected output of the ML model is binary, for
defective and non-defective samples, consequently the loss function
used is the log loss (LG) or logarithmic loss, described in Eq. (4)
(Ho & Wookey, 2020).

𝐿𝐺 = − 1
𝑀

𝑀
∑

𝑚=1

[

𝑍𝑚 log(𝑃𝑍𝑚
)

+ (1 −𝑍𝑚) log(1 − 𝑃𝑍𝑚
)
]

(4)

Where 𝑀 is the number of training samples, 𝑍𝑚 is the true label for
raining sample 𝑚, 𝑃𝑍𝑚

is the probability of output 1 or defective and
− 𝑃𝑍𝑚

is the probability of output 0 or non-defective.
To optimize the model’s weights, the FL method occurs in two

tages, where the decentralized training is first one and happens inside
he clients’ nodes, and the second step is to perform the Federated
veraging Algorithm (FAA) to consolidate the results into one single
nd powerful model capable of performing predictions at a high level,
s shown in Fig. 4.

During the training stage, initially the central server creates the
odel structure and the first set of random weights (𝑤0) and make them

available for all participant clients. For each communication round 𝑇 ,
a subset (𝐾) of clients (𝑘) belonging to client pool (𝐶) is selected to
perform the ML training with their own batched datasets (𝐵) and the
defined number of epochs (𝐸). Both 𝐵 and 𝐸 can control the amount of
computation power required to run the training by regulating their size,
where 𝐵 is the number of training samples utilized in single ML model’s
training iteration and 𝐸 is the number of times that the model will work
through the entire training dataset. The selected clients then, for each
epoch 𝐸 and each subset of batch 𝐵, compute the average gradient on
its local data at the current model 𝑤𝑘 with a fixed learning rate 𝑛, as
described in Eq. (5) (McMahan et al., 2016).

𝑘 𝑘 ( 𝑘 )
5

𝑤𝑡 = 𝑤𝑡−1 − 𝑛∇𝑙 𝑤𝑡−1; 𝑏 (5)
After each client locally takes one step of gradient descent on the
current model using its local data, their weights 𝑤𝑡 are transferred back
to server, the server then apply the FAA, showed in the Eq. (6) (McMa-
han et al., 2016), to retrieve average weights of the resulting models.

𝑤𝑡 =
𝐾
∑

𝑘=1

𝑛𝑘
𝑛
𝑤𝑘

𝑡 (6)

4. Proposed approach

The framework proposed in this work, as shown in Fig. 5, consists
in a secure environment capable to provide privacy and protection not
only for the data used in distributed ML training, but also to the models’
weights. The objective of the mentioned framework is not to prevent
cyber-attacks to occur or to identify the type of the cyber-attack, which
would be very complex and expensive, but rather to identify when or
if an attack happened, the clients and artifact affected and to take the
correct actions to halt possible negative effects this activity may cause
to the FL process.

To achieve that objective, the combination of the FL method with
signed DE that requires one central server and unlimited number
of clients. The central server holds its own private key and all the
clients’ public keys, while the clients hold their own private key, the
central server’s public key and generate the symmetric key. Each client
encrypts its own dataset with the symmetric key, then encrypts the
symmetric key with the server’s public key, and, combining DE and
DS, the clients create the hash of the encrypted document, adding a
new layer of protection comparing with the standard DE.

The server first creates the central model with random weights and
then sends it to all the participant clients and, before the local training
starts, the server verifies for trust issues in the datasets. If negative, the
client is excluded from the training, and if positive, the DE is opened,
and the standard FL approach continues. Also, to allow the server to
have a test dataset available for evaluating the models, a piece of each
of the clients’ dataset is transferred to the server, as DE, and only
aggregated in memory run time, preserving the privacy of its content.
The central model is updated with the new weights and the procedure
continues until the last defined communication round.
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Fig. 5. Proposed SecFL framework with the combination of the standard FL approach and signed DE.
Fig. 6. Example of poisoning attack on model’s weights.
5. Experimental settings

In this section, the SecFL framework is applied to permit the collab-
oration in terms of data of multiple parties with similar problem, while
keeping the data private and the whole process safe from malicious
disruption. This case study exemplifies the utilization of SecFL in a
real-world scenario.

5.1. Problem statement

When parties are using FL, connections between them and an exter-
nal orchestrator must be established to allow the exchange of necessary
packages for a proper model training and model updates.

These connections are susceptible to suffer from a wide variety of
cyber-attacks from stealing of confidential information to disruption of
the ML training process that could prevent the achievement of good
results or lead to wrong assumptions. The focus in this study is on the
later type of cyber-attack, namely data poisoning.

Two ways of poisoning the data were explored against the stan-
dard FL method: dataset poisoning and model’s parameters poisoning.
Experiments were carried in order to evaluate the negative impact of
both approaches to the model’s performance and compare with the
performance when the SecFL is used to detect secure issues.
6

5.2. Dataset

The data for this study was generated through numerical sim-
ulations using the Finite Element Method (FEM) with the in-house
finite element code DD3IMP (Oliveira et al., 2008). This application
was specifically developed and optimized for simulating sheet metal
forming processes assuming rigid forming tools with surfaces described
by Nagata patches (Neto et al., 2017) to solve contact problems be-
tween the tools and the deformable sheet metal. The blanks were
discretized with 8-node hexahedral solid elements using a selective
reduced integration technique.

The sheet metal was modeled as having elastic and plastic proper-
ties. For the plastic property, an anisotropic plastic behavior described
by the orthotropic Hill’48 yield criterion combined with Swift isotropic
hardening law was used. The Hill’48 yield criterion is described in
Eq. (7), where the Cauchy stress tensor of a material is defined by its
components, namely 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧 and 𝜏𝑥𝑧 and the anisotropy
parameters of the material are represented by 𝐹 , 𝐺, 𝐻 , 𝐿, 𝑀 and 𝑁
while 𝑌 representing the flow stress.

𝑌 2 =𝐹 (𝜎𝑦𝑦 − 𝜎𝑧𝑧)2 + 𝐺(𝜎𝑧𝑧 − 𝜎𝑥𝑥)2 +𝐻(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2

+ 2𝐿𝜏2𝑦𝑧 + 2𝑀𝜏2𝑥𝑧 + 2𝑁𝜏2𝑥𝑦
(7)

The value of 𝑌 is determined by the uniaxial tensile stress along the
direction of sheet rolling assuming that the summation of 𝐺 and 𝐻 is
equal to 1, 𝐿 and 𝑀 are taken as 1.5 and the anisotropy coefficients
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Table 2
Mean value and STD of the features under study. The two levels of blank holder force
are 0.28 kN/mm (SD = 0.014 kN/mm) and 1.12 kN/mm (SD = 0.056 kN/mm).

Features DC06 DP600 HSLA340

𝐶[MPa] Mean
STD

565.32
26.85

1093.0
52.46

673.0
32.30

𝑛
Mean
STD

0.259
0.018

0.187
0.02

0.131
0.011

𝑌0[MPa] Mean
STD

157.12
7.16

330.30
9.646

365.30
10.67

𝐸[GPa] Mean
STD

206
3.85

210
7.35

210
7.35

𝜈
Mean
STD

0.3
0.015

0.3
0.015

0.3
0.015

𝑟0
Mean
STD

1.790
0.051

1.010
0.04

0.820
0.033

𝑟45
Mean
STD

1.510
0.037

0.760
0.03

1.070
0.039

𝑟90
Mean
STD

2.270
0.121

0.980
0.06

1.040
0.061

𝑡0[mm] Mean
STD

0.780
0.013

0.780
0.01

0.780
0.005

𝜇
Mean
STD

0.144
0.029

0.144
0.029

0.144
0.029

are related by 𝐹 = 𝑟0
𝑟90(𝑟0+1)

, 𝐺 = 1
1(𝑟0+1)

, 𝐻 = 𝑟0
(𝑟0+1)

and 𝑁 = 0.5 ×
(𝑟0+𝑟90)(2𝑟45+1)

𝑟90(𝑟0+1)
. The Swift hardening law is expressed by Eq. (8), where 𝜀𝑝

is the equivalent plastic strain and 𝐶, 𝑌0 and 𝑛 are material parameters.

𝑌 = 𝐶
[

(𝑌0∕𝐶)1∕𝑛 + 𝜀𝑝
]𝑛

(8)

For the elastic property, an isotropic elastic behavior based on the
eneralized Hooke’s law was described, meaning that both properties
ombined allow the formed metal the possibility to be bent and then
eturn to its original shape to some extent.

The simulation considered three different types of steel sheets,
C06, DP600, and HSLA340 and modeled the U-Channel forming pro-
ess, which is a 2D bending process commonly used in manufacturing
ased on the benchmark (Makinouchi et al., 1993). The simulation
f a forming process involves three phases. The first phase consists
f compressing the sheet against the die using a blank holder. In the
econd phase, the punch is displaced by 30 mm while the blank holder
orce (BHF) is kept constant. The final phase involves removing the
orming tools, which results in springback.

The simulations were performed using a normal distribution to
escribe the variability of the parameters 𝐶, 𝑌0 and 𝑛 (Swift hard-
ning law), Young’s modulus 𝐸, Poisson coefficient 𝜈 (Hooke’s law)

and anisotropy coefficients 𝑟0, 𝑟45 and 𝑟90, with mean and standard
deviation values detailed in Table 2. The sheet metal was discretized
with one element in the width direction and 150 elements in the length
direction, due to the boundary conditions adopted guaranteeing a plane
strain state along the width direction. Only half of the U-channel was
simulated due to material and geometric symmetries. To complement
the dataset, three additional features were considered: initial sheet
thickness 𝑡0, friction coefficient 𝜇, and blank holder force 𝐵𝐻𝐹 , the
latter considering two levels that correspond to lower and upper levels
of the process window, described in Table 3.

Table 3 exhibits numerical simulation values that were used to
determine springback occurrence, when a given output is higher then
the presented reference values.

5.3. Data pre-processing and performance metrics

The data is divided into two sets: training (80%) and testing (20%).
All datasets undergo data scaling. Each material is subjected to a maxi-
mum of 2000 experiments, with 1000 experiments for each BHF level,
7

Table 3
Springback limit values for the non-defective components.

Material BHF level Limit value [mm]

DC06 0.28 kN/mm
1.12 kN/mm

5.67
2.62

DP600 0.28 kN/mm
1.12 kN/mm

11.19
8.55

HSLA340 0.28 kN/mm
1.12 kN/mm

8.75
5.11

resulting in a total of 6000 samples. Before starting each experiment,
the data is shuffled and the performance measurements were evaluated
using accuracy, precision, recall, and F1 score metrics.

The accuracy metrics evaluates the number of correct predictions
made by the model, taking into consideration positives and negatives
labels, as shown in Eq. (9).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(9)

Where 𝑇𝑃 are the true positive instances, 𝑇𝑁 are the true negative
nstances, 𝐹𝑃 are the false positive instances and 𝐹𝑁 are the false

negative instances.
The precision metrics computes the ratio the true positive predic-

tions that are correct positive labels as shown in Eq. (10).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(10)

Where 𝑇𝑃 are the true positive predictions and 𝐹𝑃 are the real
ositive instances.

Recall score represents the model’s ability to correctly predict the
ositives out of actual positives as shown in Eq. (11).

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(11)

Where 𝑇𝑃 are the true positive instances and 𝐹𝑁 are the false
negative instances.

Lastly, the F1 score can be understood as a function of precision and
recall score. F-score is a MLg model performance metric that gives equal
weight to both the Precision and Recall for measuring its performance
in terms of accuracy, making it an alternative to accuracy metrics. F1
score is computed as shown in Eq. (12).

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(12)

5.4. Weights poisoning

The attack on models’ weights is similar compared with dataset
poisoning, where original values are changed with fake ones, but the
procedure is different. The values on the trained weights’ matrix are
changed by a random value from a distribution described in Eq. (13).

𝑋 ∼  (𝜇, 𝜎2) (13)

Where 𝑋 is the random number from a distribution  , with 𝜇 = 0
and 𝜎 = 0.1. A random number is generated for each weight value of a
given ML model, then they are added to the original weight values, as
described in Fig. 6, and lastly, they are used during the average phase.
The reason for a low and random number to be added to the original
weights is to simulate a change pattern that would be difficult to be
noted and to be on par with the scale of the original weights.

5.5. Dataset poisoning

To simulate the attack on the datasets, one simple method was used
as can be seen in Fig. 7. The outputs of randomly selected datasets
were swapped, meaning that the labels which identified the samples
as non-defective, in this case the labels 1, are now tagged as 0 and

vice versa, and labels which identified the samples as defective are
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Fig. 7. Example of poisoning attack on data labels.

ow labeled as 0. The intent of this is to make the models that train
n this data to appear as normal as possible, while providing wrong
alue during the models’ weights aggregation, potentially decreasing
he overall performance of the central model.

.6. Models building approach

The proposed FL approach is based on horizontal FL and is il-
ustrated in Fig. 5. FL offers several advantages over standard ML
pproaches and one of them is that it enables the distribution of
odel training among multiple parties, reducing the hardware re-

uirements for this task. It also allows for the analysis of patterns in
istributed datasets while ensuring their privacy, which is not possible
ith standard ML approaches that require centralized training.

Algorithm 1 𝐾𝑒𝑦𝑃𝑎𝑖𝑟𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛. The central server 𝐶𝑉 and the 𝐾
clients generate their public and private key pair. The clients are
indexed by 𝑘; 𝐾𝐿 is a defined key length; 𝑒 is the public exponent;
𝑃𝑁 is a random prime number from 3 to 36655; 𝑝 and 𝑞 are two large
random prime numbers where their product, 𝑁 , cannot exceed 𝐾𝐿; 𝑑
is the private exponent; 𝐿 is a co-prime number.
function GenerateKeyPair()

𝐾𝐿 ← 2048
𝑒 ← 𝑃𝑁
while 𝑞 mod 𝑒 = 1 do

𝑞 ← 𝐾𝐿 − 𝐾𝐿
2

end while
while 𝑝 mod 𝑒 = 1 do

𝑝 ← 𝐾𝐿
2

end while
𝑁 ← 𝑝 × 𝑞
𝐿 ← (𝑝 − 1) × (𝑞 − 1)
𝑑 ← 𝑒−1 mod 𝐿
return (𝑁, 𝑑), (𝑁, 𝑒)

end function

Executed by the server:

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦𝐶𝑉 , 𝑃 𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝐶𝑉 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐾𝑒𝑦𝑃𝑎𝑖𝑟()

Executed by the clients:

for each client 𝑘 in 𝐾 client’s pool do
𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦𝑘, 𝑃 𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑘 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐾𝑒𝑦𝑃𝑎𝑖𝑟()

end for
In this study, 9 clients were considered and each one has its own

ataset, therefore, 9 datasets, containing different and exclusive sam-
les, were created. As required by a horizontal-based FL, the datasets
ave the same feature space, which creates a small intersection between
hem. The central server and all clients generate their pair of public and
rivate keys and distribute them accordingly.
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Algorithm 2 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑖𝑔𝑛𝑒𝑑𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒𝑠. The 𝑘 clients generate the
DEs for local datasets and the trained weights. 𝑆𝐾 is the generated
symmetric key; 𝑆𝐸𝐷 is the symmetric encrypted message, either a
ataset of trained weights; 𝐷𝐸 is the digital envelope
function GenerateSymmetricKey()

𝐾𝐿 ← 32 // Bits
𝑝𝑎𝑠𝑠𝑊 𝑜𝑟𝑑 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑦𝑡𝑒𝑠(𝐾𝐿)
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐾𝑒𝑦 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝐵𝑎𝑠𝑒64(𝑝𝑎𝑠𝑠𝑊 𝑜𝑟𝑑)
return 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐾𝑒𝑦

end function

function SymmetricEncrypt(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑘, 𝑆𝐾𝑘)
𝑚 ← 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑘
𝑟𝑜𝑢𝑛𝑑𝑠 ← 14 // 256 Bits
// Divide the plaintext into 4x4 matrix
𝑚𝑎𝑡𝑟𝑖𝑥 ← 𝑑𝑖𝑣𝑖𝑑𝑒𝐼𝑛𝑡𝑜𝐵𝑀𝑎𝑡𝑟𝑖𝑥(𝑚)
// List with round key from the main symmetric key
𝑟𝑜𝑢𝑛𝑑𝐾 ← 𝑔𝑒𝑡𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑆𝐾)
for each 𝑟 in range(𝑟𝑜𝑢𝑛𝑑𝑠) do

for each 𝑚 in 𝑚𝑎𝑡𝑟𝑖𝑥 do
if 𝑟 = 1 then

𝑎𝑡𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝐾𝑒𝑦(𝑅𝑜𝑢𝑛𝑑𝐾𝑟−1, 𝑚)
else if 𝑟 = 1 then

𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑦𝑡𝑒𝑠(𝑚)
𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑤𝑠(𝑚)
𝑎𝑡𝑡𝐵𝑙𝑜𝑐𝑘𝐾𝑒𝑦(𝑅𝑜𝑢𝑛𝑑𝐾𝑟−1, 𝑚)

else
𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑦𝑡𝑒𝑠(𝑚)
𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑤𝑠(𝑚)
𝑐ℎ𝑎𝑛𝑔𝑒𝐶𝑜𝑙𝑢𝑚𝑛𝑠(𝑚)
𝑎𝑡𝑡𝐵𝑙𝑜𝑐𝑘𝐾𝑒𝑦(𝑅𝑜𝑢𝑛𝑑𝐾𝑟−1, 𝑚)

end if
end for

end for
𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ← 𝑟𝑒𝑎𝑠𝑒𝑚𝑏𝑙𝑒(𝑚𝑎𝑡𝑟𝑖𝑥)
return 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎𝑠𝑒𝑡

end function

function CreateSignedDE(𝑆𝐾𝑘, 𝑆𝐸𝐷𝑘, 𝑃 𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑐𝑣)
𝑒,𝑁 ← 𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑐𝑣
𝑠𝑘𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 ← 𝑆𝐾𝑒

𝑘 mod 𝑁
𝑠𝑒𝑑𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 ← 𝑆𝐷𝐸𝑒

𝑘 mod 𝑁
𝐷𝐸 ← 𝑝𝑎𝑐𝑘(𝑠𝑘𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑠𝑒𝑑𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑)
// Make the DS available to the Server
𝐷𝑆 ←

(

𝐻
(

𝐷𝐸
))𝑑𝑘

return 𝐷𝐸
end function

Executed by the clients:

for each 𝑟 in range(𝑟𝑜𝑢𝑛𝑑𝑠) do
𝑆𝐾𝑘 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐾𝑒𝑦()
𝑆𝐸𝐷𝑘 ← 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑘, 𝑆𝐾𝑘)
𝐷𝐸𝑘 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑖𝑔𝑛𝑒𝑑𝐷𝐸(𝑆𝐾𝑘, 𝑆𝐸𝐷𝑘, 𝑃 𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑐𝑣, )
delete 𝑆𝐾𝑘

end for

All clients reserve 10% of its own data for test the model in the
central server and generate the symmetric key, that will be used to
encrypt and decrypt the datasets and trained weights and is included
in the DE. The symmetric key is created from a length of 32 bits and
then encoded with base 64.

The symmetric encryption, in this work, consists in divide the
message in fixed matrices, change the bytes of the message piece of the
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Algorithm 3 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑊 𝑒𝑖𝑔ℎ𝑡𝑠. Clients are indexed by 𝑘; Com-
unication rounds are indexed by 𝑡; 𝐸 is epoch; 𝑏 is batch size; 𝑛 is

earning rate; 𝑇 is the total of communication rounds; 𝑤 is ML weight;
is the ML model; 𝑣 and 𝑣′ are the integers computation of the message

nd the signature respectively.
function ClientTraining(𝑚,𝑤, 𝑒, 𝑏, 𝑛)

𝐵 ← (𝑆𝑝𝑙𝑖𝑡𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑘𝑖𝑛𝑡𝑜𝑏𝑎𝑡𝑐ℎ𝑒𝑠𝑜𝑓𝑠𝑖𝑧𝑒𝑏)
for each epoch 𝑒 from 1 to 𝐸 do

for each batch 𝐵 do
𝑤 ← 𝑤 − 𝑛∇𝑙(𝑤; 𝑏)

end for
end for
𝑊𝐷𝐸𝑘 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝐸(𝑆𝐾𝑘, 𝑤, 𝑃 𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑐𝑣)

end function

function VerifyDE(𝐷𝐸𝑘, 𝑁𝑘, 𝑒𝑘)
𝑣 ← 𝑆𝑒 mod 𝑁
𝑣′ ← 𝐻(𝐷𝐸𝑘)
if 𝑣 = 𝑣′ then

return True
else

return False
end if

end function

Executed by the server:

initialize 𝑚0
initialize 𝑤0
𝐸 ← 50
𝑏 ← 10
𝑛 ← 0.01
𝑇 ← 30
for each round 𝑇 do

𝐾 ← (Random set of clients from 𝐶) // 3 out of 9
for each client 𝑘 in 𝐾 do

// Run inside each client
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑣𝑒𝑟𝑖𝑓𝑦𝐷𝐸(𝐷𝐷𝐸𝑘, 𝑁𝑘, 𝑒𝑘)
if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑟𝑢𝑒 then

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑘 ← 𝑜𝑝𝑒𝑛𝐷𝐸(𝐷𝐸𝑘)
else

Exclude client 𝑘 from training phase
end if
𝑊𝐷𝐸𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑘(𝑚𝑡−1, 𝑤𝑡−1, 𝑒, 𝑏, 𝑛)

end for
for each client 𝑘 in 𝐾 do

// Run inside server
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑣𝑒𝑟𝑖𝑓𝑦𝐷𝐸(𝑊𝐷𝐸𝑘, 𝑁𝑘, 𝑒𝑘)
if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑇 𝑟𝑢𝑒 then

𝑤𝑘
𝑡 ← 𝑜𝑝𝑒𝑛𝐷𝐸(𝑊𝐷𝐸𝑘)

else
Exclude weights 𝑘 from training phase

end if
end for
𝑤𝑡 ←

∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑤𝑘

𝑡
end for

matrices, shift the position of the bytes and lastly shift the columns of
the matrices. This is done though several rounds, in this case 14, and for
each round one attributed key, from the client’s private key, is generate
and used. The symmetric key and the symmetric encrypted message are
encrypted again with CV public key and then packed together in the DE.
The DE is then digitally signed, to ensure ownership of the message, and
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Table 4
Distribution of material samples
over the clients.

Clients Material

1–3 DC06
4–6 DP600
7–9 HSLA340

mage available for the central server with its DS, as described in more
details in algorithms 1 and 2

Algorithm 3 describes training phase procedure. For each commu-
nication round (𝑇 ) from 1 to 30, 3 clients are selected from the total
clients (𝐶) to take part in the ML training using their own local datasets.
or optimization purposes, the datasets are further divided into batches
𝐵) that are used to update the ML model weights (𝑤) in each of the

defined epochs (𝑒). However, before the training occurs, the server first
verifies the authenticity of the dataset’s DEs. Since the private key and
public key are the inverse, it is possible to compute the inverse message
digest integer and compare with the original DS. They must match for
the DEs to be accepted. If false in any case, the datasets are excluded
from the training phase, or the weights are excluded from the averaging
phase.

6. Results and analysis

The experiments were conducted on a Windows station with an
Intel(R) Core(TM) i7-10875H CPU 2.30 GHz and 32 GB of RAM. The
cryptographic scheme of SecFL utilizes Python library Pycryptodome
and the FL is simulated by TensorFlow, using Python as well.

6.1. Framework prediction performance

In this work a feed-forward ANN based model was used to build the
SecFL framework and the framework itself was implemented in Python.
The trained model was used to predict samples with and without
springback and each client had samples from a specific material type,
as shown in Table 4.

It was observed in McMahan et al. (2016) work that using 10% of
the total number of clients in each communication round would be
a good tradeoff between good results, computational power required
to execute the ML trainings and model convergence rate. Since in
this work there is a small number of clients, the defined number of
participants per communications round is 30%. The hyperparameters
values were defined based on Dib et al. (2021b) where several hyperpa-
rameter were experimented and their performance were measured and
compared. The values used in this work are 50 for epochs (E), 10 for
batch size (b), 0.01 for learning rate (n) and 30 communication rounds,
with a model containing 558 parameters. To measure the experiment
performance with different combinations of datasets and weights, in
terms of poisoning level, the same experiment were executed 30 times,
meaning that for each experiment, a ML model was trained in 30
communication rounds. The performance metrics were averaged, and
the standard deviation was calculated.

Table 5 and Fig. 8(a) show that the higher is the number of clients
with poisoned datasets, the worse is the model’s performance for all
the metrics, taking accuracy as an example, the performance dropped
from 0.916 to 0.894 and then to 0.777 and finally to 0.704, when one,
two and three clients with poisoned datasets participated in the train-
ing, respectively. Surprisingly, when only one dataset is poisoned, the
standard FL algorithm was able to overcome that, and its performance
was very close compared with the baseline value.

The experiment also shows that when the SecFL is activated, the
problematic datasets are identified and correctly removed from the

training phase. Even with less data available to be used for the ML
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Table 5
Experimental results obtained by training the models with corrupted datasets and SecFL activated.

Model Acc. Acc.
(STD)

Precision Precision
(STD)

Recall Recall
(STD)

F1-Score F1-Score
(STD)

Standard FL Algorithm (Baseline) 0.916 0.009 0.919 0.011 0.913 0.011 0.916 0.010
1 Client with Corrupted Dataset 0.894 0.031 0.879 0.037 0.907 0.037 0.891 0.0344
2 Clients with Corrupted Dataset 0.777 0.169 0.859 0.159 0.750 0.159 0.797 0.149
3 Clients with Corrupted Dataset 0.704 0.282 0.635 0.321 0.747 0.321 0.680 0.295
3 Clients with Corrupted Dataset
(SecFL Activated)

0.915 0.007 0.920 0.011 0.911 0.011 0.915 0.007
Table 6
Experimental results obtained by training the models with corrupted weights and SecFL activated.

Model Acc. Acc.
(STD)

Precision Precision
(STD)

Recall Recall
(STD)

F1-Score F1-Score
(STD)

Standard FL Algorithm (Baseline) 0.916 0.009 0.919 0.011 0.913 0.011 0.916 0.010
1 Client with Corrupted Weights 0.525 0.101 0.960 0.138 0.509 0.138 0.659 0.136
2 Clients with Corrupted Weights 0.498 0 1 ≈ 0 0.498 ≈ 0 0.665 ≈ 0
3 Clients with Corrupted Weights 0.498 0 1 ≈ 0 0.498 ≈ 0 0.665 ≈ 0
3 Clients with Corrupted Weights
(SecFL Activated)

0.920 0.008 0.920 0.011 0.919 0.011 0.920 0.009
Fig. 8. Performance of ML models on (a) poisoned weights and (b) poisoned weights.
trainings, the performance was virtually the same as the baseline value
with 0.915 accuracy.

Differently from the poisoned datasets, it requires only one poisoned
set of trained weights to completely disrupt the weight averaging
algorithm. Table 6 and Fig. 8(b) show that the models did not converge
at all, but one interesting fact is that the precision is very high, varying
from 0.960 to a perfect score of 1. This can be explained as the model
is assuming all outputs as true or 1 due to the misdirection caused by
the poisoned weights. When the SecFL was activated, it also performed
achieving 0.920 of accuracy, which is on par with the baseline value.

In all scenarios the SecFL was able to provide a secure layer to the
standard FL method, which detects when an external attack occurred
and prevent the usage of malicious data during the model building.

6.2. Framework functionality

Table 7 presents the functional comparison between SecFl and some
state-of-the-art privacy-preserving FL schemes, including PEFL (Hao
et al., 2020), PPDL-AHE (Phong et al., 2018), PP-MDL (Zhang et al.,
2017) and PSA (Bonawitz et al., 2017). Although all the analyzed
privacy-preserving approaches provide a reliable parameter protection,
in terms of keep it private, and parameter non-repudiation, which
can be understood as the assurance of the integrity and origin of the
parameters, the SecFL differs by also provide dataset protection and
10
Table 7
Functional comparison between SecFL and state-of-the-art approaches.

SecFL PEFL PPDL-AHE PP-MDL PSA

Parameter Protection " " " " "

Dataset Protection " X X X X
Intact Prediction Performance " X " " –
Resilient to Attacks " " " " "

Dataset Non-Repudiation " X X X X
Parameter Non-Repudiation " " " " "

Multiple Protection " X X X X

dataset non-repudiation. This functionality is essential to prevent the
ML models from training on corrupt data that would disrupt their
performance, considering a realistic threat where the adversary may
compromise honest parties and attack their data before the training
starts and/or in between the communication rounds. Also, similar to
PPDL-AHE and PP-MDL, the performance prediction of SecFL doesn’t
decrease when compared to the baseline standalone FL prediction.
Another main contribution of SecFl is the fact that it provides a general
solution to deal with cyber-attacks, providing privacy and protection
to both the parameters and datasets against multiple threats, while the
others on specific solutions.
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Fig. 9. Computational cost for each client: (a) computational cost for DE creation with different dataset sizes; (b) computational cost for DE extraction with different dataset sizes;
c) computational cost for DE creation with different model’s parameter numbers; (d) computational cost for DE extraction with different model’s parameter numbers.
Table 8
Framework efficiency results in details for wall-clock runtime and consumed memory, encompassing dataset and weight protection.

Dataset size Datasets – encryption Datasets – decryption

Runtime (MS) Memory usage (MB) Runtime (MS) Memory usage (MB)

0.61 131 5.48 88 3.19
3.04 144 11.24 99 4.78
6.09 157 16.91 110 6.39
9.13 170 22.94 124 8.19
12.18 186 28.85 136 9.87
15.22 202 34.77 149 11.5
18.26 218 40.7 163 13.11
21.31 235 46.75 177 14.7
24.35 251 52.79 191 16.27

Model params Weights – encryption Weights – decryption

Runtime (MS) Memory usage (MB) Runtime (MS) Memory usage (MB)

81 137 0.01 87 0.37
558 539 0.01 344 0.75
6740 1125 0.01 780 3.87
13704 1872 0.01 1412 7.84
20734 2317 0.01 1655 10.85
33819 2766 0.01 1990 17.07
6.3. Framework efficiency

To assess the framework efficiency, we focused specifically on the
creation and extraction of Data Encryptions (DEs) for both datasets
and the protection of models’ weights. This aspect represents the main
contribution of our work, while the models’ training, including the
weights average, is not performed on encrypted data. For each selected
part, we conducted measurements of the framework efficiency over
30 iterations, ensuring a robust evaluation. The results obtained from
these measurements were then averaged to provide a comprehensive
assessment of the framework’s efficiency.

In the SecFL framework, the creation of Data Encryptions (DEs)
follows a general rule that can be divided into four parts for each user.
Firstly, there is the creation of the symmetric key. Secondly, the dataset
is encrypted using the symmetric key. Thirdly, the symmetric key itself
is encrypted. Lastly, a hash signature of the created package is gener-
ated. Similarly, during the decryption process, three steps are involved.
Firstly, the hash signature is verified. Secondly, the symmetric key is
decrypted. Finally, the datasets are decrypted. Both the encryption and
decryption operations are sequential and can be impacted by the size
of the inputs. Consequently, a linear complexity is expected due to the
nature of these sequential operations and their dependence on input
size.

Fig. 9(a) shows, indeed, that the wall-clock runtime increases lin-
early 𝑂(𝑛) with the size of the datasets, for either the encryption
creation) and decryption (extraction) of the Digital Envelopes. In terms
f memory usage, Fig. 9(b) shows a linear increase, but the impact of
ataset size in encryption is much higher than in decryption, where the
actors of increase are 6% and 2% respectively.

Figs. 9(c) and 9(d) show the framework efficiency regarding the
eights’ protection. Differently from the datasets’ protection, there is
n additional computation because the weights’ protection is added
o each layer of the model, which has complexity 𝑂(𝑚), finalizing
11
the overall computational power for weight protection as 𝑂(𝑛 + 𝑚).
The wall-clock runtime is more sensitive to the increase of model’s
parameters and procedure takes longer time to finish than compared
with dataset protection. A similar behavior is observed in memory
usage, but the number of parameters did not affect the encryption,
where the computational complexity is a constant 𝑂(1).

All the results presented in this study were calculated based on the
involvement of a single client. It is important to note that the number of
clients participating in the communication rounds can have an impact
on the runtime of the weights’ decryption process. Since the decryption
process is performed sequentially by the server, the expected runtime
would be multiplied by the number of clients involved.

However, it is worth mentioning that Table 8 provides a more
detailed analysis of the results. Despite the potential impact of multiple
clients on decryption runtime, SecFL has achieved reasonable results,
particularly considering the data size and computational power typi-
cally found in small and medium-sized companies. This indicates that
SecFL is suitable for scenarios with medium to large-scale operations
within these organizational contexts.

7. Conclusions and future works

In this paper a new FL framework is proposed to provide an alterna-
tive and secure way to exchange confidential information through the
communication protocols making it possible to provide protection and
privacy not only to the model’s weights, but also to the datasets used
during the training.

Based on the experimental results, it was demonstrated that the
standard FL method suffered progressively losses in performance the
more corrupted data was using and the SecFL was able to overcome
such disruption and achieved the desired results, even when a simple
mitigation solution was implemented.
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The SecFL framework was designed to be computationally efficient,
cheap, easy to implement and to be a general protection against the
various cyber-attacks, providing mechanisms to identify corrupted data
and to take mitigation actions to prevent its negative effects on the
ML models by assuring data integrity, confidentiality, non-repudiation,
and authenticity of the data, while not preventing an external attack
to occur; however, only data poisoning protection was investigated in
this study. Thus, more investigation is needed to better understand the
impact and effectiveness of the current framework against different
threats. Given that the SecFL is designed to be a general solution,
a wide range of scenarios can be considered, which may include
the consideration of different cybernetic threats usage. Also, a more
sophisticated action point to deal with clients with corrupted data
and an optimization of the model structure is a challenge that can be
addressed.
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