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ABSTRACT 
 
Age at death estimation in adult skeletons is hampered, among others, by the unremarkable 

correlation of bone estimators with chronological age, implementation of inappropriate statistical 

techniques, observer error and skeletal incompleteness or destruction. Therefore, it is beneficial 

to consider alternative methods to assess age at death in adult skeletons. The decrease of bone 

mineral density with age was explored to generate a method to assess age at death in human 

remains. A connectionist computational approach, artificial neural networks, was employed to 

model femur densitometry data gathered in 100 female individuals from the Coimbra Identified 

Skeletal Collection. Bone mineral density declines consistently with age and the method performs 

appropriately, with mean absolute differences between known and predicted age ranging from 

9.19 to 13.49 years. The proposed method – DXAGE – was implemented online to streamline 

age estimation. This preliminary study highlights the value of densitometry to assess age at death 

in human remains. 
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Introduction 

 

 The accurate estimation of age at death in human skeletal remains is a major requirement 

for establishing a biological profile and for individual identification and endures as a major 

challenge in forensic anthropology (1–3). There are several methods available based on 

macroscopic observation of degenerative skeletal features (4–12). However, these tend to have 

lower reproducibility because of the subjective nature of user-observation (2,11,13–17). The 

effectiveness of these methods is thus deeply influenced by observer experience and the 

archetypal nature of the observed features in comparison to the published standards and 

guidelines. Institutions and researchers have been recommending more stringent, objective and 

quantitative procedures for age at death analyses (18). As such, methods that are dependent on 

features extracted without observer intervention should be developed and established in the 

forensic anthropology toolkit. 

The decline of bone mass with increasing age has been established for a long time (19–

21). Age influences bone health with direct and indirect effects on bone mass, and mechanisms 

of age-related bone loss include remodelling imbalances, the decrease in the intestinal production 

of 1,25-(OH)2D3, secondary hyperparathyroidism, and the accumulation of damage in osseous 

tissue and reduction of viable osteocytes (22–24). Although there are regional, ethnic and 

individual (e.g., body mass) variations, the reduction of bone mineral density (BMD) – as 

measured through bone densitometry of the femur – with age is a universal phenomenon, most 

notably in women (e.g. 25–36). Therefore, it can be considered as a relevant biological indicator 

for age at death estimation (37). In accordance to this hypothesis, Fernández Castillo and López 

Ruiz (38) created an aging technique supported by densitometric measurements and 

conventional least squares regression. BMD is instrumentally determined and obtained through 

bone densitometry (DXA), thus reducing observer bias in data acquisition.  

Artificial neural networks (ANN) were used to model data obtained from DXA to estimate 
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age at death in adult skeletal individuals. ANN are a biological inspired computational technique 

for unsupervised and supervised learning, that attempt to mimic the interconnected structure of 

the human brain (39). Our specific objectives were to explore the association of BMD decline with 

age and to create an accurate method to estimate age at death in human remains based on BMD 

features. The development of an online application in order to facilitate age at death estimation 

constituted a subsidiary goal. 

 

Materials and Methods 

 

 The training sample consisted of 100 femora of female individuals with ages at death 

ranging from 21 to 95 years, belonging to the ‘‘Coimbra Identified Skeletal Collection’’ (CISC). 

These individuals were buried in shallow graves of the Cemitério da Conchada (Coimbra) for at 

least five years – after that the bodies were commonly exhumed (40). Only femora devoid of gross 

diagenetic alterations and significant pathological conditions (e.g., hip fracture) were included in 

the sample. A sizeable number of femora (N=48) were radiographed (exposure time of mAseg 

80-50, exposure of Kv 30-35 and focal distance of 1.0 m) to assess soil erosion – results showed 

that soil erosion (macroscopical destruction of trabecular or endocortical bone caused by soil) 

was insignificant or null. Bone densitometry evaluation was performed with a Hologic QDR 4500C 

Elite densitometer (published formulae should be used to convert the BMD measured on any 

other model for a given manufacturer, e.g., Lunar or Nordland (41)) by a medical imaging 

technologist. Femora were placed on low-density cardboard recipients, on top of 10 cm of rice, in 

anteroposterior position and with the diaphysis parallel to the scanner’s central axis (42). In order 

to increase reproducibility, the femora were internally rotated ~35º (43). For the purposes of bone 

densitometry, the proximal femur is divided in different regions of interest (ROI): femoral neck, 

trochanter, intertrochanteric region, Ward’s area and total hip (Figure 1). Bone area (cm2), bone 

mineral content (BMC, g) and bone mineral density (BMD, g/cm2) were semi-automatically 
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identified in the ROI of the proximal femur (if necessary the technologist delivers 

minoradjustments) and then were automatically extracted by the densitometer software. For this 

study only three variables that represent BMD were selected: BMD Total, BMD Ward and BMD 

Neck. Thirty femora were scanned twofold to establish the repeatability of the DXA scans and 

intraobserver error was evaluated with the relative technical error of measurement (rTEM) (44). 

rTEM was 0.86%, a very low value, indicating a precise placing of the femur in the densitometer. 

To model the BMD variables into predictors of age at death, we used a modified General 

Regression Neural Network (45,46). It is an ANN that attempts to mimic the associative memory 

and encompasses four different layers: input, pattern, summation, and output (Figure 2). The 

input layer matches the BMD vector to estimate age. In the pattern layer, the input is compared 

to other examples kept on the network’s memory. Each example (pattern) in the network is used 

as an artificial neuron, whose activation relies upon a radial basis function. The summation and 

output layers allow the attainment of a regression surface and an estimate of the variable to 

predict – age – through a weighted arithmetic mean of the examples previously stored in memory. 

Weights or ponderation factors are given by the activation values of the radial basis 

function associated with each artificial neuron. Given a matrix or vector of predictors X, and a 

response variable Y, the estimation of the network Y(X)’ can be mathematically defined as: 

 

𝑌(𝑋)′ =
∑ 𝑌𝑖𝑒

−
𝐷𝑖

2

2𝜎2𝑛
𝑖=1

∑ 𝑒
−

𝐷𝑖
2

2𝜎2𝑛
𝑖=1

 

 

here 𝐷𝑖
2 is the distance, typically Euclidean, between the vector of the input layer and the 

ith example pre-stored in the memory of the pattern layer, whereas 𝜎2 is a smoothing parameter 

that regulates estimated density and controls the volume of information neighboring each artificial 

neuron. 
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The major advantage in this type of network architecture is its fast training. It takes only 

one step, given that 𝜎2 is the only parameter to be optimized. The optimization process consists 

on finding the 𝜎2 that minimizes, for example, the mean absolute error. In this study, the training 

of different ANN models was performed with Brent’s algorithm, combined with a cross-validation 

scheme (𝐾 = 𝑛 − 1). 

In the forensic sciences, the probabilistic estimation of age at death has acquired special 

relevance, because it is important to quantify and visualize the uncertainty associated with each 

estimation (3,11). The ANN used in this study was modified in order to estimate all a posteriori 

distribution, and not just the conditional mean. From a probabilistic point of view, age at death 

estimation can be defined as:  

 

𝑓(𝑦|𝑥)  =
𝑓(𝑥|𝑦)𝑓(𝑦)

𝑓(𝑥)
=

𝑓(𝑥|𝑦)𝑓(𝑦)

∫ 𝑓(𝑥|𝑦)𝑓(𝑦)𝑑𝑦
𝑏

𝑎

 

 

In order to obtain f(y|x), the third and fourth layer of the ANN need to be modified in such 

a way that allows for the estimation of f(x|y). A Gaussian kernel function is used to calculate f(x|y), 

weighted by activation values of the radial basis function. The final estimation of age at death is 

obtained by the quantile estimation associated to the normalized a posteriori distribution. 

Neural network training was performed following the original implementation by Specht 

(45) and the modification just described. For the latter, a uniform prior distribution over age at 

death was assumed. Such prior is more likely to result in higher estimate error but the proposed 

models are thus less sensitive to the age structure of the studied sample. The proposed 

modification to the original ANN algorithm also allows to compute additional error metrics such as 

predictive interval mean width and coverage. 
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Results  

BMD Total shows a moderate and negative linear correlation with age at death (Pearson’s 

r = – 0.696; p < 0.001), while both BMD at the neck (Pearson’s r = – 0.747; p < 0.001) and BMD 

at the Ward’s area (Pearson’s r = – 0.761; p < 0.001) show a strong, negative, association with 

age at death (Figure 3). Relative variation of BMD between the younger (20 – 29 years) and the 

oldest age classes (80+ years) is impressive, fluctuating between 39.4% (BMD Total) and 57.0% 

(BMD Ward).  Results by age class are summarized in Table 1. 

Using the non-probabilistic ANN, as described by Specht (45), the mean absolute 

difference between real and estimated age ranged from 9.19 to 12.03 years depending on 

the variables used through modelling. Variance explained by the ANN models extended 

from 46.4 to 69.1%. Among the three variables, BMD Total was the least efficient for age 

estimation, when isolated. The measurements in the neck area were the most useful, in 

particular the measurement associated to Ward’s area. Interestingly, a model containing 

only the neck and Ward variables had a slightly better performance than a model based 

on all features (Table 2). 

Probabilistic ANN resulted in slightly higher estimation errors, 10.07 – 13.49 (MAE, Table 

2) but allowed to compute heteroscedastic predictive intervals. Predictive interval mean width 

ranged from 42.26 to 55.00 years. Coverage, the amount of cases that are correct given the 

estimated predictive intervals, varied from 94% to 97%. All values reported in Table 3 are based 

on an alpha value of 0.05. 

This computational approach was implemented as an online web application – DXAGE, 

available at http://osteomics.com/DXAGE – that allows an interactive use of the new aging 

technique (Figure 4). DXAGE gives the most likely estimate for age and also a credible interval 

with the minimum and maximum ages estimated. Since all BMD features are highly correlated 

amongst them, using contradicting numeric values will not match any expected pattern, both 

biologically and database-wise. Thus, DXAGE will not be able to create a predictive or a graphical 

http://osteomics.com/DXAGE
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output if the inputs provided by users are inconsistent. It is also possible to exclude any of the 

variables from the model when deemed appropriate. It is important to note that, for now, DXAGE 

is limited to females of European origin. 

 

Discussion 

This exploratory analysis, that focused in a sample of women of European ancestry, 

conveys the potential relevance of BMD decline to the estimation of age at death in human 

remains (38,42). BMD at different ROI shows a sharp decline with age at death, a pattern 

observed in both epidemiological (25–36,47–53) and anthropological research (38,42,54–56). 

BMD has a multifactorial etiology and, like most skeletal indicators of age in adults, varies between 

individuals and between populations, reflecting the complexity of the senescence process (57). 

In general, circa 60% of the variation in skeletal age indicators is related with features other than 

age (58):  compare it with the percent variance of BMD Ward that is explained by age at death 

(57.8%). Considering that population and individual factors influence skeletal remodelling and 

biological age, it is advisable to employ an eclectic range of indicators of age to assess age at 

death (1,59). DXAGE seems to predict age at death as well as, most classical techniques for age 

estimation in human skeletal remains (2,14,60–63) – standing as a valuable alternative to include 

in the forensic anthropologist toolkit. This is especially relevant if other highly accurate methods 

cannot be performed (e.g. 64–66).  

The differences in the performance of the original ANN algorithm and the modification 

proposed are due the prior over age at death assumed in each approach. A standard regression 

approach assumes the distribution of the training set as the implicit distribution of data, while 

blending ANNs with Bayesian prediction allows to perform age estimation with any given prior 

over age at death. A uniform prior was selected, because it represents the less biased approach 

and avoids projecting the age distribution of the studied sample on new cases. 

The femur is the strongest bone in the human skeleton and it is frequently well preserved 
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in forensic contexts (67). It is also highly dimorphic and useful for sex estimation of unknown 

skeletal remains (68). An important advantage of this method is the possibility to apply it to 

incomplete and fragmentary human remains, particularly when primary regions for aging skeletal 

remains, such as the os coxae, are missing or damaged (15,59). Moreover, research in forensic 

anthropology often includes cadaveric remains with soft tissues. Thus, medical imaging 

techniques, such as DXA or X-ray computed tomography, are valuable to assess age at death in 

individuals not entirely skeletonized in which skeletal preparation is not practical, or culturally 

reasonable (38,69–75). DXA has been uncommonly exploited in forensic anthropology; 

nonetheless, it can be used, not only to estimate age at death, but also to assess sex (76–79). 

Ancestry estimation with the proximal femur has also been attempted but results are inconclusive 

(61,62). Accordingly, a single femur can add valuable data to the establishment of a biological 

profile.  

DXA measurements are precise and reproducible, but can be affected by taphonomic 

processes (e.g., microstructural or chemical alterations of bone) in forensic and, especially, in 

archaeological skeletal material (80). As such, the possible influence of diagenesis on DXA 

readings should always be evaluated. There are evidences implying that, even in bones with 

some form of diagenetic change, bone mineral content is marginally altered (81,82). Recently, 

Spinek et al. (83) conducted a Fourier transform infrared spectrometry analysis in femora from 

various archaeological sites and chronologies (including a Neolithic sample [4600 – 4000 BCE]) 

that indicated a good state of preservation, with no diagenetic alterations. A set of direct - 

macroscopical analysis, absence of soil erosion on plain radiographs and microradiography (84) 

– and indirect - the pattern of bone loss is epidemiologically expected (42) – evidences suggest 

that the sample from the CISC is also in good state of preservation.  

Modelling data through the adapted ANN presents definite advantages. In particular, the 

output emerges as the a posteriori distribution, allowing to visualize the uncertainty associated 

with each estimate. Presenting age at death as a probability density typifies the complete range 
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of possible ages (57). We introduce this feature to others through DXAGE, an online web 

application, allowing researchers and students to interactively apply and test the new method. 

Previous studies (85,86) have proven the value of artificial neural networks in age estimation. 

However, such studies failed to provide an easy interface to apply those models in real cases. As 

a decision support system, DXAGE is rather simple to use, continuing a recent trend that employs 

online applications to simplify different forensic goals (e.g. 87–89), thus enabling the models 

hereby presented to be applicable and usable by others. 

 

Conclusions 

The estimation of age at death is a crucial research topic in forensic anthropology and the 

development of reliable methods for age at death estimation from different skeletal regions 

increases the probability of identifying anonymous skeletal remains. Our results have highlighted 

the potential of DXA scans and data modelling through ANN to achieve accurate predictions of 

age at death in adult human remains, in a straightforward online interface that we hope will 

increase the applicability of our method. These preliminary models present some limitations, 

namely the inclusion in the training sample of females of European ancestry only, and must be 

expanded to include males and individuals from independent skeletal reference collections. 
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Table 1. Average values of BMD (Total, Neck, and Ward) in the different age classes. 

 Mean SD N 

BMD Total 20-29 0.924 0.11 15 

 30-49 0.913 0.10 14 

 40-49 0.834 0.14 14 

 50-59 0.781 0.12 14 

 60-69 0.746 0.12 14 

 70-79 0.716 0.10 14 

 80+ 0.560 0.10 15 

     

BMD Neck 20-29 0.820 0.12 15 

 30-49 0.836 0.11 14 

 40-49 0.732 0.13 14 

 50-59 0.674 0.10 14 

 60-69 0.611 0.11 14 

 70-79 0.609 0.08 14 

 80+ 0.474 0.07 15 

     

BMD Ward 20-29 0.745 0.21 15 

 30-49 0.731 0.13 14 

 40-49 0.589 0.13 14 

 50-59 0.491 0.13 14 

 60-69 0.429 0.13 14 

 70-79 0.397 0.07 14 

 80+ 0.320 0.07 15 

SD: standard deviation; N: number of individuals. 

  



 
18 

 
 

Table 2. Statistical metrics for seven different non-probabilistic ANN models used to estimate age at death through 

BMD. 

 MAE RMAE MAPE RMSE RRMSE RSQ ARSQ 

BMD Total 12.025 0.673 27.376 15.091 0.732 0.464 0.459 

BMD Neck 10.751 0.601 24.273 13.402 0.650 0.578 0.573 

BMD Ward 9.592 0.537 21.260 12.042 0.584 0.659 0.655 

BMD Total, 

Neck 11.350 0.635 26.026 14.017 0.680 0.538 0.528 

BMD Total, 

Ward 9.382 0.525 20.498 11.906 0.577 0.667 0.660 

BMD Neck, 

Ward 9.190 0.514 20.026 11.462 0.556 0.691 0.685 

BMD Total, 

Neck, Ward 9.508 0.532 21.114 12.031 0.584 0.660 0.649 

MAE, mean absolute error; RMAE, relative mean absolute error; MAPE, mean absolute percent error; RMSE, root of 

mean square error; RRMSE, relative root of mean square error; RSQ, coefficient of determination (R2); ARSQ, 

pseudo coefficient of determination (adjusted R2). 
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Table 3. Models using the modified ANN, allowing the calculation of the predicted interval mean width and the coverage. 

All results here were obtained using an alpha value of 0.05 and a uniform prior. 

 MAE RMAE MAPE RMSE RRMSE RSQ ARSQ PIMW %C 

BMD Total 13.49 0.76 27.91 16.84 0.82 0.33 0.33 55.00 0.97 

BMD Neck 11.86 0.66 25.27 14.56 0.71 0.50 0.50 49.23 0.95 

BMD Ward 10.25 0.57 22.01 12.61 0.61 0.63 0.62 48.44 0.96 

BMD Total, 

Neck 

12.88 0.72 28.37 16.45 0.80 0.36 0.35 52.84 0.96 

BMD Total, 

Ward 

10.07 0.56 21.24 12.77 0.62 0.62 0.61 45.85 0.95 

BMD Neck, 

Ward 

10.12 0.57 20.88 12.54 0.61 0.63 0.62 42.26 0.94 

BMD Total, 

Neck, 

Ward 

10.76 0.60 22.94 13.38 0.65 0.58 0.56 44.15 0.95 

 

MAE, mean absolute error; RMAE, relative mean absolute error; MAPE, mean absolute percent error; RMSE, root of 

mean square error; RRMSE, relative root of mean square error; RSQ, coefficient of determination (R2); ARSQ, pseudo 

coefficient of determination (adjusted R2); PIMW, predicted interval mean width; %C, coverage. 

 

 


