
Experiments with the drinking bird

J. G�u�emeza;1, R. Valientea;2, C. Fiolhaisb;3, and M. Fiolhaisb;4

a Departamento de F��sica Aplicada

Universidad de Cantabria

E-39005 Santander, Spain

b Departamento de F��sica and Centro de F��sica Computacional

Universidade de Coimbra

P-3004-516 Coimbra, Portugal

Abstract

We made some experiments with the drinking bird oriented by a quantitative
model for its period of oscillation. The e�ect of humidity on the motion was studied,
concluding that there are two evaporation regimes. We made a computer simulation
which describes well the drinking bird dynamics.

1 Introduction

The drinking bird (or dunking duck, dipping bird, etc.), patented in 1946 [1], is not only a

toy but also a demonstration apparatus on liquid-vapor equilibrium and evaporation [2].

Figure 1 shows a scheme and a photo of this intriguing thermodynamical device [3, 4].

In Appendix A (Tab. 2) we list geometric and physical data for the toy [5] used in our

experiments.

The bird consists of two spherical glass bulbs connected by a glass tube, which enters

well inside the lower bulb. The bottom bulb (bird's body, hereafter simply referred to

as the body) is almost �lled with a highly volatile liquid, normally methylene chloride

(CH2Cl2), whose normal boiling point is close to room temperature. There is no air inside

the system, only this internal liquid in thermal equilibrium with its vapor.

The top bulb (bird's head, hereafter simply called head) is covered with a porous

tissue. It has a small plastic hat and a long beak which is covered with the same tissue as

the head. The bird may oscillate around a horizontal metallic bar attached to the middle

of the tube. When the bird leans completely forward, it \drinks" water from a glass,

although other external liquids may be used as well. We call this a dip.
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The drinking bird undergoes a cycle, which at �rst sight may seem a perpetuum mobile.

Let us explain qualitatively the oscillations performed by the bird. At the beginning of

the cycle the bird is upright, with all the internal liquid in the lower sphere. The water

on the head is in contact with its vapor at a given temperature. If the vapor pressure is

smaller than its saturation (or equilibrium) value, evaporation occurs spontaneously. This

cools the head outside, and therefore the CH2Cl2 vapor inside also cools. The vapor in the

head condenses in very small drops, such that it remains in equilibrium with the internal

liquid as the temperature decreases. The vapor pressure inside the head becomes smaller

than that in the body according to the Clausius-Clapeyron equation, and this pressure

gradient forces the internal liquid to rise up in the tube. As the liquid rises, the center of

mass of the system also rises and the momentum produced by the weight eventually forces

the bird to tip forward and to dive its beak in the glass, keeping the head wet. When

the bird is almost horizontal, the lower end of the tube emerges above the internal liquid

surface and some vapor passes from the body to the head (see Fig. 1). While drinking,

the bird remains horizontal for a short time. Then, part of the liquid drains back into the

body and the bird returns to its upright position. As water evaporation continues in the

head, the internal liquid comes up again, starting a new cycle [3]. From the temperature

di�erence between head and body work can be produced so that the drinking bird is in

fact a thermal engine. At the most fundamental level, the ability to produce work lies in

the di�erence between chemical potential of the external liquid and of its vapor.

At the most fundamental level, the ability to produce work lies in the di�erence be-

tween the chemical potential of the external liquid and of its vapor. However, note that

evaporation on the head is not necessary for the drinking bird to work. A temperature

gradient between body and head may simply be obtained by heating the body, e.g. illu-

minating a black painted body with a light bulb or solar light [4]. Our experiments with

the \sunbird" (drinking bird which does not drink) are described in a separate paper [6].

Motivated by the fact that we did not �nd quantitative descriptions of the drinking bird

in textbooks, journals or in the internet, we present in this paper a model which relates

its period, i.e. the time between consecutive dips, to some properties of the internal and

external liquids and to the bird's dimensions. We performed various experiments with a

drinking bird, aiming at checking our model. One of them is on the humidity dependence

of the water drinking bird. Furthermore, we developed a computer simulation of the bird's

dynamics.

In Sec. 2 we present our model and compare it with experiment, using various liquids

as cooling agents. In Sec. 3 we analyze the in
uence of humidity on the period when water
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is used as external liquid. In Sec. 4 we study the system dynamics and report the results

of the numerical integration of the equations of motion. The conclusions are given in Sec.

5. In two Appendixes we indicate the characteristics of the drinking bird and evaluate its

moment of inertia and torque, which are needed in Sec. 4.

2 Period of oscillation

The cooling of the head with respect to the body, during one period, is directly related

to the evaporation of a certain mass of external liquid outside the head, which we denote

by �mE (�mE > 0). The corresponding temperature decrease inside the head during one

cycle, �T , is such that

C �T = ��mE �hE
v ; (1)

where C is some e�ective heat capacity of the head, which is a characteristic of a given

bird, and �hE
v is the speci�c evaporation enthalpy of the external liquid. The right hand

side of Eq. (1) is the energy loss in one period, which we relate, through that equation,

to the temperature decrease inside the head during one period. The minus sign in Eq. (1)

makes �T a negative quantity.

On the other hand, according to the Clausius-Clapeyron equation [7], the temperature

decrease �T is related to the pressure decrease inside the head in one period, �P , by

�T =
�P

B
; (2)

with

B =
�hI

vP
I
v(TR)

RT 2
R

; (3)

where �hI
v is the molar vaporization entalphy variation of CH2Cl2, P I

v(TR) the vapor

pressure at room temperature, TR, and R is the ideal gas constant. Equation (2) is only

valid if �T is small enough.

At any time, the pressure di�erence between head and body (a negative quantity) is

given by ��I g z, where �I is the internal liquid density and z is the height of the level

of the internal liquid in the tube with respect to its surface level in the body. The total

pressure decrease inside the head in one period (a negative quantity) is given by

�P = ��I g�z ; (4)

where �z is the z variation in one period. Inserting this expression in Eq. (2) the tem-

perature variation in one period is

�T = ��I g�z

B
: (5)
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Of course, a similar relation holds between any variation of z and the corresponding

variation of T (provided the variations are small).

If the evaporation rate of the external liquid (a negative quantity), _mE, is approxi-

mately constant, the period is

� = ��mE

_mE

=
C�T

_mE�hE
v

; (6)

where we have used Eq. (1). The numerator C�T is a characteristic of a drinking bird

operating with a given external liquid. Although the evaporation rate does not remain

constant for many external liquids (it changes due to the structure of the felt that covers

the head) it may still be considered constant for small time intervals (say, a few periods

| see, below, Fig. 3 and Tab. 1) so that Eq. (6) holds.

In order to verify Eq. (6) we measured periods and evaporation rates not only for

water | the usual liquid drunk by the bird | but also for other liquids whose partial

pressure in the air is zero. In fact, when water is the external liquid, the air humidity

directly a�ects the bird's dynamics: the period is longer in humid days than in dry ones.

For very high humidities, the toy does not even work. Clearly, this problem does not occur

for other liquids.

We observed that the period, excluding the short time taken by the dip, is the time

needed for the internal liquid to reach the top of the tube and �ll approximately half of

the head: zmax � L + dH
i =2. We also observed that, after a dip, the internal liquid does

not completely return to the body, the tube being half �lled when a new cycle starts:

�z0 = L=2. In Fig. 2 (a) we show the dependence of z with time obtained in a simulation

of the bird's motion whose details will be given only in Sec. 4. In Fig. 2 (b) we show

the temperature variation (obtained in the same simulation), which is related to the z

variation through Eq. (5). After the dip the temperature inside the head only rises to

TR � j�T0j and along the cycle it drops j�T j (with j�T0j � j�T j).
For our bird (see Tab. 2) we have B = (2:07 � 0:01)�103 Pa K�1. This value is

obtained inserting in Eq. (3) �hI
v = 28094:50 J mol�1, R = 8:3145 J K�1 mol�1, and

TR = (22:5� 0:1) �C. The liquid-vapor pressure of the internal liquid P I
v(TR) in Eq. (3) is

obtained from the solution of the Clausius-Clapeyron equation:

P I
v(TR) = P0 exp

�
��hI

v

R

�
T I

b � TR

TRT I
b

��
: (7)

For P0 = 1:013�105 Pa (normal atmospheric pressure) and T I
b = 313:15 K (normal boiling

point of the internal liquid, which is indeed close to TR [4]) one gets P I
v(TR) = (0:535 �
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0:002)�105 Pa. For our bird we measured �z = (4:2� 0:1) cm, so that from eqs. (4) and

(5), �P = �(5:5 � 0:1)�102 Pa and �T = �(0:266 � 0:005) �C. This �T is indeed small

in comparison with T I
b �TR, so that Eq. (2) is valid. In a similar fashion, the �P is small

when compared to P I
v. These values for �T and �P are speci�c of a given drinking bird.

A small �T (and, therefore, a small �P ) facilitates the operation of the drinking bird.

To measure evaporation rates, we placed our drinking bird on a digital balance (whose

precision is �0:001 g). After pouring a few drops of di�erent liquids on the head, we

measured the time evolution of both the mass of external liquid and the period5. Note

that in these experiments the bird does not drink when it dips, so that the external liquid

on the head that evaporates is not replaced by a new one. Figure 3, which presents results

for ethylic alcohol, allows us to con�rm the inverse proportionality between period and

evaporation rate indicated by Eq. (6).

�hE
v / t / _mE�104 / � / C�T /

J g�1 min g s�1 s J

CH3Cl 247.021 0 �21:6 2� 0:5 �1:1� 0:3
3 �4:0 10� 0:5 �0:99 � 0:05

C6H14 330.757 0 �19:6 1:5� 0:5 �1:0� 0:3

C4H8O2 368.438 0 �5:67 5� 0:5 �1:04 � 0:13
6 �2:33 12:5� 0:5 �1:07 � 0:04

C2H6O 841.547 0 �4:40 3� 0:5 �1:1� 0:2
10 �0:90 12:5� 0:5 �0:95 � 0:04

CH4O 1101.128 0 �5:91 1:5� 0:5 �1:0� 0:3
7 �0:96 9:5� 0:5 �1:00 � 0:05

H2O 2257.104 0 �0:644 9� 0:5 �1:30 � 0:07
(H = 50%) 45 �0:541 10� 0:5 �1:22 � 0:06

Table 1: For several external liquids listed are the speci�c evaporation enthalpies (�hE
v )

[8], the times, the evaporation rates, the periods, and C�T = _mE��hE
v . From top to

bottom, the liquids are: chloroform, n-hexane (its evaporation is so quick that, after 1
minute, the bird stops), ethyl acetate, ethylic alcohol, methylic alcohol, and water at 50%
humidity.

Table 1 displays the evaporation enthalpies for various external liquids as well as our

measured quantities (time, evaporation rate and period) using di�erent external liquids.

We note that the evaporation rate of water is lower than for the other liquids and, conse-

quently, the initial period is much larger. But an interesting fact is that C�T = _mE��hE
v

5The time interval between consecutive dips experimentally measured should be corrected for the time
elapsed while the bird is at rest in the horizontal position (approximately 1 s) in order to be compared
with Eq. (6).
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is approximately constant for a given drinking bird operating with a given external liquid.

Moreover, it turns out that, for liquids with lower evaporation enthalpies (the organic

liquids in Tab. 1, which are also less dense than water), that constant is the same for all

of them: C�T � �1 J. Since �T is known from Eq. (5), one may extract the value of C.

The partial pressure of all organic liquids in the air is zero, and the lower the evaporation

enthapies the higher the evaporation rates. On the other hand, for water C�T � �1:26 J,

so that C = 4:75 J �C�1, a value we are going to use in Sec. 4.

3 In
uence of humidity

As already mentioned, air humidity a�ects the bird's period, if water is used as external

liquid. At room temperature, when the vapor partial pressure, P E, is equal to the liquid-

vapor equilibrium pressure at that temperature, P E
v (TR), the water on the head does

not evaporate anymore and the bird stops. If the humidity is close to saturation, the

evaporation rate is low and the periods are large. On the other hand, low partial pressure

of water in dry days leads to a large evaporation rate and short periods.

According to Fick's law, the evaporation rate of water is given by [9, 10]

_mE = ��0 (100 �H) (8)

where �0 > 0 is a di�usion coe�cient depending on the substance and on the evaporation

area and H = 100PE=PE
v (TR) is the relative humidity6. Inserting Eq. (8), which is valid

for normal convection, in Eq. (6), the period becomes � = �0 (100 � H)�1, where �0 =

�mE=�0. However, due to the motion of the bird, this equation is not exactly observed.

Our experimental results (described below) suggest a di�erent power dependence of the

period on the humidity, namely

�(H) = � (100 �H)�� ; (9)

where � and � are phenomenological parameters.

In order to study the evaporation rate we placed the drinking bird in a closed chamber

(Fig. 4) and measured the periods (in seconds) for various relative humidities. Figure

4 also shows the logarithm of the period as a function of the logarithm of 100 � H.

The experimental results clearly show two linear dependences of ln � with ln(100�H) in

two di�erent ranges of the humidity, validating Eq. (9). Up to ln(100 � H) = 3:2, i.e.

6For water at room temperature, the value PE
v (TR) = 3:26�103 Pa is found from the Clausius-Clapeyron

equation, inserting TE
b = 373:15 K and �hE

v (given in Tab. 1) in Eq. (7) instead of T I
b and �hI

v, respectively.
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approximately 75% relative humidity, the linear �t to the data leads to � = 1:82 and

ln� = 9:44. We interpret this power law as due to forced air convection. Above that

humidity the linear �t to the data yields � = 1:24 and ln� = 7:69. Normal evaporation

(� = 1) would only occur if the bird were at rest or slowly moving.

4 Simulation of the dynamics

We present now a model for the bird's dynamics based on the previous description of

water evaporation. We use as dynamical variable the column height of the internal liquid

at time t, z(t).

From eqs. (6) and (9) the mass of water, dmE, evaporated during the time interval dt

is given by

dmE = �� (100 �H)� dt ; (10)

where � = �mE=�. The values for � and � are those found in Sec. 3. From the data of

Tab. 1, one �nds �mE = 6:2�10�4 g, so that we have � = 4:92�10�11 kg s�1 for H < 75%

and � = 28:3�10�11 kg s�1 for H > 75%.

The evaporation of mass dmE leads to a temperature decrease dT given by an equation

similar to (1): dT = �dmE �hE
v=C (the heat capacity C was obtained in Sec. 2). The

temperature decrease dT in the time interval dt leads, in turn, to a pressure gradient dP

inside the head given by an equation similar to Eq. (2), i.e. dP = B dT . As a consequence,

in the time interval dt, the liquid rises in the tube dz = �dP=�Ig. The time evolution of

the variable z is given by z(t+ d t) = z(t) + d z, with z(0) = 0.

With no friction, the angular acceleration is � = M(z)=I(z) where I(z) is the moment

of inertia and M(z) the torque with respect to the rotation axis, both depending on the

level z(t). The quantities I(z) and M(z) are evaluated in Appendix B.

Since a realistic description of the bird's motion requires frictional e�ects, we add to

the torque a term proportional to the angular velocity, i.e., we de�neM(z) = M(z)� b !,

where b is a friction coe�cient which is a parameter and ! the angular velocity. In our

model we used b = 7:5�10�7 J s, though the period is not much sensitive to this parameter.

That value was chosen to reproduce the experimental damping.

The angular acceleration �(t) is then given by

� =
M(z)

I(z)
; (11)
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and the angular velocity and the angle between the tube and the vertical direction are

given by

!(t+ dt) = !(t) + � dt (12)

�(t+ dt) = �(t) + !(t+ dt) dt ; (13)

according to the Euler-Cromer algorithm [11] used in our calculation. The time step

0:001 s was used in the numerical integration of the equations of motion.

When � = 90�, the internal liquid partly returns from the head to the body and

the angular velocity and height of the internal liquid are set to ! = 0 and z = L=2,

respectively, before the new cycle starts. Accordingly, the temperature when a new cycle

starts is TR � j�T0j, with j�T0j = 0:211 �C calculated from Eq. (5) with �z0 = L=2

(see Fig. 2). The value �T = �0:283 �C found in our simulation is consistent with that

evaluated in Sec. 2 from Eq. (5). Also the maximal z obtained in the simulation agrees

with the experimental fact that the head was half �lled right before the dip.

Figure 5 (a) shows the angle � as a function of time, for the humidity H = 65% and

an initial quasi-vertical and motionless bird. The period is 19.0 s, in agreement with the

experimental value 19:5�0:5 s obtained from the data �t in Fig. 4. Figure 5 (b) shows the

same quantity for 85% humidity. Now the period is 74.5 s, close to the experimental value,

76:1� 0:5 s, also obtained from the data �t in Fig. 4. In Fig. 4 the open circles represent

the simulation results for the period: the conclusion is that our model reproduces very

well the data.

Very often the drinking bird is incorrectly presented as a perpetual motion machine

and the graphs of Fig. 5 may cause the same wrong impression that the motion stands

forever. In the model we always assume that the head is wet, i.e. there is always external

liquid in the head to evaporate. For the drinking bird studied in this paper, the water

reservoir was enough to keep it moving for days, so the results of a model that takes into

account the exhaustion of water in the reservoir should be presented using a quite di�erent

time (horizontal) scale.

There are some e�ects in the real dynamics of the bird which are not accounted for by

our simple model. The cooling mechanism inside the head is admittedly na��f; the friction

varies with angular velocity probably in a more complicated way than the one we have

assumed; the evaporation rate changes with the angular velocity; the internal liquid can

not be modeled as a solid, etc.
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5 Conclusions

The drinking bird is a thermal engine since it can be used to produce work from a tem-

perature di�erence. The ability to produce work has its origin in the di�erence between

the chemical potentials of the external liquid and its vapor (Fick's law). There are many

thermal engines operating directly by temperature di�erence (e.g., Carnot and Stirling cy-

cles) or chemical non-equilibrium (internal combustion engines). But there are not many

examples in which a chemical potential di�erence produces work without any chemical

reaction [12].

Although the drinking bird is a well-known device, as far as we know only qualitative

descriptions of its operation are available in the literature. In this work we presented a

quantitative model of the bird's motion. We studied the in
uence of di�erent external

liquids on the bird's behavior, con�rming that the period was smaller for more volatile

liquids like some organic liquids. Taking water as external liquid, we observed how the

period depends on the relative humidity, having found two evaporation regimes: one at

low humidities (H < 75%) and the other at high humidities (H > 75%). Finally, we

have presented a numerical integration of the equations of motion for a bird which drinks

water. Our results reproduce well the measured bird's periods. Moreover, this simulation

is pedagogically interesting to check the importance of di�erent parameters (mass of water

in head, etc.) and to see the role of initial conditions (horizontal or vertical initial position,

etc.). It may be applied not only to the drinking bird but also to the sunbird as we shall

explain in another paper [6].

Appendix A: Bird's data

We measured not only the external dimensions of a drinking bird [5] but also the glass

thickness of the tube, the head and the body, the masses of the hat, the beak, etc. (we

had, therefore, to break a bird). We list the bird's data in Tab. 2.

Appendix B: Bird's moment of inertia and torque

When the internal liquid reaches the height z inside the internal tube, the moment of

inertia I(z) with respect to the rotation axis may be approximated by (for notation, see

Tab. 2 and Fig. 1)

I(z) = I0 +

("
VI � z�

�
di

2

�2
#
�I �mH

I (z)

)�
L

2

�2
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tube length L = 6:68 cm
tube external diameter de = 0:57 cm
tube internal diameter di = 0:40 cm
head external diameter dH

e = 1:47 cm
head internal diameter dH

i = 1:41 cm
body external diameter dB

e = 1:79 cm
body internal diameter dB

i = 1:73 cm
height of upper spherical calotte (empty) hu � 0:3 cm
angle of Fig. 1 ' � 20�

hat mass mh = 0:81 g
beak mass mb � 0:2 g

glass density �g = 2:10 g cm�3

glass speci�c heat cg = 0:837 J g�1 �C�1

CH2Cl2 density �I = 1:336 g cm�3

CH2Cl2 normal boiling point T I
b = 313:15 K

CH2Cl2 vaporization enthalpy �hI
v = 28094:50 J mol�1

Table 2: Geometrical and physical data for our drinking bird [5], whose internal liquid is
methylene chloride, CH2Cl2 (see Fig. 1).

+ z��I

�
di

2

�2
"

1

12
z2 +

�
L

2
� z

2

�2
#

+mH
I (z)

�
L

2

�2

; (14)

where we have used Steiner's theorem. In Eq. (14), I0 is the moment of inertia for every-

thing but the internal liquid, VI is the internal liquid volume

VI =
4

3
�

�
dB

i

2

�3

� 1

3
�h2

u

�
3
dB

i

2
� hu

�
; (15)

and mH
I (z) is the mass of the internal liquid in the head, which depends on z(t):

mH
I (z) =

8
<
:

[z(t)� L]�
�
di
2

�2
�I ; if z(t) � L

0 ; if z(t) < L :
(16)

The second term of (14) refers to the liquid that remains in the body, the third term

describes the liquid in the tube, and the last term the liquid in the head.

The moment of inertia I0 may be written

I0 = mB
g

�
L

2

�2

+
2

3
mB

g

�
dB

i

2

�2

+
1

12
mtL

2

+ (mH
g +mh +mE)

�
L

2

�2

+
2

3
mH
g

�
dH

i

2

�2

+ (mb +mE
b )L2

b : (17)
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The masses in this equation are: mB
g = (4��g=3)

�
(dB

e =2)3 � (dB
i =2)3

�
, mass of glass in body;

mH
g = (4��g=3)

�
(dH

e =2)3 � (dH
i =2)3

�
mass of glass in head; mt = ��g

�
(de=2)2 � (di=2)2

�
,

mass of the tube; mh, mass of the hat; mE, mass of water on the head except the beak;

mb, mass of the beak; and mE
b , mass of water in the beak. In the last term of Eq. (17),

which stands for the beak,

L2
b = l2b

�
1 + tg2'

�
; (18)

with lb � (dH
e +L)=2 and ' the angle shown in Fig. 1. Again, Steiner's theorem was used

and, for the glass tube, the rotation axis was considered at the tube's center.

The torque with respect to the �xed rotation axis is given by

M(z) = M0 �
("
VI � z�

�
di

2

�2
#
�I �mH

I (z)

)
L

2
g sin �

� �I

"
z�

�
di

2

�2
#

1

2
(L� z) g sin � +mH

I (z)
L

2
g sin � ; (19)

with � the angle between the vertical and the tube. In (19) the moment of the \�xed"

parts is

M0 = �mB
g

L

2
g sin � + (mH

g +mh +mE)
L

2
g sin �

+(mb +mE
b )Lb g sin(� + ') : (20)
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Figure 1: Drinking bird scheme and photo. For dimensions see Tab. 2 in Appendix A.
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Figure 2: Evolution with time (a) of internal liquid height, z, and (b) temperature inside
the bird's head, T . These results were obtained in the simulation described in Sec. 4, with
the parameters as indicated in Fig. 5 (a).
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Figure 3: Mass mE of ethylic alcohol on the bird's head (a), evaporation rate _mE obtained
from the derivative of the �tting curve to mE (b), and period � (c), as a function of time.
For time intervals less than one minute (a few periods, see Tab. 1) the evaporation rate
is approximately constant. Similar results are obtained for methylic alcohol, chloroform,
and ethyl acetate. n-Hexane evaporates too quickly. For water, the evaporation rate is
practically constant in the considered time scale.
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Figure 4: On the left: setup for our experiments on the humidity dependence of the
drinking bird period. The bird is placed inside a closed transparent chamber. A digital
chronometer and a digital hygrometer complete the set. The humidity, which started
around 50%, was increasing during an experiment. On the right: logarithm of the period,
ln � , versus ln(100 � H). Two di�erent evaporation regimes are observed, one for high
(black circles) and the other for low (black squares) humidities. The changing from one
regime to the other occurs at ln(100 � H) = 3:2. Least squares �ts yield ln � = 9:44 �
1:82 ln(100�H) for low humidities and ln � = 7:69�1:24 ln(100�H) for high humidities.
The open circles are the results of the simulation presented in Sec. 4.
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Figure 5: Numerical simulation of the time evolution of the angle for a drinking bird
with mass of water in the head mE = 0:4 g and mass of water in the beak mE

b = 0:1
g (see Appendix B for usage of these parameters in the moment of inertia and torque)
and humidities (a) H = 65% and (b) H = 85%. The initial conditions are in both cases
�(0) = 0:1 rad and !(0) = 0 rad/s. Note that the time scale is not the same in (a) and
(b). The period is almost four times longer for the higher humidity.
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