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Formation energies of metallic voids, edges, and steps: Generalized liquid-drop model
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The void formation energy is the work needed to create the curved surface of a void. For a spherical
hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for
large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturba-
tion theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to
that of a single atom or monovacancy, the liquid-drop model is found to be usefully accurate. Moreover,
the predicted monovacancy formation energies for stabilized jellium agree reasonably well with those
measured for simple metals. These results suggest a generalized liquid-drop model of possible high accu-
racy and explanatory value for the energetics of stable metal surfaces curved on the atomic scale (crystal
faces, edges, corners, etc.). The bending energy per unit length for an edge at angle 6 is estimated to be
y(m—6)/4, where y is the intrinsic curvature energy. The step energy is estimated as (n —2-+m/2)od,
where o is the intrinsic surface energy, n = 1 is the number of atomic layers at the step, and d is the layer

height.

I. INTRODUCTION

The void formation energy is the energy of a macro-
scopic crystal with an N-atom hole, plus the energy of N
bulk atoms, minus the energy of the perfect crystal.
More simply, it is the work needed to create the curved
surface of the void. Perdew, Wang, and Engel! have pro-
posed that this energy, and the energies of other metallic
surfaces curved on the atomic or larger scales, may be es-
timated from the liquid-drop model

cA+ily [dARTT, (1)

where A is the area of an appropriately defined surface,
R~ is the local curvature (negative for a concave sur-
face), and o and y are intrinsic surface and curvature en-
ergies. Since Eq. (1) is in principle valid only for small
curvature, it is necessary to assess the domain of its valid-
ity.

Equation (1) seems to be valid on the atomic and larger
size scales for jellium, an idealized model in which the
positive charge on the ions is smeared out into a uniform
positive background. Fiolhais and Perdew? reached this
conclusion by comparing

047R*—y27R , )

using first-principles values for ¢ and y, against self-
consistently calculated formation energies® for spherical
voids of radius R = —% >0 in jellium. However, the jel-
lium model is unrealistic for high-density metals such as
aluminum, where it incorrectly predicts negative values
for the surface* and void formation energies.> A more
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realistic approach to the simple metals is the stabilized
jellium or structureless pseudopotential model,>® for
which self-consistent void formation energies have not
yet been calculated.

In this work, we consider a spherical void in an other-
wise homogeneous metal (with valence electron density
7i=3/4mr}; atomic units bohr=#?/me? and hartree
=me*/#* are used throughout). We write the void for-
mation energy for radius R as oz 4mR?2, where o is the
void formation energy per unit area. Here
R =N1/3zl/3rs, where z is the valence. For small R, we
find

or=aR +bR*+cR*+ -+ . A3)

Note the absence of a term ~RZ2
liquid-drop model of Eq. (2) predicts

For large R, the

—=g—Y 4+ ...
Opr=0 2R+ . 4)

Then we link these two limits by a simple Padé approxi-
mant

1+ 4,R '+ 4,R?
g .
1+B,R " '+B,R *+B;R 3

OR™—

(5)

All coefficients in Egs. (3)-(5) are calculated from first
principles in both the jellium and stabilized-jellium mod-
els, using the local-density approximation’ for exchange
and correlation. Within each model, these coefficients
are functions of the electron-density parameter 7, alone;
this parameter is fixed for each metal by the observed
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valence-electron density. We then set R =rq=z'"?r,, the
radius of a single atom or monovacancy (N =1), and
compare the results of Egs. (4) and (5) with each other
and with measured monovacancy formation energies.

With a negative value of R, Eqgs. (4) and (5) describe the
nonoscillatory surface contribution to the energy of a
spherical cluster (which can have no electron number less
than 1, hence no radius smaller than r,).

II. LARGE- AND SMALL-R COEFFICIENTS

The surface energy o and curvature energy y have
been computed for each model from self-consistent
planar-surface electron-density profiles, by the approach
of Ref. 2. The results are shown in Table 1.

The small-R coefficients for jellium are

a =—%ﬁ2% , (6)
7
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c=4%n fo dq———g—ng(q) , (8)

where € and E(q) are, respectively, the bulk energy per
electron® and dielectric function® of jellium:

E(q)=l—%x(q)[l—G(q)] : ©)
The local-field correction
1 d o
Gl(g)= 41rd;,-2(ne"°)q (10

7 Here

8

is evaluated in the local-density approximation.
€, is the bulk exchange-correlation energy per electron,
which would vanish in the Hartree approximation for €
[i.e., in the Lindhard approximation for €(g)].

To derive Egs. (6)—(8), imagine creating a small void at
the center of a large jellium sphere of radius R;— « by
removing the positive background charge from a small
sphere of radius R, and redistributing this charge uni-
formly over the outer surface of the jellium sphere. The
resulting change p,(r) in the background density will be
small when R is small. It creates a perturbation term in
the Hamiltonian,

_ N
ﬁ,,—fd3rz;[E(r)-Ev(r)+%E3(r)] , (11)

where E, (r) is the electric field due to p,(r). The electric
field operator E(r) in Eq. (11) arises from the density

TABLE 1. Planar surface energy o and curvature energy ¥y
for jellium (J) and stabilized jellium (SJ) (7, in bohr; o and
¥ /2r; in millihartree/bohr?). (1 millihartree/bohr?=0.02721
eV/bohr?=1557 erg/cm?.)

Metal (7,) o Y /2rg

J SJ J SJ
Al (2.07) —0.390 0.595 0.442 0.442
Na (3.93) 0.109 0.115 0.047 0.046
Cs (5.62) 0.045 0.038 0.016 0.012
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AO(R,—r)—#A(r), where f(r) is the electron-density
operator and 6 is the step function.

The coefficient b of Eq. (7) has a simple origin in the
second term of Eq. (11) [the electrostatic self-energy of
p,(r)]. The coefficients a and ¢ of Egs. (6) and (8) arise
from the first term of Eq. (11), evaluated, respectively, to
zeroth and first order in the linear response’ of the elec-
tron density to the perturbation. The zeroth-order term
arises only at the surface of the large jellium sphere, and
is simplified with the help of the Budd-Vannimenus
theorem'°

[° azE@=r% . (12)
—© dn
Here E (z) is the electric field near the planar surface of a
jellium whose positive background fills the half-space
z <0. Equation (12) is the first of a hierarchy of sum
rules!! 713 leading from the bulk via surfaces and edges to
corners.

Passing from jellium to stabilized jellium, the small-R

coefficients change by

Aa=1m22E (13)
dn
d 2
Ab=—273 |25 | | (14)
dn
_ade o, x(q)
Ac=8p22= dgX° 4’
° dn fo qE(q)
2 2
+-Lg2 |42 | [ g |47+ LX D) (15)
9 dn 0 %(q)

Note that a,=a +Aa =0, consistent with the zero-
pressure condition for stabilized jellium. All stabilization
corrections vanish at the equilibrium bulk density of jelli-
um (de/dn=0 at r;=4.19).

To derive Egs. (13)-(15), we begin with Egs. (23) and
(28) of Ref. 5 for a stabilized jellium whose background
charge is held at its equilibrium bulk density. The per-
turbation created by a small void in a large stabilized jel-
lium sphere is

A,=8,— % [ 23 (p, (1A (1)~ 7OR, — )]
dn
—p,(D)AB(R |, —r)—p2(r)} (16)

[where the sum of all contributions following #(r) in-
tegrates to zero]. When Eq. (16) is evaluated to zero or-
der in the response of the electron density to p,(r), the
result again arises only at the surface of the large jellium
sphere. The resulting expression for a + Aa is simplified
with the help of theorem

[° dzE()=[a—n,0]%E 17
—w dn
where E (z) is the electric field of a half-space of stabi-

lized jellium and n(0) is the electron density at its planar
surface. Theorem (17) follows from Eq. (F14) of Ref. 14
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TABLE II. Coefficients a, b, and ¢ of the small-R expansion

(3) for jellium (J) and stabilized jellium (SJ) (in
millihartree/bohr?).
Metal (r,) ar; br} crd

J SJ J SJ J SJ
Al (2.07) —1.698 0 5383 4.851 —7.525 —12.848
Na (393) —0.016 O 0.787 0.786 —1.446 —1.536
Cs (5.62) +0.022 0 0.269 0.264 —0.582 —0.410

with C = —# de/dn and X =0.

The expressions for Ab and Ac arise from the linear
response of the electron density to p,(r). To achieve Egs.
(14) and (15), an infinite contribution to the R* term of
Eq. (3) must be recast as a sum of finite contributions to
the R* and R* terms:

R* [ “dg g(gR)f (q)
=R4[ _RAf® _
R* [ “dg g(qR)—R* [ "dg g(qR)1—f ()]
= 3 *®
R fo dx g(x)
~R*[“dgg(0)[1—/(@)]+O0(R"), (8)

where f(q)—1 as g— . Numerical results for the
small-R coefficients are presented in Table II.

We expect that the nonlinear response of the density
does not contribute to Eq. (3) through order R *, since the
perturbation is of order R* and its second-order or R°®
contribution to o z47R? formally requires’ only the
linear response of the density.

III. RESULTS AND CONCLUSIONS

From the coefficients of Egs. (3) and (4), evaluated in
Sec. II, we obtain the coeificients for the Padé approxima-
tion of Eq. (5) by simple algebra.

In the case of jellium, the Padé representation for oy
was plotted on top of the self-consistent local-density re-
sults in Fig. 5 of Manninen and Nieminen.® At the densi-
ty of Na, no difference could be discerned. At the density
of Al, the curves were qualitatively similar but the
minimum occurred at —870 ergs/cm? in the Padé and at
—950 ergs/cm? in the self-consistent result. (To make
this comparison as fair as possible, we used the
Gunnarsson-Lundqvist'® electron-gas input here; the
Perdew-Wang? input is used in all the tables of this pa-
per.)

The results of the Padé approximation for stabilized
jellium (where we find 4, = A4,=0) are displayed in Fig.
1. We believe that these curves should also describe near-
ly spherical voids in the simple or sp-bonded metals.

In Table III, we compare the liquid-drop model of Eq.
(2) against the Padé representation for monovacancies
(spherical voids of radius R =r,=2z!"3r;). The agree-
ment is rather close, confirming that the domain of valid-
ity of the liquid-drop model for the simple metals extends
down almost to the atomic scale of sizes. Moreover, the
monovacancy formation energies predicted for stabilized
jellium are in rough agreement with measured values!6 18
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FIG. 1. Void formation energy per unit area oz vs void ra-
dius R for stabilized jellium with density parameter r,. Padé ap-
proximation (5) with small- and large-R coefficients o, =a + Aaq,
b;=b +Ab, and ¢,=c +Ac,0,,Y, from Tables I and II.

for the simple metals. (A recent detailed calculation!®
within the local-density approximation for Al yields va-
cancy formation energies 0.83 and 0.73+0.10 eV, respec-
tively, without and with lattice relaxation.)

Our results suggest a generalized liquid-drop model for
the energy of a stable metal surface curved on the atomic
scale:

fdA -1 > -2 -3
1—B, R '+B,R 2—B;R >

(19)

where 7! is the local curvature. Equation (19) might
effectively sum the curvature contribution to all orders.
For greatest accuracy, the parameters B, B,, and B;
could be fitted to self-consistent stabilized-jellium void
formation energies for || > r;, when those become avail-
able.?® This procedure would yield an improved estimate
of the curvature energy ¥ (currently evaluated? only with
the help of the fourth-order gradient expansion for the ki-
netic energy), as well as higher-order terms in the lepto-
dermous or large-/ expansion. For detailed application
of Eqgs. (1) or (18) to real crystal faces, edges, corners,
etc., the sharp surface of stabilized jellium should be
warped on the atomic scale. This can be achieved by cut-
ting along the surfaces of Wigner-Seitz cells and then
rounding.! In the spirit of pseudopotential theory, the
optimum warping might reproduce the valence-electron
density of the real metal outside the surface.

Regardless of the ultimate accuracy that might be
achieved by the approach of the preceding paragraph, the

TABLE III. Monovacancy formation energy of stabilized jel-
lium in the liquid-drop model (without and with the curvature
term) and in the Padé representation of Eq. (5), compared to ex-
perimental values for real metals. Here ro=z!"’r, is the void
radius, and z is the valence. (Energies in eV.)

Metal (z) odnry odmri—y2mr, 0,047rr(2) gexper
Al (3) 1.81 0.88 1.06 0.66+0.02%
Na (1) 0.61 0.36 0.33 0.42+0.03°
Cs (1) 0.41 0.28 0.24 0.28°

2Reference 16.
YReference 17.
‘Reference 18.
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explanatory value of these concepts now seems secure.
The stabilized-jellium model shows how the average
valence-electron density of a simple metal sets the size of
o and v, while the liquid-drop model shows how o and ¥
fix the energies of surfaces curved on the atomic scale.
This model also explains?! the effect on the cohesive ener-
gy of density-gradient corrections to the local-density ap-
proximation.

As another application of the liquid-drop model, we es-
timate the edge formation energy of a simple metal, omit-
ting all atomistic detail. Imagine two plane faces of stabi-
lized jellium meeting at an angle 6. The most realistic
edge is probably not pointed but rounded on the atomic
scale, with principal curvature radii r and o, i.e., with
curvature +7 1. The precise value of  is unimportant, so
long as it is large enough for the approximate validity of
Eq. (1). From that equation, we find*? that the energy per
unit length needed to bend the edge is y(7—0)/4, e.g.,
+y /8 for a 90° edge and —y 7 /8 for a 270° edge.

There is recent interest in steps?>2* on planar surfaces.
Since a step involves both a 90° and a 270° edge, the cur-
vature contribution to the step formation energy may be
small. But a step of height 4 also creates an additional
surface area and thus an energy per unit length that
varies between o h for unrounded edges and (7/2—1)ch
for maximally rounded edges. For a monolayer step on
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an Al(111) surface, with lattice constant @ =7.52 bohr
and h=a/V'3, these estimates are 2.6 and 1.5
millihartree/bohr, using o =0.61 millihartree/bohr? ex-
trapolated from Table I. A detailed calculation by
Scheffler, Neugebauer, and Stumpf24 shows a formation
energy of 0.24 eV per step atom, or 1.7 millihartree/bohr,
using a distance a /V'2 between atoms along the step line.
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