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Energy and pressure versus volume: Equations of state motivated by the stabilized jellium mode
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Explicit functions are widely used to interpolate, extrapolate, and differentiate theoretical or experimental
data on the equation of state~EOS! of a solid. We present two EOS functions which are theoretically moti-
vated. The simplest realistic model for a simple metal, the stabilized jellium~SJ! or structureless pseudopo-
tential model, is the paradigm for our SJEOS. A simple metal with exponentially overlapped ion cores is the
paradigm for an augmented version~ASJEOS! of the SJEOS. For the three solids tested~Al, Li, Mo !, the
ASJEOS matches all-electron calculations better than prior equations of state. Like most of the prior EOS’s,
the ASJEOS predicts pressureP as a function of compressed volumev from only a few equilibrium inputs: the
volumev0, the bulk modulusB0, and its pressure derivativeB1. Under expansion, the cohesive energy serves
as another input. A further advantage of the new equation of state is that these equilibrium properties other than
v0 may be found by linear fitting methods. The SJEOS can be used to correctB0 and the EOS found from an
approximate density functional, if the corresponding error inv0 is known. We also~a! estimate the typically
small contribution of phonon zero-point vibration to the EOS,~b! find that the physical hardnessBv does not
maximize at equilibrium, and~c! show that the ‘‘ideal metal’’ of Shore and Rose is the zero-valence limit of
stabilized jellium.

DOI: 10.1103/PhysRevB.63.224115 PACS number~s!: 64.10.1h, 64.30.1t, 62.20.Dc
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I. MOTIVATION

The cohesion of a solid is reflected in its equation of sta1

~EOS!, i.e., in the dependence of its total energy or press
upon its volume. Here we shall be concerned with the E
for a solid constrained to a given crystal structure and to
paramagnetic state. Typically, parts of this EOS can be m
sured and all of it can be calculated approximately. The
sults are in both cases numerical, but can be fitted to
analytic form which can then be used to differentiate, int
polate, or extrapolate the data.

We review several widely used analytic forms for t
EOS in Sec. II. All of them are phenomenological. As
alternative, we then propose in Secs. III and IV analy
forms that are based upon a microscopic model of cohes
Even for the simplest model, the EOS is not exactly
simple analytic form, but it is nearly so as we shall see. T
simple stabilized jellium model2 that we use to motivate ou
forms is rather realistic for the simple metals~certainly more
so than the ordinary jellium model!, but not so realistic for
other solids. Nevertheless, the analytic forms it sugge
could have a wider range of validity, comparable to
greater than that of the phenomenological forms. Moreo
our underlying microscopic model helps us to understa
how to correct the EOS for errors in the calculated equi
rium lattice constant~Sec. VI!.

For a constrained solid, the EOS should be reasona
smooth and continuous. We therefore follow a standard
proach to approximate continuous functions: we try to bu
in as much of the correct asymptotics as we can. Thus, in
augmented stabilized jellium equation of state~ASJEOS of
Sec. IV!, we modify the stabilized jellium EOS to take a
count of core overlap under extreme compression, and
atom formation under extreme expansion. To describe
0163-1829/2001/63~22!/224115~16!/$20.00 63 2241
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latter limit correctly, we must use the cohesive energy
another input to the EOS, in addition to the usual equilibriu
volume, bulk modulus, and pressure derivative of bu
modulus at equilibrium.

For three metals~the simple metals Al and Li, and th
transition metal Mo!, we will show by comparison with cal-
culated energies and pressures that our ASJEOS works b
than previous analytic forms like the Murnaghan3 EOS and
the universal bonding energy relation4 ~UBER!. Under ex-
pansion, the ASJEOS works much better than either. Un
compression, the ASJEOS works much better than the M
naghan equation. For the stabilized-jellium-like metal Li u
der pressure, the ASJEOS also works much better than
UBER; for Al under pressure, it seems to work a little bet
than the UBER. However, we note that the UBER has b
extensively tested and confirmed4–9 for a wide variety of
solids under pressure, while our ASJEOS remains to be
widely tested. For greater accuracy the Murnaghan equa
which is still often used to estimate bulk moduli and the
pressure derivatives, should be replaced by one of the m
sophisticated forms.

Finally, we want to remark that our fitting~Sec. V! to the
calculated energies is done only over a very narrow rang
volumes around equilibrium, in order to extract the true v
ues for the volume, bulk modulus, and pressure derivative
the bulk modulus at equilibrium. Fitting over a larger ran
of volumes would improve the apparent quality of the
over the larger range by degrading our values for the eq
librium properties, and so would not rigorously test the va
ous analytic forms for the EOS. We also discuss how
optimize the fitting range. Of course, we include volumes
both sides of equilibrium, because two-sided numerical d
ferentiation is more accurate than one-sided differentiatio
©2001 The American Physical Society15-1
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II. INTRODUCTION TO THE EQUATION OF STATE

The cold equation of state is a pressure-volume or ene
volume relation describing the behavior of a solid und
compression and expansion at zero absolute temperatu
plays an important role in many fields, such as the physic
condensed matter or geophysics. Diamond-anvil cells
achieve static pressures up to 5 Mbar or 500 GPa, w
nuclear explosions can achieve dynamic pressures up t
Mbar ~1 TPa! or more.1,10 The pressure in the Earth’s inne
core is about 4 Mbar.11

It is convenient to treat the EOS in terms of dimensionl
parameters. Therefore we introduce the compression rat
scale factor, defined as

x5S v
v0

D 1/3

, ~1!

wherev is the volume per unit cell~monatomic in our ap-
plications! and v0 is its equilibrium value. Other quantitie
used in this paper are the bonding energy per unit ce«
~which by definition tends to zero asx→`), the pressureP,
the bulk modulus or inverse compressibilityB, and the first
derivative of the bulk modulus with respect to pressureB8:

P52
d«

dv
52

1

3v0x2

d«

dx
, ~2!

B52v
dP

dv
52

x

3

dP

dx
, ~3!

B85
dB

dP
52

x

3

1

B

dB

dx
, ~4!

as well as their equilibrium values«052«(x51).0, P0
5P(x51)50, B05B(x51), andB15B8(x51).

The EOS is often expressed as an analytic function«(x)
or P(x). One way the EOS can be used is to extract the b
modulusB0 and its first derivativeB1 at equilibrium by fit-
ting to theoretical or experimental data. Another comm
application is to predict the high-pressure behavior of a s
from its low-pressure behavior or equilibrium propertie
Both these applications are discussed in detail in this pa

For a given volumev, the equilibrium crystal structure
minimizes «; for a given pressureP, it minimizes the en-
thalpy h5«1Pv. When all fundamental interactions a
Coulombic, the virial theorem yields the kinetic energy co
tribution to « as t52«13Pv5ts1tc ~Ref. 12!, where ts
and tc are the noninteracting and correlation contribution

There are many equations of state in use. Some are
structed to describe specific crystal structures or mater
However, our major concern is the so-called ‘‘universa
equations of state. They have a universal form irrespectiv
the material, with a set of parameters specific for each o
One of the earliest and perhaps the best known of the e
tions of state is credited to Murnaghan:3

Murnaghan: P5
B0

B1
@x23B121#, ~5!
22411
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which follows from the truncated expansionB5B01B1P.
Equation ~5! can be analytically inverted fromP(x) to
x(P)5@11B1(P/B0)#21/(3B1). It is often used for 0,P
,B0/2. Later Birch13,14 constructed what has become
widely used equation of state:

Birch: P5
3

2
B0~x272x25!F11

3

4
~B124!~x2221!G .

~6!

Another popular EOS, called the universal bonding ene
relation, was advocated by Vinet and co-workers:4–6

UBER: P53B0

12x

x2
e3(B121)(12x)/2, ~7!

which happens to be exact for a harmonic crystal (B151).
The UBER follows from the simple bonding energy formu

UBER: «~x!52
4B0v0

~B121!2 F12
3

2
~B121!

3~12x!Ge3(B121)(12x)/2. ~8!

It was found to be more realistic than the Murnaghan a
Birch forms, especially at large compressions (P@B0/2).
The UBER was also applied successfully to a variety of d
ferent materials, including metallic, ionic, covalent, a
noble-gas solids. WhenP5B0, the UBER shows thatx is
0.85 forB153 and 0.89 forB156. The ‘‘H02’’ and ‘‘H12’’
equations of state proposed by Holzapfel1 are designed to
describe extreme compression (x!1), where the UBER
must eventually fail:

H02: P53B0x25~12x!e3(B123)(12x)/2, ~9!

H12: P53B0x25~12x!ec0(12x)

3e[3(B123)/22c0]x(12x), ~10!

wherec052 ln(3B0 /PFG), and

PFG5
~3p2!2/3

5

\2

me
S Z

v0
D 5/3

is the free-electron Fermi-gas pressure atx51; Z is the total
number of core and valence electrons in volumev0, i.e., the
nuclear charge. With the exception of H12, these express
for P(x)/B0 depend upon only one material parameter (B1)
and may be integrated analytically to find«(x). Typically
3&B1&6 for metals.

All the present equations of state face common proble
First, they are largely semiempirical, lacking a microsco
foundation based upon insight into cohesion. Second, n
of those described above has the cohesive energy«0 as a
parameter, and they often fail to yield a realistic cohes
energy. To compute«0 from P(x), one needs the definite
integral
5-2
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TABLE I. Cohesive energies«0 from various equations of state@Eqs.~13!–~15!#. For simple metals we
have used experimental values for the equilibrium volumev0, the bulk modulusB0, and its pressure deriva
tive B1 from Ref. 63. For Mo, the experimental values forv0 andB0 are from Ref. 74, and the experiment
B1 is from Ref. 75. Experimental values for«0 are from Ref. 74. The simple metals are presented
increasing order ofB1, making it clear that the experimental«0 /(B0v0) is not a function ofB1 alone. Note
that r 05z1/3r s5„3v0/(4p)…1/3. ~1 hartree/bohr35294.2 Mbar.! Also shown isF52A22«HO

LDAr 0 for use in
Eq. ~41!, with «HO

LDA from Ref. 47.

Metal z r 0
expt B0

expt B1
expt «0/B0v0 F

~bohr! ~Mbar! Expt. Birch UBER H02

Ca 2 4.12 0.152 3.2 0.45 1.58 0.83 2.05 4.3
Ba 2 4.67 0.103 3.4 0.47 1.46 0.69 1.39 4.5
Sr 2 4.50 0.116 3.5 0.42 1.41 0.64 1.19 4.6
Li 1 3.24 0.133 3.5 0.93 1.41 0.64 1.19 2.9
Mg 2 3.34 0.369 3.9 0.28 1.18 0.48 0.73 3.9
Na 1 3.93 0.073 3.9 0.65 1.18 0.48 0.73 3.5
Cs 1 5.62 0.023 4.0 0.51 1.13 0.44 0.66 4.4
K 1 4.86 0.037 4.1 0.57 1.07 0.42 0.60 4.1
Rb 1 5.20 0.029 4.1 0.54 1.07 0.42 0.60 4.3
Ga 3 3.16 0.568 4.1 0.40 1.07 0.42 0.60 4.1
Be 2 2.36 1.144 4.6 0.57 0.79 0.31 0.40 3.0
Al 3 2.99 0.794 4.7 0.41 0.73 0.29 0.38 2.7
In 3 3.48 0.418 4.8 0.37 0.68 0.28 0.35 3.1
Pb 4 3.65 0.488 5.5 0.22 0.28 0.20 0.23 3.8
Tl 3 3.58 0.382 5.7 0.28 0.17 0.18 0.21 3.2
Sn 4 3.52 0.541 6.0 0.34 0.00 0.16 0.18 3.7

Mo 6 2.93 2.73 4.7 0.26 0.73 0.29 0.38 3.1
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«05«~x5`!2«~x51!5E
1

`

dx
d«

dx
523v0E

1

`

dxx2P~x!.

~11!

The cohesive energies as functions ofB0 and B1 are there-
fore

Murnaghan: «051`, ~12!

Birch: «05B0v0

9

16
~62B1!, ~13!

UBER: «05B0v0

4

~B121!2
, ~14!

H02: «05B0v0F9

2
1

9

2
c29S c1

c2

2 DecE
c

`

dy
e2y

y G ,
~15!

where c5 3
2 (B123). These integrals computed for variou

metals are presented in Table I. This table shows no part
lar tendency for the experimental«0 /(B0v0) to be a function
of B1 alone, unless we omit the divalent and tetravalent m
als. Of course, no one actually uses the cohesive energie
Eqs. ~12!–~15!, but we present them to show that the sta
dard equations of state are all seriously wrong on the exp
sion side of equilibrium.
22411
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We suggest that at least four parameters are require
describe the energy EOS properly: the equilibrium volu
v0 describes the volume at the energy minimum, the equi
rium cohesive energy«0 describes the depth of the EO
curve at equilibrium, andB0 andB1 describe the shape of th
EOS at equilibrium:

«~x!52«01
9

2
B0v0@~12x!21~B121!~12x!31•••#.

~16!

Unless the analytic EOS form guarantees a minimum ax
51, a fifth parameter is also needed to make the pres
vanish atx51. Although it is very difficult to expand (x
.1) a solid experimentally, both expansion and extre
compression can be achieved with theoretical calculatio
Unless the equation of state contains a parameter«0
52«(x51), it cannot be fitted to bonding energy calcul
tions. One commonly used solution to this problem is to a
a constant to the UBER bonding energy of Eq.~8! ~see, for
example, Ref. 7!, at the cost that the resulting«(x) no longer
tends to zero asx→`. Several four-parameter equations
state exist, as discussed in Ref. 8. But instead of cohe
energy they useB2, the second derivative of the bulk modu
lus with respect to pressure at equilibrium, as a fou
parameter. These EOS’s can probably provide a better
scription of the region very nearx51, but will not necessar-
ily yield accurate cohesive energies.
5-3
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There are also problems specific to each EOS. The sim
Murnaghan EOS provides considerable accuracy only w
the range of data is limited to small compressions. The Bi
EOS predicts positive pressures at the extreme compres
limit only if B1.4, which is not always the case. Holz
pfel’s H12 equation of state can have a negative expone
coefficient 3

2 (B121)2c0, which results in a physically un
realistic behavior of itsP(x) curve asx→` and makes«0
51`. Yet another problem is that, while almost any reas
able equation of state can yield an accurate value ofB0 from
a fit to theoretical or experimental data, it may take a v
sophisticated one to yield an accurateB1.15,6 B2 is even
harder to evaluate numerically thanB1.

One may also question the true ‘‘universality’’ of an
equation of state. Even for simple metals in fixed crys
structures, the possibility of isostructural electronic pha
transitions due to level crossings16,17and electron topologica
transitions18 due to van Hove singularities shows that the
can be no truly ‘‘universal’’ equation of state. Instead, w
should perhaps introduce the idea of a ‘‘normal’’ equation
state, which predicts the high-pressure behavior of the m
rial from its low-pressure behavior, in the absence of el
tronic transitions. The analytic equations of state mentio
above, and the stabilized jellium model to be described
low, do not display electronic transitions. Once we ha
found a ‘‘normal’’ equation of state, we can use it to identi
electronic transitions in real materials by looking for abn
mal and abrupt deviations of the actual pressure from
analytic or ‘‘normal’’ EOS representation.

A realistic equation of state should predict a minimu
negative pressurePc at a critical expansionxc where the
uniform crystal would ‘‘break’’ under any further increase
applied tension. For example, the UBER predictsxc51.22
andPc520.23B0 for B153, while it predictsxc51.11 and
Pc520.11B0 for B156. Note thatB(xc)50 and B8(xc)
56`. Whenxc is sufficiently close to 1, Taylor expansio
yieldsxc5111/(3B1). A liquid can support a uniform nega
tive pressure19,20 in a metastable state.

The productBv has been called the ‘‘physical hardnes
of a solid. It correlates with resistance to scratching
puncture.21,22 Pearson22 has suggested thatBv might maxi-
mize at equilibrium~although the principle underlying hi
derivation has been questioned23!. To investigate this possi
bility, we begin with the Taylor expansion~16! and find

P~x!5B0F3~12x!1
3

2
~3B111!~12x!21•••G , ~17!

B~x!5B0@113B1~12x!1•••#, ~18!

Bv5B0v0@113~B121!~12x!1•••#. ~19!

Only for B151 couldBv maximize atx51 ~as it does for a
harmonic solid!. For the exactly solved stabilized jellium
model of the next section,B1>3. We note, however, tha
another correlate of physical hardness,u«(x)u, does in fact
maximize atx51. The strongest correlate may be the sh
modulus.24,25
22411
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B1 is correlated with the Gru¨neisen anharmonicity con
stant

g52
v
v

dv

dv U
v0

,

where v is an average phonon frequency. Dugdale a
MacDonald26 found

g5
1

2
~B121!, ~20!

an expression which properly vanishes for a harmonic cry
(B151). Hereg in turn yields the contribution to the pres
sure from thermally excited phonons,gu/v, whereu is the
average energy per atom of the thermally excited phon
(u→3kBT asT→`), according to the Mie-Gru¨neisen equa-
tion of state.27 g is an important ingredient of the Hugonio
or shock curve,17,28 P(v,T) vs v, where the shocked tem
peratureT is determined by the shocked volumev and by the
initial volume and temperature. The thermal expansion co
ficient is

a[
1

v0

dv0

dT
5

gcv

B0v0
,

wherecv5(]u/]T)v .
In Appendix A we use the Gru¨neisen constantg to esti-

mate the effect of phonon zero-point energy upon the eq
librium properties of a solid, finding 0% –5% effects fo
most of the simple metals and larger effects for Be.

III. STABILIZED JELLIUM MODEL AND STABILIZED
JELLIUM EQUATION OF STATE

In this section, we will construct an equation of state m
tivated by the simplest realistic microscopic model for
solid: the stabilized jellium model of Ref. 2 and Appendix
This model, which faithfully reproduces many trends in t
properties of the simple metals, has been reviewed rece
in Ref. 29. It provides a useful zero-order model for bul2

and surface properties,30 cohesive and vacancy-formatio
energies,31,32 and size effects in clusters33,34 and thin films.35

Its relationship to other simple models such as the ‘‘id
metal’’36 has been discussed in Ref. 37. In Appendix B,
show that the original version38 of the ‘‘ideal metal’’ is the
zero-valence (z→0) limit of stabilized jellium. For the bulk
simple metals, which are our main interest here, the st
lized jellium model has a long pedagogical history; cf. R
39.

One of the simplest models for unstressed simple me
is the jellium model.40–42 In this model, each neutral atom i
composed ofz valence electrons and an ion of nuclear cha
Z with Z2z inert core electrons. Then the charge on the io
of the bulk solid is smeared into a uniform positive bac
ground, neutralized by valence electrons of density

n̄5
3

4pr s
3

. ~21!
5-4
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Here r s is the Seitz radius or density parameter. Althou
very simple and universal in the sense that all properties
controlled by a single parameterr s , this model provides a
realistic description of the cohesive and surface propertie
metals only whenr s'4 bohr ~close to the density of so
dium!. At r s54.2, bulk jellium is stable~i.e., P50). At
sufficiently different densities, anomalies such as nega
surface energy40 or negative bulk modulus43 arise. These
problems are solved by introducing pseudopotential
Madelung corrections that stabilize the metal at its obser
density. In the stabilized jellium model of Ref. 2, th
pseudopotential is structureless. The difference between
pseudopotential of the ions in the lattice and the electrost
potential of the uniform positive background, averaged o
a Wigner-Seitz cell, is treated as a first-order perturbation
the total energy of jellium. The average energy per vale
electron in the bulk is therefore

«5ts1«xc1w̄R1«M . ~22!

Here ts and«xc are the kinetic and exchange-correlation e
ergies per particle for a uniform electron gas.~Note that the
model for the bulk solid is exactly solved, since the man
electron effects in«xc are transferred unchanged from je
lium to stabilized jellium.! w̄R is the average of the repulsiv
or non-Coulombic part of the electron-ion pseudopotent
which is chosen to make« minimize at the inputr s for the
input valencez. Here«M is the average Madelung or ele
trostatic energy of a collection of point ions embedded in
uniform negative background.ts and«xc depend only upon
r s , while w̄R and «M also depend upon the valencez. The
simplicity of the jellium model is partly lost as the bul
properties now depend uponz as well asr s , although the
surface properties still depend only uponr s . Table II shows
«0 , B0, andB1 as functions ofr s for stabilized jellium with
z51. The choicez51 yields realistic values forB0 in all the
simple metals, even the polyvalent ones.

Each of the terms of Eq.~22! depends upon volume pe
electron as a simple power:

w̄R;v21, ts;v22/3, «M;v21/3, «x;v21/3,
~23!

TABLE II. Equilibrium properties for bulk stabilized jellium
with valencez51, found by analytic differentiation of the mode
energy~Ref. 2!. Note thatB1 varies from 3 atr s51.6 to 10/3 as
r s→`. B0 is approximately 9.18 Mbar/r s

7/2 for 2,r s,6 @a formula
which also works for real simple metals withz<4 ~Ref. 63!# and
tends to 27.9 Mbar/r s

4 as r s→`. The correlation energy«c(r s) is
from Ref. 48. The model core radiusr c is defined in Appendix B.

r 05r s r c «0 B0 B1

~bohr! ~bohr! ~hartree! ~Mbar!

2 0.51 0.399 0.8418 3.10
3 1.16 0.292 0.2056 3.20
4 1.76 0.230 0.0716 3.24
5 2.35 0.189 0.0311 3.26
6 2.94 0.161 0.0156 3.27
22411
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and the correlation energy«c5«xc2«x varies roughly asv0.
The stabilized jellium equation of state~SJEOS! is thus

SJEOS: «~x!5
a

x3
1

b

x2
1

c

x
1d, ~24!

making

SJEOS: P~x!5
1

3v0
F3a

x6
1

2b

x5
1

c

x4G . ~25!

The energy parametersa, b, c, andd are related to the equi
librium parametersB0 , B1, v0, and cohesive energy«0 via
the equilibrium conditions

«~x51!5a1b1c1d52«0 , ~26!

P~x51!5
3a12b1c

3v0
50, ~27!

B~x51!5
18a110b14c

9v0
5B0 , ~28!

B8~x51!5
108a150b116c

27B0v0
5B085B1 . ~29!

These conditions provide a system of four linear equati
for a, b, c, andd. The SJEOS values for these parameters
found by fitting the EOS to experimental or theoretical bon
ing energies in a narrow range near equilibrium. Then o
can find the equilibrium parameters from Eqs.~26!–~29!. Or,
vice versa, using given equilibrium parameters~experimental
or found with some EOS! and the equations

a5
9

2
B0v0~B123!, ~30!

b5
9

2
B0v0~1023B1!, ~31!

c52
9

2
B0v0~1123B1!, ~32!

d52«01
9

2
B0v0~42B1!, ~33!

one can reconstruct the SJEOS curve in order to study
high-compression behavior of the material. For stabilized
lium with z51 ~although not necessarily for real solids!, we
find a.0, b.0, c,0, andd'0 on the scale of«0.

Table II shows the equilibrium properties of stabilize
jellium with valencez51. Because Eqs.~24! and~25! reflect
the physics of stabilized jellium, they provide nearly perfe
fits to the energy and pressure~Fig. 1! of this model system,
unlike the standard equations of state~5!–~10!. For true sta-
bility at x51, Eq. ~24! requiresa.0 and thusB1.3, con-
sistent with the observation that real solids seldom if e
haveB1,3.6 The H02 of Eq.~9! also requiresB1.3, while
the UBER of Eq.~7! only requiresB1.1.
5-5
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FIG. 1. Pressure ratioPEOS/PSJEOSvs compression ratiox for stabilized jellium with valencez51 and equilibrium density paramete
r s54, using the equilibrium parametersB0 andB1 from Table II. Note that 15 Mbar.P.0 for 0.43,x,1.
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For ordinary jellium, we must replace Eq.~22! by «5ts

1«xc . Our SJEOS of Eqs.~24! and ~25! also describes or
dinary jellium, with r s54.18 bohrs,«050.078 hartree,B0
50.0147 Mbar, andB153.0.

An EOS in the form of Eq.~24! was used earlier by Tete
and co-workers44 to fit their first-principles total-energy
pseudopotential calculations of cohesive energies of sev
silica structures. They found it to fit the data better than
Murnaghan and Birch equations of state. However, they
not relate their choice of EOS to the stabilized jellium or a
other microscopic model.

The stabilized jellium equation of state is physically pla
sible for simple metals with 0.6&x&1.1. In this range, it is
reasonable to treat the electron-ion pseudopotential as a w
perturbation. Then the leading small-x contribution to the
energy is the pseudopotential repulsion termw̄R or a/x3, and
the leading small-x contribution to the pressure isa/(v0x6).
In the stabilized jellium model withz51, w̄R and a are
positive ~and thusB1>3) for all metals with equilibrium
r s>1.6. At r s51.6, the density parameter of monatomic m
tallic hydrogen~see Fig. 1 of Ref. 2!, w̄R anda vanish and
B153.

For small x (!1), the ion cores overlap and th
pseudopotential picture fails. When the overlap is ve
strong, the core electrons pressure ionize into the vale
band,45 and the effective valence increases fromz towardZ.
The truex→0 pressure is presumably thePFG /x5 Fermi gas
pressure included in the H12 EOS, as in standard treatm
22411
ral
e
id

-

ak

-

y
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nts

of white dwarf stars. In this limit,B→ 5
3 P andB8→ 5

3 . How-
ever, this limit is only approached under non-laboratory co
ditions.

For largex (.1.2), the electron-ion pseudopotential in
real metal is not a weak perturbation. It bindsz valence elec-
trons closely around each ion, and as a result«(x) andP(x)
for a real metal approach zero asx→` much more rapidly
than for stabilized jellium@Eqs.~24! and ~25!#. In the stabi-
lized jellium model, the positive background is always un
form, even under extreme expansion. Thus«0 for stabilized
jellium corresponds in real metals not to the cohesive ene
but to the bulk binding energy of valence electrons and io
A more realistic but less simple model for expansion wou
split the background into spheres or polyhedra represen
individual atoms, as in the current version of the ideal-me
model.36

IV. AUGMENTED STABILIZED JELLIUM EQUATION
OF STATE FOR REAL SOLIDS

Here we shall modify the SJEOS of Eq.~24! to account
for the differences between real simple metals and stabili
jellium, as explained at the end of the previous section.

For x<1, we would retain Eq.~24! for pseudopotential
energies. For all-electron energies, we simulate the effec
ion-core overlap by introducing a functiong(x),

ASJEOS: «~x!5
a

x3
g~x!1

b

x2
1

c

x
1d ~x<1!.

~34!
5-6
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To recover the SJEOS asx→1, the functiong(x) must
approach 1 in this limit, withg8(1)5g9(1)5g-(1)50. But
as x→0, the functiong(x) must approachf x ~where f is a
positive constant! so that thea/x3 term in« gets replaced by
f a/x2, reflecting the disappearance of the core repulsion
the appearance of an extra free-electron kinetic energy w
the outer core electrons are gradually liberated under inte
pressure.~For metallic hydrogen, which has no core,a50
and the ASJEOS correctly reduces to the SJEOS.!

A function that satisfies these expectations is

g~x!511a~12x!42b~12x!51g~12x!6, ~35!

where

a55 f 2
1

2
h215, ~36!

b59 f 2h224, ~37!

g54 f 2
1

2
h210. ~38!

So far, f and h are arbitrary constants. We might want
choosef to recover the Fermi-gas limit presented after E
~10!. For Li, the simple metal with the least-bound core, w
would then findf 56.8. But for the other simple metals a
achievable pressures, the Fermi-gas limit~in which all the
core electrons are liberated! is so far away as to be irrelevan

A previous study of local pseudopotentials for the sim
metals46 found that the repulsive contribution to the effecti
electron-ion interaction decayed ase2r /R, where R is the
decay length of the highest-energy core orbital ofs or p
symmetry, and thatr 0'7R wherer 05z1/3r s is the radius of
the atomic cell in the unstressed solid@v05(4p/3)r 0

3#. Writ-
ing

r

R
5

r 0

R

r

r 0
,

we estimatef '7. Then, for exponentially overlapped io
cores, we would expectg(x)'12e2 f x where f '7. We
mimic this behavior by using Eqs.~35!–~38! with f 56.8 and
h542, makinga522.0, b524.8, andg523.8.

The ASJEOS pressure forx<1 is

ASJEOS: P~x!5
1

3v0
F3a

x6
g~x!1

2b2ag8~x!

x5
1

c

x4G
~x<1!. ~39!

Then Eqs.~30! and ~31! imply that

lim
x→0

P~x!5
2~ f a1b!

3v0x5
5

3B0~3.8B1210.4!

x5
, ~40!

which is properly positive for allB1.2.74.
For x.1, we allow for an exponential decay of«(x) as

x→`:
22411
d
en
se

.

ASJEOS: «~x!5F A

x3
1

B

x2
1

C

x
1D1~A1B1C1D !

3F~x21!Ge2F(x21) ~x.1!, ~41!

where we chooseF as discussed in the next paragraph.
x→`, our «(x) tends to zero exponentially from below
much like the UBER. Atx51, we match«(x) and its first
three derivatives fromx,1 and x.1. Then we have a
linear-fitting problem for the coefficientsa,b,c,d, and a
nonlinear-fitting problem forv0. Detailed ASJEOS expres
sions forA, B, C, D and the pressure forx.1 are presented
in Appendix C.

The decay length for the density of the free atom
roughly La51/@2A22m«HO

LDA/\2#, where «HO
LDA is the

highest-occupied orbital energy calculated with the lo
density approximation for exchange and correlation. Us
«HO

LDA values from Ref. 47, we have evaluatedF5r 0 /La for
all the elements in Table I.

Fourth- and higher-order derivatives of the ASJEOS«(x)
are discontinuous atx51. We can still estimate the tru
derivatives there by averaging the derivatives~Appendix A!
for x512d andx511d, whered is an infinitesimal. If the
only data available are forx<1 ~e.g., measured pressure
under compression!, we can simply fit to Eq.~34! or Eq.
~39!.

V. FITTING THE ASJEOS TO ALL-ELECTRON
CALCULATIONS FOR THE BONDING ENERGIES

OF Al, Li, AND Mo

As we mentioned above, one way to use an EOS is to
it to a given set of energy vs compression~or pressure vs
compression! data points around equilibrium, to find th
equilibrium properties of the material such asB0 and B1.
Here we use this method to test our SJEOS and ASJEOS
different metals. We also investigate the performance of e
lier equations of state, in comparison with the SJEOS a
ASJEOS.

The simple fitting algorithm we use is initially to select
small ~arbitrary! number of consecutive data points at valu
of x around~or near! equilibrium (x51) and make a linear
fit to these data points. The fitting criterion is the root me
square ~rms! error of the fit. If the rms error is large
~smaller! than the estimated numerical precision of the d
points fitted, the fitting range inx is narrowed~extended!,
and the whole fitting procedure is repeated again, until
rms error is comparable with the numerical precision.

Fitting over a range ofx wider than that defined at the en
of the previous paragraph would improve the global fit,
cluding the high-compression regime, but worsen the e
mates ofB0 andB1. HereB1 is particularly sensitive to the
fitting range.

We first tested our SJEOS and ASJEOS on Al and
These simple metals are not so unlike stabilized jellium.

A series of all-electron, full-potential local densit
approximation48 ~LDA ! electronic structure calculation
5-7
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were carried out for fcc Li and fcc Al, using the linear com
bination of Gaussian-type orbitals–fitting function~LCGTO-
FF! technique,49–53 as implemented in the programGTOFF.54

~The LCGTO-FF method is distinguished from oth
LCGTO techniques by its use of independent auxiliary G
basis sets to fit the charge density and the exchan
correlation integral kernels.! The LCGTO-FF method is par
ticularly well suited for calculating the cold EOS over a wid
pressure range because, unlike some other electronic s
ture techniques used for crystals, the LCGTO-FF meth
does not require ana priori partitioning of the electron state

TABLE III. Equilibrium properties from the fits to LCGTO tota
energies calculated within the local density approximation. N
thatB1 depends sensitively upon the EOS used to make the fit.
fitting ranges are given in the captions to Figs. 2, 4, and 6.

Al Li Mo

«0 SJEOS 0.1542 0.0750 0.4597
~hartree! ASJEOS 0.1542 0.0750 0.4597

Expt. 0.125 0.060 0.251

v0 SJEOS 107.9 127.9 101.8
(bohr3) ASJEOS 107.9 127.9 101.8

Expt. 112.0 142.5 105.5

B0 SJEOS 0.8205 0.1509 2.924
~Mbar! ASJEOS 0.8242 0.1505 2.941

Expt. 0.794 0.133 2.73

B1 SJEOS 4.74 3.34 4.01
ASJEOS 4.96 3.44 4.20

Expt. 4.7 3.5 4.7
22411
e-

uc-
d

between ‘‘core’’~nonhybridizing! and ‘‘band’’ ~hybridizing!
states. Rather, all electron states are allowed to hybrid
fully, ensuring a continuous representation of core state
they are forced into the continuum under pressure.

The precision of any LCGTO-FF calculation will, o
course, be largely determined by the selection of the th
GTO basis sets. In this work, relatively rich uncontract
orbital basis sets were used for Li (9s4p2d) and Al
(11s7p2d). A single 9s GTO basis set was used to fit bo
the charge density and the exchange-correlation kernels
Li, while an 11s fit basis was used for Al. For the mor
compressed or expanded volumes, the various basis
were scaled to avoid linear dependency while maintain
adequate flexibility in the diffuse regions.~These basis set
can be obtained from JCB.! All requisite Brillouin zone in-
tegrations were carried out on a uniform mesh with 256
reducible k points in the fcc Brillouin zone, using a
Gaussian-broadened histogram integration technique, wi
broadening factor of 5 mH. The self-consistency cycle w
iterated until the total energy varied by less than 0.002 m
atom.

The lattice constants at which we calculated LCGTO e
ergies and pressures were chosen before we had either a
EOS or a fitting procedure. For Li, total energies were fi
calculated for 12 lattice constants ranging from 6.5 bohrs
8.5 bohrs. For higher compressions, total energies were
culated at pairs of lattice constants lying sufficiently close
allow an accurate determination of the pressure from fin
differencing. Eight such pairs of lattice constants were c
sidered ranging from 6.5 bohrs to 3.0 bohrs, and press
were calculated using each pair. Finally, total energies w
calculated for three expanded lattice constants: 9.0, 9.5,
10.0 bohrs.

A similar approach was taken for Al. Energies were c

e
e

-
e
e
ts
FIG. 2. Bonding energy« vs x
for Al. The circles are the LCGTO
data within the local density ap
proximation, the dashed line is th
SJEOS, and the solid line is th
ASJEOS. We have used as inpu
F from Table I and«0 , v0 , B0,
and B1 ~Table III! from the
ASJEOS fit to 12 LCGTO data
points in the range 0.93<x<1.06.
5-8
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FIG. 3. PressureP vs x for Al.
See caption of Fig. 2. The
LCGTO pressures were found b
numerical differentiation of the
LCGTO energies.
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culated for 12 compressed lattice constants ranging from
bohrs to 7.8 bohrs, ten pairs of high-compression lattice c
stants ranging from 7.3 bohrs to 3.0 bohrs~also used to cal-
culate pressure!, and four expanded lattice constants 8.0, 8
9.0, and 9.5 bohrs.

Although our SJEOS and ASJEOS are constructed for
simple metals, they may apply more broadly to transit
metals like Mo or even to nonmetals. For bcc Mo energ
the scalar-relativistic LCGTO-FF calculations of Ref. 5
were used, with lattice constants ranging from 4.374 bohr
6.10 bohrs. In addition, the pressure was calculated for
22411
.0
n-

,

e
n
,

to
e

highest compression point (x50.74) using numerical differ-
entiation.

The estimated numerical precision of the LCGTO data
Al and Li is 531026 hartrees, and by construction this
also the ASJEOS fit error in the narrow fitting range arou
x51. The fitting range for each solid is reported in the ca
tion of Figs. 2, 4, and 6. The LCGTO data is used to t
various equations of state in Table III and Figs. 2-8. Sin
the ASJEOS provides a good fit over the whole range ox
considered, we have used the ASJEOS to estimateB0 andB1
for use in all the tested equations of state. The figures sh
FIG. 4. Bonding energy« vs x
for Li. We have used as inputsF
from Table I and«0 , v0 , B0, and
B1 ~Table III! from the ASJEOS
fit to 12 LCGTO data points in the
range 0.88<x<1.13.
5-9
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FIG. 5. PressureP vs x for Li.
See caption of Fig. 4. The
LCGTO pressures were found b
numerical differentiation of the
LCGTO energies.
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of
that the ASJEOS matches the LCGTO data better than
SJEOS and better than the earlier equations of state.

Finally, we point out that our LCGTO cohesive energi
«0 have been calculated by subtracting the energy per a
of the solid in equilibrium from the energy of the free atom
both calculated in the spin-unpolarized local density appro
mation ~LDA !. The more usual procedure, which finds t
energy of the free atom in the local spin density~LSD! ap-
proximation, yields a more realistic cohesive energy but
troduces a spurious kink into the binding energy curve at
value ofx.1 where the system begins to spin polarize. N
22411
he

m
,
i-

-
e
-

ther our new EOS nor the earlier ones could possibly
scribe that spurious kink.

VI. CORRECTING ERRORS IN V0 , B0, B1

AND THE EOS THAT ARISE FROM DENSITY
FUNCTIONAL APPROXIMATIONS

Modern electronic structure calculations require a den
functional approximation ~DFA! for the exchange-
correlation energy, e.g., local density48 or generalized
gradient56 approximations. Near equilibrium, the results
4

FIG. 6. Bonding energy« vs x
for Mo. We have used as inputsF
from Table I and«0 , v0 , B0, and
B1 ~Table III! from the ASJEOS
fit to seven LCGTO data points in
the range 0.90<x<1.04. At the
highest-compression LCGTO
point shown, the pressure is 14.
Mbar according to both ASJEOS
and numerical differentiation of
the LCGTO data.
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FIG. 7. Pressure ratioPEOS/
PASJEOS vs x for Al, using the
equilibrium parameters from the
caption of Fig. 2.
e

e

y

-

hus,
such a calculation may be fitted to the SJEOS of Eq.~25!:

PDFA~x!5
1

3v0
DFA F3aDFA

x6
1

2bDFA

x5
1

cDFA

x4 G , ~42!

where in this section

x[S v

v0
DFAD 1/3

. ~43!

Then the bulk modulusB0
DFA and its pressure derivativ

B1
DFA may be found from Eqs.~28! and ~29!.
22411
In comparison with the experimental equilibrium volum
v0

expt, the theoretical volumev0
DFA can be in error by a typi-

cal 4% or 5%.57 The main source of this error, identified b
Fuchset al.58 as the core-valence interaction~see also Ref.
59 and Fig. 9 of Ref. 60!, is in pseudopotential theory em
bedded mainly in theaDFA term of Eq. ~42!, i.e., in the
pseudopotential acting on the valence pseudo-orbitals. T
if we know v0

expt, we can write a corrected EOS

P̃~x!5
1

3v0
DFA F3ã

x6
1

2bDFA

x5
1

cDFA

x4 G , ~44!
e

FIG. 8. Pressure ratioPEOS/
PASJEOS vs x for Li, using the
equilibrium parameters from the
caption of Fig. 4. The LCGTO
values display an electronic phas
transition ~Refs. 64 and 65! at x
'0.6.
5-11
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with ã adjusted to makeP̃(x) vanish whenv5v0
expt or x

5x0:

3ã522bDFAx02cDFAx0
2 , ~45!

x05S v0
expt

v0
DFAD 1/3

. ~46!

@We could also replaceaDFA by ã and«0
DFA by «0

expt in the
ASJEOS of Eq.~39!.# From Eqs.~3!, ~4!, and~44!, we find
the corrected bulk modulusB̃0 and its pressure derivativeB̃1

at v5v0
expt:

B̃052
2

9v0
DFA FbDFA

x0
5

1
cDFA

x0
4 G , ~47!

B̃15

11
3 bDFA1 10

3 cDFAx0

bDFA1cDFAx0

. ~48!

A different way to make this correction was propos
recently by van de Walle and Ceder~WC!.61 We discuss this
work as an example of a phenomenological approach to
correction. Unlike our Eq.~44!, which changes the shape o
the pressure, they simply shifted this curve up or down b
constantD:

P̃WC~x!5PDFA~x!1D, ~49!

whereD is chosen to makeP̃WC(x0)50. Equation~49! has a
history; for example, it was used by Boettger and Tricke62

to bring the local density pressures for solid Ne into agr
ment with experiment. With the help of Eq.~42!, we find

B̃0
WC52

2

9v0
DFA FbDFA

x0
5 S 6

x0
25D1

cDFA

x0
4 S 3

x0
2

22D G
5BDFA~x0!. ~50!

Equation~50!, which amounts to evaluatingBDFA(x) at the
experimental equilibrium pointx0, has also been widely
used.

Comparing Eqs.~44! and~49!, we see that only our physi
cally motivated equation~44! satisfies the exact conditio
P̃(x5`)50. For Li, Al, and Mo, our equation~47! is more
accurate than Eq.~50! ~Table IV!.

We favor our equations~47! and ~48! for the correction,
not only because they work, but also because they are b
upon microscopic insight into the origin of the density fun
tional error. The inputsbDFA and cDFA can be found from
Eqs.~31! and~32!, if B0

DFA andB1
DFA are known. Neglecting

the difference betweenx0
5 and x0

4 in Eq. ~47! leads to the
simpler estimate

B̃0'
B0

DFA

x0
4

, ~51!
22411
is

a

-

ed

which can also be derived phenomenologically by replac
«DFA(x) by x0

23«DFA(x2x011), i.e., by shifting the DFA
energy curve rigidly along thex axis to bring its minimum to
the experimental equilibrium value ofx and then rescaling it
by x0

23.

VII. DISCUSSION AND CONCLUSIONS

In a sense, the construction of a universal or normal eq
tion of state is only an exercise in curve fitting. Even so
should reflect our understanding of the physics of conden
matter under compression and expansion. Here we have
the simple physics of the simple metals as a guide for
construction.

Like the Murnaghan, Birch, UBER, and H02 equations
state, but perhaps more reliably, our SJEOS of Eq.~25! and
our ASJEOS of Eq.~39! predict the pressureP(x) of a com-
pressed solid in terms of only two material parametersB0
andB1. This remarkable economy of description is shared
certain microscopic models for the simple metals: not o
the stabilized jellium model of Ref. 2, but also the univers
local pseudopotential model of Ref. 63. In the latter mod
B0 determinesr s via Fig. 2 of Ref. 63, thenr s andB1 deter-
mine z via Fig. 3 of Ref. 63, and finallyr s andz determine
the structured local pseudopotential and everything that
be calculated from it.

For the UBER of Eq.~7!,

UBER:
x2P~x!

3~12x!
5B0H„~B121!~12x!…, ~52!

whereH(y)511 3
2 y1O(y2). But for our SJEOS of Eq.~25!

and for our ASJEOS of Eq.~39!,

x2P~x!

3~12x!
5B0@H1~12x!1~B121!H2~12x!#, ~53!

whereH1(y)511O(y2) andH2(y)5 3
2 y1O(y2). Thus we

have two universal functions (H1 andH2) instead of one~H!
and a linear fitting problem instead of a nonlinear one. T
linearity is an advantage, since the solution of linear al
braic equations is simple and unique. Although onlyB0 and
B1 enter our ASJEOS pressure forx,1, the cohesive energy
«0 has an effect upon our values forB0 andB1 through our
fitting procedure aroundx51. Thus, the cohesive energy
an indirect input to the ASJEOS for a compressed solid.

TABLE IV. Correcting the bulk modulus from the local densit
functional approximation~DFA! via Eqs.~47! and~50!, which em-
ploy the experimental equilibrium volumev0

expt and the ASJEOS
DFA equilibrium parameters from Table III. A more recent expe
mental value for Al isB0

expt50.727 Mbar~Ref. 76!.

Metal v0
DFA v0

expt B0
DFA

B̃0
WC B̃0 B0

expt

(bohr3) ~Mbar!

Al 108.0 112.0 0.820 0.686 0.741 0.794
Li 128.0 142.5 0.150 0.103 0.130 0.133
Mo 101.8 105.5 2.94 2.52 2.72 2.73
5-12
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For the stabilized jellium model~Fig. 1!, the SJEOS is
clearly more accurate than the other equations of state.
the bonding energies of the real metals and for their p
sures under expansion, the ASJEOS~which inputs the cohe-
sive energy«0) is best. For the pressure of compressed
~Fig. 7!, the ASJEOS seems best but the UBER is also v
good. For the pressure of compressed Li~Fig. 8!, the
ASJEOS seems best but H02 and H12 are also very goo
x>0.6; for x<0.6, these equations of state appear to
because of a 2s→2p electronic transition.64–66 For Mo, the
ASJEOS is almost perfect. We see no reason to continu
use the Murnaghan and Birch equations, since even the
pler SJEOS is much more realistic.

The physically motivated SJEOS and ASJEOS also p
vide a promising way@Eqs.~44!–~48!# to correct EOS errors
that arise from the use of approximate density functional

Once we have fitted energies or pressures to a good
lytic EOS form, we can use the residuals of the fit9 or the
pressure ratios~Figs. 7 and 8! to identify subtle electronic
phase transitions. Figure 8 shows a sudden pressure so
ing in Li for x<0.6 due to thes→p transition.64–66Figure 7
suggests a more gradual pressure softening in Al forx<0.8
due to the lowering and filling of thed bands67 which in turn
may cause structural phase transitions.7,67

Although we have takenf andh of Eqs. ~36!–~38! to be
fixed universal parameters, it is also possible to treata• f and
a•h as linear-fit parameters for each solid. While Al, Li, an
Mo do not seem to need this extra flexibility, some oth
materials might require it. Those least likely to require th
extra flexibility are the simple metals in close-packed
nearly close-packed crystal structures, our paradigm ma
als.

FORTRAN subroutines for the SJEOS and ASJEOS
available on request from perdew@tulane.edu.

Finally, we note that there are significant discrepanc
between our results for compressed Al and those of Ha
and Suito.8 For x,0.8, they plot their results on a logarith
mic scale which conceals differences, but atx50.8 they find
that the UBER pressure is only about 2% higher than th
calculated pressure in the local density approximation, w
we find it about 10% higher~Fig. 7!. Their values forv0 , B0,
andB1 were fitted as ours were to a narrow range of cal
lations aroundx51 ~see the caption of Fig. 2!, but differ
significantly from ours. For example, they findB050.726
Mbar while we findB050.824 Mbar, in better agreemen
with the linearized-augmented-plane-wave value~0.840
Mbar! found in Ref. 57.
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APPENDIX A: EFFECT OF PHONON ZERO-POINT
ENERGY ON THE EQUILIBRIUM PROPERTIES

OF A SOLID AND ON THE EOS

The phonon zero-point energy per atom is3
2 \v, wherev

is an average phonon frequency:\v5 3
4 kBQD .27 HereQD is

the Debye temperature. Using a superscript zero to indica
quantity in the absence of phonon zero-point energy, we

«~v !5«0~v !1
3

2
\v~v !, ~A1!

P~v !5P0~v !1
3

2
g~v !

\v~v !

v
, ~A2!

B~v !5B0~v !1
3

2 Fg2~v !1g~v !2v
dg~v !

dv G \v~v !

v
,

~A3!

where

g~v !52
v
v

dv

dv
~A4!

is the Grüneisen parameter discussed at the end of Sec.
We immediately find

D«0

«0
52

9

8

kBQD

«0
~A5!

for the fractional change in«0 due to zero-point vibration.
Taylor expansion aroundv0 and use of Eq.~A4! gives

Dv0

v0
5

9

16
~B121!

kBQD

B0v0
. ~A6!

To evaluatedg/dv, we need Eq.~19! of Ref. 26:

g~v !5211
1

2

B~11B8!2 10
9 P

B2 2
3 P

~A7!

~so thatg→ 2
3 asx→0). We find

v
dg

dv U
v0

5
2

9
2

1

3
B12

B0

2

dB8

dP U
v0

. ~A8!

Equation~5.5! of Ref. 6 gives the UBER value

B0B25B0

dB8

dP U
v0

5
19

36
2

1

2
B12

1

4
B1

2 , ~A9!

but we shall use instead the arithmetic average of
ASJEOS values

B0B25B0

dB8

dP U
v0

52
74

9
15B12B1

21
4

3
a~B123!

~x→02!, ~A10!
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B0B25B0

dB8

dP U
v0

52
74

9
15B12B1

22
1

3
~2F2116F

24FB1!1«0

F2~61F !2

81B0v0
~x→01!,

~A11!

wherea522.0. @Incidentally,a50 in Eq. ~A10! gives the
SJEOS value, anda52 3

2 makes Eq.~A10! agree with Eq.
~A9! for the harmonic crystal, for whichB151 and Eq.~A9!
is exact.# Using Eq.~A8!, we find

DB0

B0
52F1

2
~B121!1

2

B121 S 2

9
2

1

3
B12

1

2
B0B2D G Dv0

v0
.

~A12!

Table V shows our estimates for the simple metals. O
DB0 /B0 for Mg is close to the value (20.028) calculated in
Ref. 68. If we had neglected the contribution fromv dg/dv,
as in Ref. 69, we would have foundDB0 /B0520.015 for
Mg.

The rather large effect we predict for Be improves t
agreement between theoretical~LDA and GGA! ~Ref. 70!
and experimental values for the equilibrium volume and b
modulus, and might explain the anomalous surface lat
relaxation70,71 of this metal.

Away from equilibrium, we can use Eq.~A2! to estimate
the contribution of phonon zero-point vibration to the pre
sure. Integration of Eq.~A4! gives

v~v !5v~v0!eq(v), ~A13!

TABLE V. Effect of phonon zero-point energy upon the equ
librium properties of the simple metals, using experimental val
of v0 ,«0 ,B0, andB1 from Table I, and experimental Debye tem
peraturesQD from Ref.74.

Metal QD ~K! D«0 /«0 Dv0 /v0 DB0 /B0

Cs 38 20.005 0.003 20.009
Rb 56 20.006 0.005 20.014
Tl 79 20.004 0.003 20.012
K 91 20.009 0.008 20.021
Pb 105 20.005 0.002 20.011
In 108 20.004 0.003 20.011
Ba 110 20.006 0.003 20.008
Sr 147 20.008 0.004 20.013
Na 158 20.014 0.013 20.031
Sn 200 20.006 0.005 20.025
Ca 230 20.012 0.006 20.018
Ga 320 20.011 0.007 20.021
Li 344 20.020 0.024 20.045
Mg 400 20.026 0.011 20.036
Al 428 20.012 0.009 20.033
Be 1440 20.042 0.043 20.140

Mo 450 20.006 0.003 20.011
22411
r

k
e

-

where

q~v !5E
v

v0
dv

g~v !

v
. ~A14!

For a simple estimate, note that, for 0<v<v0,

2

3
<g~v !<

1

2
~B121!. ~A15!

Thus the extra pressure in Eq.~A2! is bounded between two
limits,

3
4 kBQD~v0!

v0x5
<

3

2
g~v !

\v~v !

v
<

3

4
~B121!

3
4 kBQD~v0!

v0x3(B111)/2
,

~A16!

where the upper bound should be close forv'v0 and the
lower one forv→0. For Al and Li at the volumes studied i
this paper, the extra pressure of Eq.~A16! is negligible.

APPENDIX B: STABILIZED JELLIUM
AND THE IDEAL METAL

In the stabilized jellium model of Ref. 2, the total energ
as a functional of the electron densityn(r ) is

ESJ@n,n1#5EJ@n,n1#1~«M1w̄R!E d3rn1~r !

1^dv&WSE d3rQ~r !@n~r !2n1~r !#,

~B1!

where«M529e2z2/3/(10r s) , w̄R52pe2n̄r c
2 ~in which r c is

a constant determined byz and by the equilibrium value ofn̄
or r s), and n1(r )5n̄Q(r ) is the positive background den
sity. Q(r ) equals 1 inside a zero-thickness surface and z
outside.EJ@n,n1# is the energy functional for ordinary jel
lium, and ^dv&WS is a pseudopotential correction averag
over a Wigner-Seitz cell:

^dv&WS5 «̃1«M1w̄R , ~B2!

where«̃53e2z2/3/(5r s) .
In the zero-valence limit (z→0), we have«M→0, «̃

→0, w̄R→^dv&WS, and the energy functional becomes

ESJ@n,n1#→EJ@n,n1#1^dv&WSE d3rn1~r !

1^dv&WSE d3rQ~r !@n~r !2n1~r !#.

~B3!

But Q(r )n1(r )5n1(r ); therefore,

lim
z→0

ESJ@n,n1#5EJ@n,n1#1^dv&WSE d3rQ~r !n~r !,

~B4!

s
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which is the original ideal-metal energy functional of Re
38. After it was realized that the original ideal metal
unstable36,72,73 in the bulk, the model was modified to it
current metastable form.36,73 The stabilized jellium mode
with z51 is truly stable72 for r s.1.6.

Our conclusion that the original ideal metal is the ze
valence limit of the stabilized jellium model is consiste
with Soler’s72 way of forming the ideal metal by ‘‘grinding’’
the ions into a fine powder spread uniformly over the crys
asz→0, the radiusz1/3r s of the atomic cell also vanishes.

APPENDIX C: DETAILED ASJEOS EXPRESSIONS

When fit to theoretical data, the ASJEOS of Eqs.~34! and
~41! has onlya, b, andd as independent fitting parameter
The parameterc is replaced by

c523a22b ~C1!

through the equilibrium condition~27!.
Furthermore, equating the zeroth, first, second, and t

derivatives of both sides of the ASJEOS@Eqs.~34! and~41!#
at x51 and solving the resulting system of four linear equ
tions for the parametersA, B, C, andD, we find

A5
1

6
@2a~F316F229F13!1b~F316F226F !

2d~F316F2!#, ~C2!
R

o

e

,
v.

22411
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-

B52
1

2
@2a~F317F229F !1b~F317F226F22!

2d~F317F2!#, ~C3!

C5
1

2
@2a~F318F229F23!1b~F318F226F24!

2d~F318F2!#, ~C4!

D52
1

6
@2a~F319F229F !1b~F319F226F !

2d~F319F216!#. ~C5!

Using Eqs.~2! and ~41!, one can also find the expansio
(x.1) branch of the ASJEOS pressure:

ASJEOS: P~x!

5
e2F(x21)

3v0
F3A

x6
1

2B1AF

x5
1

C1BF

x4
1

CF

x3
1

DF

x2

1
~A1B1C1D !F@F~x21!21#

x2 G ~x.1!.

~C6!
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