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Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model
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Explicit functions are widely used to interpolate, extrapolate, and differentiate theoretical or experimental
data on the equation of statEOS of a solid. We present two EOS functions which are theoretically moti-
vated. The simplest realistic model for a simple metal, the stabilized jeldnor structureless pseudopo-
tential model, is the paradigm for our SJEOS. A simple metal with exponentially overlapped ion cores is the
paradigm for an augmented versiGASJEOS of the SJEOS. For the three solids testéd, Li, Mo), the
ASJEOS matches all-electron calculations better than prior equations of state. Like most of the prior EOS’s,
the ASJEOS predicts pressiPes a function of compressed volumédrom only a few equilibrium inputs: the
volumeu,, the bulk modulusB,, and its pressure derivati\g,. Under expansion, the cohesive energy serves
as another input. A further advantage of the new equation of state is that these equilibrium properties other than
v may be found by linear fitting methods. The SJEOS can be used to cBgectd the EOS found from an
approximate density functional, if the corresponding erros 4ris known. We alsqa) estimate the typically
small contribution of phonon zero-point vibration to the E@3,find that the physical hardneBs does not
maximize at equilibrium, an¢c) show that the “ideal metal” of Shore and Rose is the zero-valence limit of
stabilized jellium.
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[. MOTIVATION latter limit correctly, we must use the cohesive energy as
another input to the EOS, in addition to the usual equilibrium
The cohesion of a solid is reflected in its equation of Statevolume, bulk modulus, and pressure derivative of bulk
(EOS, i.e., in the dependence of its total energy or pressurenodulus at equilibrium.
upon its volume. Here we shall be concerned with the EOS For three metalgthe simple metals Al and Li, and the
for a solid constrained to a given crystal structure and to theransition metal Mg, we will show by comparison with cal-
paramagnetic state. Typically, parts of this EOS can be meaulated energies and pressures that our ASJEOS works better
sured and all of it can be calculated approximately. The rethan previous analytic forms like the Murnagfd&0S and
sults are in both cases numerical, but can be fitted to athe universal bonding energy relatfolUBER). Under ex-
analytic form which can then be used to differentiate, inter-pansion, the ASJEOS works much better than either. Under
polate, or extrapolate the data. compression, the ASJEOS works much better than the Mur-
We review several widely used analytic forms for the naghan equation. For the stabilized-jellium-like metal Li un-
EOS in Sec. II. All of them are phenomenological. As anger pressure, the ASJEOS also works much better than the
alternative, we then propose in Secs. lll and IV analyticyggR. for Al under pressure, it seems to work a little better
forms that are based upon a microscopic model of cohemoqhan the UBER. However, we note that the UBER has been

Even for the simplest model, the EOS is not exactly Ofextensively tested and confirnfed for a wide variety of

s!mple anal_y.t|c fo_rmz but it is nearly so as we sha}ll See. Thesolids under pressure, while our ASJEOS remains to be so
simple stabilized jellium modélthat we use to motivate our

forms is rather realistic for the simple metétrtainly more widely tested. For greater accuracy the Murnaghan equation,
so than the ordinary jellium modelbut not so realistic for which is still often used to estimate bulk moduli and their

other solids. Nevertheless, the analytic forms it Suggestgressure derivatives, should be replaced by one of the more

could have a wider range of validity, comparable to orSOPhisticated forms. .
greater than that of the phenomenological forms. Moreover, Finally, we want to remark that our fittingsec. ) to the
our underlying microscopic model helps us to understandgalculated energies is done only over a very narrow range of
hOW to correct the EOS for errors in the Ca'cu'ated equ”ib_volumes around equilibrium, in order to extract the true val-
rium lattice constantSec. V). ues for the volume, bulk modulus, and pressure derivative of
For a constrained solid, the EOS should be reasonablthe bulk modulus at equilibrium. Fitting over a larger range
smooth and continuous. We therefore follow a standard apef volumes would improve the apparent quality of the fit
proach to approximate continuous functions: we try to buildover the larger range by degrading our values for the equi-
in as much of the correct asymptotics as we can. Thus, in odibrium properties, and so would not rigorously test the vari-
augmented stabilized jellium equation of stéf&SJEOS of ous analytic forms for the EOS. We also discuss how to
Sec. IV), we modify the stabilized jellium EOS to take ac- optimize the fitting range. Of course, we include volumes on
count of core overlap under extreme compression, and dfoth sides of equilibrium, because two-sided numerical dif-
atom formation under extreme expansion. To describe théerentiation is more accurate than one-sided differentiation.
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[l INTRODUCTION TO THE EQUATION OF STATE which follows from the truncated expansi®=B,+B;P.

The cold equation of state is a pressure-volume or energylg?;)aﬂ([)g isg); ((:g;le)e] —all/r(ls?algncﬁniys Ig;irr:eﬂsgg n:)(rx)@[tl(a)
- 1 0 .

volume relation describing the behavior of a solid under” 01314

compression and expansion at zero absolute temperature. By/2. Later B|rc_H const.ructed what has become a
plays an important role in many fields, such as the physics O\f\ndely used equation of state:

condensed matter or geophysics. Diamond-anvil cells can 3 3

achieve static pressures up to 5 Mbar or 500 GPa, while Bjrch: p=ZBy(x 7—x5) 1+z(51—4)(X72—1) _

nuclear explosions can achieve dynamic pressures up to 10 2
Mbar (1 TP or more>1® The pressure in the Earth’s inner 6

core is about 4 Mbat. Another popular EOS, called the universal bonding energy

It is convenient to treat the EOS in terms of dlme_n5|onl_es§elation’ was advocated by Vinet and co-workéfs:
parameters. Therefore we introduce the compression ratio or

scale factor, defined as

v 1/3
N

Uo

1—-Xx
UBER: P=3B,— - e¥E1 12 7
X

which happens to be exact for a harmonic crys&j=1).
wherev is the volume per unit cefmonatomic in our ap- The UBER follows from the simple bonding energy formula
plicationg anduv is its equilibrium value. Other quantities

used in this paper are the bonding energy per unit gell 4By, 3
(which by definition tends to zero as—), the pressur®, UBER: e(x)=— ———11-5(B,—1)
the bulk modulus or inverse compressibilBy and the first (B1—1)
derivative of the bulk modulus with respect to pressBte
X(l—X) eS(Bl—l)(l—x)IZ_ (8)
de 1 de
P= dv 3vx? dx’ @ It was found to be more realistic than the Murnaghan and
Birch forms, especially at large compressiori3>(B,/2).
dpP X dP The UBER was also applied successfully to a variety of dif-
B= U4 T T 3dx’ 3 ferent materials, including metallic, ionic, covalent, and
noble-gas solids. WheR =B, the UBER shows thax is
dB x 1 dB 0.85 fpr81=3 and 0.89 foB;=6. The “H02"” and “H12”
B = =" 3B dx’ (4) equations of state proposed by Holzapfate designed to

describe extreme compressiom<{1), where the UBER

as well as their equilibrium values,= —e(x=1)>0, P,  Must eventually fail:
=P(x=1)=0, By=B(x=1), andB, =B’ (x=1).

The EOS is often expressed as an analytic funcsitx) H02:  P=3Box~*(1-x)e*B1= 0%, ©
or P(x). One way the EOS can be used is to extract the bulk
modulusB, and its first derivativeB; at equilibrium by fit- H12: P=3Box °(1—x)e%™
ting to theoretical or experimental data. Another common  el3(B1=3)/2—colx(1-X) (10)
application is to predict the high-pressure behavior of a solid '
from its low-pressure behavior or equilibrium properties.wherec,= — In(3B,/Prg), and
Both these applications are discussed in detail in this paper.
For a given volumev, the equilibrium crystal structure (3722 2 z\5R
minimizes ¢; for a given pressur®, it minimizes the en- Pec= 5 Fe v—0>

thalpy h=¢+Pv. When all fundamental interactions are

Coulombic, the virial theorem yields the kinetic energy con-is the free-electron Fermi-gas pressurazatl; Z is the total
tribution to £ ast=—¢+3Pv=ts+t; (Ref. 12, wherets  nymber of core and valence electrons in volumggi.e., the
andt are the noninteracting and correlation contributions. nyclear charge. With the exception of H12, these expressions
There are many equations of state in use. Some are cofyr p(x)/B, depend upon only one material paramet®y)(
structed to describe specific crystal structures or materialgng may be integrated analytically to firdx). Typically
However, our major concern is the so-called “universal” 3<B, <6 for metals.
equations of state. They have a universal form irrespective of || the present equations of state face common problems.
the material, with a set of parameters specific for each ongzjrst, they are largely semiempirical, lacking a microscopic
One of the earliest and perhaps the best known of the equgundation based upon insight into cohesion. Second, none

tions of state is credited to Murnaghan: of those described above has the cohesive enegggs a
parameter, and they often fail to yield a realistic cohesive
Murnaghan: P= E[x*ml—l], (5)  energy. To compute, from P(x), one needs the definite
B1 integral
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TABLE |. Cohesive energies, from various equations of staf&qgs.(13)—(15)]. For simple metals we
have used experimental values for the equilibrium volumethe bulk modulus,, and its pressure deriva-
tive B, from Ref. 63. For Mo, the experimental values fgrandB, are from Ref. 74, and the experimental
B, is from Ref. 75. Experimental values fef, are from Ref. 74. The simple metals are presented in
increasing order oB,, making it clear that the experimentaj/(Bgv,) is not a function ofB; alone. Note
that ro=2"% ;= (3vy/(4m))*®. (1 hartree/boht=294.2 Mbar) Also shown isF =2/~ 2eR%r, for use in
Eq. (41), with £52" from Ref. 47.

Metal z  r§*Pt  BEXPt B eo/Bovg F
(bohn  (Mbar) Expt. Birch UBER HO02

Ca 2 4.12 0.152 3.2 0.45 1.58 0.83 2.05 4.38
Ba 2 4.67 0.103 3.4 0.47 1.46 0.69 1.39 4.56
Sr 2 4.50 0.116 3.5 042 141 0.64 1.19 4.62
Li 1 3.24 0.133 3.5 093 141 0.64 1.19 2.98
Mg 2 3.34 0.369 3.9 0.28 1.18 0.48 0.73 3.96
Na 1 3.93 0.073 3.9 0.65 1.18 0.48 0.73 3.57
Cs 1 5.62 0.023 4.0 0.51 1.13 0.44 0.66 4.47
K 1 4.86 0.037 4.1 0.57 1.07 0.42 0.60 4.10
Rb 1 5.20 0.029 4.1 0.54 1.07 0.42 0.60 4.30
Ga 3 3.16 0.568 4.1 0.40 1.07 0.42 0.60 4.11
Be 2 2.36 1.144 4.6 0.57 0.79 0.31 0.40 3.03
Al 3 2.99 0.794 4.7 0.41 0.73 0.29 0.38 2.71
In 3 3.48 0.418 4.8 0.37 0.68 0.28 0.35 3.14
Pb 4 3.65 0.488 5.5 0.22 0.28 0.20 0.23 3.88
TI 3 3.58 0.382 5.7 0.28 0.17 0.18 0.21 3.22
Sn 4 3.52 0.541 6.0 0.34 0.00 0.16 0.18 3.78
Mo 6 2.93 2.73 4.7 0.26 0.73 0.29 0.38 3.19

» de 3 We suggest that at least four parameters are required to
8028(X=°°)—8(X=1)=f dX&:—3Uof dx3®P(X). describe the energy EOS properly: the equilibrium volume
! ! v describes the volume at the energy minimum, the equilib-

(11 rium cohesive energy, describes the depth of the EOS
The cohesive energies as functionsByf and B, are there- curve at equilibrium, an&, andB, describe the shape of the
fore EOS at equilibrium:
Murnaghan: gg=+o0, (12

9
e(X)=—go+ =Bouo[(1—X)?+(B;—1)(1—x)3+- - -].

2
Birch:  ey= Bovo%(fi— By, (13 (16)
Unless the analytic EOS form guarantees a minimumx at
=1, a fifth parameter is also needed to make the pressure
, (14) vanish atx=1. Although it is very difficult to expandx
(B1—1)? >1) a solid experimentally, both expansion and extreme
compression can be achieved with theoretical calculations.
o[ eV Unless the equation of state contains a parametgr
e L dyT , =—g(x=1), it cannot be fitted to bonding energy calcula-
(15) tions. One commonly used solution to this problem is to add
a constant to the UBER bonding energy of E8). (see, for
wherec=2(B;—3). These integrals computed for various example, Ref. ¥, at the cost that the resultirgx) no longer
metals are presented in Table I. This table shows no particdends to zero ags—o. Several four-parameter equations of
lar tendency for the experimenta}/(Bgv) to be a function state exist, as discussed in Ref. 8. But instead of cohesive
of B, alone, unless we omit the divalent and tetravalent metenergy they us8,, the second derivative of the bulk modu-
als. Of course, no one actually uses the cohesive energies lfs with respect to pressure at equilibrium, as a fourth
Egs. (12—(15), but we present them to show that the stan-parameter. These EOS’s can probably provide a better de-
dard equations of state are all seriously wrong on the exparscription of the region very near=1, but will not necessar-
sion side of equilibrium. ily yield accurate cohesive energies.

UBER: 80:Bovo

HO2: 80:Bol)0

9 9 o c?
§+§C— C+?
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There are also problems specific to each EOS. The simple B, is correlated with the Gneisen anharmonicity con-
Murnaghan EOS provides considerable accuracy only whesgtant
the range of data is limited to small compressions. The Birch
EOS predicts positive pressures at the extreme compression v dw
limit only if B;>4, which is not always the case. Holza- YT o du !
pfel's H12 equation of state can have a negative exponential vo
coefficient3 (B, — 1) —co, which results in a physically un- where » is an average phonon frequency. Dugdale and
realistic behavior of itP(x) curve asx— and makes, MacDonald® found
=+ . Yet another problem is that, while almost any reason-
able equation of state can yield an accurate valug,dfom

a fit to theoretical or experimental data, it may take a very Y= 5(51_1)* (20)
sophisticated one to yield an accurdg.®® B, is even _ _ _ _
harder to evaluate numerically tha. an expression which properly vanishes for a harmonic crystal

One may also question the true “universality” of any (B1=1). Herey in turn yields the contribution to the pres-
equation of state. Even for simple metals in fixed crystaisure from thermally excited phonongu/v, whereu is the
structures, the possibility of isostructural electronic phaséverage energy per atom of the thermally excited phonons
transitions due to level crossin§s’and electron topological (U—3kgT asT—), according to the Mie-Gmeisen equa-
transitiond® due to van Hove singularities shows that theretion of state?’ y is an important ingredient of the Hugoniot
can be no truly “universal” equation of state. Instead, weor shock curve;?® P(v,T) vs v, where the shocked tem-
should perhaps introduce the idea of a “normal” equation ofperatureT is determined by the shocked volumend by the
state, which predicts the high-pressure behavior of the matenitial volume and temperature. The thermal expansion coef-
rial from its low-pressure behavior, in the absence of elecficient is
tronic transitions. The analytic equations of state mentioned
above, and the stabilized jellium model to be described be- o= i %: YCy
low, do not display electronic transitions. Once we have vo dT  Bgug'
found a “normal” equation of state, we can use it to identify
electronic transitions in real materials by looking for abnor-Wherec, =(au/aT), .

mal and abrupt deviations of the actual pressure from its " APPendix A we use the Gneisen constany to esti-
analytic or “normal” EOS representation. mate the effect of phonon zero-point energy upon the equi-

A realistic equation of state should predict a minimum !Prium properties of a solid, finding 0%-5% effects for

negative pressur®, at a critical expansiorx, where the Most Of the simple metals and larger effects for Be.
uniform crystal would “break” under any further increase in
andP.= —0.238B, for B;=3, while it predictsx,=1.11 and JELLIUM EQUATION OF STATE

EC: —0.11B, for B;=6. Note thatB(x:)=0 andB’(xc) In this section, we will construct an equation of state mo-
=+, Whenx_ is sufficiently close to 1, Taylor expansion yated by the simplest realistic microscopic model for a
yieldsx;= 1+ 1/(38,). A liquid can support a uniform nega-  so|iq: the stabilized jellium model of Ref. 2 and Appendix B.
tive pressur€*%in a metastable state, L _ This model, which faithfully reproduces many trends in the
The producBv has been called the “physical hardness” ,oherties of the simple metals, has been reviewed recently

of a solid. It correlates with resistance to scratching ofi, Ref. 29. |t provides a useful zero-order model for Bulk
1,22 H i i i . . .
puncture’**? Pearsoff has suggested th@v might maxi-  angd surface properti€§, cohesive and vacancy-formation

mize at equilibrium(although the principle underlying his energies*2and size effects in clustére*and thin films*®
derivation has been questiorfdd To investigate this possi- s relationship to other simple models such as the “ideal
bility, we begin with the Taylor expansiof16) and find metal”3® has been discussed in Ref. 37. In Appendix B, we

show that the original versidhof the “ideal metal” is the

3 zero-valenceZ—0) limit of stabilized jellium. For the bulk
— — — — 2 ... )
P(X)=Bg 3(1=x)+ 2(3'31+1)(1 X)"+ » 17) simple metals, which are our main interest here, the stabi-
lized jellium model has a long pedagogical history; cf. Ref.
B(X)=Bg[1+3By(1-x)+-- -], 1y

One of the simplest models for unstressed simple metals

is the jellium modef®~*2In this model, each neutral atom is
Bu=Bouo[1+3(B1—1)(1=x)+---]. (19 composed of valence electrons and an ion of nuclear charge
o ) Z with Z—z inert core electrons. Then the charge on the ions

Only for B;=1 couldBv maximize atx=1 (as it does fora of the bulk solid is smeared into a uniform positive back-

harmonic solig. For the exactly solved stabilized jellium ground, neutralized by valence electrons of density
model of the next sectiorB;=3. We note, however, that

another correlate of physical hardnepgs(x)|, does in fact _ 3
maximize atx=1. The strongest correlate may be the shear = 3 (22
modulus®*2° 4rg
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TABLE Il. Equilibrium properties for bulk stabilized jellium
with valencez=1, found by analytic differentiation of the model

PHYSICAL REVIEW &3 224115

and the correlation energy.=e,.— &, varies roughly as°.
The stabilized jellium equation of stat8JEOS is thus

energy(Ref. 2. Note thatB, varies from 3 atrs=1.6 to 10/3 as

r<—o. By is approximately 9.18 Mbar[/? for 2<r ;<6 [a formula a b c
which also works for real simple metals wit=4 (Ref. 63] and SJEOS: &(x)= Sttty +d, (24
tends to 27.9 MbarI;1 asr,—o. The correlation energy.(rs) is X x= X
from Ref. 48. The model core radiug is defined in Appendix B. making
fo=rs e 2o Bo B 1{3 2b c
(bohr (bohn (hartree (Mbar) SJEOS: PX)=g—|—+—+—|. (25
3up[ x8 x> x4
2 0.51 0.399 0.8418 3.10 .
3 116 0.292 0.2056 3.20 Thg energy parametess b, ¢, andd are re!ated to the equi-
4 176 0.230 00716 3.24 librium parameters3y, By, vo, and cohesive energy, via
5 235 0.189 00311 326 the equilibrium conditions
6 2.94 0.161 0.0156 3.27 e(x=1)=a+b+c+d=—go, (26)
Hererg is the Seitz radius or density parameter. Although P(x=1)= w:q (27)
very simple and universal in the sense that all properties are 3vo
controlled by a single parameteg, this model provides a
realistic description of the cohesive and surface properties of B(x=1)= 18a+10b+4c =B, (28)
metals only wherr~4 bohr (close to the density of so- o '
dium). At r¢=4.2, bulk jellium is stable(i.e., P=0). At
sufficiently different densities, anomalies such as negative ) 108a+50b+16c |
: : B'(x=1)= ———=——=B(=B;. (29
surface enerdy or negative bulk modulds arise. These 27Bov, 0~ 1

problems are solved by introducing pseudopotential and . , . .
Madelung corrections that stabilize the metal at its observed '€S€ conditions provide a system of four linear equations
density. In the stabilized jelium model of Ref. 2, this [oF & b, ¢, andd. The SJEOS values for these parameters are
pseudopotential is structureless. The difference between t{@und by fitting the EOS to experimental or theoretical bond-
pseudopotential of the ions in the lattice and the electrostatil’d €Nergies in a narrow range near equilibrium. Then one
potential of the uniform positive background, averaged ovefan find the equilibrium parameters from E¢&6)—(29). Or,

a Wigner-Seitz cell, is treated as a first-order perturbation t/C€ Versa, using given equilibrium paramete@sperimental
the total energy of jellium. The average energy per valencd" found with some EOfand the equations

electron in the bulk is therefore

9
— a.:zBovo(Bl_:g), (30)
e=tst eyt Wrtey. (22

Heretg ande, are the kinetic and exchange-correlation en-
ergies per particle for a uniform electron gésote that the b= 5Bovo(10—-3By), (32)
model for the bulk solid is exactly solved, since the many-
electron effects ire,. are transferred unchanged from jel-
lium to stabilized jellium). wg is the average of the repulsive ¢=—5Bovo(11-3By), (32
or non-Coulombic part of the electron-ion pseudopotential,
which is chosen to make minimize at the input for the 9
input valencez. Heree), is the average Madelung or elec- d=—go+ 58000(4— B1), (33

trostatic energy of a collection of point ions embedded in a
uniform negative backgrounds ande,. depend only upon one can reconstruct the SJEOS curve in order to study the
rs, while wg andey, also depend upon the valenzeThe  high-compression behavior of the material. For stabilized jel-
simplicity of the jellium model is partly lost as the bulk lium with z=1 (although not necessarily for real solids/e
properties now depend upanas well asrg, although the find a>0, b>0, c<0, andd~0 on the scale of.
surface properties still depend only upan Table Il shows Table 1l shows the equilibrium properties of stabilized
€9, Bg, andB; as functions of ¢ for stabilized jellium with  jellium with valencez=1. Because Eq$24) and(25) reflect
z=1. The choice=1 yields realistic values fdB, in all the  the physics of stabilized jellium, they provide nearly perfect
simple metals, even the polyvalent ones. fits to the energy and pressuiféig. 1) of this model system,
Each of the terms of Eq22) depends upon volume per unlike the standard equations of sté—(10). For true sta-
electron as a simple power: bility at x=1, Eq.(24) requiresa>0 and thusB;>3, con-
sistent with the observation that real solids seldom if ever
haveB;<3.° The HO2 of Eq.(9) also require8;>3, while
the UBER of Eq.(7) only requiresB;>1.

We~v" 1, 2/3

t~0v"23 ey 13

~p VB g 1B

(23
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14 | SJ r,=4 pressure ratio \ -

Peos/Psieos

08 | Ho2 UBER .~/ Birch .

0.1 02 03 04 05 06 07 08 09 1 1.1 12 13
X=(VIV)"®

FIG. 1. Pressure ratiBgos/PsjeosvS compression ratia for stabilized jellium with valence=1 and equilibrium density parameter
rs<=4, using the equilibrium parameteBs andB; from Table Il. Note that 15 Mbar-P>0 for 0.43<x<1.

For ordinary jellium, we must replace E(R2) by e=t;  of white dwarf stars. In this limitB— 3P andB’— 3. How-
+&,.. Our SJEOS of Eqg24) and (25) also describes or- ever, this limit is only approached under non-laboratory con-
dinary jellium, with r¢=4.18 bohrs,e,=0.078 hartreeB,  ditions.
=0.0147 Mbar, and, = 3.0. For largex (>1.2), the electron-ion pseudopotential in a

An EOS in the form of Eq(24) was used earlier by Teter real metal is not a weak pe_rturbatlon. It bindgalence elec-
and co-worke¥ to fit their first-principles total-energy {rons closely around each ion, and as a res(k) andP(x)
pseudopotential calculations of cohesive energies of sever.f;ﬂr a real metal approach zero ®s- much more rapidly
silica structures. They found it to fit the data better than thdhan for stabilized jelliuniEgs.(24) and(29)]. In the stabi-
Murnaghan and Birch equations of state. However, they di

ized jellium model, the positive background is always uni-
not relate their choice of EOS to the stabilized jellium or any!O'™: €Ven under extreme expansion. Tiysfor stabilized

other microscopic model jellium corresponds in real metals not to the cohesive energy
The stabilize% ellium é uation of state is physicall Iau_bu'[ to the bulk binding energy of valence electrons and ions.
sible for simple nJ1etaIs Wi?h 06x=11. In thiF; ?ange yitpis A more realistic but less simple model for expansion would

bl he el 4 d e split the background into spheres or polyhedra representing
reasonable to treat the electron-ion pseudopotential as a Wedigjiyiqual atoms, as in the current version of the ideal-metal

perturbation. Then the leading smalleontribution to the ,5qe[36

energy is the pseudopotential repulsion te/_vmor a/x®, and

the leading smalk contribution to the pressure & (v x®). IV. AUGMENTED STABILIZED JELLIUM EQUATION

In the stabilized jellium model witle=1, WR and a are OF STATE FOR REAL SOLIDS

pOSitive (and thUSBlzs) for all metals with eqUi”briUm Here we shall m0d|fy the SJEOS of E@4) to account

r<=1.6. Atrs=1.6, the density parameter of monatomic me-for the differences between real simple metals and stabilized

tallic hydrogen(see Fig. 1 of Ref. R wg anda vanish and jellium, as explained at the end of the previous section.

B,=3. For x<1, we would retain Eq(24) for pseudopotential
For small x (<1), the ion cores overlap and the energies. For all-electron energies, we simulate the effect of

pseudopotential picture fails. When the overlap is veryion-core overlap by introducing a functiag(x),

strong, the core electrons pressure ionize into the valence

band?® and the effective valence increases fratoward Z.

The truex— 0 pressure is presumably tRgg /x> Fermi gas

pressure included in the H12 EOS, as in standard treatments (34

a b ¢
ASJEOQOS: &(x)= —Sg(x)+ =+ —+d (x=1).
X xs X
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To recover the SJEOS as—1, the functiong(x) must
approach 1 in this limit, witlg’' (1)=g"(1)=g""(1)=0. But ASJEOS: &(x)=
asx—0, the functiong(x) must approactix (wheref is a
positive constantso that thea/x® term ine gets replaced by
fa/x?, reflecting the disappearance of the core repulsion and XF(x—1)
the appearance of an extra free-electron kinetic energy when
the outer core electrons are gradually liberated under intense
pressure(For metallic hydrogen, which has no com=0  Where we choos€& as discussed in the next paragraph. As

and the ASJEOS correctly reduces to the SJEOS. X—, our g(X) tends to zero exponentially from below,
A function that satisfies these expectations is much like the UBER. Atx=1, we matche(x) and its first
three derivatives fronkx<<1 and x>1. Then we have a
g(x)=1+a(1-x)*—B(1—x)°+ y(1—-x)8, (35 linear-fitting problem for the coefficienta,b,c,d, and a
nonlinear-fitting problem fow,. Detailed ASJEOS expres-
sions forA, B, C, D and the pressure for>1 are presented
1 in Appendix C.
a=5f——h—15, (36) The decay length for the density of the free atom is
2 roughly L,=1[2\-2meL2V4?%], where e-%* is the
highest-occupied orbital energy calculated with the local
p=9f—h-24, (37) density approximation for exchange and correlation. Using
erd values from Ref. 47, we have evaluatéetr /L, for
y=4f— Eh—lO. (39) all the elements in Table I.
2 Fourth- and higher-order derivatives of the ASJELS)
are discontinuous ax=1. We can still estimate the true
derivatives there by averaging the derivativegpendix A
for x=1— 6 andx=1+ &, whered is an infinitesimal. If the
only data available are fox<1 (e.g., measured pressures
under compressignwe can simply fit to Eq(34) or Eq.
(39.

A B C
4+ 4= 4D+(A+B+C+D)
x3 x? X

e FOD) (x>1), (41

where

So far,f and h are arbitrary constants. We might want to
choosef to recover the Fermi-gas limit presented after Eq.
(10). For Li, the simple metal with the least-bound core, we
would then findf =6.8. But for the other simple metals at
achievable pressures, the Fermi-gas lifinit which all the
core electrons are liberateid so far away as to be irrelevant.
A previous study of local pseudopotentials for the simple

metal§® found that the repulsive contribution to the effective V. FITTING THE ASJEOS TO ALL-ELECTRON
electron-ion interaction decayed as''R, whereR is the CALCULATIONS FOR THE BONDING ENERGIES
decay length of the highest-energy core orbitalsobr p OF Al, Li, AND Mo

symmetry, and.that0w7R wherero='zl’3rs is the 3radiu§ of As we mentioned above, one way to use an EOS is to fit

Fhe atomic cell in the unstressed sdlity = (4/3)r]. Writ- it to a given set of energy vs compressi@r pressure vs

Ing compression data points around equilibrium, to find the
equilibrium properties of the material such Bg and B;.

F_lof Here we use this method to test our SJEOS and ASJEOS on

R Rrg’ different metals. We also investigate the performance of ear-
we estimatef~7. Then, for exponentially overlapped ion g\eSrJ(Ecngtlons of state, in comparison with the SJEOS and

cores, we would expecyj(x)~1—e ™ where f~7. We
mimic this behavior by using Eq£35)—(38) with f=6.8 and
h=42, makinga=—2.0, B=—4.8, andy=—3.8.

The ASJEOS pressure far<l is

The simple fitting algorithm we use is initially to select a
small (arbitrary) number of consecutive data points at values
of x around(or neaj equilibrium (x=1) and make a linear
fit to these data points. The fitting criterion is the root mean
1 [3a 2b—ag'(x) ¢ square (rms) error of the fit. If th'e rms_error is larger

ASJEOS: P(X)= =——| —g(X) + ————— + — (smallep than the estimated numerical precision of the data

3vo| x8 x° x* points fitted, the fitting range i is narrowed(extended
and the whole fitting procedure is repeated again, until the
(x=<1). (39 rms error is comparable with the numerical precision.
_ Fitting over a range of wider than that defined at the end
Then Eqs(30) and(31) imply that of the previous paragraph would improve the global fit, in-
cluding the high-compression regime, but worsen the esti-

2(fat+b) 3Bo(3.88,—10.4 mates ofB, andB,. HereB; is particularly sensitive to the

)l("j]o PO)= 30X x5 (40 fitting range.
We first tested our SJEOS and ASJEOS on Al and Li.
which is properly positive for alB;>2.74. These simple metals are not so unlike stabilized jellium.
For x>1, we allow for an exponential decay ofx) as A series of all-electron, full-potential local density
X— 00! approximatioff® (LDA) electronic structure calculations
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TABLE lII. Equilibrium properties from the fits to LCGTO total between “core” (nonhybridizing and “band” (hybridizing)
energies calculated within the local density approximation. Notestates. Rather, all electron states are allowed to hybridize
thatB, depends sensitively upon the EOS used to make the fit. They|ly, ensuring a continuous representation of core states as
fitting ranges are given in the captions to Figs. 2, 4, and 6. they are forced into the continuum under pressure.

The precision of any LCGTO-FF calculation will, of

A L Mo course, be largely determined by the selection of the three
£ SJEOS 0.1542 0.0750 0.4597 GTO basis sets. In this work, relatively rich uncontracted
(hartre¢  ASJEOS 0.1542 0.0750 0.4597 orbital basis sets were used for Li $8p2d) and Al
Expt. 0.125 0.060 0.251 (11s7p2d). A single % GTO basis set was used to fit both
the charge density and the exchange-correlation kernels for
vo SJEOS 107.9 127.9 101.8 Li, while an 13 fit basis was used for Al. For the more
(bohP) ASJEOS 107.9 127.9 101.8 compressed or expanded volumes, the various basis sets
Expt. 112.0 1425 105.5 were scaled to avoid linear dependency while maintaining
adequate flexibility in the diffuse regionélhese basis sets
Bo SJEOS 0.8205 0.1509 2.924  can be obtained from JCBAIl requisite Brillouin zone in-
(Mbar) ASJEOS 0.8242 0.1505 2.941  tegrations were carried out on a uniform mesh with 256 ir-
Expt. 0.794 0.133 2.73 reducible k points in the fcc Brillouin zone, using a
Gaussian-broadened histogram integration technique, with a
B, SJEOS 4.74 3.34 4.01 broadening factor of 5 mH. The self-consistency cycle was
ASJEOS 4,96 3.44 4.20 iterated until the total energy varied by less than 0.002 mH/
Expt. 4.7 3.5 4.7 atom.

The lattice constants at which we calculated LCGTO en-
ergies and pressures were chosen before we had either a new
were carried out for fcc Li and fcc Al, using the linear com- EOS or a fitting procedure. For Li, total energies were first
bination of Gaussian-type orbitals—fitting functidtCGTO-  calculated for 12 lattice constants ranging from 6.5 bohrs to
FPF) technique’®>3as implemented in the progragTorr®® 8.5 bohrs. For higher compressions, total energies were cal-
(The LCGTO-FF method is distinguished from other culated at pairs of lattice constants lying sufficiently close to
LCGTO techniques by its use of independent auxiliary GTOallow an accurate determination of the pressure from finite
basis sets to fit the charge density and the exchangedifferencing. Eight such pairs of lattice constants were con-
correlation integral kernelsThe LCGTO-FF method is par- sidered ranging from 6.5 bohrs to 3.0 bohrs, and pressures
ticularly well suited for calculating the cold EOS over a wide were calculated using each pair. Finally, total energies were
pressure range because, unlike some other electronic strucalculated for three expanded lattice constants: 9.0, 9.5, and
ture techniques used for crystals, the LCGTO-FF method 0.0 bohrs.
does not require aa priori partitioning of the electron states A similar approach was taken for Al. Energies were cal-

07— T 7T 7 T T

0.6 :_\\ Al energy b

05 |

11 FIG. 2. Bonding energy vs x

1 1 for Al. The circles are the LCGTO

data within the local density ap-
proximation, the dashed line is the
SJEOS, and the solid line is the

04 |

03 |

e (hartree)

e (hartree)

021 ASJEOS. We have used as inputs
F from Table | andsg, vg, By,
01 and B; (Table 1) from the
i ASJEOS fit to 12 LCGTO data
ok points in the range 0.98x<1.06.
0.1
0.2 ; PR SR R R T S R SR S SR A RS S S S S U T R T SRS R ST
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
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1 FIG. 3. Pressur® vsx for Al.
1] See caption of Fig. 2. The
mzzzozszozoood | LCGTO pressures were found by
1 1 numerical differentiation of the
] LCGTO energies.

P (Mbar)

0 [ PR T SR S SN SR U SN S [N SR S S S [ S SR T S [ S S R U I S i S
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

x=(VVg)"?

culated for 12 compressed lattice constants ranging from 6.Bighest compression poink€ 0.74) using numerical differ-
bohrs to 7.8 bohrs, ten pairs of high-compression lattice conentiation.

stants ranging from 7.3 bohrs to 3.0 bokasso used to cal- The estimated numerical precision of the LCGTO data for
culate pressujeand four expanded lattice constants 8.0, 8.5Al and Li is 5x10 ¢ hartrees, and by construction this is
9.0, and 9.5 bohrs. also the ASJEOS fit error in the narrow fitting range around

Although our SJEOS and ASJEQS are constructed for the=1. The fitting range for each solid is reported in the cap-
simple metals, they may apply more broadly to transitiontion of Figs. 2, 4, and 6. The LCGTO data is used to test
metals like Mo or even to nonmetals. For bcc Mo energiesyarious equations of state in Table 1ll and Figs. 2-8. Since
the scalar-relativistic LCGTO-FF calculations of Ref. 55the ASJEOS provides a good fit over the whole range of
were used, with lattice constants ranging from 4.374 bohrs tgonsidered, we have used the ASJEOS to estilBg@EndB;

6.10 bohrs. In addition, the pressure was calculated for théor use in all the tested equations of state. The figures show

0.3
°
0.25 | ]
02| 11
ASJEQOS
015 | ]
§ E FIG. 4. Bonding energyg vs X
£ 01k ~ for Li. We have used as inpus
g Tt “ from Table | andsg, v, By, and
w B, (Table Ill) from the ASJEOS
0.05 | fit to 12 LCGTO data points in the
[ range 0.8&x=<1.13.
of
-0.05 [
_01 1 1 1 1 1

0.5 0.6 0.7 0.8 0.9 1
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‘\ T T T T T T T T T T T T T T T T

10 | \ Li pressure .

8 _
§ 6 1 FIG. 5. Pressur® vs x for Li.
= I See caption of Fig. 4. The
a L LCGTO pressures were found by

3 1 1 numerical differentiation of the

4T 17 LCGTO energies.

2r i

0

x=(VVg)"?

that the ASJEOS matches the LCGTO data better than thiher our new EOS nor the earlier ones could possibly de-
SJEOS and better than the earlier equations of state. scribe that spurious kink.

Finally, we point out that our LCGTO cohesive energies
g have been calculated by subtracting the energy per atom
of the solid in equilibrium from the energy of the free atom,
both calculated in the spin-unpolarized local density approxi-
mation (LDA). The more usual procedure, which finds the
energy of the free atom in the local spin dengitBD) ap- Modern electronic structure calculations require a density
proximation, yields a more realistic cohesive energy but infunctional approximation (DFA) for the exchange-
troduces a spurious kink into the binding energy curve at theorrelation energy, e.g., local denéftyor generalized
value ofx>1 where the system begins to spin polarize. Nei-gradient® approximations. Near equilibrium, the results of

VI. CORRECTING ERRORS IN Vg, By, B;
AND THE EOS THAT ARISE FROM DENSITY
FUNCTIONAL APPROXIMATIONS

BT

[ Mo energy
0.2

01|

FIG. 6. Bonding energy vs x
for Mo. We have used as inpuis
from Table | andsy, vg, By, and
B, (Table Ill) from the ASJEOS
fit to seven LCGTO data points in
the range 0.98x<1.04. At the
highest-compression LCGTO

¢ (hartree)

¢ (hartree)
=)
1

0.2 point shown, the pressure is 14.4
[ Mbar according to both ASJEOS

03[ and numerical differentiation of
i the LCGTO data.

04

05 R B R R SR
0.75 0.8 0.85 0.9 0.95 1
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Al pressure ratio

r \\ Y
-...HO2 “Birch \Murnaghan

" ASJEOS

FIG. 7. Pressure rati®gqog/

LCGTO ©

Peos/PasJeos

Pasieos Vs x for Al, using the
equilibrium parameters from the
caption of Fig. 2.

0.7 0.8 0.9 1
X=(VIV)"3

such a calculation may be fitted to the SJEOS of 26§):

1 3aDFA 2bDFA CDFA
PPFA(x) = 30074 0 + = + wall (42)
where in this section
b |1
X= ( ngA) . (43

Then the bulk moduluB}™* and its pressure derivative

BPFA may be found from Eqg28) and (29).

In comparison with the experimental equilibrium volume
vEXP!, the theoretical volumeg™ can be in error by a typi-
cal 4% or 5%>’ The main source of this error, identified by
Fuchset al®® as the core-valence interacti¢see also Ref.
59 and Fig. 9 of Ref. 60 is in pseudopotential theory em-
bedded mainly in thea®"™ term of Eq.(42), i.e., in the
pseudopotential acting on the valence pseudo-orbitals. Thus,

if we know v§*P', we can write a corrected EOS

- 1 |3a 2pPFA  (DFA
P(X):308FA e | 44

SJEOS

Li pressure ratio B

FIG. 8. Pressure rati®gqs/
Pasieos Vs x for Li, using the

Peos/PasJEos
1

equilibrium parameters from the
caption of Fig. 4. The LCGTO
values display an electronic phase
transition (Refs. 64 and 6pbat x
e A ~0.6.

08
o UBER,
06 L Birch,’,f _
AT L1 L1 P N BN RN RPN BN 1L
05 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
x=(VN0)”3
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with a adjusted to mak@’(x) vanish Whenv=vgxm or X TABLE V. Colrrect.ing the bullk modulus from the Iogal density
=¥ functional approximatiotDFA) via Eqs.(47) and(50), which em-
o ploy the experimental equilibrium volumes*”* and the ASJEOS
~ DFA equilibrium parameters from Table Ill. A more recent experi-
_ _9nDFA,, _ ~DFA,2
3a=—2b"""%o— """ Xq, (45 mental value for Al isBS*P'=0.727 Mbar(Ref. 76.
- vgxpt 13 (46) Metal U(?FA vgxpt B(E)JFA E\é\,c Bo ngpt
Xo= pDFA (bohr) (Mbar)
~ Al 108.0 112.0 0.820 0.686 0.741 0.794
DFA DFA expt ;
R’g‘jé’g‘é‘d ]f’"éo ;egp'a‘;:a Ey a ;‘”d :0 3y4‘20 '”ft_hg Li 128.0 1425 0150 0.103 0.130 0.133
of Eq(39).] From Egs.(3), (4), and(44), we fin Mo 101.8 1055 204 252 272 273

the corrected bulk modultB, and its pressure derivatii,

atv= vSXpt:

which can also be derived phenomenologically by replacing

N 2 |[pPFA  (DFA ePFA(X) by xg 3ePFA(x—x0+1), i.e., by shifting the DFA
Bo=— 9pDFA| 48 + R (47) energy curve rigidly along the axis to bring its minimum to
vo 0 0 the experimental equilibrium value &fand then rescaling it
11 |,DFA_ 10 .DFA by Xaa'
- 3 b +3cC Xo
B,= . (48)
pbPFA L CDFAXO VII. DISCUSSION AND CONCLUSIONS

A different way to make this correction was proposed In a sense, the construction of a universal or normal equa-

recently by van de Walle and Ced&WC).6* We discuss this t'ﬁn (I):; St?te LS only ?jn e?er(c;_se mf fﬁrvehf'tt!ng' Ivaen dso, It d
work as an example of a phenomenological approach to thighould refiect our understanding ot thé physics of condense

correction. Unlike our Eq(44), which changes the shape of matter under compression and expansion. Here we have used

the pressure, they simply shifted this curve up or down by dhe simple physics of the simple metals as a guide for this
constantA: construction.

Like the Murnaghan, Birch, UBER, and HO2 equations of
state, but perhaps more reliably, our SJEOS of (26) and
our ASJEOS of Eq(39) predict the pressure(x) of a com-
pressed solid in terms of only two material parame®gs

ngsA_ ;jrcg)?;;n |tg riTt]?/\i/(aBs ugé%) B 0 Bigﬂagfr;ﬁ? ?ﬁzﬁae andB;. This remarkable economy of description is shared by
Y: pe, y g Y certain microscopic models for the simple metals: not only

to bring the local density pressures for solid Ne into agree; . - )
ment with experiment. With the help of EG2), we find the stabilized jellium model of Ref. 2, but also the universal

local pseudopotential model of Ref. 63. In the latter model,
B, determineg ¢ via Fig. 2 of Ref. 63, them; andB deter-

PWC(x)=PPFA(x) +A, (49)

2 bDFA 6 CDFA 3 ) . N X ;
Bwe_ _ (__ ) 4 =2 mine z via Fig. 3 of Ref. 63, and finally; and z determine
0 wHFAl x5 \Xo xg \x3 the structured local pseudopotential and everything that can
OFA be calculated from it.
=B"""(Xo). (50) For the UBER of Eq(7),

Equation(50), which amounts to evaluating®™(x) at the X2P(X)
experimental equilibrium poink,, has also been widely UBER: ——————<=BgH((B;—1)(1-x)), (52
used. 3(1=x)

Comparing Eqs(44) and(49), we see that only our physi- whereH(y) =1+ 2y+O(y?). But for our SJEOS of Eq25)
cally motivated equatior{44) satisfies the exact condition gnd for our ASJEOS of Eq39),
P(x=%)=0. For Li, Al, and Mo, our equatiof47) is more
accurate than E50) (Table 1V). x2P(x)

We favor our equation$47) and (48) for the correction, 3(1=x) Bo[H1(1—=x)+(B1—1)Hx(1—-x)], (53
not only because they work, but also because they are based
upon microscopic insight into the origin of the density func-whereH,(y)=1+ O(y?) andH,(y)=3y+0(y?). Thus we
tional error. The inputdPFA and cPFA can be found from have two universal functiondH; andH,) instead of onéH)
Egs.(31) and(32), if BS™* andBP™* are known. Neglecting and a linear fitting problem instead of a nonlinear one. The
the difference betweewg and xg in Eq. (47) leads to the linearity is an advantage, since the solution of linear alge-

simpler estimate braic equations is simple and unique. Although oBlyand
B, enter our ASJEOS pressure o1, the cohesive energy

~ B(E;FA go has an effect upon our values fBg andB; through our
Bo~—7—, (51)  fitting procedure around=1. Thus, the cohesive energy is

Xo anindirect input to the ASJEOS for a compressed solid.
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For the stabilized jellium modelFig. 1), the SJEOS is APPENDIX A: EFFECT OF PHONON ZERO-POINT
clearly more accurate than the other equations of state. For ENERGY ON THE EQUILIBRIUM PROPERTIES
the bonding energies of the real metals and for their pres- OF A SOLID AND ON THE EOS
sures under expansion, the ASJE@®iich inputs the cohe-

. . The phonon zero-point energy per atons sw, wherew
sive energye,) is best. For the pressure of compressed AIiS an average phonon frequenéys = 2ks0p .2” Here®,, is

(Fig. 7), the ASJEOS seems best but the UBER is also veryhe pebye temperature. Using a superscript zero to indicate a

good. For the pressure of compressed (Eig. 8, the  guantity in the absence of phonon zero-point energy, we find
ASJEOS seems best but HO2 and H12 are also very good for

x=0.6; for x<0.6, these equations of state appear to fail 3

because of a£-2p electronic transitiofi*~%® For Mo, the e(v)=¢%0v)+ Sho), (A1)

ASJEOQOS is almost perfect. We see no reason to continue to

use the Murnaghan and Birch equations, since even the sim- 3

pler SJEOS is much more realistic. P(v)=P%0v)+ = y(v)
The physically motivated SJEOS and ASJEOS also pro- 2

vide a promising wayEqs.(44)—(48)] to correct EOS errors

that arise from the use of approximate density functionals. B(v)=B%v)+ 3 Y2(0)+ y(v)—v dy(v)|ho()
Once we have fitted energies or pressures to a good ana- 2 dv v '

lytic EOS form, we can use the residuals of thé &t the (A3)

pressure ratiogFigs. 7 and 8 to identify subtle electronic here

phase transitions. Figure 8 shows a sudden pressure soften-

ing in Li for x<0.6 due to thes— p transition®*~®® Figure 7

hw(v)

3
v

(A2)

suggests a more gradual pressure softening in Akfe0.8 y(v)=— g d—w (A4)

due to the lowering and filling of the band§’ which in turn ® dv

may cause structural phase transiti6fis. is the Grineisen parameter discussed at the end of Sec. II.
Although we have takefandh of Egs. (36)—(38) to be We immediately find

fixed universal parameters, it is also possible to teedtand

a-h as linear-fit parameters for each solid. While Al, Li, and Agg 9 kgOp

Mo do not seem to need this extra flexibility, some other 8_0:_ 8 ey (A5)

materials might require it. Those least likely to require this

extra flexibility are the simple metals in close-packed orfor the fractional change ie, due to zero-point vibration.

nearly close-packed crystal structures, our paradigm materiFaylor expansion around, and use of Eq(A4) gives
als.

FORTRAN subroutines for the SJEOS and ASJEOS are Avy 9 kg®p

available on request from perdew@tulane.edu. o~ 16 1~ g . (AB)
Finally, we note that there are significant discrepancies 0 0vo
between our results for compressed Al and those of Ham@o evaluatedy/dv, we need Eq(19) of Ref. 26:
and Suitd® For x< 0.8, they plot their results on a logarith-
mic scale which conceals differences, bukat0.8 they find 1B(1+B)—-¥p
that the UBER pressure is only about 2% higher than their y(v)=-1+ e e— (A7)
calculated pressure in the local density approximation, while —3P
we find it about 10% higheiFig. 7). Their values fowq, By, 2 ,
andB; were fitted as ours were to a narrow range of calcu—(SO thaty—3 asx—0). We find
lations aroundx=1 (see the caption of Fig.)2but differ dy 2 1 B. dB’
significantly from ours. For example, they firg,=0.726 v—| ==-—=-B;— 0= (A8)
Mbar while we findBy=0.824 Mbar, in better agreement dv vo 9 3 2 dp vo
with the linearized-augmented-plane-wave val(@840 ) )
Mbar) found in Ref. 57. Equation(5.5) of Ref. 6 gives the UBER value
B,B,=B a8’ 19 1B 182 (A9)
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TABLE V. Effect of phonon zero-point energy upon the equi- where
librium properties of the simple metals, using experimental values

of vgy,£0,Bg, andB; from Table I, and experimental Debye tem- (o v(v)
perature®, from Ref.74. q(v)= . dv v (A14)
Metal 05 (K) Aggleg Avglug ABy /By For a simple estimate, note that, fo@ <v,,
Cs 38 —0.005 0.003 —0.009 1
Rb 56 —0.006 0.005 —0.014 3=70)<5(B1~1). (A15)
Tl 79 —0.004 0.003 —0.012 ) )
K 91 —0.009 0.008 —0.021 Thus the extra pressure in E@\2) is bounded between two
Pb 105 —0.005 0.002 -0.011 limits,
In 108 —0.004 0.003 —0.011 3 3
Ba 110 ~0.006 0.003  —0.008 1keOp(vo) _3 )@ 35 Ke®p(vo)
2 < T b < (B;—1)——"
Sr 147 ~0.008 0004  —0.013 Vx5 27 407 T x3EL DR
Na 158 —-0.014 0.013 —0.031 (A16)
Sn 200 —0.006 0.005 —0.025 where the upper bound should be close #etv, and the
Ca 230 —0012 0.006 —0.018 lower one forv—0. For Al and Li at the volumes studied in
G_a 320 —0.011 0.007 —0.021 this paper, the extra pressure of E416) is negligible.
Li 344 —0.020 0.024 —0.045
Mg 400 —0.026 0011 —0.036 APPENDIX B: STABILIZED JELLIUM
Al 428 —0.012 0.009 —0.033 AND THE IDEAL METAL
Be 1440 —0.042 0.043 —0.140
In the stabilized jellium model of Ref. 2, the total energy
Mo 450 —0.006 0.003 ~0.011 as a functional of the electron densityr) is
Es{n,n.]=Ej[n,n ]+(8M+WR)f d3rn . (r)
dB’ 74 , L ' ' '
BoB,=Bogp| =~ g +5B1~Bi- 5(2F*+16F
%0 +<5v>wsf d*rO(r)[n(r)—n.(r],
F2(6+F)?
_ +eqg—m— + Bl
4FB]_) &p 81801)0 (X—>0 ), ( )

wheresy = —9e%22%(10r ) , wg=2me?nr2 (in whichr. is
a constant determin_ed lmand by the equilibrium value of
wherea=—2.0. [InCIdentaIIy,a=0 n Eq (AlO) gives the or rs), and n+(r):n®(r) is the positive background den-

(A11)

SJEOS value, and=— 3 makes Eq(A10) agree with Eq. sjty. @(r) equals 1 inside a zero-thickness surface and zero

(A9) for the harmonic crystal, for whicB;=1 and Eq(A9)  outside.E,[n,n. ] is the energy functional for ordinary jel-

is exact] Using Eq.(A8), we find lium, and(v)ys is a pseudopotential correction averaged
over a Wigner-Seitz cell:
ABp_ [ . L 1o |]Av B
Bo 2(Bmd) B,-119 371 27°7%/| vy (v)ws=e+entWg, (B2

(A12)  \vheres =3e222%(5r,) .
Table V shows our estimates for the simple metals. Our In the zero-valence limit 4—0), we havegy—0, P

ABy /B, for Mg is close to the value<0.028) calculated in  —(Q, V_VR_><5U>WSv and the energy functional becomes
Ref. 68. If we had neglected the contribution frendy/dv,

as in Ref. 69, we would have founkiB,/By=—0.015 for
- o/Bo Eofn.n. = Enn, 1+ (80)ws| & (1
The rather large effect we predict for Be improves the
agreement between theoretiddDA and GGA) (Ref. 70 (s fds‘r@ AN —n. (r
and experimental values for the equilibrium volume and bulk (dv)ws (OIn(r)=n.(n)].
modulus, and might explain the anomalous surface lattice (B3)

relaxatiorf®"* of this metal.
Away from equilibrium, we can use E¢A2) to estimate  But @(r)n,.(r)=n.(r); therefore,
the contribution of phonon zero-point vibration to the pres-
sure. Integration of EqLA4) gives lim Esin,n+]=EJ[n,n+]+<5v>st d3ré(r)n(r),
z—0

w(v)=w(vy)el®, (A13) (B4)
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which is the original ideal-metal energy functional of Ref. 1
38. After it was realized that the original ideal metal is B=—5[28(F3+7F2—9F)+b(F3+7F2—6F—2)
unstablé®">"3in the bulk, the model was modified to its
current metastable forft:"® The stabilized jellium model —d(F3+7F?)], (C3
with z=1 is truly stablé? for r>1.6.

Our conclusion that the original ideal metal is the zero- 1
valence limit of the stabilized jellium model is consistent C= -[2a(F3+8F?—9F—3)+b(F3+8F?—6F—4)
with Soler's?way of forming the ideal metal by “grinding” 2
the ions into a fine powder spread uniformly over the crystal: —d(F3+8F?)], (C4)
asz—0, the radiusz ¢ of the atomic cell also vanishes.

1
APPENDIX C: DETAILED ASJEOS EXPRESSIONS D=— E[Za(F3+ 9F2—9F)+b(F3+9F2—6F)

When fit to theoretical data, the ASJEOS of E(@!) and
(41) has onlya, b, andd as independent fitting parameters.
The parametec is replaced by

—d(F3+9F?+6)]. (C5)

Using Egs.(2) and(41), one can also find the expansion
c=—-3a—-2b (Cy (x>1) branch of the ASJEOS pressure:

through the equilibrium conditiof27).
Furthermore, equating the zeroth, first, second, and third
derivatives of both sides of the ASJEQEgs.(34) and(41)]

ASJEOS: P(x)

e Fx-DI3A 2B+AF C+BF CF DF

atx=1 and solving the resulting system of four linear equa- = +
tions for the parameters, B, C, andD, we find 3vg | x8 x> x4 x3 X2

1 (A+B+C+D)F[F(x—1)—1]

A= 6[2a(|:3+6|:2—9|:+3)+b(|:3+6|:2—6|:) + 5 (x>1).
X

—d(F3+6F?)], (C2) (Cé)
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