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We report the first reliable theoretical calculation of the quantum size correctidrich yields the

asymptotic ionization energy(R) =W+ (3+c)/R+ O(R™?) of a simple-metal cluster of radilR.
Restricted-variational electronic density profiles are used to evaluate two sets of expressions for the
bulk work functionW and quantum size correctian the Koopmans expressions, and the more
accurate and profile-insensitivASCF expressions. We find~—0.08 for stabilized(as for
ordinary) jellium, and thus for real simple metals. We present parameters from which the density
profiles may be reconstructed for a wide range of cluster sizes, including the planar surface. We also
discuss how many excess electrons can be bound by a neutral cluster of given size. Within a
continuum picture, the criterion for total-energy stability of a negatively charged cluster is less
stringent than that for existence of a self-consistent solution.1998 American Institute of
Physics[S0021-960698)01819-4

I. INTRODUCTION potentials’ Therefore this arbitrary value is sometimes still

L . employed for the theoretical interpretation of experimental
The ionization energy of a spherical metal cluster ap- 5¢29.10 Experiments on silver clustet® however, yield al-

proaches the work functiow of the planar metal surface as 1t the valué for «, indicating that the quantum correction
the cluster size tends to infinity. This is expressed by th& js ciose to zero for this nonsimple metal. For completeness,
asymptotic formula we note that the electron affinity of the neutral clustite
binding energy of one excess electrisf

o
I(R)=W+§+O(R’2), (1)
1
—3+cC
where the cluster radiuR is usually defined by A(R) =W+ : +0O(R™?). (5)
R=r/N? 2

In previous worlké we evaluatea: for the jellium model,
in terms of the numbeN of valence electrons in the neutral pyt this model is not realistic for many of the simple metals,
cluster and the density parameter or Seitz radiusf the  predicting an incorrectly negative surface enétgfpr the
corresponding bulk metal with average electron density  metals of higher valence-electron density. In this article, we
n=3/(4mrd) (3  @pply density functional theot¥to calculatew andc within
s/* . . ..
a model for the simple metals that is much more realistic
Within any classical theory, such as the sphericalthan jellium. We findc~—0.08 for this stabilized jellium
capacitot or image-potential modefs® the size-effect coef- model® as for ordinary jellium. The only inputs to this
ficient « in Eq. (1) takes exactly the valug(in atomic units  model are the bulk density and the fact that the energy per
where e’=fi=m=1, #2%/me=1bohr, and me*%?  electron in the bulk metal must minimize at this density,
=1 hartree=27.21 e\J. A mathematical error in earlier pre- while the outputs are realistic surface properties for any
sentations of the image-potential metifoduggesting the simple metal®~Like c to which it is related, the curvature
wrong valueg, has been uncovered and corrected rec<a°’nt|y.energyaC or size effect correction to the surface energy
A more realistic approach needs to include quantum effectswas previously found to be almost the safria stabilized as
These give rise to a quantum correctiorto the classical in ordinary jellium.
value;™’ The stabilized jellium or structureless pseudopotential
model? starts from an expression for the total energy of a
collection of valence electrons and close-packed ions, with
For simple metals treated in the jellium modek —0.08%8  the electron-ion interaction described by a local pseudopo-
for 2<ry =<6 bohr, in good agreement with experimental tential. The small terms of second- and higher-order in the
data(as we shall see in Fig. 4; see also Ref.16 this case, pseudopotential are then dropped. The first-order term, effec-
a~0.42 by coincidence comes close to the arbitrary valudively a constant potential over the interior of the metal, is

2 resulting from the erroneous treatment of the imageadjusted to make the energy minimize at the given bulk den-

a=1i+c. 4)
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sity n. The surface properties of stabilized jellium are 1
independerif of the valencez, which we take to be 1 for 0.8
simplicity.

In the following section, we recall several explicit 06
expressiorfsfor W andc in the stabilized jellium model. The 0.4

exact Koopmans andSCF expressions are equivalent for
density profiles that solve the Euler equatidf/on(r)

= u, but give results with significantly different accuracies 0
for restricted-variational profiles. We also present parameters

0.2

0.2
from which the density profiles may be reconstructed for a N
wide range of cluster sizes, including the planar surface, and 04 ) > 0 P 4
show plots of the corresponding electron density profiles z [bohr]

which are the only input to these expressions\Wrandc.
These profiles are obtained from restricted density-
variational calculations, described in Sec. Ill, where we also
evaluate the expressions to obtain theoretical values for the
work function W, the coefficientc, and the surface energy
a, in the stabilized jellium model. By comparing to “direct”
results from a fit to numerical ionization energies, we con-
firm that the “displaced-profile-change-in-self-consistent-
field” (ASCPH expressions are by far the more profile-
insensitive and accurate ones. The only previous calculations
of c for stabilized jelliumt®'’” were based on the low-
accuracy Koopmans expression; those early estimates are
substantially revised here. -4 -2 0
In Sec. IV, we apply our results falV andc to predict

how many excess electrons can be bound by a cluster of 8. 1. (a The functionsn(x) and f(x) of Eq. (6) for stabilized jellium
given size. Within a continuum picture such as the liquidclusters at three different bulk densities, obtained from the variational cal-
drop model or the local density approximation, we find thatculations in Sec. Iil. f(x) is given in units of n/ke where kg
the total-energy criterion for stability of a negatively charged=(97/4)"¥r is the bulk Fermi wave vectofb) The functions¢(x) and
cluster is less stringent than the condition for existence of %](x)_ of Eq. (10), calculated for stgblllzed jglllum clusters from the profiles

. . . . . Fig. 1(@). ¢(x), the electrostatic potential energy of an electron at the
self-consistent solution. This observation is relevant to a r€fjanar surface, is given in units of the bulk Fermi encigy 2k2. The
cent controversy® over the existence of negative ioNs functionh(x) is dimensionless.
within the local density approximation.

Our numerical results are compared to both results of

self-consistent Kohn-Sham calculations and experimental o )
ionization energies for small clusters in Sec. V. Our conclufTom the jellium edgex=0, because the densityy(x) of a
sions are summarized in Sec. VI. large finite cluster approaches the bulk vatueleep inside

the cluster. We neglect self-compression effétts.
In the next section, we use these functions to calciate
Il. THEORETICAL EXPRESSIONS FOR W AND ¢ andc from the “ASCF” expression€2>78

4
z [bohr]

In both jellium?° and stabilized jelliunt? which are - o n(0)—n
intended to model the simple metals, the work functiti W=47Tf dX[Xﬂ(X)]—ekxc(n)+<5v>ws{TT,
and the quantum correctianto the size-effect coefficient 0

can be expressed expliciflin terms of the electronic density ™
profile n(x) of the planar metal surface and its size-effect o 2
correctionf(x) in the expansion c=47-rf0 dx[x?n(x)+xf(x)]— 3 adnlrs
nr(X)=n(x)+ m+0(R-2) (6) f(0)
R R + < 5U>W4:_F ’ (8)

of the density profileng(x) of a neutral cluster with finite

radiusR. [The coordinatex=r —R gives the distance from wheree,,(n) is the noninteracting kinetic plus exchange-
the edge of the spherical-jellium positive background. Intecorrelation energy per electron in the homogeneous bulk
grals of f(x) andn(x) are related via Eq(A5) of Ref. 5]  metal of densityn. Eq. (7) from Ref. 13 and Eq(8) from
Figure Xa) shows plots of these functions for stabilized jel- Ref. 8 are for stabilized jelliun® For ordinary jellium, the
lium, obtained from the restricted variational calculations determs containing the pseudopotential correctigi )<=
scribed in the next section(x) approaches the bulk density —n degJ(n)/dn must be omitted, and the input profiles
n asx— —, and tends to zero as— +. The function n(x) andf(x) must be recalculated witfv )y<=0. In Eq.
f(x) must tend to zero in both directioms— +o far away (8), the surface energy is
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0 —
aEJ[n]:ag[n]+47Tr§<5v>wsf_ dx{n(x)-nl. (9
The ordinary-jellium expressioag[n], e.g., Eq(793) in Ref.
7, is recovered by settingdv )ys=0.

We can use the profiles(x) andf(x) to calculaté’ the
electrostatic potential energy(x) of an electron at the pla-
nar metal surface and its size correctitrfx) in the
expansion

h(x)

$r(¥)=(x)+ —==+O(R"?) (10

of the electrostatic potential of finite clusters with radRis

The results for stabilized jellium, obtained from the functions

shown in Fig. 1a), are plotted in Fig. (b). By convention,
¢(+2)=h(+»)=0. Furthermore, both the functior(x)
andh(x) approach constant values fors — o,

The electrostatic dipole barrier

Ag

—g(—=)=an [ ax{xdno0-TO(—0)) (1D
of the planar surface and its size-effect correction

Ah

- —h(—00)=47Tf1dx{x2[n(x)—ﬁ®(—x)]

+xf(x)} (12

enter the “Koopmans” expressiohst¢1"2%or W andc,

d . _
W=A¢— e M} —(8)ws, 13

c=Ah. (14
Again, as in the ‘ASCF” expressiong7),(8) for stabilized

jellium, the ordinary-jellium expressions are recovered by

setting{ dv )ws=0. Eq.(14) was derived in Ref. 16.

Ill. DENSITY-VARIATIONAL CALCULATIONS IN THE
STABILIZED JELLIUM MODEL

As we have pointed out in Ref. 8, tleSCF expressions
(7),(8) are equivalent to the Koopmans expressi@$,(14)
if evaluated with the correct functions(x) and f(x), ex-
tracted from self-consistent ground-state densitiggx)

Seidl et al.

TABLE I. Coefficients in expansion€l9), etc., of the minimizing density
parametersl, a, and y of the profile(15) in the stabilized jellium model.
rs, d, anda are in bohr units.

rs d.. dy a, a; Voo Y1

2 —0.4238 —0.185 0.3594 —0.026 0.5453  0.108

3 -0.5918 —0.194 0.4236 -—0.057 0.4978 0.056

4 —0.7249 —0.187 0.4861 —0.065 0.4795 0.051

5 -0.8421 -0.216 05430 -0.087 0.4685 0.027

6 -0.9801 -—0.245 0.6057 -0.106 0.4565 0.010
1 3 3,7
ER[n]sz[n]+EXC[n]+§ d°r | d°r

[n(r)—n, g(N)][N(r")—n g(r")]
X . +AERTN]
[r—r’|
(16)

for the ground-state energy of a cluster with radiBs
=r N3 subject to the normalization condition
fo dr 4mr? ng o (r —R)=N+w. (17)
(Here, for the case of charged clustersis the number of
excess electronsAs in Ref. 7, we use for the noninteracting
kinetic energy functional [ n] the fourth-order gradient ex-
pansion of the extended Thomas-Fermi mddear an accu-
rate description of the uniform density limit, we use the
Perdew-Wang local-density approximafidn to the
exchange-correlation energy functiogl[ n]. In particular,
in contrast to earlier workwe include the term

AEEJ[n]:(EM_H’—VR)f d3r n_g(r)

+<5U>st d*r®(R—r)[n(r)—ng(r)]

(18

in the functional(16), which turns ordinary jellium into sta-
bilized jellium® Heren, g(r)=n®(R—r) is the density of

the positive background. The first term of E48) is purely

a bulk term; it affects nothing calculated in this article, but
yields the most realistic bulk moduli with the choize 1.1

The second term includes an interaction between the elec-
trons and the averaged short-range part of the pseudopoten-

which solve the Euler equation for finite clusters. In contrasttial, which vanishes outside and equ&lsv)ys inside the

if restricted-variational approximations tx) andf(x) are  positive background. Note thdtsv)ys is positive forrg

used, the Koopmans expressions are expected to yield less4.2 and negative forg<4.2.

accurate results than teSCF expressions. The reason for This variational procedure yields approximations to the

this different behavior has been discussed in detail in Ref. 8ground-state densitiesz(x) of neutral clusters. For larg¥,

where we have also presented numerical data for the case tife resulting values of the density paramet&rs, andy in

ordinary jellium. In the present work, we demonstrate thisEq. (15) can be expanded in the fofm

for the stabilized jellium model. _ _1a3 Y

We employ the restricted density variational method of d=d..+d;N"*+O(N"*?) (19

(and similarly fora and v), whered.,, a.,, andvy,, are the

Ref. 24 with the parametrization
= (x—d)a—y corresponding parameters for the density profile of the planar
Ng.a,(X)=n1+e ] (19 surface. Table | gives the coefficients in these expansions,
for the density profile. By varying the parameteksa, and  obtained from least-squares fits to the parameters of clusters
Y, we minimize the valueEg[ng,,] of the density with 10 006<N<100 000. This table provides model densi-
functional? ties for a huge range of cluster sizes for differeptalues.
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TABLE II. Comparison of stabilized-jellium results from both Koopmans 4
and ASCF expressions with direct numerical values from fits to calculated 3.75
ionization energies of finite clusterg/ is the bulk work function, and is 35
the quantum size-effect coefficient of Eq4) and (1). Very similar results )
for ¢ are found within the ordinary jellium modéTable Il of Ref. 8. (rqin 3.25
bohr,W in eV.) 3
2.75
r« W(Koopm.) W(ASCF) W(num.) c(Koopm.) c(ASCF) c(num.) 25
2 3.83 3.72 3.87 —0.048 —0.051 -0.053 2.25
3 3.62 3.27 3.29 —0.041 —-0.074 -0.079 2
4 3.15 2.77 279 —-0.033 -0.080 -0.077
5 2.75 2.38 2.43 —0.028 —0.081 -—-0.069 0
6 245 2.10 209 -0.023 -0.079 -0.080

-0.02
-0.04

-0.06
Note the systematic differences between these parameters

and the corresponding ones for ordinary jelligfable 1 in -0.08
Ref. 7), where a,~0.5bohr for all differentrg. In the 04
present case, howeve, is stronglyr,-dependent, indicat- 2 3 4 ° TS [bohr]6

ing that the stabilized-jellium profiles far;=2 are almost

twice as steep at the jellium edge as the ones fer6. This FIG. 2. Work functionsW in eV (dots in the upper part of the figyrand
can be seen clearly in Fig(d. size-effect coefficientg (dots in the lower pajtfor stabilized jellium at

= th fficients in Table | . diatel r«<=2, 3, 4, 5, 6 bohrs. The dots connected by solid lines represent direct
rom the coetiicients in lable 1, we can immediately , e values, obtained from fits to calculated ionization energies. These

calculaté the corresponding functions(x) and f(x) in ex-  values are very close to results from th8CF expressioné&ashed lines
pansion(6), and thus alsap(x) andh(x) in Eq. (10). The  The Koopmans expressions, however, yield very inaccurate resioiteed
results forr ¢=2,4,6 are plotted in Fig. 1. We use these func-/ines. particularly forc.

tions to evaluate both th&SCF expression§’), (8) and the

Koopmans expressiond3), (14) for W andc. The results

are presented in Table Il. For=3, the two different types V. HOW MANY EXCESS ELECTRONS CAN BE

of expressions yield significantly different results, particu-BOUND BY A SIMPLE-METAL CLUSTER?

larly for the coefficientt. The reason for this discrepancy is In Ref. 26, we presented a continuum or liquid drop

that we are using approximations to the exact functiop§  model(LDM)” for the energy of a charged spherical cluster
and f(x). As we have explained in Ref. 8, the Koopmansyith v excess electron&nd net charge- v):

expressions are equivalent to thA8CF expressions if evalu- )
ated with the exact functions, but are much more sensitive to E(N,»)=E(N,0)— »| W+ ¢ 4 v
small inaccuracies in these functiofilote that the Koop- ' ' R+6) 2(R+6)’
mans values foe, listed in Table 1, are also the step heights \yhere R=r N3 and N is the number of electrons in the
Ah of the functionsh(x) in Fig. 1(b), according to Eq(14).]  neutral(»=0) cluster. In Eq(20), Sis the distance from the
To confirm this observation, Table Il also contains theje|lium edge to the centroid of infinitesimal excess charge for
direct numerical values fow andc, obtained from fitting  the planar R— ) surface.s belongs in the final or elec-
Edg. (1) to the numerical ionization energi¢¢éR)=E(N,v  trostatic term of Eq(20), where it becomes important for
=—1)—E(N,0), which are calculated as energy differencesc|ysters with small radiR; our inclusion of it in the second
between positive singly charged and neutral clusters. We cally chemical potential term is purely a matter of convenience,
these values “direct” because they involve the energiesyith very little numerical effect. Expanding E¢R0) in de-
E(N,—1) of the charged clusters. In contrast, the functionscreasing powers dfi*’® results in the LDM formula71) of
n(x) andf(x), used in evaluating thASCF and Koopmans Ref. 7, if the coefficientdV andc are represented by their
expressions, are extracted from the densities of neutral clugorrespondingASCF expression$7), (8). The distances,
ters. which is important for small clusters, asymptotically contrib-
The ASCEF values are strikingly close to the direct nu-utes only to terms of orde®(N~?3) and is therefore not
merical values, apart from numerical uncertainties whichrelevant in Ref. 7. Eq(20) neglects shell-structure oscilla-
produce a small oscillation in the latter. The Koopmans valtions, to which we turn in Sec. V.
ues, however, are far off these direct numerical results. For For integer values of the excess electron number
¢, which is numerically almost equal to the constar?.08,  within an open shell, the exact energieéN,v) vs v fall
the Koopmans values fall close to zero at the lower densitiemore or less upon a smooth curve which is nicely imitated by
(r¢=6). This is particularly clear from Fig. 2, where the Eg. (20), as we have indicated in Fig. 3. Thus Eg80) not
results are presented graphically versys Our Koopmans only implies Egs.(1), (4), and(5), but can be used to esti-
values ofc for stabilized jellium differ by less than 0.01 mate higher-order ionization energies and electron affinities.
from those of Kiejna and Pogosay. This equation also tells us what to expect for noninteger

(20
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TABLE IIl. A simple-metal cluster of density parameteg and neutral

E[(g/’]'/) 0 radiusR=r /N3 can bindv excess electrons energeticallyNt>Ng, but
05 will find a self-consistent LDA solution for the ion of chargev only for
: N>Ng.. Shown are the predictions of the liquid drop model of EG§)—
A (22) for Ngc andNg .
-15 rs v Nic Ng
2 1 22.6 1.9
2 2 215.0 85.7
o5 3 767.3 434.3
o] 0.5 1 1.5 2 25 , 3 4 1 10.6 11
2 92.9 38.1
FIG. 3. A plot of the energ¥E(N, v) of Eq. (20) vs excess electron number 3 322.6 184.6
v for a stabilized-jellium cluster withs=4 andN=50 (solid curve. We
have seE(N,0)=0, and have used fal/, ¢, and§ the same values used to 6 1 8.5 0.9
construct Table Ill. The dashed line models the energy resulting from exact ; 2;2; 1?:&%5

density functional theory, if the dots on the solid curve are presumed to
represent the unknown exact energies for integer

within an open shell from a continuous density functional€XCess chargé interpolated from the stabilized-jellium val-
approximation like the local density approximatiDA ). ues of Ref. 15:56=1.00, 1.11,_1.27, 1.43, and 1.60 bohr for
To bind a given number of excess electrons, the cluster Fs=2, 3, 4, 5, and 6, respectively. _
sizeN must be sufficiently large. Moreover, the condition for I theexactdensity functional theory the two different
the existence of a self-consistent solution to the Kohn-Sharfonditions listed in the paragraph before E2{l) are equiva-
equations,JE(N, »)/d»<0, in a continuum approximation 1€nt, since the exact energy(N,») runs linearly between
like LDA where the energy is a smooth function of is ~ ©ach pair of successive integersand »+1,” as shown by
more stringent than the condition that the total energy bdhe dashed curve in Fig. @\oninteger electron numbers can
lowered by the addition of one more electroB(N,»)  riSe in an average or ensemble fSé?‘._So’éfor an open sys-
—E(N,»—1)<0. This is illustrated in Fig. 3, where the ©M \{v_hlch exchanges_electrons_ Wlth its envwonrﬁeﬂnese
smooth energy curve of Eq20) increases withy for v cond_ltlon_s arenot equalgnt within _the _Iocal density ap-
>1.6, although it has its lowest value for integeat y=2. ~ Proximation, because this approximation makes a self-
This curve predicts that a Na clusters¢4) with N=50 !nteractlon error which is larg&t3! for noninteger t_han for_
atoms can bind'=2 excess electrons. However, there is noteger  electron numbers. When a self-interaction
self-consistent LDA solution which localizes 2 excess elecS0rrection” is applied, even individual atoms find self-
trons on the cluster. There is a self-consistent LDA solutiorFONSiStent negative-ion SO'““Pﬁ%- _
which localizes 1.6 excess electrons on the cluster, with the For simplicity, we have dicussed only the local density

remaining 0.4 electrons distributed over all space. approximation, but the situation is very similar within the
From Eg.(20), there is a self-consistent solution with local §pin dens_ity approximation, where the _sel_f-in'_[eraction
v excess electrons on the clusteNf>Ny., where error is only slightly smaller, and where the ionization ener-
5 gies of Na clustergevaluated as total-energy differencase
N :<V;C_ f) (21) essentially the saméCompare Fig. 2 of Ref. 34 with Fig. 4
SCAWrg rg) of the present articlg.

Our EQ@s.(200—(22) are relevant to a question raised re-
cently in this journaf®!® Within the local spin density or
other continuum approximations, do self-consistent atom-
localized solutions to the Kohn-Sham equations exist for
, (22 negative atomic ions like Hor F~? When the equations are

but the energy is lower for electrons than fow—1 when
N>Ng, where

v—C—3 §
Vel Twn

and clearlyNg<N.. Variants of Eq.(22) have been pre-
sented in Ref. 27(c=—1/8 and §=0) and in Ref. 1 TABLE IV. Work functions W from Eg. (7), and surface energies from

_ . 3 . _Eq. (9), for stabilized jellium. The result§'s.c.” ) obtained with the self-
(c=0). Even though there is no self-consistent LDA solu consistent KS density-profila“S(x) are compared to the resul¢évar.” )

t?on f_or N< NSC’ we still predict the existence of stable nega-rom the restricted variational density profile. Slightly different correlation
tive ions with v excess electrons fo>Ng. For Ng<N energy functionals have been used for the “var.” and “s.c.” calculations.

<N, the LDA solution for integen excess electrons is a (rs in bohr,W anda, in eV,
zero-energy resonané®,n which the last excess electron

3

goes into an orbital of zero energy which is partly localized s W(var) Wise) a(var.) a(s.c)
on the cluster and partly delocalized over all of space. 2 3.72 4.30 0.694 0.868
Table Ill comparedNg, andNg, Egs.(21) and(22), for 3 3.27 3.56 0.650 0.762
imple-metal clusters, using our most realistic inputs: self- 2 2.17 2.92 0.526 0.598
simple » using _ - Inputs: 5 2.38 2.47 0.429 0.475
consistent Kohn-Sham work functions for stabilized jellium ¢ 2.10 2.12 0.357 0.387

(Table 1V), ASCF values forc (Table Il), and centroids of
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6.0 7 Na (r.=3.99) expansion6) from the Kohn-Sham density profiles of small
i spherical clusters. If it could be so extracted, this function

fXS(x), together with the KS density profile“S(x) of the

>4 planar metal surface, should yield complete agreement be-
tween the Koopmans amdiSCF results foW andc.

4.8 For sufficiently large radiiR, the functions f>(x)
ER[nES(x)—nKS(x)] are expected to approach the exact

function f(x) in (6). For clusters withN<400, however,

these approximations td(x) still yield very inaccuratec

values from Eq.(8) which oscillate strongly about~

—0.08 (see Fig. 1 in Ref. B Similarly oscillating values

result from the expression(N)=R[I(R)—W]— 3, with the

KS ionization energies and work functions insertedIfdR)

andW.

24 3 Unlike the function f*S(x), the KS density profile

0.0 0.2 0.4 0.6 0.8 10 n“S(x) of the planar metal surface can be calculated

N-1/3 directly 1 Thus forW andag (but not forc), we can test

e | N ated . iferenséa the effect of replacing the more realistit“S(x) by the
onization energieN) (evaluated as total-energy different restricted-variational density profile for the extended
r<=3.99 clusters v\~ **, whereN is the number of valence electrons in

the neutral cluster. The oscillating solid curve summarizes the Kohn-Shan] NOMas-Fermi approximation. Table IV shows stabilized-
results for spherical stabilized jellium, and seems to oscillate around th¢ellium values of theASCF expressiof(i7) for the work func-
s i o oy e 107 W evaliaed with the KS densiy prfie ) and
g]f?euctss ?)Ezgig:’ial mode(Refs. 4J:L, 42 The dashed Iinec(g=0.50) is less with t.he variational profile from the pre_gedlng ;ectlon, re-
correct than the solid linea=0.42). The dots are experimental ionization SgeCtNF—'ly- The table also shows Stab"'Z?d'Jemum values
energies for NaRefs. 38, 39, 40and seem to oscillate around the dotted aSJ[n] of the surface energy, Ed9), obtained from the
line of Eq. (23) [with «=0.42, 5=1.27 bohr, andV=2.75eV=the mea-  same density profiles. Although the variational density pro-
sured polycrystalline work function of NeRef. 38]. (Na hasrs=3.99 at  fjle does not show the Friedel oscillations of the more real-
foom temperature, and 3.93 at absolute 3ero. istic KS profile n“S(x), the ASCF expressiot(7) yields al-
most the same results for both kinds of profiles.
solved numerically on a radial grid, the answer is'h&? In order to check our size-effect coefficients of Table I
But, within a finite Gaussian basigven one that includes against the predictions of KS theory for small clusters, we
diffuse Gaussiansthe answer seems to be y&&Ve suggest have plotted the KS ionization energies of spherical
that, to find the proper zero-energy resonance, the basitabilized-jellium clusters withh¢=3.99 in Fig. 4. For small
would have to be flexible enough to admit a Kohn-Shamclusters N~1), the radiusR becomes comparable to the
orbital with two lobes—a large-amplitude lobe on the atomradial centroid of excess charge, e.§=1.27 bohr forrg
and a diffuse small-amplitude lobe far away—tenuously con=4.° Therefore, instead of Eq1) we use here the expres-
nected through the potential barrier created by the fractionadion
excess charge on the atom. However, attempts in our gtoup
to find such a zero-energy resonance withd¢aerAac®® pro- I(R)=W+ —— @ a= E_,_C (23
gram have not been successful; the extra electron unexpect- R+6" 2 7

edly goes into an atom-localized orbital of positive energy. resulting from Eq.(20) by the definition!(R)=E(N,»=

—1)—E(N,»=0). The constant’ in the denominator of
(23) does not affect the value of the asymptd®&ic! coeffi-
cient « in the expansion(1), but contributes to the higher

For small clusters, we have also solved the Kohn-Shanorder (R™2) terms which become important for small clus-
(KS) equation’ for the energy functiona(16), within the  ters. Figure 4 compares the Kohn-Sham ionization energies
spin-unpolarized local density approximation. Instead of the€the oscillating solid curveagainst the prediction of EG23)
Perdew-Wang correlation-energy functional, however, wegsolid line). This figure also compares measured ionization
have here used the very similar correlation-energy functionakénergies of Na rs=3.99) cluster®*° (dot9 against Eq.
by Vosko, Wilk, and Nusait/ The KS equations do not (23) (dotted line.
require an approximation to the unknown functiomglin] in Two conclusions emerge from Fig. 41) The Kohn-
(16), since the noninteracting kinetic energy is represente@ham ionization energies of spherical stabilized-jellium clus-
by its exact quantum-mechanical operator. Therefore the K&rs execute a strong shell-structure oscillation around the
results reflect the microscopic shell effects present in regbrediction of Eq.(23) (with «=0.42, §=1.27 bohr, andV
clusters(cf. Fig. 4. In particular, the KS equations yield =2.92 e\=Kohn-Sham work function of stabilized jellium
self-consistent density profileaﬁs(x) which are not re- (2) The measured ionization energies of Na execute a weaker
stricted to a parametrized form such @%). oscillation around the prediction of ER3) (with «=0.42,

Due to the strong shell-effect variations, it is difficult to §=1.27 bohr, andV=2.75 e\=measured work function of
extract an approximatiof“>(x) to the functionf(x) in the  Na*®).

.4>
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V. SELF-CONSISTENT KOHN-SHAM CALCULATIONS,
AND A COMPARISON WITH EXPERIMENT
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Although shell-structure effects are visible in the experi-can then calculate how many excess electrons can be bound
mental ionization energies, they are considerably weakeby a cluster of given size. In particular, we can explain why
than in the Kohn-Sham results for the stabilized-jelliumsome stable negative clusters cannot find selfconsistent solu-
model because of the artificially higispherical symmetry  tions within a continuum approximation such as LDA.
of the model. Ekardt and PenZhhave demonstrated how
shell-structure oscillations are reduced in a “distorted drop-
let model” (see also Ref. 42 We suspect that our E¢23)
with a=1+c(ASCF) (and §#0) will produce agreement ACKNOWLEDGMENTS
with experiment whenever the incorrectly derived=3/8
(with 6=0) does, not only for Na(y<138; Refs. 38, 39,
43), but also for K, (y<35; Ref. 43, Pl (y<8; Ref. 43,
Al, (y<70; Ref. 44, etc., wherey=N/z andz is the con-
ventional valence.
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