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Density-functional versus wave-function methods:
Toward a benchmark for the jellium surface energy
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Carlos Fiolhais and Luis Almeida
Center for Computational Physics, University of Coimbra, P3000 Coimbra, Portugal

~Received 4 October 1999!

For the surface energy of jellium at alkali-metal densities, the local-density approximation~LDA ! and more
advanced density-functional methods disagree strongly with the wave-function-based Fermi hypernetted-chain
and diffusion Monte Carlo methods. We present a wave-vector interpolation correction to the generalized
gradient approximation which gives jellium surface energies consistent with two other estimates based on
advanced density functionals. LDA makes compensating errors at intermediate and small wave vectors. Studies
of small jellium clusters also support the density-functional estimate for the jellium surface energy.
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Kohn-Sham spin density-functional theory1 is now the
most widely used method for electronic structure calcu
tions in solid-state physics and quantum chemistry. Dens
functional approximations are often constructed no
empirically, starting from the electron gas of uniform
slowly varying density. The simple local-density approxim
tion ~LDA ! is remarkably accurate for periodic solids, a
advanced density functionals, such as generalized grad
approximations2 ~GGA’s! and meta-GGA’s,3 work well for
molecules. Typical errors3 in the atomization energies o
small molecules are 22% in LDA, 7% in GGA, and 3%
meta-GGA.

Density-functional approximations are being applied
increasingly large and complex systems, but they must
tested againstbenchmarksystems that are small or simp
enough to provide an ‘‘exact’’ ground-state energy, eith
from experiment or from correlated-wave-function theory.
possible benchmark which is physically different from a bu
solid or a molecule is the jellium surface. The energy
quired to create the surface of a uniform electron gas~jel-
lium! ought to be described by these density functionals e
more accurately than the energy to atomize a molecule.
deed the three density functionals described above, and
eral others to be described below, all predict the same jell
surface exchange-correlation energysxc within a few per-
cent, but show no such agreement with the available wa
function-based methods: Fermi hypernetted chain4 ~FHNC!
and diffusion Monte Carlo5 ~DMC! ~Table I!. The DMC
value is about 150630 erg/cm2 higher than the LDA value
for 2.07<r s<4, wherer s is the bulk density parameter. Th
relative difference is 7% forr s52.07~‘‘aluminum’’ !, and as
much as 50% forr s54 ~‘‘sodium’’ !. If the mutually consis-
tent density functional estimates are correct, then the wa
function-based estimates need to be reconsidered. If on
the less mutually consistent wave-function-based estimat
correct, then something important is missing from our und
standing of density-functional theory.

Popular GGA’s provide a negative correction of 3%
4% to the LDA surface exchange-correlation energy. R
cently, density-functional approximations more sophistica
than GGA have been developed. The following three
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proaches yield jellium surface energiessxc ~Table I! that
agree among themselves to 1%, and are greater thansxc

LDA

by about 2%:~1! A meta-GGA,3 which makes use not only
of the local density and its gradient but also of the orbi
kinetic-energy density, and is free of the self-correlation
ror that bedevils the low-density limits for LDA and GGA
~2! The random-phase approximation,7 ~RPA! which yields
exact exchange and long-range correlation, plus a GGA
the short-range correction to RPA~Refs. 8 and 9! ~RPA1!.
Table I shows the results of an improved construction of t
GGA correction, using the real-space cutoff10 of the gradient
expansion for the correlation hole within and beyond RP
~3! A new wave-vector interpolation as a long-range corr
tion to GGA exchange and correlation, the subject of t
paper, which shows that LDA makes compensating error
intermediate and small wave vectors. Consistent with th
estimates, Skriver and Rosengaard11 found that ‘‘local-
density theory’’ . . . can provide surface energies which
at least as accurate as those derived from experiments’
real metals. GGA surface energies12 are also in good agree
ment with experiment, even for sodium (r s'4).

The electron density at a metal surface is radically inh
mogeneous, and the surface energys ~work required to cre-
ate a unit area of new surface! is dominated by exchange an
correlation. Yet, since the early work of Lang and Kohn6

surface energies have been calculated within the lo
density approximation~LDA ! for exchange and correlation

Exc
LDA@n#5E d3rn~r !«xc

uni f
„n~r !…, ~1!

which is based upon the uniform electron gas. To underst
this situation, Langreth and Perdew13 analyzed the surface
exchange-correlation energysxc into contributions from dy-
namic density fluctuations of various wave vectorsk:

sxc5E
0

`

dS k

2kF
Dgxc~k!, ~2!

wherekF is the bulk Fermi wave vector. They argued th
LDA is right at largek, i.e., for the short-range part of th
2595 ©2000 The American Physical Society
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TABLE I. Estimates of the jellium surface exchange-correlation energysxc , in erg/cm2. r s is the bulk density parameter, in bohr. A
functionals have been evaluated on self-consistent LDA densities. The ‘‘new WVI’’ column is our new wave-vector-interpolation-co
GGA. The ‘‘mrd’’ is the mean relative deviation of each method from ‘‘RPA1,’’ which we regard as probably the most reliabl
(1 hartree/bohr251.5573106 erg/cm2.!

r s LDA old WVI FHNC DMC RPA TDLDA GGA Meta-GGA RPA1 new WVI

2.00 3354 3527 3467 3533 3261 3402 3413 3436
2.07 2961 3347 3152 3064 3125 2881 3002 3015 3038
2.30 2019 2376 2098 1962 2048 2060 2075
2.66 1188 1452 1394 1240 1152 1205 1214 1218
3.00 764 813 801 840 741 779 781 784
3.28 549 719 719 579 531 560 563 565
4.00 261 281 377 390 278 295 252 266 268 270
5.00 111 121 178 119 130 107 113 113 115
6.00 53 58 58 65 52 55 54 55
mrd ~%! 22.1 15.4 129.5 123.2 13.2 110.0 24.9 20.2 0.0 10.8
Ref. 3 13 4 5 7 7 3 3 9
ls

-

or

-
he

zl

-
s

e

li
ge

er
nd

ter-

d

e
la-

n of

c-
te
t

tory

es
exchange-correlation hole around an electron. They a
found that the exchangesx and correlationsc terms ofsxc
have canceling small-k ~long-range! contributions, so that
LDA works better for the sumsxc than for either term sepa
rately. Interpolating to the exactk→0 asymptote ofgxc(k),
they found a positive correction to LDA which was 5%
10% of the positivesxc

LDA @old wave-vector interpolation
~WVI !, Table I#. The work of Langreth and Perdew ex
plained why simple density functionals work, and led to t
generalized gradient approximations~GGA’s!,2

Exc
GGA@n#5E d3rn«xc~n,¹n!. ~3!

However, the jellium surface energy has remained a puz
The exchange-correlation energy may be written13 as

Exc5
1

2E d3r E d3r 8
n~r !nxc~r ,r 8!

ur2r 8u
, ~4!

in atomic units\5m5e251. Heren(r ) is the electron den-
sity and nxc(r ,r 8) is the density atr 8 of the exchange-
correlation hole around an electron atr . The local density
n(r ) determines the on-top (ur 82r u→0) hole density, not
exactly but to a good approximation,14 and the low-order
derivatives of n(r ) determine the short-range~small ur 8
2r u) behavior of the hole.15 By Fourier analyzing the Cou
lomb interaction 1/ur 82r u, we find the wave-vector analysi
of Exc , which we separate into bulk and surface terms.

The solid we consider is jellium, a rigid uniform positiv
background of densityn̄53/4pr s

35kF
3/3p2, filling the half-

spacex,0 and neutralized by electrons. Jellium is a simp
fied model for simple metals. The surface exchan
correlation energy is

sxc5E
2`

`

dx n~x!$«xc~@n#;x!2«xc
uni f~ n̄!%, ~5!

and its wave-vector analysis is

gxc~k!5E
0

`

du8kFu2bxc~u!sin~ku!/~ku!, ~6!
o

e.

-
-

where

bxc~u!5E
2`

`

dxn~x!$nxc~@n#;x,u!2nxc
uni f~ n̄;u!%. ~7!

Here«xc
uni f andnxc

uni f are the exchange-correlation energy p
particle and hole density of the uniform gas, a
nxc(@n#;x,u) is the spherical average at separationu of the
hole density around an electron atx.

Langreth and Perdew13 evaluatedgxc
LDA(k) for jellium,

and found lim
k→0

gxc
LDA(k)}k2, different from the exact limit

lim
k→0

gxc~k!5
kF

4p S vs2
1

2
vpD k, ~8!

where vp5(4pn̄)1/2 and vs5vp /A2 are the bulk and
surface-plasmon frequencies, respectively. They then in
polated between Eq.~8! at smallk and gxc

LDA(k) at largek.
We shall here interpolate between Eq.~8! at small k and
gxc

GGA(k) at largek. In all our calculations, we have use
self-consistent LDA densitiesn(x). Our LDA is the local
part of our GGA.2 For the GGA exchange hole, we hav
used the smoothed model of Ref. 16. For the GGA corre
tion hole, we have used the real-space cutoff constructio
Ref. 10, which is smoothed by the integration overx.

Figure 1 shows the wave-vector analysisgx(k) of the sur-
face exchange energysx ~no correlation! for r s54 jellium,
in both LDA and GGA. The peak at intermediatek ('kF)
is lower in GGA, which displays a negative region at smallk.
These GGA features are similar to those of the exactgx(k)
~Ref. 17! for a model density profile, confirming our expe
tation that GGA should improve upon LDA for intermedia
k ('kF). As k→0, gx

GGA(k) fails, tending to zero and no
to the correct negative constant.18 ~When comparing Fig. 1 to
previous wave-vector analyses ofgx

LDA , one should recall
that our hole models average out the long-range oscilla
parts, and so are smooth atk52kF .)

Figure 2 shows the LDA and GGA wave-vector analys
when correlation is included. As k→0, gxc

LDA(k)
}k2

•gxc
GGA(k) looks linear at smallk, but that is an illusion
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FIG. 1. Wave-vector analysis of the surfac
exchange energy~no correlation! for the jellium
surface with bulk densityr s54 bohr. LDA
and GGA curves are shown. The area und
the curvegx(k) vs k/2kF is the surface exchang
energysx , in erg/cm2. The exactgx(k) tends to
2235 erg/cm2 ~Ref. 18! as k→0.
@sx

LDA5222,sx
GGA5128,sx

exact5157 (erg/cm2)
~Ref. 7!.#
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of scale. The GGAnxc is short ranged for all electron pos
tions, and itsgxc(k) is proportional tok2 when k is suffi-
ciently close to zero. In comparison withgxc

GGA(k), gxc
LDA(k)

is too high at intermediatek, leading to some error in the
original interpolation of Langreth and Perdew,13 a possibility
pointed out by Rasoltet al.17

Interpolations from the exactk→0 asymptote tend natu
rally to the peak ofgxc

GGA(k). We have used the interpolatio
formula gxc(k)5a sin(bx)1cxd ~wherex5k/2kF) for k less
than that of the peak. The parametersa, c, andd are deter-
mined by matchinggxc(k) to the exact initial slope atk
50, and to the value and vanishing slope ofgxc

GGA(k) at its
peak. This interpolation is also shown in Fig. 2.

The parameterb is chosen to keep the interpolation und
control. Figure 2 showsgxc

GGA(k) both beyond and within the
RPA, the latter constructed from the RPA GGA hole of R
9. These curves differ at largek, where the RPA is wrong
and agree at smallk, where the RPA is right. Overall, the
are not so different, consistent with the conclusion8,9 that the
RPA surface energies require only a small short-range
s.
e

FIG. 2. The wave-vector interpolation~WVI !
between the exactk→0 asymptote of Eq.~8! and
the GGA for intermediate or large wave vector
Also shown is the GGA within the random-phas
approximation ~RPA!. The parameters for the
beyond-RPA interpolation (r s54) are a
51730 erg/cm2, b51.48, c521792 erg/cm2

,

d51.28.
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TABLE II. Total energy per electron (E/N in eV/electron! for neutral jellium spheres withN520
electrons and bulk density parameterr s . All functionals have been evaluated on self-consistent LDA de
ties. VMC and DMC energies are from Ref. 19. Also shown is the prediction of the liquid drop model~LDM !
of Eq. ~9!, with LDA input; the volume, surface, and curvature terms are shown individually.

r s LDA GGA Meta-GGA VMC DMC LDM

3.25 21.763 21.785 21.769 21.754 21.760 21.73521.9610.1910.04
4.00 21.885 21.902 21.890 21.860 21.878 21.86522.1110.2110.04
5.62 21.794 21.803 21.795 21.738 21.782 21.79521.9910.1810.02
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rection. To fix the parameterb, we perform another interpo-
lation from Eq.~8! to the RPAgxc

GGA(k), and require that the
correspondingsxc of Eq. ~2! agree with the RPA calculation
of Pitarke and Eguiluz7 ~the one using LDA orbitals!. The
result isb'3.1920.4286r s .

The results of our beyond-RPA interpolation are shown
Table I. Although the interpolated~new WVI! sxc is close to
sxc

LDA , its wave-vector decompositiongxc(k) ~Fig. 2! is less
like that of LDA ~Fig. 2!. The LDA gxc(k) has canceling
errors at small and intermediatek.

The strong long-range contribution@ n̄xc(k)}k according
to Eq. ~8!, or n̄xc(u)}u24 as u→`# to the exact surface
exchange-correlation energy is unusual. The exact wa
vector analysis ofExc for a finite system behaves likek2 as
k→0. This fact explains how~in spin-density functional
theory! the GGA can be more accurate than LDA for th
atomization energy of a molecule,2 and yet less accurate for
the metal surface energy. Breaking up a molecule crea
extra microsurface around each atom. If there were
anomalous small-k contribution to the exactsxc , then LDA
would overestimate the metal surface energy and the G
would correct this overestimation, the typical situation fo
the atomization energy of a molecule.

The discrepancy between density-functional and diffusi
Monte Carlo values for the surface exchange-correlation
ergy is surprising. Fixed-node DMC results are often r
garded as ‘‘exact,’’ although those for extended systems
quire an extrapolation from finite simulation cells. We clos
this paper with a study of finite jellium spheres, for which n
such extrapolation is needed.
n

e-

es
o

A
r

n
n-
-
e-

We consider a neutral jellium sphere withN520 elec-
trons. Table II shows the total energy per electronE/N ~in-
cluding the electrostatic self-energy of the uniform positiv
background! evaluated in LDA, GGA, and meta-GGA, in
comparison with variational~VMC! and diffusion Monte
Carlo ~DMC! results of Balloneet al.19 All three density
functionals give similar energies in reasonable agreeme
with the DMC values, and not much lower as one woul
expect if the true surface energy were much higher than
density-functional estimates. In particular, the LDA an
meta-GGA energies are very close to DMC. The energy
this small cluster is predicted reasonably well by the liqui
drop model,20 using LDA input21 for the surface energys
and curvature energyg,

E'«bulkN1s4pR21g2pR, ~9!

whereR5N1/3r s is the cluster radius~Table II!. While the
curvature contribution is small, the surface contribution
not. If DMC surface energies from Table I were used instea
of the LDA, the surface term forr s54 would increase from
0.21 to 0.38 eV, and the accuracy of Eq.~9! would be lost. In
other words, the liquid drop model gives jellium cluster en
ergies consistent with those of DMC, but only if one uses th
density-functional estimate for the jellium surface energy.
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