PORTUGALIAE MATHEMATICA

ISSN 0032-5155

VOLUME 42

1983-1984

Edição da
SOCIEDADE PORTUGUESA DE MATEMÁTICA

PORTUGALIAE MATHEMATICA
Av. da República, 37-4.º
1000 LISBOA—PORTUGAL

ON THE FISCHER INEQUALITY

BY

JOÃO FILIPE QUEIRÓ

Universidade de Coimbra, Departamento de Matemática 3000 Coimbra — PORTUGAL

ABSTRACT. A simple proof of Fischer's inequality concerning positive definite matrices is given. It is based on a theorem by M. Fiedler giving an upper bound for the determinant of the sum of two positive semidefinite matrices.

Let G be an $n \times n$ positive definite hermitian matrix, partitioned in the form

$$G = \begin{bmatrix} H & X \\ X^* & K \end{bmatrix}$$

where H and K are square. A well known result of E. Fischer [2] (which generalizes the famous Hadamard determinant theorem) states that

$$\det G \leqslant \det H.\det K$$

with equality if and only if X = 0.

This has been proved and generalized in a variety of ways. We offer here still another proof. It is based on the following result of M. Fiedler [1]: if A and B are $n \times n$ positive semidefinite hermitian matrices, with eigenvalues $\alpha_1 \geqslant ... \geqslant \alpha_n$ and $\beta_1 \geqslant ... \geqslant \beta_n$, respectively, then

$$\det (A + B) \leqslant \prod_{i=1}^{n} (\alpha_i + \beta_{n-i+1}). \tag{1}$$

Received January 5, 1984.

We apply a trick of H. Wielandt [4, p. 120], which has been used to deduce inequalities for eigenvalues of complementary principal submatrices of hermitian matrices from inequalities for eigenvalues of sums of hermitian matrices [3], [4]. The idea is as follows: Since G is positive definite, we have $G = T^*T$ for some nonsingular T. Suppose H is $r \times r$ and write $T = [T_1T_2]$ where T_1 is $n \times r$. Then $H = T_1^*T_1$, $K = T_2^*T_2$ and $TT^* = T_1T_1^* + T_2T_2^*$. Denote by $\lambda_1 \geqslant \ldots \geqslant \lambda_r$ (resp. $\mu_1 \geqslant \ldots \geqslant \mu_{n-r}$) the eigenvalues of H (resp. K) which, apart from zeros, coincide with those of $T_1T_1^*$ (resp. $T_2T_2^*$).

We then have, using (1),

$$\begin{split} \det \; G &= \det \; TT^{\textstyle *} = \det \; (T_1T_1^{\textstyle *} + T_2T_2^{\textstyle *}) \leqslant \\ &\leqslant \lambda_1 \ldots \lambda_r \; \mu_{n-r} \ldots \mu_1 = \det \; H. \; \det \; K. \end{split}$$

Now suppose det $G=\det H$. det K. Following Fiedler's proof of (1), we see that there is equality there if and only if A+B has eigenvalues $\alpha_1+\beta_n,\ldots,\alpha_n+\beta_1$. Hence, in our situation, there exists a unitary U such that $UT_1T_1^*U^*=\operatorname{diag}\left(\lambda_1,\ldots,\lambda_r,0,\ldots,0\right)$ and $UT_2T_2^*U^*=\operatorname{diag}\left(0,\ldots 0,\;\mu_{n-r},\ldots,\mu_1\right)$. Therefore we have $UT_1T_1^*\;T_2T_2^*U^*=0$. Since T_1 and T_2^* are full-rank matrices, it follows that $X=T_1^*T_2=0$, as desired.

REFERENCES

- M. Fiedler Bounds for the determinant of the sum of hermitian matrices, Proc. Amer. Math. Soc. 30 (1971), 27-31.
- E. Fischer Über den Hadamardschen Determinantensatz, Arch. Math. Phys. (3) 13 (1908), 32-40.
- 3. R. C. Thompson and S. Therianos Inequalities connecting the eigenvalues of a hermitian matrix with the eigenvalues of complementary principal submatrices, Bull. Austral. Math. Soc. 6 (1972), 117-132.
- H. Wielandt Topics in the Analytic Theory of Matrices, Lecture notes, Univ. of Wisconsin, Madison, Wis., 1967.