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Learning Sensor-Based Navigation of a
Real Mobile Robot in Unknown Worlds

Rui Aradjo and Anbal T. de Almeida

Abstract—in this paper, we address the problem of navigating A widespread approach for mobile robot navigation is based
an autonomous mob_lle robo_t in an ur_]known indoor environment.  on the occupancy grid representation of the environment [23].
The parti-game multiresolution learning approach [22] is applied Occupancy grids represent the world as a two-dimensional
for simultaneous and cooperative construction of a world model, f | d cell ith h cell holdi |
and learning to navigate through an obstacle-free path from a @ff@y OF evenly spaced cells, with each cell holding a value
starting position to a known goal region. The paper introduces a Which represents the confidence in whether it is occupied space
new approach, based on the application of the fuzzy ART neural or free space. Although grid-based models are easy to build
architecture [7], for on-line map building from actual sensor and maintain, they impose a constant resolution structure onto
data. This method is then integrated, as a complement, on the y,o environment without any selectivity concerning the nature

parti-game world model, allowing the system to make a more .
efficient use of collected sensor information. Then, a predictive @Nd clutter of the world. A very localized feature of the world

on-line trajectory filtering method, is introduced in the learning May impose a very high (constant-) resolution grid over the

approach. Instead of having a mechanical device moving to search entire state-space. This implies high data requirements, and
the world, the idea is to have the system analyzing trajectories induces excessive detail on world modeling and updating, on
in a predictive mode, by taking advantage of the improved world reasoning (high computational costs), and on the paths that
model. The real robot will only move to try trajectories that F, .

have been predicted to be successful, allowing lower exploration "€SUlt from such a model. Also, the difficulties on the direct

costs. This results in an overall improved new method for goal- application of grid-based models on localization have been
oriented navigation. It is assumed that the robot knows its own pointed out in [28]. An alternative for overcoming the space

current world location—a simple dead-reckoning method is used gnd time complexities of grid-based methods is to use a vari-

for localization in our experiments. It is also assumed that the ; _ "
robot is able to perform sensor-based obstacle detection (not able resolution state-space partition (e.g., [17] and [31]). Local

avoidance) and straight-line motions. Results of experiments with '€solution is usually only high enough to capture the important
a real Nomad 200 mobile robot will be presented, demonstrating local detail of the world. This enables a lower number of cells

the effectiveness of the discussed methods. (space) and thus lower search effort (time). Another alternative
Index Terms—Learning systems, mobile robot navigation. to the costs of grid-based models is to use a set of geometric
primitives for representing objects in the world (e.g., [16] and
[28]). Geometric primitive representations, have been difficult
to build, but are significantly more compact, less complex,
OBOT programming and control architectures must bgnd fully applicable to high- and low-level motion planning
equipped to face unstructured environments, which mgy.g., Section 1V) and localization approaches (e.g., [28]). With
be partially or totally unknown at programming time. Twchigher dimensions the geometric model data requirements be-
of the most important tasks for autonomous navigation of @me exponentially smaller than the requirements of constant-
mobile robot are path planning, and building a world modelesolution cellular models. There are other approaches that do
In this paper, we assume that there is no predefined WoHdt require a map at all, but also do not provide a resulting
model, initially available to a mobile robot, and thabot path world model. For example [4] proposes a reactive approach
finding problemis considered. In this problem, a robot pathhat is based on a fuzzy system that learns to coordinate dif-
avoiding collisions with obstacles must be generated, so thatent control strategies drehaviors,that must be predefined
the system moves from a starting location to a goal region #hd programmed. In [11], a preprogrammed reactive system
the world. A general learning approach is considered where t§h set of basic behaviors, guides an associated reinforcement
robot integrates the abilities to concurrently construct a worldarning system. This can be seen as an automatic teacher
model and learn a path to the goal. A learning system bringfat enables convergence improvement on a system which
the benefit of being based on a concepself programming, otherwise would have greater learning difficulties. Reactive
in which control of a complex system in principle does nofystems are difficult to design and program. To overcome
need extensive analysis, modeling, programming, assistanggs problem, in [9] a methodology is proposed for behavior
or teaching by human experts. Instead, the system acquiresligineering that incorporates reinforcement and evolutionary
competencies. learning. Additionally, pure reactive systems may generate
Manuscript received February 10, 1997; revised April 5, 1998 and Augujg}eﬁidem trajectories since they choose the next action as
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preexisting and/or acquired knowledge, and planning [1], [13Jonstruct a model of its environment, and learn to navigate to
In [1], @ map is used that is composed of world knowledge. the goal, having the predefined abilities of straight-line motion,
[13], the knowledge is integrated into the system by learnirand obstacle detection (not avoidance) using its own distance
a set of both reactive and planning rules. Robot actions aensors. These two learning abilities cooperate and enhance
chosen according to its perception, to its internal state, andeach other in order to improve the overall system performance.
the consequences of its current and expected future behavidre robot is able to navigate to the goal, from the very first
This system makes extensive use of its internal state histdial, and continues to improve navigation, converging to a
to detect, memorize, and recognize landmarks [12]. Landmagkod final solution, in a small number of subsequent trials.
based representations are often organized on a topologithight-line motion is used as a local greedy controller that
structure where the robot environment is represented by graghs be asked by the learning system to move the robot to a
[12], [18], [19]. Nodes in such graphs correspond to distincieighboring cell. In spite of being clearly valuable, the parti-
situations, places, or landmarks. A pair of nodes is connectgame world model does not integrate most of the received
by an arc if there exists a direct path between them. &ensor information, that is consequently lost and not used
[10], a network of places is learned in a special environmettt plan robot trajectories. Additionally, some forgetting of
exploration mode. The resulting graph is then used as thecumulated world knowledge takes place when cellsplitting
basis for navigation. The determination if two places are thleecurs in the system (Section 1I-C).
same or not, is frequently performed by recognizing differ- This paper also introduces and demonstrates the effective-
ent landmarks that have distinct associated sensory featuress, of a new approach for sensor-based on-line map building,
and remains a difficult problem. In [18], distinctive placethat is based on the application of the fuzzy ART neural
are detected as the local maxima of specific functions afchitecture [6], [7]. This approach builds a map of rectangular
the sensory readings. In [19] landmarks are characterizedge®metric primitives, which is then integrated as a complement
features in the world that have physical extensions reliably the original parti-game learning approach, resulting in an
detectable over time, and rough metric information is used finproved new method, allowing the system to make a more
disambiguation purposes. In [24], a neural network is usefficient use of collected sensory information for simultaneous
where the firing of a specific neuron is tuned to detect tl@nd cooperative construction of a world model and learning
landmark features sensed at a given place, and a sequdnc@avigate to the goal. In this context, a predictive on-
of recently detected landmarks is used for disambiguatidine trajectory filtering method is introduced in the learning
purposes. Reactive strategies are often integrated and ugpgroach, allowing a very significant reduction in the time-
in landmark based approaches to move between (e.g., [L8)nsuming exploration effort associated with searching the
and both between and within landmarks (e.g., [19]). In [30jyorld with a real robot. Instead of having a mechanical device
a system is proposed that integrates a learned graph-tge@rching the world, the idea is to have the system analyzing
world model, with a reactive controller. The resolution ofhe feasibility of trajectories in a predictive mode, by taking
topological maps tends to be determined by the complexigglvantage of the improved world model. The real robot will
of the environment, thus they usually have the advantagely move to try a trajectory that, for the current model, has
of being compact, and consequently permit fast planningeen predicted to be successful.
Additionally, topological approaches are usually more tolerant The system requires the knowledge of the robot current
to errors in the exact determination of the robot locatiolosition. However, in this paper we do not deeply address
In [27], grid-based and topological maps are integrated the problem of mobile robot localization. We simply use
order to take advantage of the orthogonal strengths of b@bcumulation of encoder information to perform robot local-
approaches. Using the Voronoi diagram as an intermediazétion. Even though this simple approach induces errors, it
tool, the system extracts a topological map from a grid base@s sufficient to experimentally validate the effectiveness of
model previously constructed by exploring the environmerihe described methods.
Evolutionary learning approaches for mobile robot navigation, The organization of the paper is as follows. Section II
have also been proposed and experimented, e.g., [14].presents the basic learning architecture. Section Il presents a
difficulty with these approaches is that learning a solution Rew method for sensor-based map building, that in Section IV
considerably time-consuming. is integrated on the parti-game algorithm, yielding an improved
To gain advantages from different approaches, this paPproach to navigate a mobile robot. Section V presents the
per integrates ideas from multiresolution partition methodéxperimental environment. Section VI presents experimental
and geometric primitive based and graph based methofigvigation results obtained with a real Nomad 200 mobile
Specifically we demonstrate the application, of the parti-ganffebot. Section VII presents a discussion, and in Section VIII
learning approach [22] for learning to navigate a mobile rob#t€ make some concluding remarks.
from an initial position, to an initially known goal region
on an unknown world. It is a multiresolution approach that
incorporates ideas from both graph-based, and partition-based
methods. The algorithm does not have any initial internal The problem we wish to solve in this work may be stated
representation, map, or model, of the world. In particulars follows: A mobile robot is initially on some position in
the system has no initial information regarding the locatiotthe environment, or world, and then it must learn a path to
shape, and size of obstacles. The robot can simultaneoushypredefined goal region in the world. The system does not

Il. LEARNING ARCHITECTURE
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have any initial internal representation, map, or model of the kd-tree
world. It is assumed that the robot knows its own current world
location. It is additionally assumed that the robot is able to
perform sensor-based obstacle detection (not avoidance), and
straight-line motions between its current position and some
other specified position in the world. A straight-line motion
may fail when a stopping mechanism is triggered due to the
detection of an obstructing obstacle.

The robot control architecture used in this work, is based
on the application of the parti-game learning approach [22] to
the specific case of learning a mobile robot path. The original
formulation of the algorithm was reorganized in order to im-
prove computational performance without changing the overal
effect. The parti-game algorithm applies to learning control
problems specified by a predefined goal region, and in whiEl§- -
1) we have continuous and multidimensional state and action
spaces; 2) “greedy” and hill-climbing techniques can beconje
stuck, never reaching the goal; 3) random exploration canpe |77 77° Neighborhood relations
intractably time-consuming; and 4) we have unknown, arid —> Aims
possibly discontinuous, but deterministic, system dynamig
and control laws. However, part of the control solution i
assumed to be initially available in the form of a local greed
controller, which we can ask to move the system greedi
toward a desired state. However, there is no guarantee t
a request to the greedy controller will succeed. In our cag
the greedy controller is the “straight-line mover,” and 5) ther|
is a known bounded region of the state-space that complet
includes the system environment. As a result of the algorith
operation, a feasible solution is found, not necessarily 4§
optimal path according to a particular criterion.

P
/y./ State-space

State—space partition, organized dsdaree data structure.

— Qutcomes

A. First Concepts

The parti-game algorithm is based on a selective and
erative partitioning of the state-space. It is a multiresolutiol
approach, beginning with a large partition, and then increasing State-space
resolution by subdividing the state-space (e.g., Figs. 1, 2, and
8-10) where the learner predicts that a higher resolutionfig. 2. Cells are organized on a graph data structure that reflects the concepts
needed. In order to reach the goal, the mobile robot pathofsneighbor, aim, and outcome.
planned to traverse a sequence of cells. The ability of straight-
line motion is used as a greedy controller to move from ormalled cells, and will be labeled with integeis 2, ---, N.
cell to the next cell on the path. This request to move fbhere is a special cell representing the goal region. This special
the next cell (a neighboring cell) may fail—usually due teell is never split, and is labeled with numb&OAL = 0.
an unexpected obstacle that is detected to be obstructing lihehis paper we will assume that cells are all axis-aligned
robot path. A database of cell outcomes, observed when thgerrectangles. Although this assumption is not strictly nec-
system aims at a new cell, is memorized and maintained éssary, it simplifies the computational implementation of the
real time. The database is in turn used to plan the sequeatgorithm. Areal-valued states, is a vector of real numbers
of cells to reach the goal cell, using a game-like minimaix a multidimensional space. In our case we define a two-
shortest path approach (Section II-B). Cells are split when thenensional state-space, where the state veeter,[X Y%,
robot is caught on a losing cell—a cell for which the distande composed by the two position coordinates of the mobile
to the goal cell is<. Intuitively this means that, for the currentrobot (X andY). Real-valued states and cells are distinct enti-
resolution, the game of arriving at the goal cell is lost. In thedies. For example, the right partitioning in Fig. 1 is composed
situations, as explained in Section |I-C, the partition resolutiaf six cells, which may be labeled with nhumbets- - -, 6.
is selectively increased by splitting cells in the neighborhodglach real-valued state is in one cell and each cell contains a
between losing and nonlosing cells. continuous set of real-valued stat®&EIGHS(:) is defined

As usual apartitioning of the state-space, which will beas the set of neighbors, or cells which are adjacent o
denoted byP, is a finite set of disjoint regions, the unioncells are adjacent if the intersection of their borders has more
of which covers the entire state-space. These regions will thein one point.
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The partition resolution is incrementally and selectivelwas available, the computation could be difficult. But on a
increased, by splitting in half the cells verifying a specifitearning algorithm, it is natural and more important to learn
criterion (Section II-C). By means of this subdivision procesan outcomes set, only from real experience on the behavior
the state-space partitioning’, acquires an organization that,of the system. Thus, a database of cell outcoeragpirically
in our implementation, is handled bykal-tree data structure observedvhen the system aims at new cells, is memorized and
[3], [15], e.g., Fig. 1. Although other organizations, like theised instead of alpossibleoutcomes. The set afutcomes,
quad-tree structure (e.g., [17] and [31]), would be possible, tbé an actiony in cell {, OUTCOMES(s, j), is defined as
kd-tree structure simplifies the computational implementatighe set of next-cell outcomes that were previously observed
of the algorithm. The:d-tree was originally proposed to solveduring the operation of the system
the nearest neighbor problem in an efficient manner. In this
work, besides being an elegant representation of the stdpUTCOMES(i, j)

space partitioning, it is used as a fast state-to-cell mapping exists a real-valued statein cell 4, for which
mechamsm that, as will become_ clearin the rest of this section, _ J . NEXT-CELL(s, j) = k has been observed
is required for the implementation of the algorithm.

The algorithm incorporates the use of an environmental as a result of a previous application of actifn

model, which can be any model (for example, dynamic or ) ) o
geometric) that we can use to tell for any real-valued stafe$ Will be seen in Section II-C eacW UTCOMES(z, ;)

control action, and time interval, what will be the subsequefEl In Spite of its accumulative nature, is sometimes subject to
real-valued state. In our case the “model” is implemented M€ forgetting of experience. Before an action is experienced,

the mobile robot (which can be real or simulated), and takEf correspondin@ UTCOMES(, j) set is not left empty.

the current position, and position command, to generate #ethese situations the default optimistic assumption is used
next robot position. that we can reach the neighbor that is aimed. Associated to

A path to the GOAL is planned (Section II-B) as a®achOUTCOMES(i, 5) set is anOPTIMISTIC(:, j)
sequence of cells, with the local controller being used féP0lean variable indicating if the optimistic assumption is
advance from one cell to the next. The system is said to BeTently being used IMOUTCOMES(;, j). A database,
aiming a given cell j, when the local greedy controller isD, of previously accumulated experience is formed by the

actuated to keep moving toward the center of gelWhen COMPosite contribution of alDUTCOMES(;, j) sets and
the system is at a cell, by definition the application of OPTIMISTIC(¢, j) variables. The combination of database

an action j consists of aiming the neighboring cejl To D and partitionP constitutes one internalorld modelthat is
each celli, it corresponds @et of possible actionwhich is constructed and used by the system. It will be calledpdugi-
precisely defined alNEIGHS (7). Suppose the system startJ2me (world) modelwhen there is risk of cc_mfusm_n with an
at a given real-valued state,and then aims a neighboring cell@ugmented world model to be introduced in Sections Il and
j. Then theNEXT-CELL(s, j) function tells us which cell v ) _ i )

the system enters when it exits the original cell, or in which !t iS now seen that cells, besides being organized as a
cells the system is when an obstacle is detected, Whicheg@te-sp_ace parpuonmg as illustrated in Fig. 1 have additional
situation occurs first. When an obstacle is detected, a stoppRigcturing relations. Each cell has a set of neighbor cells, from
mechanism is triggered and, by definition, in this situation téhich it can be aimed. Also, there is a set of possible cell
robot is said to becomgtuck.In our work, the test for sticking outcomes for an aim operation. For reflecting those additional
performs an obstacle detection with the distance sensors of #f&/Cturing concepts, cells are also organized on a graph data
mobile robot. Let be the cell containing the real-valued stat§tucture as illustrated in Fig. 2.

s. Then

NEXT-CELL(s, j)
B {i, if we became stuck in

B. Planning with Minimax, and Experience Accumulation

Define thecell length of a, possibly not continuous path
on the state-space as the number of cell transitions that take
place as we go through the path. When the system is at the
In general, we may hav®EXT-CELL(s, j) # j, because real-valued state of a cell ¢, one of the key decisions that
there is no guarantee that a request to the local greatig algorithm has to make, is to choose the next cell at which
controller will succeed. The particular outcome of an actioiie system should aim using the local greedy controller. The
4 depends on the real-valued statefrom which the system sequence of cells traversed to reach the goal cell, is planned
starts aiming at neighboring cell Thus each actiop in cell using a game-like minimax shortest path approach. All next-
1 has a set of possibleutcomesthat is defined as the set ofcell outcomes, so far observed as a result of a certain cellaim
all possible next cells that may be attained, when all state®peration, may be viewed as “response-moves” available to
in cell ¢ are considered as possible starting points. an imaginary adversary that would be working against our

However, since the system has no information regardimipjective of reaching the next cell, and ultimately reaching
the location, shape, and size of the objects present in tine goal. The next cell on the path is chosen taking into
world, it is impossible to compute the set of all possiblaccount a worst-case assumption, i.e., we imagine that for
outcomes of an action in order to have them available for tleach cell we may aim, the adversary is able to place us on
practical operation of the method. Even if such informatioa selected position in the current cell, such that the result of

the cell containing the exit state otherwise.
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the aim will be the worst next-cell. In this way we always The value ofJw (i) can be+oc if, when we are at cell
aim at the neighboring cell with the best worst-outcome. This our adversary can permanently prevent us from reaching
minimax approach can lead to planning a cyclic sequencetbe goal. Since there is always a finite number of cells, this
cells not arriving at theGOAL—more on this possibility planning situation, identified by/y (i) = +oc, can only
shortly below. In this framework, we can define tnimax correspond to the development of a cyclic sequence of cells
shortest patHrom cell : to the goalJw (%), as the minimum passing through celi, but not through thecOAL cell. By
number of cell transitions to reach the goal in the worst caggfinition, such a cell is called aosing cell.However, as will

i.e., assuming that, whenever we are in a certain €a@hd become clear, the method is able to handle this possibility, and
the intended next cell ig, an adversary places us in the sdurthermore, this is one of the facts upon which the method
far experienced worst position within cellprior to the local relies, and from which it takes advantage, for its overall
controller being activated. Théy «(¢) shortest-path is defined operation.

as When we are at a cel| then with the minimax-shortest-path
. 0, if i=GOAL.e.: 0), else methoq, the nex.t cell to aim is the neighbgrwith the Iqwest
Jwe(®) =141+ min nax Jwe (k). Jwel(j). Accord_lng to fthe current database of experieiige
FENEIGHS(i) kcOUTCOMES(i, ) we expect that it/yy« (i) = n < oo, then when starting from

(1) cell 4, we will getrn or fewer transitions to get to the goal.
Note now that the inclusion of ajpossibleoutcomes in the
The Jyw ¢(4) values are obtained by dynamic programmingefinition of OUTCOMES (¢, j) (Section II-A) would have
methods [5]. Specifically, suppose that there &re- 1 cells, been too pessimistic because some outcomes will never occur.

labeled0, 1, ---, N. We start by defining the intermediateThose correspond to outcomes that are associated to regions
variables Jé{/’v)c(i), p=20,1,---, N, that forp = IV are of cell : that will never be actually visited but, nevertheless,
initialized as follows: would be available for the adversary to place us. But those
W) /o 0, if i = GOAL (ie. 0) may .be precisely the regions_ .tha't are associated t'o the worst
(i) = { . otherwise (2) possible outcome(s), thus facilitating an eventual failure of the
’ ' process. So although this method, of considering all possible
Then, the followingN-step p = N — 1, N —2, ---, 0) mul- cellaim outcomes, would guarantee success if a solution is
tivariable ¢ = 1, 2, ---, N) iterative assignment is executedfound, it could often fail in solvable problems.
) - _ Fig. 3 presentsAlgori_thm 1, which keeps applying_ Fhe
Tye(d) =1+ ché%nHS(i) chUTglgi(/IES(m) local greedy c?ntroller, aiming at t.he pext cell on the “minimax
(1) . _ short(_ast path” to the goal, until either we are caught on
e (k) fori=1,2---, N; a losing cell (step 4./ = o), or reach the goal cell
p=N-1,N-2 ---.1,0. (3) (step 3). An action (aim) terminates when the system either

attains the desired neighboring cell or detects an obstacle (step
This iterative assignment (3) closely resembles (1). As %2). If a new outcome for an action is experienced, then
clearly seen, if after some step the Jé{f)c(z‘) values have the system updates the correspond@@ TCOMES(i, j)
stabilized, i.e., if/&L (i) = JLEV (@) fori = 1,2, .., N, (steps 5.5, 5.6). If for this reason tt@UTCOMES(i, j)
then the iterative process of (3) can be immediately exited, changed, then (1) is again solved (step 1), to obtain the
allowing a decrease on the computational costs without affepessibly new, “minimax shortest path” to the goal. Step 5.1
ing the final result. We could further decrease the expectegirieves, from the solution that was computed in step 1.1,
number of backups required to make (3) converge, by propethe next neighboring cell on the “minimax shortest path.”
controlling and/or modifying the order by which backups arAlgorithm 1 has three inputs: 1) a partitioning of the state-
executed, e.g., [2] and [21]. Notably, in [21] priority is given tepace,’”; 2) the current (on entry) database of accumulated
update.Jy (%) values that depend on most recently changeekperiencelD; and 3) real-valued state At the end Algorithm
Jwc (k) values. After the iterative process has converged, thereturns three outputs: 1) the updated databBse?) the
solution is given byJyy¢(4) = J‘(A?)C(i) fori=1,2,---, N. final real-valued state; and 3) a Boolean variable indicating
Once the solution is reached, it is important to retain, for eaS#/CCESS or FAILURE.
cell 4, the value ofj, that minimizes (1). It will be used by the
algorithm (cf., step 5.1 of Algorithm 1, Fig. 3). As suggested in
[22] another idea can be applied to reduce the computatioﬁél
costs required for each control decision: the updates of theAlgorithm 1 gives up when it discovers it is in a losing cell.
Jw (i) values can take place incrementally in a series of tim@ne of the hypotheses of the approach is that all paths through
intervals interleaved with real time control decisions (note thtite state space are continuous. Assuming that a path to the
this implies a change in the overall operation of the methapbal actually exists through the state-space, i.e., the problem
of this section). Techniques like this are described in [2f solvable, then there must be ascaping-holallowing the
[21], and [26]. Employing the minimax algorithm [29], i.e.transition to a nonlosing cell and eventually opening the way
searching the tree of all paths leading to the goal, is an alterntwiaeach the goal. This hole has been missed by Algorithm 1
approach, that could have been used to solve the minimax the lack of resolution of the partition. A hole for making
shortest path problem. the required transition to a nonlosing cell, can certainly be

Selective Partition Subdivision
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ALGORITHM 1
REPEAT FOREVER
1. IF MODEL-CHANGED=TRUE THEN
1.1 Compute Jyy ¢ (7) for each cell ¢ using minimax, NEIGHS(1),
OUTCOMES(3, j), and equations (2), and (3).
1.2 Let MODEL-CHANGED := FALSE.
. Let ¢ := the cell containing the current real-valued state s.
. IF : = GOAL THEN exit, signalling SUCCESS.
. IF Jyw (i) = co THEN exit, signalling FAILURE.
. ELSE
5.1 Let ;' be the value of j that minimizes Jy (i) in equa-
tion (1), i.e. j' := argmin max
’ J ENEIGHS (i) Kk €EOUTCOMES(i,5
5.2 WHILE ( not stuck and s is still in cell 7 )
5.2.1 Actuate local greedy controller aiming at j5’.
5.2.2 Let s := new real-valued state.
5.3 Let tpew := the identifier of the cell containing s.
5.4 IF ipnew ¢ OUTCOMES(:,5) THEN
5.4.1 MODEL-CHANGED := TRUE
5.5 IF OPTIMISTIC(s,j) = TRUE THEN
5.5.1 Let OUTCOMES(:, j) := {inew}-
5.5.2 Let OPTIMISTIC(:, j) := FALSE.
5.6 ELSE
5.6.1 Let OUTCOMES(i, ;) := OUTCOMES(, ) U {incw}
LOOP

CUR W N

)JWC(k)

Fig. 3. Algorithm 1: navigation to goal by minimax shortest path.

ALGORITHM 2

1. IF we want to force an initialization of P, and D THEN

1.1 Initialize partition P, with 2 cells: the special cell GOAL=0,
and the normal cell “1” containing the entire state-space.

1.2 Initialize database D to include OUTCOMES(1,0) = {0},
and OPTIMISTIC(1,0) = TRUE.

WHILE ( s is not in the goal cell )

2. Let MODEL-CHANGED := TRUE.

3. Run Algorithm 1 on s, D, and P. Algorithm 1 returns the
updated database D, the new real-valued state s, and the suc-
cess/failure signal.

4. IF FAILURE was signalled THEN

4.1 Let Q := All losing cells in P (Jy ¢ = c0).

4.2 Let Q' := The members of Q@ who have any non-losing neigh-
bors.

4.3 Let Q" := Q' and all non-losing neighbors of members of Q.

4.4 Split each cell of Q" in half along its longest axis producing
a new set of cells, R, of twice the cardinality.

45 P: =P+ R - Q"

4.6 Recompute all new neighbor relations, and delete from all
the OUTCOMES(¢,j) sets of database D, all those instances
of real (“non-optimistic”) experience that correspond to a mem-
ber of Q" as a start point, an aim-for, or an actual outcome;
and for all those OUTCOMES(1,j) sets that result empty, let
OUTCOMES(,j) := {j} and OPTIMISTIC(:, ;) := TRUE.

4.7 Create and initialize all the new sets OUTCOMES(¢,7) :=
{7}, and variables OPTIMISTIC(s, ;) := TRUE, that are re-
quired due to the new cells created in step 4.4.

LOOP
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point, an aim-for, or an actual outcome, to cells that have
just been split (step 4.6). This is a forgetting of experience
that is necessary. In fact, when a set of cells is split, the
associated aim-outcome information is not directly inheritable
from “parent-cells” to “son-cells.” This constitutes one of the
basic ideas of the parti-game operation, e.g., in spite of an
aim-failure when moving between two “parent-cells,” it is
quite possible to have aim-success (and the method is search-
ing for it) between two corresponding “son-cells.” Each cell
splitting operation involves the initialization (step 4.7) of new
OUTCOMES(:, j) := {5} and OPTIMISTIC(:, j) :=
TRUE sets (using the optimistic assumption) for all new cells
and/or new actions. Similarly to Algorithm 1 discussed above,
Algorithm 2 works on the same input data objedt {0, and

s), which are updated, and then returned as outpitand D

are initialized at the beginning (step 1) of Algorithm 2, except
when we want to use an initial relevant world model that may
be already available from a previous run of Algorithm 2.

In [22], on every iteration of Algorithm 1, all
OUTCOMES(, j) sets are completely recomputed from a
set of triplets representing the celloutcome experience, and the
minimax problem is solved. Algorithms 1 and 2 (Figs. 3 and
4) were reorganized to improve computational performance:
on every iteration only the minimal required updates are
incrementally made on t @ UTCOMES(¢, j) sets, and the
minimax problem is only solved if a@UTCOMES(z, j)
set changes. The approach has no direct way to tell if the
goal is inaccessible—Algorithm 2 can be complemented with
a mechanism to avoid that the system keeps dividing cells
forever by placing an upper limit on the number of cells,
and/or a lower limit on the size (possibly with an upper limit
on the number) of the smallest cells.

I1l. M AP BUILDING

Experimental work has demonstrated the application of
the algorithm of Section Il to navigate a real mobile robot
(Section VI). The parti-game world model is based on its mul-
tiresolution partition ), and on its aims-outcomes database
(D) that summarizes the information collected while exploring
the world. However, the system gets rid of most of the sensor
information received from the environment and, in spite of
its clear usefulness, the information maintained on database
D (Section 1I-A) is somewhat indirect, scarce, and implicit,

Fig. 4. Top level Algorithm 2: selective cellspliting while Algorithm 1IN its description of the world. This fact has motivated the

(Fig. 3) fails to arrive at the goal.

application of the fuzzy ART neural architecture [6], [7], as a
new approach for map building based on geometric primitives.

found on the cells at the borders between losing and nonlosifiggeneral a map building algorithm should ideally have a set
cells. Takmg those comments into account, whenever tpEcharacteristics [16]. Next we will discuss them in the context

of the fuzzy ART world model.

system is caught on a losing cell, the top le¥diorithm 2
(Fig. 4) divides in two the cells in the borders (steps 4.1-4.5) 1)
in order to increase the partition resolution, and to allow
the search for the escaping-hole. This partition subdivision
takes place between the successive calls to Algorithm 1 thaP)
keep taking place while the system does not reach the goal
region. Whenever cellsplitting takes place, the system must
remove from the databasd), all those instances of real
(“nonoptimistic”) experience that make reference, as a start

The fuzzy ART model allows self-organization—to be
autonomous, the mobile robot must organize, in a useful
way, the sensor data it collects from the environment.
Multifunctionality—for representing the environment,
we want a compact model that allows for efficient
sensor-based map-building, motion planning, self-
referencing, etc. The application of the fuzzy ART
model for map-building is discussed in Sections IlI-
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A and VI, and an example of its usefulness andach presentation of inplt and£> nodey, achoice function
application in motion planning is shown in Sections INMs defined byZ;(I) = |I Aw;|/(c+ |w,|), where, for anyM -
and VI. The fuzzy ART model performs a clusteringlimensional vectorg andgq, “A” denotes the “min” version
operation that has potential application on other patteafi the fuzzy AND operator defined bip A ¢); = min(p;, ¢),
recognition, control, and reasoning problems involvednd “| - |” denotes the norm defined by| = 3" |p:|. For
in the operation of a mobile robot. notational simplicity,Z;(I) is often written asl’; when input
3) Updatability—the model should be easy to update acategory[ is fixed.
cording to new information arriving from sensors. The The system is said to make @ategory choicewhen at
fuzzy ART model can be updated by learning eacimost oneF, node can become active at a given time. The
isolated data point as it is received on-line, with theategory choice is indexed by, whereZ; = max{7}: j =
same result as if the update were made in conjunctian- .-, N}. If more than oneZ; is maximal, the category
with a set of other data points—model update is madeith the smallest index is chosen. In particular, nodes become
on a point by point basis not requiring the simultaneousommitted in ordey = 1, 2, 3, - - -. When theJth £, category
consideration of a, possibly large, set of data points choseny.; = 1, y2; = 0 for j # J, and theF; activity
This is a significant convenience, allowing the robot teector is given byy, = I A w;. Resonance occurs if the
use new sensor data as soon as it arrives, thus enablingtch function,|I A wy|/|I|, of the chosen category meets
other system components, such as path planning aheé following vigilance criterion:|y,| = [I A wy| = p|d]|.
localization, to take advantage of an updated model Hsso, then learning takes place as defined beldismatch
soon as possible. See Section VI for a further discussisgsetoccurs if |y, | = [I A ws| < p|I|. In this situation, the
on the updatability of the fuzzy ART model. match functionT’; is set to O for the duration of the current
4) The fuzzy ART model enables a compact geometrinput presentation to avoid the persistent selection of the same
representation allowing small data requirements, logategory during search. A new inddxmaximizing the choice
computational complexity, and unlimited dimensionsunction is chosen, and this search process continues until the
It is easy to extend to the modeling of data that ishosen/ leads to resonance. Once search eledsningtakes
represented in higher dimensions (e.g., mappinddf place by updating weight vectar; according to the following
objects) without adversely impacting on the data size @quationwsne'w) = /j(IAwSOId))+(1—/3)wffld). By definition,
complexity. fast learningcorresponds to setting = 1. To avoid prolifera-
tion of F;, categories, aomplement codingput normalization
o _ rule is used. With complement coding, if the input is &h
A. Map Building with Fuzzy ART dimensional vector (in our case, a sensor data point), then
Other works, e.g., [16] and [28], have used different metlfield Fy receives the2A/-dimensional vectod = (z, z¢) =
ods to extract geometric primitives. In this subsection, we gives, -- -, awm, a5, -- -, a§,), where the complement af is
a brief overview of the fuzzy ART learning architecture [6], [7Henoted byx“, with af = 1 — a;. The weight vectorw;, can
and discuss its application to map building. With the approaefiso be written in complement coding formy; = (u;, v$),
we are able to extract a set of (hyper-) rectangles, whose unighere; andw; are A/-dimensional vectors. Let a (hyper-)
represents occupied space, where sensor data points associatgenglerz; be defined by two of its corners (in diagonal) as
with objects have been perceived—a kind of unsupervisdllistrated in Fig. 5(b). The size aR, is defined agR;| =
clustering. |v;—u;|, which in the 2D case, is equal to the sum of the height
A fuzzy ART system includes a field;,, of nodes repre- and width. A fuzzy ART system with complement coding,
senting a current input vector; a fieldy, that receives both fast learning, and constant vigilance forms hyperrectangular
bottom-up input fromFy, and top-down input from a field, categories,®;, that grow monotonically in all dimensions,
Iy, that represents the active code, or category [Fig. 5(adlad converge to limits in response to an arbitrary sequence
The Fy activity vector receives the current sensor data poiraf input vectors [6], [7]. Rectanglelz;, includes/represents
and is denoted by = (I, ---, Ip;). Each component is the set of all data points which have activated fuzzy ART
assumed to satisfy the conditidp € [0, 1], ¢ = 1, ---, M. categoryj without reset [6], [7]. Additionally [6], [7], the
However, if we have sensor data that is assumed to belomgximum size of the rectanglds; can be controlled with the
to one (any) axis-aligned hyperrectangle, then the applicativigilance parametefR,| < (1 — p)M. In our case, rectangle
of a linear transformationl, enables the satisfaction of thissize limitation is important in order to avoid the free-space
condition. TheF; and F» activity vectors are respectively between two obstacles to be modeled by a single encompassing
denoted byy, = (y11, -+, yiamr) andy, = (y21, - -+, y2ny). rectangle primitive. In this case, instead of growing a single
The number of nodes in each field is arbitrary. Associatedctangle, we want the size limitation mechanism to give rise
with each F, category nodej (j = 1, ---, N) is a vector to two separate primitives with free-space in between. After
w; = (w;1, ---, wjp) of adaptive weights. Initially weights applying to the rectangle®; the inverse,L~*, of the linear
are set tow;1(0) = --- = w;»(0) = 1, and all categories transformation we get a new set of rectangld%}“’ that
are said to baincommitted After a category is selected forinclude/represent all the original sensor data points. Those
coding it becomesommitted.The fuzzy ART operation is new rectangles form what we define as thezy ART (world)
controlled by a choice parameter > 0, a learning rate model.The composite contribution of the parti-game and fuzzy
parametep? € [0, 1], and a vigilance parametgre [0, 1]. For ART models forms an improvebverall) world model.
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Fig. 5. (a) Fuzzy ART neural architecture and (b) rectangle associated to category
B. Sensor Data Filtering Section I, for improving its world model. Second, the parti-

Due to the accumulating nature of the fuzzy ART syster§@Me leaming approach was extended by the introduction of
when applying it to modeling real sensor data, it is useful ® Method for predictive on-line trajectory filtering (POTF),
perform some prior filtering for removing noisy exemplarslowing a very significant reduction in the time-consuming
In our implementation, we have used two filtering operatioffPloration effort that is associated with searching the world
on sensor data points. First experience with the infrard§th @ real robot. Instead of having a mechanical robot
range sensors we have used, shows that above a cer@ploring the world, the idea is to have the system analyzing
limit, distance readings were not very reliable, and thus wef@ectories in gpredictive modepy taking advantage of the
rejected. A second filtering operation, probably more generaifjiproved world model. The real robot will only move to
applicable to other types of sensors, was performedSlee explore a planned trajectory, when the system igeal mode,

a set of sensor points. A poiatis rejected, if no other dataand the system will enter this mode, only aftepredictive
point of S is found inside a circle of radius; and center at. successhas occurred. In real mode, obstacle detection is
Since this second operation requires the presence of a sep@fformed using the real distance sensors of the robot. In
points S, we are not able to take full advantage of the isolate@redictive mode, on the other hand, exploration trajectories
point learning capability of fuzzy ART. However, excellenhave an on-line predictive/simulation nature not involving
results were obtained with small data sefs,composed of any real-robot motion. The robot is approximated by a point
points coming from a number of as low as two consecutiand obstacle detection is performed using the fuzzy ART
sensor-ring scans. world model, possibly enlarging the rectangles by a percentage
of the robot radius in order to 1) form a safety border
gap and 2) better estimate the constraints that apply to the
IV. PREDICTIVE ON-LINE TRAJECTORY FILTERING robot trajectories. In both modes, path planning is performed

In Section VI we will present experimental work demonusing the parti-game approach, with the parti-game model
strating the application of the method of Section 11, to navigafartition, and aim-outcomes databasgbeing incrementally
a mobile robot. This work enabled the identification antPdated, according to the results of both predictive and real
understanding of some aspects where this method could &®loration. However, only in real mode is the fuzzy ART
improved. Two comments have emerged in this context. Firstodel incrementally updated, because only in this mode is
as discussed in Section lIl, the parti-game model is somewlig@! sensor data available for this purpose.
indirect, and scarce in its description of the world. Second, asAs already described, one of the main ideas of the method, is
discussed in Section II-C, the parti-game model (specificalli@ reduce real-robot exploration by giving priority to predictive
its databaseD) must be subject to some forgetting whermxploration. However, thextentof the predictive effort may
cellsplitting takes place. But from an external point of viewpe controlled by configuring the exigency level of thee-
these two aspects induce redundant exploration. dictive successondition that is used to trigger the transition

These two comments have motivated two correspondifigm predictive mode to real mode. Two options may used to
developments on the navigation architecture. First, a negtablish this condition: a predictive success may be said to
map building method, based on fuzzy ART, and makingccur when 1)V consecutive predictive cellaim successes (or
better use of the received sensor information, was dev#te predictive arrival at the goal cell whichever comes first)
oped (Section Ill), and integrated in the parti-game system af 2) a predictive arrival at the goal cell, takes place after
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Fig. 6. POTF architecture.

starting from the current robot location. Also, tfrequency

of predictive effort may be controlled, by configuring the
condition that is used to trigger the transition from real mode t
predictive mode. The system always starts in predictive mod
and the following four options (listed in increasing order of
predictive frequency) may be used: enter predictive mode :
after cell splitting that takes place when the robot is caught c
a losing cell, 2) at the end of every failed cellaim, 3) at the en
of every cellaim, or 4) at the end of every motion sampling
interval. Fig. 6 illustrates the ideas introduced in this sectior

V. EXPERIMENTAL ENVIRONMENT

The methods described in this paper were implemented a
demonstrated on a real Nomad 200 mobile robot [25] (Fig. 7
The Nomad 200 has three wheels controlled by two motor
One motor controls the synchronous translation of the thre
wheels. The other motor enables the three wheels to rote
together. The robot has a turret which, under the control of
third motor, can rotate independently from the base. The rob
has a zero turning-radius, i.e., it can rotate around its cente
Both the steering and drive motors have encoders which enal
the measurement and control of both the Cartesian locatigl 7. the Nomad 200 mobile robot.
of the robot, and the steering and turret angles. However
the accuracy of such measurements may be conditioned b
such factors as small differences between the diameters Ouéé

he results reported in this article were obtained using a
MHz Pentium processor running the “Nomadic Software

wheels, and slippage between the robot’s wheels and the floor.” . : .
Ppag c\éﬁuronment" [25]. This software environment allows the

The robot has 16 sonar range sensors, and 16 infrared ra ) i ;
g trol of a real or simulated robot. With the exception of

tion VI-D, the work here presented used the real Nomad

0 facing real obstacles. The infrared sensors were used for

plementing the obstacle detection primitive, and to measure
's];éances to objects.

sensors. Both types of sensors are equally spaced around
turret. The sonar system uses standard Polaroid transdu?
that are based on the usual technique of measuring the ti

of-flight of an acoustic wave, from emission to reception afté
being reflected by a detected object. Each sonar sensor is

to measure distances from 15.2 cm to 10.6 m. Each infrared
range sensor is composed of one photodiode receiver, placed
between two emitters, with all the three elements horizontally In this section, we present results of six experiments, regard-
disposed. The infrared sensors are used to measure distairgg$he application of the methods described in Sections lI-1V,
to objects less than 60 cm away. The robot has also a plat@rithe navigation of a Nomad 200 mobile robot. In all the

laser range finder. experiments the objective is to find a path to a predefined

VI. EXPERIMENTAL RESULTS
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Fig. 8. Experiment 1: mobile robot path, final partition, and obstacles perceived on (a) trial 1, (b) trial 2, (c) trial 3, and (d) trial 4. This ekperimen
made with the algorithm of Section Il and not using the predictive on-line trajectory filtering method of Section IV.

goal region. In experiments 1-4 the real robot was used, amdbile robot has already learned to promptly navigate to the
the dimensions of the state-space were %48.73 m. Each goal, and only minor exploration steps are taken by the robot.
experiment was organized as a sequence of trials to navigate

from the starting position to the goal. The first trial starts with A Changing World

an empty world model. Subsequent trials start with, and build
upon, the world model that was learned until the end of the . . . . . . o
previous trial. The learning approach requires that the mobﬁg\_nro_nment, will now be discussed in con_Junctlon with F|g. 9.
robot knows its own current location in the world. However, > figure presents the results of E)_(perlmgnt 2, that will be
in this paper we do not deeply address the problem of mobr%ferenced as an example. Note on trial 1 [Fig. 9(a)] that, after

robot localization. We simply used accumulation of encoddl’ initial exploration effort, the system was ab.le FO backtr.ack
information to perform robot localization, with Iocalizationand escape the upper dead-end. At the beginning of trial 4

accumulators being set to correct values at the beginningtg interior obstacles were removed [Fig. 9(b)l. and at the

each trial. Even though this simple approach induces erro ggiqning .Of trial 5 new obgtacles were inserted at a distinct
it was sufficient to experimentally validate the effectivene géanon [Fig. 9(c)]. A changing robot world can be seen as a

of the learning approach. The results of experiments 1-4 jon of one or more changes, each belonging tp one, out of
shown in Figs. 811, which for each trial, present the robdyo possible classes. On class 1, a new obstacle is created on a

trajectory and the state-space partitioning at the end of the trﬁrlewous free-space location. Changes of class 2 correspond to

The response of the method of Section Il to a changing

€ opposite, i.e., an obstacle is removed creating a free area on
e state-space. One important fact about the overall operation
of the parti-game approach is that it performs exploration,
mainly in response to failures to advance to the goal. The
method is clearly able to overcome a change of class 1. In
fact, suppose that an obstacle is created on a location that is
Experiment 1 (Fig. 8) demonstrates the performance of tharrently being used by the robot path to the goal. In response,
parti-game approach of Section Il. The trajectory of the mobitee method just continues with an incremental exploration
robot in the first trial [Fig. 8(a)] shows that the robot isffort. This will lead to an alternate path to the goal, provided
already able to reach the goal. Since the robot has no initihht it exists [e.g., trial 5, Fig. 9(c)]. Although in some cases
knowledge about the world, it performs a considerable amouhe method may be able to take advantage of situations of
of exploration on this trial. In spite of this, the constructedlass 2, this does not hold in general. If the robot has already
world model is not robust enough to enable a subsequéedrned a stable path to the goal, then the system will not take
easy navigation to the goal. In fact, on the second triavantage of a possibly smaller path that, after the removal of
[Fig. 8(b)], the system still needs to increase the resolution af obstacle, has became available to reach the goal [e.qg., trial
the state-space partition, in areas where the robot faces gredtdfig. 9(b)]. However, if no current solution path exists, or
difficulties to navigate. The extensive exploration effort in thi§ a new obstacle is created obstructing the current solution
trial reflects the need to incrementally accumulate informatida.g., trial 5, Fig. 9(c)], then the newly created free space
about cellaim outcomes regarding the newly created cells. ®Bacomes available to be used in an incremental exploration
areas where navigation is easy, and on areas that the roffédrt that is induced [e.g., Fig. 9(c)]. This effort will lead to
does not need to visit, the partition resolution is kept low. Thien alternate, possibly better, path to the goal provided that
enables a lower number of cells if comparing with constanit- exists. Note that, on the particular case of trial 5, this was
resolution cellbased approaches. On trial 3 we observe a mpassible only after the system has split cells, and thus forgotten
more direct navigation to the goal [Fig. 8(c)]. However, iprevious local cells-outcomes information. This suggests that
this trial some transitions between cells created on trial tBe introduction of a mechanism for merging cells could be
are still attempted and the resulting outcome information iseful to simplify the world model. In trial 7, the system has
accumulated. In Fig. 8(d) it can be seen that, on trial 4, tleenverged again to a new stable solution-path to the goal,

The infrared information is also shown in all figures except i
Fig. 10(c) and (e).

A. The Basic Approach
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Fig. 9. Experiment 2: mobile robot path, final partition, and obstacles perceived on (a) trial 1, (b) trial 4, (c) trial 5, and (d) trial 7. This eperimen
was used to study the behavior of the system on a dead-end, and with the removal (trial 4) and inclusion (trial 5) of obstacles. Regarding the sequence
of cells, the paths of trials 3 (not shown) and 4 were the same.

Fig. 9(d). One interesting problem that remains open to furthgial 2. As can be seen, a considerable amount of predictive
investigation, is the improvement of the algorithm, such thatéixploration takes place. This enables a significant decrease on
is able to tackle changing environments in a more general walye (more time consuming) exploration effort performed with
the real robot.
C. Integrating Fuzzy ART Map Building and POTF Experiment 4 [Fig. 10_(d)_(f)]’ _used the same navig_a_tion
) o i controller that was used in Experiment 3, and is an additional

Experiment 3 was similar to Experiment 1, except thagxperimental evidence of the effectiveness of the overall
1) the path to the goal was somewhat greater with the geglyigation method that was introduced in this paper. Note how
region set at 1.7 m to the left, of its location on Experimenke system is able to backtrack from the dead end at the upper-
1 and 2) the fuzzy ART map building approach of Section Iieft corner of the world, and subsequently this area does not
was activated, and used to make predictive on-line trajectqfyed to be visited by the real robot anymore. An effective use
filtering (POTF—Section 1V). In Fig. 10(a)—(c), the efficienisf the available sensor information is made, which leads to
trajectories of the first three trials of Experiment 3 can Dgtficient navigation trajectories from the very first trial. The
observed, with very direct navigation to the goal startingredictive trajectories at the beginning of trial 2 are shown in
from the very first trial. When comparing with Experimentig 11(b). Further discussion of the results of Experiment 4
1, these results show an improvement, and demonstrate {jglid be very similar to the discussion of Experiment 3.
the introduction of thg methods of Sectlops I and 1V, Ieaﬁina"y, we remark that, in all experiments, the computation
to a new and effective approach, for simultaneous modghe is only a small fraction (typically less than 1.3%, e.g.,
building, and learning to navigate a mobile robot on aBection VI-D) of the total operation time that includes the

the fuzzy ART approach of Section lll, was able to create a

geometric-primitive-based map with the location of objects
they were perceived by the infrared range sensors. In both
Experiments 3 and 4, sensor data filtering (Section I1I-B) was FOr a quantitative evaluation of the POTF method
performed with sensor readings above 13 in being rejectégection IV) two simulation experiments were performed,
and a filtering radius ofr; = 67 mm. On trial 2, a few With the same environment and (Start, Goal) pair. The only
rectangles are present in places, that are slightly apart frétifference was that only one experiment used POTF. Fig. 12
where the infrared sensors have perceived objects on tRf§sents the environment, and the robot path on trial 4 of the
trial. There are two reasons for this: 1) slight differences @Xxperiment that used POTF. The state-space dimensions are
localization positions (e.g., from trial to trial) imply different7.16 x 7.14 m. Six performance indexes were selected for
locations for the perceived objects and 2) the fuzzy ARthe evaluation.

model has an accumulative nature, and currently is not able tal) The number of cellss, for the same environment and
detect and remove primitives from places where no objects are navigation task, a measure of the world modeling diffi-
perceived anymore. In both Experiments 3 and 4, the system culties faced to successfully navigate to the goal. It is
was configured to enter predictive mode (Section IV) at the  also a measure of the “over-partitioning” effort.

end of every cellaim, and to signalpxedictive succesafter 2) Thetraveling is a measure of the robot traveling dis-
a predictive arrival at the goal cell. A border gap of 80% of tance.

the robot radius was used on the fuzzy ART rectangles, wher3) The (number oflaimsis a measure of both the explo-
performing obstacle detection in predictive mode. Fig. 11(a) ration effort, and the computational costs. At a level
illustrates the predictive trajectories that were analyzed at the more abstract than the “traveling,” it is also a measure
beginning of trial 2, even before any real robot motion. Since  of traveling effort.

the robot enters predictive mode at the end of cellaims, this4) Aim failsis the percentage of “aims” that failed because
is just a part of the predictive trajectories analyzed during  either the robot became stuck due to an obstacle, or it

Quantitative Evaluation of POTF
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Fig. 10. Robot paths on experiment 3 (a) trial 1, (b) trial 2, and (c) trial 3, and experiment 4 (d) trial 1, (e) trial 2, and (f) trial 3. This experiment was
made with the algorithm of Section Il, and using the predictive on-line trajectory filtering method of Section IV.

attained a cell other than the aimed one. It is a measwet been considered: the division, pruning (an obstacle may

of the exploration difficulties. be no longer present), and dynamic adjustment of geometric
5) Timerepresents the total time of the trials, thus takingrimitives in order to better model the world data. From the
into account all the robot motion time. point of view of the fuzzy ART method, it will not be difficult

6) The CPU Time strictly represents the computationato delete geometric primitives. Thus, we are optimistic on
time used by the learning methods described ime feasibility of overcoming the above aspects (especially
Sections II-IV. pruning), provided that suitable tests are integrated to detect

Table | presents the “trial-cumulative” values of the perforthe two situations. This optimism is further supported by the

mance indexes. From Table I, it is seen that the “quality” gct that the fuzzy ART world model may be used to make
the final solution obtained, as measured in terms of a fingensor) measurement predictions; and real sensor readings
traveling path of approximately 18 m in both experimentsnay be compared with predictions to decide if a related
was quite similar. However, the introduction of the POTlprimitive is still necessary to represent occupied space in the
method enabled a strong decrease of all the performanggrid. This would be especially useful in nonstatic worlds. See
indexes. These results show that the introduction of POHaction 111 for the discussion on another aspect of updatability,
allowed a strong improvement on the navigation approaGinere fuzzy ART is clearly strong. Exploring the application
expressed in lower modeling difficulties, exploration effortys ihe fuzzy ART world model for place recognition and
computational time, and total elapsed time to achieve th&5jization is another line of future research.

solu_tion. In particular note that 1) withﬁn thg lower number In Fig. 8(a), but mainly in Fig. 8(b), we observe that some
of aims performed, the percentage of aim fails also decrea?ﬁ%tacles are slanted, both in absolute and relative terms, when

ap?hZ) tthte lCPU.nrrtn.e |stpnly a small fraction (less than l'30/(Q)Jmpared to Fig. 8(c) and 8(d). The reason for this is that,
ot Ine total havigation time. a simple encoder accumulation method was used for robot

localization. This leads to error accumulation. The location

VII. DiscussIoN accumulators were set to correct values at the beginning of

Future work on fuzzy ART map building includes relevaneach trial. The greater amounts of motion on the first two
aspects of model updatability which, at present state, have tridls cause greater localization errors on these trials. The
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1
& .
RN
Start
Trial2
i Iniflal POTF)
T T T r+'! i . X i i
I i Fig. 12. Robot trajectory on trial 4 (experiment using POTF).
i < F 1
ik ) =1
G —— TABLE |
T . e i QUANTITATIVE EVALUATION : CUMULATIVE PERFORMANCE
'i 4 i INDEXES WITH (Y) AND WiTHouT (N) POTF
[ k)
[ eb Pl ™1 i = Trial | Trial 2 Trial 3 ‘Trial 4 Trial B
: i ko) > taprt Nuniber of colls— (N) 32 136 136 136 136
| L (Y) 131 137 139 139 139
Ii . SiS% '% Traveling (mm) (N) 232475 257189 276709 296227 313681
IR b s TR T (Y) 26376 44589 65182 83344 101574
1 VY "| Aims (N) 649 722 768 813 850
. - (Y) 48 86 130 166 202
AT J Aim Fails (%) (N) 4761 4571  43.62 4157  39.76
I (Y) 4167 2674 2077  16.27  13.37
Time (sec) (N) 3126 3469 3678 3894 4064
1 (Y) 306 511 736 914 1088
‘ ‘ . CPU Time (sec) (N) 2421 27.62 2931 30.82  32.12
o (Y) 4.45 7.69 1022  11.77  13.32
[ ——t—= =
— Gloal A gl ? . .
. Q o I Trial2 robot has accumulated different errors. In spite of these
=1 ] {Inidal POTF} localization errors, the robot was still able to learn to navigate
T to the goal. Also note that the lower exploration efforts

enabled by the introduction of POTF (Sections IV and VI-

() C), lead to a reduction on the severity of the localization

Fig. 11. Predictive on-line trajectory filtering (POTF) at the beginning of (a@rror problem without, however, solving it. The methods
trial 2 of Experiment 3 and (b) trial 2 of Experiment 4. discussed in this paper, have been successfully tested in
other environments. However, the localization problem is

localization error has four negative effects. currently the main limitation, for taking advantage of the
ull potential of these methods, and preventing the applica-

" f
b causes errors on the absolute posmon where the rol?%th to large scale environments when the localization error
perceives obstacles. From the figures we can roug

that th ‘i tant th ientat ows too much. Taking full advantage, requires the devel-
i?r/npc?nente most important errors are on the orientati rE)ment and integration of general and robust localization

o ethods. Localization is an area of current active research
2) If the localization error grows too much, the current ce e.g. [28])

will not be correctly known. Kambhampati and Davis [17] proposed a multiresolution

Thus, the robot will not chose the best next cell to aiMy, ition method, that is able to find paths in environments for
but even if the chosen next cell is not “too bad,” thghich there is a binary occupancy grid world modepriori
robot will not be able to move toward its actual center, sijaple. Our work differs in learning its own world model
The relative slant (twisting) observed within a trial, is duérom experience. Zelinsky [31] proposed a variable resolution

to the fact that, different obstacles are perceived, after thpproach that integrates both environment modeling, and path

3)
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planning using the distance transform. If the robot encountdos make a more efficient use of sensor information. Using
an obstacle obstructing its path, the world model is updatedtt® improved world model, a predictive on-line trajectory
reflect the presence of the freshly sensed obstacle. Our wiéitering method was introduced, in order to improve path
differs in also integrating a geometric primitive model, thagblanning and reduce, exploration costs. This resulted in an
is continuously updated to model occupied space, and thabiserall new improved method for incremental, and cooperative
later used for replanning if an obstacle is encountered. Alsmnstruction of a world model, and learning to navigate from
the work of Zelinsky incorporates a mechanism for controllingn initial position to a goal region. Results of experiments
the degree of exploration, by making the system favor pattiemonstrated the application of the described methods to a

in known or unknown areas of the world.
Equation (1) models the topological distance between neigh-
boring cells to be 1. This distance serves as a measure of
the associated traveling effort. Since the cells have different
sizes, then it is reasonable to expect that the algorithm would
probably be able to chose a better approximation of thg]
geometrical shortest path (GSP) to the goal if the topological
distance between neighboring cellsand & was made a 2l
function, d;;, of an expected geometrical traveling distance.
For this purposed;; could be made dependent on a suitable
measure of the sizes of celts and &, and (1) would be [
rewritten as follows: [4]

Tweli) 5]
0, ifi = GOAL (i.e.: 0), else

(6]

= min max [dir, + Jwe(k)]. 4)
JCNEIGHS(i) kCOUTCOMES(i, 5)

This requires additional computational cost, but could enabl
the achievement of a GSP, for/in the current world partition.
On the other hand, the attainment of an absolute GSP is
somewhat limited by 1) the current partition that dependé8
on how the overall method evolves in the particular world

being faced and 2) the fact that the partition stops bein{!
split as soon as a final robust path to the goal is found.

Intuitive experience revealed that, by using (1), the methgtb]
is generally able to find very reasonable paths in hum n
terms, and significant advantages would require quite spe |a]l]
situations. Also, the use of (1) favors a top down search of the
world, i.e., makes the system analyze big areas before belh§
concerned with very detailed paths on very small escaping
holes. However, more definitive conclusions require furthét3]
investigation.

In real-world problems, it is usually not difficult to estaby4;
lish a known region that completely encompasses the robot
environment. Thus, 5) in Section Il is not a severe limitatio 5]
for most applications. However, note that if the environment
is grown with a new region, then it is trivial to include that
region on the state-space—it suffices to include one or twtf!
new cells (the number depends on the new region) into the
partition. It is also easy to make a compatible change on the

fuzzy ART model. [17]

VIIl. CONCLUSION (18]
In this paper we have applied the parti-game learning ap-

proach to navigate a mobile robot, in unknown environmentﬁg]

A new approach, based on the application of the fuzzy ART

neural architecture, has been introduced for sensor-based on-

line map building. This method was then integrated, as [%10

complement, on the parti-game model, allowing the system

real mobile robot.
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