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INTRODUCTION

Eutrophication, or nutrient enrichment, of coastal
waters is now widely recognised as a major worldwide
problem (Diaz & Rosenberg 1995, Norkko & Bonsdorff
1996a,b, Raffaelli et al. 1998). One manifestation of estu-
arine eutrophication is a replacement of seagrasses and
slow-growing macroalgae by opportunistic macroalgae
and phytoplankton (reviewed in Schramm & Nienhuis
1996, Valiela 1997). Loss of the seagrass bed leads to
changes in the associated biological communities (Reise et
al. 1989, Flindt et al. 1997, Dolbeth et al. 2003, Cardoso et
al. 2004) and the functions, services and goods that a
seagrass bed provides (Clark 1996, de Jonge et al. 2000,
Duarte 2000, 2002, Jackson et al. 2001). 

In recent years there has been an enormous upsurge
in interest in restoration as a technique for reversing
habitat degradation worldwide (Hobbs & Norton 1996,
de Jonge et al. 2000). Restoration ecology has been
hailed as a new paradigm for biological conservation
(Peterson & Lipcius 2003). The purpose of restoration
projects is to return a habitat from an altered or dis-
turbed condition to a previously existing natural condi-
tion (Kennish 2000). The success of restoration plans
depends on several key processes: (1) identifying and
understanding the processes which have driven the
observed ecological changes; (2) determining realistic
objectives and measures of success; (3) developing
methods for implementing the goals and incorporating
them into management; and (4) monitoring the restora-
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tion and assessing its success (Hobbs & Norton 1996,
Kennish 2000, Pardal et al. 2004). There is compelling
evidence that the resilience of a seagrass bed is typi-
cally low (Hobbs & Norton 1996, Kendrick et al. 2002,
Cardoso et al. 2004), due to the major shifts in sediment
properties that occur when seagrass plants are lost,
which make the sediment unsuitable for seagrass
recruits. Restoration initiatives that are based exclu-
sively on reducing nutrient inputs from further up-
stream are thus unlikely to be sufficient on their own to
restore seagrass beds (Cardoso et al. 2004). 

In addition to the seagrass plants themselves, a sea-
grass bed supports a rich invertebrate fauna, and the
resilience of these populations is not well understood.
In the present study we evaluate the success of a
restoration project implemented in a well-documented
seagrass habitat experiencing eutrophication in the
Mondego estuary (Marques et al. 1997, 2003, Lillebø et
al. 1999, Pardal et al. 2000, 2004, Cardoso et al. 2002,
2004, Dolbeth et al. 2003). We focus on the dynamics of
the mud snail Hydrobia ulvae, one of the most abun-
dant species in the seagrass Zostera noltii meadows
(Lillebø et al. 1999, Cardoso et al. 2002, Dolbeth et al.
2003), before and after the establish-
ment of management measures. Such
long-term data sets (10 yr) are required
in order to capture slow ecological pro-
cesses (e.g. population dynamics of
long-lived organisms), rare events (e.g.
floods) and complex phe-nomena, for
which a long time is required to detect
changes or trends (Franklin 1989).

MATERIALS AND METHODS

Study site. The Mondego estuary, lo-
cated on the Atlantic coast of Portugal
(40° 08’ N, 8° 50’ W) comprises 2 dif-
ferent arms, north and south, separated
by an alluvium-formed island (Fig. 1).
The north arm is deeper (4 to 8 m dur-
ing high tide, tidal range about 1 to 3 m)
and constitutes the principal navigation
channel and the location of the Figueira
da Foz harbour. The south arm is shal-
lower (2 to 4 m during high tide, tidal
range 1 to 3 m) and is almost silted up in
the upper zones, constituting a kind of
coastal lagoon in which the water circu-
lation is mostly dependent on the tides
and on the freshwater input from the
Pranto River (Marques et al. 1993, 1997,
Flindt et al. 1997, Lillebø et al. 1999,
Pardal et al. 2000). Discharge from the

Pranto River is controlled by a sluice (Flindt et al. 1997,
Lopes et al. 2000, Pardal et al. 2000) and is regulated
according to the irrigation needs of the Mondego
Valley rice fields (Martins et al. 2001).

Since the 1980s, eutrophication of the estuary has
taken place as a result of excessive nutrient release into
coastal waters, and the seagrass Zostera noltii bed has
been drastically reduced in areal extent and biomass in
the south arm (Cardoso et al. 2004, Pardal et al. 2004).
For instance, a seagrass bed that in the mid-1980s mea-
sured 15 ha by areal extent was progressively reduced
to 1.6 ha by 1993 and to less than 300 m2 by 1997
(Fig. 1). In 1998, several mitigation measures were
applied. The hydraulic regime in the south arm was
improved by enlarging the connection between the 2
arms. The Pranto sluice-opening regime was minimised
in such a way that most of the freshwater from the
Pranto River (loaded with nutrients) is discharged
directly into the north arm (by another sluice located
further upstream), reducing the nutrient loading in the
south arm. In addition, the remaining seagrass patches
were protected with wooden stakes to prevent further
disturbance of that area (by fishermen digging in the
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sediment for bait), and several forums were convened
to apprise local people of the ecological and economic
importance of the seagrass bed. 

Two study areas were established in the southern
arm of the estuary: (1) the seagrass bed located down-
stream and (2) the eutrophic area further upstream.
Originally, in the early eighties, this upstream area was
also covered by rooted macrophytes; however, as the
eutrophication increased, Zostera noltii declined pro-
gressively (Fig. 1). At the time of this study, this area
was characterised by the absence of seagrasses (for
more than 15 yr) and was covered seasonally by spring
green macroalgae, especially Enteromorpha sp. (actu-
ally Ulva sp., according to the recent revision of Hay-
den et al. 2003). For a detailed description of these
areas see Pardal et al. (2000), Cardoso et al. (2002,
2004) or Marques et al. (2003).

Field survey programme. In the eutrophic area, the
Hydrobia ulvae population was monitored from Janu-
ary 1993 to January 1997 and again from
January 1999 to December 2001. In the
seagrass bed, the population was moni-
tored from January 1993 to September
1995 and again from January 1999 to
December 2002. From 1997 to 1998 the
areas were not sampled to aid recovery of
the seagrass bed.

Samples were collected fortnightly for
the first 18 mo of study and monthly for the
rest of the study period. On each occasion 6
to 10 sediment cores (141 cm2 surface area)
were taken to a depth of 15 cm and washed
in estuarine water through a 500 mm mesh
sieve. The remainder (sediment, rooted
macrophytes, algae and fauna) was pre-
served in 4% buffered formalin.

On each occasion, during the morning,
temperature and salinity were measured in
situ during low tide. Water samples were
collected for analysis of dissolved inor-
ganic nitrogen (DIN) and dissolved inor-
ganic phosphorus (DIP). Data on monthly
precipitation derive from the nearby city
of Coimbra (Instituto de Meteorologia,
Coimbra forecast station). 

Seagrass and macroalgal analysis. In
the laboratory, plant material was sorted
and separated into Chlorophycea, Rhodo-
phycea and Zostera noltii (leaves and rhi-
zomes). After that, the material was dried
(for 48 h at 60°C) and the ash-free dry
weight (AFDW) was assessed after com-
bustion of samples for 8 h at 450°C.

Hydrobia ulvae. H. ulvae were counted
and 2 shell measurements were obtained:

total shell length (TSL) and maximum width (MW).
The last one was most suitable, since a great number
of snails had damaged shells. In the present paper
we used the conversion equation (MW = 0.4369 TSL +
0.2091, n = 339, r = 0.97; Lillebø et al. 1999).
Length–weight relationships were determined for
production estimates. Preliminary ANOVA of length ×
AFDW relationships indicated no significant seasonal
differences, and an overall regression equation was
used (AFDW = 0.0564TSL2.2381, n = 191, r = 0.98; Lillebø
et al. 1999). Biomass was calculated as AFDW (loss
after 8 h of incineration at 450°C of specimens pre-
viously dried at 60°C for 72 h). The same procedure
was used to quantify organic matter content of the
sediment.

Growth rates were estimated by tracking recog-
nisable cohorts in size–frequency distributions over
successive sample dates using the ANAMOD software
package (Nogueira 1992).
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Annual net production estimates (P ) based on cohort
recognition, were estimated as described in Dauvin
(1986).

Total values of P for the population are expressed as

where Pcn is the growth production (biomass assimi-
lated by a constant number of individuals in a certain
period of time) of cohort n. B2 (annual mean population
biomass) is expressed as

where T is the period of study (annual cycles); N is the
number of successive cohorts in the period T (year); B2n

is the mean biomass of cohort n; and t is the duration of
the cohort n (in our case, 16 to 20 mo, according to
Cardoso et al. 2002). 

RESULTS

Precipitation and salinity

The Mondego estuary is a warm tem-
perate coastal system in a region with a
basically Mediterranean temperate cli-
mate. In addition to the clear annual
pattern of rainfall over the 10 yr period,
3 winters of above-average precipita-
tion (1993/94, 1996/97 and 2000/01) are
apparent (Fig. 2A). During periods of
intense rainfall, salinity declined dra-
matically, occasionally reaching <5 g l–1

(Fig. 2B). 

Nutrient concentrations

DIN concentrations were significantly
different before and after the introduc-
tion of mitigation measures for both
sites (Kruskal-Wallis test, H = 83.14, p <
0.05), being markedly reduced in the
post-mitigation period for both areas
(Fig. 3A). The same pattern was also
observed for N/P ratios (Fig. 3B). Sig-
nificant differences were detected be-
tween pre- and post-mitigation periods
for both sites (Kruskal-Wallis test, H =
79.76, p < 0.05). Nevertheless, no statis-
tical differences were observed between
the 2 sites for either DIN (Kruskal-Wallis
test, H = 83.14, p > 0.05) or the N/P
ratio (Kruskal-Wallis test, H = 79.76,
p > 0.05).

Seagrass and macroalgal biomass

Regarding total seagrass biomass and comparing the
slope of the pre-mitigation period with the one of the
post-mitigation period, significant differences were ob-
served between them (Student’s t-test, t107 = 6.12, p <
0.05). From 1993 to 1997, the total biomass of Zostera
noltii declined sharply, and in early 1998 the lowest
biomass (5 g AFDW m–2) was recorded. After the intro-
duction of mitigation measures in 1998, there was a
gradual recovery of the seagrass bed (Figs. 1 & 4A).
In contrast, in the eutrophic area, there were sig-
nificant differences in green macroalgal biomass be-
tween the pre- and post-mitigation periods (Wilcoxon
2-sample test, W = 2015.5, p < 0.05). In 1993 and 1995
algal blooms were common, but they were never
present after post-mitigation measures (Fig. 4B). 
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Population density

Hydrobia ulvae abundance and biomass changed
markedly during the study period. In the seagrass bed
from 1993 to 1995, H. ulvae biomass was relatively
constant (range 50 to 100 g m–2). Nevertheless, follow-
ing the decline of Zostera noltii, biomass of H. ulvae
was reduced by approximately an order of magnitude
(Fig. 5A). In the Z. noltii bed, significant differences in
H. ulvae biomass were observed between the pre- and
post-mitigation periods (t93 = 5.54, p < 0.05). H. ulvae
appeared to start to recover until the autumn of 2000,
when a period of prolonged and heavy rainfall
(Fig. 2A) was associated with a decline in both density
and biomass. However, the population seemed to
begin recovery again in 2002 (Fig. 5A).

In the eutrophic area, the pattern of
change was completely different. Density
and biomass of Hydrobia ulvae declined
significantly throughout the study period,
with no obvious indication of recovery
(Fig. 5B). Significant differences were ob-
served in H. ulvae biomass between the
pre- and post-mitigation periods (t95 =
2.53, p < 0.05). It should be noted that the
recovery of the seagrass bed H. ulvae
population after flood events in 2001
appears slower than that in 1994. Regard-
ing H. ulvae biomass, and comparing the
slope in 1994 (from March 1994 to De-
cember 1994) with the one in 2001 (from
March 2001 to December 2001), signifi-
cant differences were observed between
them (H. ulvae biomass, t14 = 6.28, p <
0.05). Despite the huge increase in H.
ulvae biomass in 2002, the population
took a longer time (almost 1 yr) to achieve
the same previous values, after the second
flood event (2001), comparatively to the
first flood event (1994), in which the
recovery was much more rapid.

Population structure and growth

Marked differences in the population
structure were observed at the 2 sites
(Fig. 6). In the seagrass bed from 1993 to
1995, several modes are apparent in the
population representing individuals of all
age classes (juveniles < 1 mm; young
individuals 1 to 1.5 mm; adults > 1.5 mm)
(Anderson 1971, Planas & Mora 1987,
Cardoso et al. 2002). In 1999, the popula-
tion at this site was dominated by small

individuals, being significantly different from that in
1994 (χ2 test, p < 0.05), and only by the spring of 2001
did larger snails reappear in the size–frequency dis-
tributions. Significant differences were also observed
between the population in 1999 and 2001 (χ2 test, p <
0.05). In contrast, the eutrophic area was dominated
by small individuals of Hydrobia ulvae, over the
entire study period, with few adults present (Fig. 6).

Production

Growth production (P ) and mean population bio-
mass (B2) of Hydrobia ulvae were significantly higher in
the Zostera noltii bed than at the eutrophic site (growth
production: t8 = 3.34, p < 0.05; mean population bio-
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mass: t8 = 3.28, p < 0.05) (Table 1). The
highest values were recorded in 1994
in the seagrass bed. After the introduc-
tion of mitigation measures, the values
of growth production and mean bio-
mass in the seagrass site tended to
increase. In 2001, the populations at
both sites were clearly impacted by
floods, but by 2002, the production val-
ues in the seagrass bed were similar to
those observed in the beginning of the
study (Table 1). In the eutrophic area,
there was a general, gradual decline in
P values. On the other hand, the P/B2

ratios were always higher in the
eutrophic area.

DISCUSSION

There were clear differences in the
dynamics and structure of the Hydrobia
ulvae population before and after
the introduction of mitigation mea-
sures. Density and biomass were gen-
erally declining during the pre-mitiga-
tion period, which we attribute to a
eutrophication effect possibly associ-
ated with the concomitant decline in
seagrass habitat. Seagrass showed
signs of post-mitigation recovery, and
there is some evidence of recovery of
H. ulvae in this period, both in abun-
dance (density and biomass) and popu-
lation structure, with an increasing pro-
portion of adults represented. In the
eutrophic area, density and biomass
were also lower in the post-mitigation
period, but there was little sign of

recovery post-mitigation, for either abundance or
population structure. These patterns of change are
complex but consistent with the first successful steps
of restoration of the Zostera noltii bed. After 1998,
the controlled use of fertilisers, the opening of the
upstream connection (residence time declined from
5–7 d to just 1 d) between the 2 arms, the reduction of
the number of fishermen digging for bait and the
improved management of sluice openings led to an
improvement of the environmental quality. All these
actions promoted lower turbidity (from average partic-
ulate organic matter values of 0.02 mg l–1 before miti-
gation to 0.003 mg l–1 after mitigation; M. A. Pardal
unpubl. data), a consequent increase in freshwater cir-
culation that favoured nutrient dilution and decreased
residence time, which improved the environment for
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Fig. 5. Variation of Hydrobia ulvae density and biomass in the 2 study areas. 
(A) Zostera noltii bed; (B) eutrophic area

Table 1. Growth production estimations of Hydrobia ulvae
for both areas. –: n data available

Zostera noltii bed Eutrophic area

P B2 P/B2 P B2 P/B2

(g AFDW (g AFDW (g AFDW (g AFDW 

m–2 yr–1) m–2) m–2 yr–1) m–2)

1993 125.08 59.24 2.11 45.73 9.37 4.87

1994 202.53 74.14 2.73 10.86 2.38 4.56

1995 – – – 8.88 3.30 2.68

1996 – – – 2.80 0.95 2.94

1999 26.77 11.11 2.40 3.21 1.09 2.94

2000 95.40 29.33 3.25 8.19 2.50 3.27

2001 61.97 29.94 2.07 1.30 0.36 3.66

2002 167.11 58.31 2.86 – – –
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the seagrass bed and reduced the risk of macroalgal
blooms. We are confident, therefore, that the adverse
environmental conditions caused by eutrophication are
now abating. 

Nevertheless, 2 questions remain. First, if eutrophi-
cation of the entire estuary has lessened, why has the
biology of upstream eutrophic site not returned to its

original state? Second, why has the recovery
of the Hydrobia ulvae population following
major flood events been slower than during
the first period of the study? Although the
recovery after floods was studied for only 2
events, we suggest that the answer to both
questions involves the relative resilience of
the seagrass bed and the eutrophic site, and
the compounding effects of the 2 stressors,
enrichment and flood events. We have
argued elsewhere (Cardoso et al. 2004) that
the intertidal flats of the Mondego estuary
manifest 2 alternate states. The first is cha-
racterised by a vigorous seagrass bed, which
because of its above- and below-ground
structural complexity reduce critical erosion
velocities and create a more benign near-
bed environment for deposit feeders, as well
as secondary habitat in the form of leaves
and roots, and fine-particle sediment. The
second state is one lacking rooted macro-
phytes with coarser sediment particles and
an impoverished biota. The shift from sea-
grass to coarse sediment and vice versa is
probably best described by hysteresis
dynamics (Hobbs & Norton 1996, Scheffer &
Carpenter 2003), where moving between
the 2 alternate states requires a major
perturbation (eutrophication or large-scale
sediment stabilisation). Thus, even if eu-
trophication is completely reduced at the
eutrophic site, recovery to the original state
(covered with rooted macrophytes) probably
will not take place in the absence of further
restoration, such as extensive physical engi-
neering of the bed (Cardoso et al. 2004).

The failure of Hydrobia ulvae to com-
pletely recover to a structured population,
including all age classes at the eutrophic
site, is consistent with this view of system
stability. It is also interesting that the H.
ulvae population at the eutrophic site seems
less resilient than that in the seagrass bed,
as indicated by the longer time to achieve
the same values as previously reached fol-
lowing major flood events (Fig. 5). Also, the
population in the seagrass site seems simi-
larly less resilient to flood events following

the earlier eutrophication period. If so, this would add
weight to the concerns expressed by other workers,
that multiple stressors (here, eutrophication and flood
disturbance) operating concurrently or consecutively
can act synergistically, to lower overall system stability
(Kennish et al. in press). In this case, the eutrophication
process, which leads to a decline of the seagrasses, will
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promote indirectly the disappearance of the majority of
the reproductive adults. In the presence of a new stres-
sor (e.g. floods), we find that the recovery of the popu-
lation is much slower. This fact was more evident at the
eutrophic site, in which no signs of population recov-
ery were observed after the second flood event. This
pattern reinforces the notion that both stressors acting
synergistically can have an important role in the stabil-
ity of the population. Such stability concepts need to be
acknowledged in estuarine restoration programmes
if the latter are to be successful.

One of the most dramatic differences in Hydrobia ul-
vae populations at the 2 sites is the virtual absence of
adult (large size: >1.5 mm) cohorts at the eutrophic site.
There are several possible explanations for this. First,
growth rates at the eutrophic site may be lower than
those in seagrass bed, such that the populations are es-

sentially similar in their age structure.
This seems unlikely on the basis of the
results of the cohort analyses and field
growth rates obtained (Fig. 7). Second,
trematode parasites are known to in-
duce gigantism in H. ulvae and alter
population structures accordingly (Hux-
ham et al. 1995). However, infection
rates by trematodes in the Mondego es-
tuary are very low (<2%) and cannot
account for the higher abundance of
larger snails (Ferreira et al. unpubl.
data). Third, size-selective removal of
larger individuals by shorebird pre-
dation could be responsible for the ob-
served between-site differences (Cabral
et al. 1999). This seems the most likely
explanation, given the obvious differ-
ence in refuges between the 2 sites.
That predation is the mechanism re-
sponsible for the removal of larger
snails explains the reduction in growth
production, as well as the deficiency of
large snails observed in the eutrophic
area (characterised by bare sediments)
and also in the Zostera noltii bed in 1999
(when the biomass of seagrass was
lower). This mechanism associated with
the reduction of food resources could
have had a synergistic effect, leading to
a more fragile and less resilient popula-
tion in the post-mitigation period than
at the beginning of the study.

In conclusion, it seems that the nutri-
ent-mitigation strategy for the restora-
tion of the estuary has been partially
successful. There is evidence that the
seagrass is recovering at the outermost

site and that the Hydrobia ulvae population has the
potential for recovery, although its resilience to further
impacts (such as floods) may have been reduced. For
the eutrophic site, there was some minor recovery of
H. ulvae post-mitigation, but the resilience of the
population at this site to a flood disturbance appears
very low. Understanding the behaviour of biological
populations following restoration initiatives requires
acknowledgement that some changes may not be
easily reversible and that the existence of multiple
stressors may lower the resilience of populations.
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