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Abstract
In this paper we review distributed hash tables (DHTs) that work as overlay
networks on top of the IP network. We compare these DHTs under a number
of key aspects that concern performance, scalability and self-configurability.
Additionally, since these networks are not suitable for wireless ad hoc net-
works, we shortly review techniques that can be used to take distributed
hash tables to wireless environments.
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1 OVERVIEW 1

1 Overview

A dictionary stores values which can be accessed by associated keys. A hash table is a dictionary in
which keys are mapped to array positions by a hash function. Informally, a hash table stores (key,
value) pairs2. A user of the dictionary must use a key to store or to retrieve the corresponding
value. A centralized solution, where a single node holds the entire dictionary, is prone to a number
of problems, like lack of tolerance to faults, high congestion and low scalability. The natural answer
to these problems lies in the decentralization of data provided by a distributed hash table (DHT).
In a DHT, nodes must cooperate to maintain the coherence of the data. Nodes use a consistent
hash function [2] to determine the peer that holds a given value (often, some sort of file, a music,
or a pointer to the location of those items). Usually, nodes self-organize to form a communication
graph which has optimal or near-optimal path length/node degree trade-off (in wired networks,
both are typically logarithmic with respect to the number of nodes). In this way, although nodes
have a small number of neighbors (logarithmic or better) the DHT needs only a small number
of hops (logarithmic or better) to satisfy requests from clients. When compared to a centralized
solution this is a fair price to pay, because distribution offers some considerable advantages, like
improved fault-tolerance. In fact, a carefully designed DHT may resist to single or even multiple
node failures, loosing only the data that was in the departing nodes. Another advantage of a
distributed solution is the reduced congestion. While a centralized server needs to reply to all
requests, most DHTs need to reply only to a small fraction of the requests, like O(log n/n), where
n is the number of nodes. Furthermore, DHTs scale better than a centralized solution, both in
terms of communication and storage requirements.

2 DHTs in Overlay Networks

An overlay network is a network operated on top of another underlying network, but organized
under an independent logic. For this reason overlay networks are also deemed as “logical” or
“virtual” networks. The growing interest of users in peer-to-peer applications, like Napster3 and
Gnutella4 ignited the creation of many peer-to-peer overlay networks that implement DHTs, like
Pastry [3], Tapestry [4], Chord [5] and CAN [6]. Although different in their details, most of these
DHTs share a number of common features. According to [7], in a DHT, one can often distinguish
between the “routing scheme”5 and the “routing geometry” of the overlay network. The routing
scheme is the set of mechanisms that determines the neighbors and the next hops (this basically
corresponds to the formal definition of routing scheme). Often, the routing scheme compels the
nodes to create an underlying graph with a predetermined organization, which is called the “routing
geometry”. The notion of routing geometry is quite useful, because it allows us to pinpoint some
of the most relevant differences among existing DHTs. Depending on the particular geometry,
nodes may have some flexibility to choose their neighbors and to choose paths for the messages,
given their actual neighbors. As we shall see, some routing geometries give their nodes degrees
of freedom in both aspects (neighbors and paths), others only in one, while the remaining give
none. Flexibility to choose neighbors allows the DHT to select closer peers, thus improving routing
latency, while flexibility to choose paths also impacts latency (less) and increases tolerance to faults
caused by nodes that have departed. To shorten presentation of the DHTs, we will use a “generic
DHT” with no specific routing geometry. We use this generic model to present the components of
the routing scheme that are common to most DHTs. Then, we briefly overview and compare some
of the most well-known DHTs that exist.

2See for example the web page of National Institute of Standards and Technology — Dictionary of Algorithms
and Data Structures: http://www.nist.gov/dads.

3See http://www.napster.com.
4See http://www.gnutella.com.
5In [7], this is called the “routing algorithm”.
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2.1 The Routing Scheme of a Generic DHT

A DHT stores (key, value) pairs, e.g., (“Bob”, 32), where “Bob” is the key, while 32 is the value
we want to store, e.g., Bob’s age. The DHT must have a globally known hash function capable of
converting the key to a pseudo-random value, e.g., an integer or a position in a virtual space. One
of the crucial aspects is that the hash function should balance the distribution of keys throughout
the space. We first consider that the DHT creates an underlying graph H, which is a function
of the set of existing nodes. Nodes of the DHT receive a (pseudo) random identifier that evenly
spreads the nodes in the space of identifiers. The space of identifiers of the nodes must coincide
with the output space of the hash function (to ensure this, some DHTs, e.g., Bamboo [8], hash
the identifier of the node plus port of the application). If nodes and keys are evenly distributed in
space, each node will store a similar share of the keys.

The routing scheme must create graph H in a way that a path between two arbitrary nodes always
exists (at least in steady state conditions). To retrieve (or to store) the value corresponding to a
key, the DHT must find the node that stores that key. Take again the example above and assume
that the key “Bob” hashed to 81. In general, node 81 will not exist (because nodes are sparse in
the identifier space) and some other node will become responsible for that key. Assume that it is
node 90. Any node, say node 13 looking for the age of Bob will use the key “Bob”, which hashes to
81. In general, nodes only have a partial view of the network and node 13 will not know whether
node 81 exists or not. Nevertheless, the DHT will try to route the message to node 81 and will
always end up in node 90. One of the problems in most DHTs is that their overlay network bears
only a limited (if any) relation with the underlying network. Consequently, each hop in the DHT
may represent a very long distance in the Internet and successive hops may make the message
travel back and forth several times.

Entrance and departure of nodes from the DHT is often very similar from one DHT to the next.
To illustrate the process, we will take as example Pastry [3]:

• to enter the network, a node with identifier N must ask some node P0 already in the network
to send a special Join message to node N (which hopefully does not exist in the network).
This Join message will be routed to the node responsible for the identifier N in the network,
say Pf . At this moment, Pf will know that there is a new neighbor coming in and it divides
its own space and its keys with the newcomer. The remaining actions to take strongly depend
on the concrete DHT;

• ideally, departure of nodes involves redistribution of the keys of the leaving node. However,
in practice, nodes may leave abruptly, rendering this option impossible.

Next, we review some of the most important DHTs.

2.2 Chord

Overview

In Chord [5], nodes organize into a logical ring ordered by increasing order of identifier. To close
the ring, the smallest node follows the largest one. To maintain the ring, each node keeps a pointer
to the node that follows it. The ring allows to define the notion of successor node of a key. For
some key k, successor(k), is the node of the ring with smallest identifier, not smaller than k or,
if all nodes have identifiers smaller than k, successor(k) is the node with smallest identifier (0 is
successor of 2m − 1). To improve routing performance, Chord nodes use “finger tables” with m
entries, where 2m is the number of possible identifiers. This scheme requires O(log n) memory at
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Figure 1: Chord ring

each node, but ensures delivery of messages in O(log n) hops with high probability 6. The i-th entry
of the finger table at node P keeps a pointer to the first node S that succeeds P by at least 2i−1,
i.e., S = successor(P +2i−1 modulo 2m). These pointers correspond to long range contacts (LRCs)
carefully selected along the ring. If Chord reaches a steady state, where nodes have updated finger
tables, each hop successively eliminates half of the possible remaining identifiers.

Figure 1 depicts an example of a Chord ring with m = 5. Nodes hold the keys represented as Kx.
We also show the finger table of node 13 (the rows of the first column result from the computation
13 + 2i−1 modulo 32, while the second column is the successor of this identifier). As an example
consider that destination node is D = 27 and forwarding node is P = 13. In this case, the first
hop of the message will go through node successor(21) = 24.

In [5], Stoica et al. claim that simplicity, provable correctness and provable performance are the
main features of Chord. This is further explored in [9].

Routing Geometry

The routing geometry of Chord is a ring. This ring is augmented with LRCs that nodes store in
their finger tables. When populating their routing table, Chord nodes have many options. Except
for their immediate neighbors, Chord nodes can select their LRCs in a rather flexible way (however
the original specification of Chord does not allow this flexibility). The more distant the LRC is,
the more options there are. Routing also has a large flexibility, because there are many possible
routes with O(log n) path lengths. Ideally, there are O((log n)!) different ways of arranging the
paths with length O(log n). To see this, consider an average path with a sequence of hops like
n/4, n/8, n/16, . . . , 4, 2, 1. We can rearrange this sequence in an arbitrary way and still get the
same length. In fact, for k terms, we can have k! different orderings.

6With high probability, this means that an event will occur with a probability of at least 1−O(1/n).
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Figure 2: Content-Addressable Network (CAN)

2.3 Content-Addressable Network (CAN)

Overview

Content-Addressable Network (CAN) divides a virtual (imaginary) d-dimensional torus into d-di-
mensional zones. There is a one-to-one correspondence between CAN nodes and the d-dimensional
zones. The hash function deterministically maps the keys to coordinates of the virtual torus and
each process manages all the keys that hash inside its own zone. A visual representation of CAN
for anything above two dimensions is not very intuitive and therefore, Figure 2 represents a CAN
square, for only two dimensions. In fact, this is not a square, but a torus, because coordinates
wrap and the virtual space has no borders. Also, note that physical coordinates bear no relation
to virtual space.

To route messages, CAN uses a greedy algorithm, where each node sends the message to the
neighbor that is closest to destination. In CAN, nodes are only aware of neighbors with which
they share a common border of the space. Figure 2 depicts an example that illustrates the routing
process between X and Y .

In [6], Ratnasamy et al. claim that average path length in a d-dimensional CAN with n nodes
is (d/4)n1/d, i.e., O(dn1/d), and that individual nodes maintain only 2d neighbors. However, we
notice that it suffices to look at Figure 2 to see that the number of neighbors may be higher than
2d. Additional methods are required to avoid very unfavorable space partitions where some node
might need to store information of an arbitrary number of neighbors. Authors also state that CAN
can achieve O(log n) hops by setting d = (log2 n)/2. However, for typical configurations of CAN,
where the number of nodes in the system is not known beforehand, the path length/node degree
trade-off of CAN is very unfavorable, as paths tend to be very long. CAN can significantly benefit
from some enhancements to its basic design [6].

Routing Geometry

The routing geometry of CAN becomes a hyper-cube instead of a torus if we consider that d = log n
and that all possible identifiers are taken by existing nodes. In this case, each node will have
precisely log n neighbors each one differing in a single bit. Therefore, routing will take log n hops,
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Figure 3: eCAN-like LRCs

as each one of the hops will correct one of the bits. However, a practical implementation of CAN
can hardly correspond to this idealized hyper-cube. Not only the number of nodes of the system is
unknown when it boots, but it is likely to vary. Consequently, either the dimensionality is too large
or too small. If it is too large, the number of neighbors per node will be above O(log n). If it is too
small, most of the nodes will not lie in the vertices of the hyper-cube and crossing each dimension
needs more than a single hop, more than a logarithmic number of hops and in fact O(n1/d).

From the two flexibility criteria, CAN only owns one, which is the routing flexibility. Since there is
only one way of arranging the hyper-cube, there is no flexibility at all to select the neighbors. On
the other hand, nodes can route messages using several of their neighbors. If the forwarding node
and the destination have b different bits, the forwarding node can select any of the b neighbors
that are closer to destination. This means that there are O((log n)!) possible paths from source to
destination.

2.4 Expressways Content-Addressable Network (eCAN)

Overview

The CAN DHT is not very efficient in practice, because path lengths tend to be very long. To
overcome this problem Xu and Zhang [10] proposed an extension to CAN, called “expressways
CAN” (eCAN). Refer to Figure 3. To simplify presentation we will consider a two-dimensional
space, but this mechanism works for an arbitrary number of dimensions. The idea in eCAN is to
make a first level division of the entire space into four big squares7. Each node keeps LRCs to the
two neighboring squares. Then, the four big squares are further divided into other four smaller
squares. This time, nodes inside squares have a total number of four LRC (above, below, right and
left). This process is repeated for as many levels as wanted. Figure 3 illustrates the eCAN-like
LRC scheme, for a node in a corner. Wrapping pointers are not shown.

7Division in 3× 3, 4× 4 or any other number of squares is also possible.
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Routing Geometry

If the routing geometry of CAN were truly a hyper-cube with O(log n) dimensions, eCAN would
be pointless. However, in practice, CAN works like a torus and eCAN reduces path lengths in that
torus. The LRC mechanism of eCAN gives a lot of flexibility to nodes in what concerns selection of
neighbors. Each LRC has to fall within a hyper-cube with possibly many nodes. However, eCAN
is not flexible in route selection, because, in general, there is little gain in progressing until the
message crosses the border of its current largest hyper-cube. This means that a node has only one
good option to reach destination. Although eCAN has some similarities with the finger table of
Chord, the division of the space in hyper-cubes makes it less worthwhile to do small steps forward.

2.5 Pastry

Overview

Pastry and Tapestry are two descendants from the work of Plaxton et al. [11]. Pastry routes
messages as follows. Consider that some node S = 1454310 sends a message to node D = 8494410.
To succeed, S must know some node that starts with an 8. Consider it to be R1 = 83135. Now, R1

must know about some node that starts with an 8 and has 4 in the second position, say R2 = 84899.
This reasoning goes on for nodes R3 = 84996, R4 = 84945 and finally D. Implementations of Pastry
use a numeration base of 2b for some b. b is a parameter of the system, typically set to 4, which
means that the numeration base is 16. Under accurate routing tables and in the absence of recent
node failures, O(log n) hops suffice for a lookup operation, w.h.p., while the number of entries in
the routing information of each node is O(log n) [3]. n is the number of nodes in the system.

Each node divides its routing information in three parts. The first part is the “routing table”,
which includes information of peers needed to route messages according to the description made
before. The “leaf set”, L of node P includes a set of nodes with identifiers close to P . Nodes
use this set to know exactly which keys belong to them and which keys belong to their neighbors.
Nodes also use the leaf set to route to nodes with close identifiers. Additionally, nodes store a
list of nodes that are physically close called “neighborhood set”. The purpose of this list is to
improve locality properties of routing. By forwarding messages to nodes that are topologically
closer, routing becomes more efficient. Figure 4 [3] shows the information stored in some example
Pastry node, for b = 2 and |L| = 8 in a system that uses 5 digits for the node identifier. Node
identifiers are split in three parts: equal prefix, current digit and different suffix. First row keeps
addresses of nodes that have no common prefix with current node. Second row keeps addresses of
nodes that share the first digit with the current node and so on. At each row, the cell whose digit
matches the node’s digit has a gray background. The routing table of each node has an average of
dlog2b ne rows [3].

Rowstron and Druschel [3] claim that Pastry has good locality properties, in the sense that more
often than not, nodes will select to neighbors nodes that are close to them. This property is ensured
by the way that Pastry nodes build the network.

Routing Geometry

The routing geometry of Pastry is hybrid [7]. The routing tables of the nodes are organized as a
tree, while the leaf set of the nodes forms a ring (with some redundancy). The ring part of the
graph is easy to understand and, therefore, we shall focus on the tree. Each node is the root of
its own tree. Any node that shares all but the last digit of that identifier is a candidate to be a
child node. Exactly which nodes exist on that level of the tree depends on things like the nodes
that the “root” node used to join the network. The grandchildren nodes share all but the two last
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digits of the root’s identifier and so on, until only the first digit coincides in the lowest level of
the tree. Figure 5 depicts such a tree for node 23002. Routing for node 23002 is straightforward.
The path length between two nodes is determined by the subtree that connects them. Transient
network states can cause the tree to be incomplete and force the ring to come into play.

Selection of neighbors in Pastry is quite flexible, especially for entries of the routing table that
correspond to nodes which only share a few bits in their identifier. For instance, in Figure 5,
node 21330 could choose many different nodes starting by 23xxx, while node 23021 only has a few
choices for nodes starting by 2300x (possibly only one). On the other hand, there is no routing
flexibility in a tree, because there is only one neighbor that yields good routing results.

2.6 Tapestry

Routing Geometry

Pastry and Tapestry’s main mechanisms are very similar and therefore, to conserve space, we omit
the details of Tapestry. The main difference between the routing geometry of these DHTs is that
the routing geometry of Tapestry is a pure tree, because Tapestry does not have any ring. Figure 5
also represents this structure, despite the fact that Tapestry resolves digits in the opposite order.
Similarly to Pastry, Tapestry is very flexible in the construction of the routing table, while the
same is not true for the route selection.

2.7 Viceroy

Overview

Viceroy [12] implements a DHT with constant out-degree and logarithmic diameter. Additionally,
insertion or removal of a node requires a number of link changes that is constant in expectation
and logarithmic with high probability. The Viceroy network is based on the butterfly network.
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Figure 5: Pastry tree rooted at node 23002
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Figure 6: The butterfly network

Figure 6 illustrates a butterfly network comprised of thirty two nodes distributed by four different
levels. Note that, despite having only a constant number of connections, nodes can reach each
other in a logarithmic number of steps.

The principle of the Viceroy network is to enhance the Chord basic ring with carefully selected LRCs
inspired in the butterfly configuration. Viceroy nodes try to divide themselves into log n different
levels, n being the number of nodes. A Viceroy network is comprised of three different types of
structures: i) a ring like Chord; ii) the butterfly, that connects nodes from the general ring using an
emulation of the butterfly network; and iii) level rings that connect nodes from the same butterfly
level in a ring structure. To organize the Viceroy network, nodes randomly select identifiers in the
range [0, 1), to determine their positions along the 2π radians of the general Chord ring. A node
has the following constant number of connections: two connections with predecessor and successor
nodes in the general ring; right and left connections to the next level of the butterfly, a connection
to the upper level of the butterfly; and two connections to the predecessor and successor nodes in
the level ring. The left and right connections of the butterfly to the next level intend to divide ring
space, according to the following rule: for the left connection of node N of level l is selected the
neighbor in level l + 1 that is closest to N in the clockwise direction (i.e., the “clockwise-closest”
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neighbor) around the general ring; for the right connection is selected the neighbor of level l + 1
clockwise-closest to N + 1/2l. Connections from level l to level l + 1 are expected to be about
1/2l far apart in the ring. The reader may confront this with the perfect butterfly graph depicted
in Figure 6, considering that the distance from the leftmost to the rightmost lines is 1. For the
up-link, the clockwise-closest neighbor of level l − 1 is chosen. All the butterfly connections are
used for routing purposes.

The level of a node in the butterfly is randomly selected from the set {1, . . . , blog nc}, where n is
the number of nodes. Being impossible to determine the exact number of nodes, node N estimates
this to be n0 = 1/d(N, successor(N)), where d(N, successor(N)) is the distance from N to N ’s
successor in the general ring. For instance, if N = 0.44 and successor(N) = 0.64, N will assume
that network has 5 nodes and will select its level between 1 and 2. If successor of N changes, N
must re-select its level.

Routing is performed in three sequential steps, called “proceed to root”, “traverse tree” and “tra-
verse ring”. In the first step, nodes send the message to the first level of the butterfly through
their up-links. In the second step, nodes traverse the tree from the first level to the destination. At
node N , level l, distance to destination D, d(N,D), is at most 1/2l−1. Hence, if d(N,D) < 1/2l,
left link is chosen, otherwise, right link is chosen. This process will either reach some node without
further down links or a node beyond destination D. Assume that X 6= D is the node reached in
the end of the second step. The last step will make use of the level ring to achieve destination in
O(log n) steps w.h.p. 8. In the last step of the routing algorithm, if X < D, nodes select either the
successor in the level ring, Y , if Y ≤ D, or the successor in the general ring if Y > D. If X > D,
the reasoning is similar. For further details on Viceroy see [12].

Routing Geometry

The routing geometry of Viceroy is a variation of the butterfly graph represented in Figure 6. The
Viceroy DHT offers no flexibility in the selection of neighbors or in the selection of paths.

2.8 D2B

Overview

One of the most interesting features of D2B [13, 14] is that nodes have constant node degree and,
still, path lengths are logarithmic. D2B network is based on the de Bruijn graph. A de Bruijn
graph, B(2, k), for k ≥ 1, has 2k nodes with k-bit identifiers. In-degree and out-degree of nodes
is 2 and diameter of the graph is k. Node with identifier x1x2 . . . xk has an arc directed to nodes
x2 . . . xkα, for α ∈ {0, 1} and has incoming arcs from βx1 . . . xk−1, for β ∈ {0, 1}. Figure 7 depicts
an example of B(2, 3). Routing from x1x2 . . . xk to y1y2 . . . yk is done by selecting intermediate
nodes x2 . . . xky1, x3 . . . xky1y2, etc., until destination is reached. For instance, routing from 101
to 000 is done through 010 and 100.

D2B must incorporate some additional features to i) support the DHT functionality, ii) support
sparsity of nodes and iii) cope with the dynamic behavior of a network made of nodes that vary in
number. The key space of D2B is K = {0, . . . , 2m − 1}, for a binary string length of m. The key
k1k2 . . . km is managed by existing node x1x2 . . . xk if and only if x1x2 . . . xk is a prefix of k1k2 . . . km.
This raises the notion of “universal prefix set”, S, which is a set where for any possible integer with
infinite length w there is one and only one prefix of w in S. For example, {0, 100, 1010, 1011, 11}
is a universal prefix set. The empty set is also a universal prefix set. D2B must ensure that at any

8In [12], Malkhi et al. present two versions of the routing algorithm. The simplest version uses the general Chord
ring instead of the level rings, but may require O(log2 n) steps (more precisely, the expected number of steps is
O(log n) and it is O(log2 n) w.h.p.).
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Figure 7: Example of a de Bruijn graph, B(2, 3)

x2 … xj
w1 … wk

x1x2 … xj...xk
w1 … wky1 … yl

... ...

Figure 8: Multiple parent may correspond to a single child

given time, for any identifier, there is one and only one node with a corresponding prefix in the
network. In other words, identifiers of nodes of D2B must form a universal prefix set.

The sparsity of the identifier space implies that, unlike the static de Bruijn graph, node x1x2 . . . xk

may have either a single child x2 . . . xj , j ≤ k or several children with identities x2 . . . xky1 . . . yl,
1 ≤ l ≤ m − k + 1. If several children exist, the set of sequences y1 . . . yl forms a universal prefix
set. For instance, node 110 may have more than one children with the following identifiers, 100,
10100, 101010, 101011, 1011, or may, otherwise, have a single child with identifier of 1 or 10. Given
the childhood relation, the parenthood relation is symmetrical. If node A has a single child B with
identifier w1w2 . . . wk, then, B may have several parents with identifiers αw1 . . . wky1 . . . yl, where
α ∈ {0, 1} and y1 . . . yl forms a universal prefix set. On the other hand, if node A has several
children including B, with identifier w1w2 . . . wk, then B’s single parent is A and the identifier of
A is βw1 . . . wj , where β ∈ {0, 1}. Figures 8 and 9 illustrate childhood and parenthood relations.
To keep coherency with the text we used two different identifiers for nodes in the figures.

Routing Geometry

The routing geometry of D2B is a variation of the de Bruijn graph represented in Figure 7. D2B
is an inflexible architecture, both from the point of view of the neighbor selection and from the
point of view of the route selection. This is quite evident for neighbor selection, due to the highly
structured de Bruijn graph. Additionally, there is also only one optimal option to route the message
and therefore this does also not meet the routing flexibility criterion.
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Figure 9: One parent may have several children

Algorithm 1 Lookup algorithm at node N
Function lookup(k, kshift, I)

if k ∈ (N, successor(N)) then
return successor(N)

else
if I ∈ [N, successor(N)) then

return call function D.lookup(k, kshift << 1, I ◦ topBit(kshift))
else

return call function successor(N).lookup(k, kshift, I)
end if

end if

2.9 Koorde

Overview

Koorde [15] is a DHT that augments the basic Chord ring with a de Bruijn graph. Koorde
network achieves the following optimal results: i) for O(1) node degree, Koorde diameter is
O(log n) w.h.p.; ii) for O(log n) node degree (which enhances fault tolerance), Koorde diame-
ter is O ((log n)/ log log n). Koorde node m requires information about 2 nodes: its successor in
the ring and the predecessor of 2m modulo 2, known as D (unlike a pure de Bruijn graph, there is
no pointer to (2m + 1) modulo 2, as this would probably be redundant).

The Koorde DHT uses the notions of “virtual node” I and “real node” N . I corresponds to the
current routing node in the de Bruijn graph. Since it may happen for identifier I not to exist in the
Chord ring, node N is a real node that represents I in the ring, such that I ∈ [N, successor(N)).
To route toward key k, node X invokes the function lookup() in Algorithm 1 with arguments
X.lookup(k, k,X). We used the original notation of [15]: kshift is used to extract successive bits,
starting from the most significant, from key k; function topBit(x) returns the most significant bit
of x; finally, x◦ b, left-shifts x and introduces the bit b at the right of x. The algorithm first checks
if key belongs to the successor. If it does not, but node N represents I, request is forwarded to
node D and operator ◦ is used on I. Otherwise, request for key is forwarded to the successor in
order to search for node I. In Figure 10, we depict the Koorde network corresponding to Figure 1.
The pointer D at each node is shown inside a box. Figure 11 exemplifies the lookup() function of
a request for key k = 21 = 101012, starting at node N = 18 = 100102.

The number of hops can be reduced if instead of using N as initial I, the most significant bits of
the key k are inserted from the beginning in I, such that I does not overflow the range of N that
stops at (not including) successor(N). For instance, in the previous example, we could immediately
do I = 18 = 100102 and kshift = 101. Although there is no improvement in this particular case,
Kaashoek and Karger [15] prove that this enables Koorde to achieve O(log n) path lengths with
high probability.

Koorde has a second variant where it can use a base-O(log n) (say base-k) de Bruijn graph. In this
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Figure 10: A Koorde network

kshift 10101 0101 0101 101 01 01 01
I2 100112 001012 001012 010102 101012 101012 101012

I10 19 5 5 10 21 21 21
N 18 2 5 9 16 18 20

Figure 11: Request for key 21 = 101012 starting at node 18 = 100102

variant, node m uses pointers to k predecessors of km. This represents a node degree of O(log n),
but, on the other hand, it improves the path lengths to O ((log n)/ log log n), which is still optimal.

Routing Geometry

The routing geometry of Koorde comprises two parts: a basic Chord ring (without the finger tables)
plus a variation of the de Bruijn graph represented in Figure 7. Neither of the variants of Koorde
has any flexibility concerning either the selection of paths or the selection of neighbors. However,
comparison might not be entirely fair. In the second variant of Koorde, with O(log n) neighbors,
the effect of choosing alternative neighbors or alternative routes is not very clear. Although this
would affect the optimality of Koorde, fact is that most remaining DHTs are already suboptimal.

2.10 TOPLUS

Overview

In most peer-to-peer systems there is a mismatch between the logical and the physical networks.
As a consequence, paths selected by routing schemes in peer-to-peer networks may be considerably
longer than the corresponding paths in the physical network. The TOPLUS DHT [16] addresses this
problem. TOPLUS organizes peers in groups according to their IP addresses. Groups are then
organized into a new higher-order group, which is then organized into a new even higher-order
group, and so on until, at the highest level, there is only one group, which includes all possible
nodes. To increase correlation between group and network structure, TOPLUS gets topological
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information from Border Gateway Protocol (BGP) tables.

Let HN (X) be the lowest-order group including node X; let HN−1(X) be the second lowest-order
group including HN (X), until H0(X), which includes all groups and all nodes. Node X must know
all the nodes of group HN (X); at level N−1, node X must know at least one node from each group
that is sibling of HN (X) (i.e., some node Y such that HN−1(X) = HN−1(Y )∧HN (X) 6= HN (Y ));
the same applies for all other levels until level 0. The collection of all IP addresses known to X is
the routing table of X.

To route, nodes use a metric derived from a simple longest-prefix matching known as the “XOR
metric”, which is also used in Kademlia [17]. A distance between two identifiers j and k under
the XOR metric is defined as d(j, k) =

∑31
v=0 |jv − kv| · 2v, where jv is the v-th bit of j. The

difference of the XOR metric to the longest-prefix match is that the former always breaks ties
when prefixes have the same length (see [16] for details). Given the routing table structure of node
X, it is trivial to prove that routing will always converge. In fact, node X always knows some
node that is closer to destination D under the XOR metric (e.g., some node F belonging to some
sibling group H1(F )).

While capable of achieving a stretch as low as 1.17 compared to the IP routing, TOPLUS has a
number of drawbacks [16]. The most obvious one is that consistent hashing is no longer able to
balance load among the nodes, because nodes may not be evenly spread in the identifier space. As
a consequence, some nodes may receive an unfair share of the load. Another practice that might be
used in other peer-to-peer systems would be to assign several virtual nodes to the same powerful
peer. This is also difficult in TOPLUS. Another issue is the possibility of correlated node failures
that may bring down an entire set of related IP addresses, thus reducing the effectiveness of using
peers with neighboring addresses to increase availability.

Routing Geometry

The routing geometry of TOPLUS is hybrid in the sense that TOPLUS creates a tree of groups
of nodes. Nodes have pointers to groups at higher levels of the tree as well as pointers to sibling
groups at each level. TOPLUS only requires nodes to have complete knowledge of the lowest level
group of the node. Selection of neighbors in TOPLUS is very flexible. The same does not happen
with route selection. The tree structure of TOPLUS allows only a single option for the optimal
route.

2.11 Comparison of the DHTs

To compare the DHTs, we evaluate their most significant features:

performance and scalability as the network size increases up to thousands or millions of nodes,
scalability depends heavily on the behavior of the following factors: ability of nodes to share
the load, growth of path lengths versus degree of nodes and congestion at the nodes. While
most DHTs assume that load sharing is ensured by hashing (and possibly randomization), fig-
ures for path lengths and node congestion may vary. To evaluate performance and scalability,
we will use the theoretical bounds as they are presented by their authors;

self-configurability to evaluate the self-configurability of the DHTs, we focus on the ability of
the network to choose better paths, on the tolerance to faults and on churn9. To evaluate
the ability of the network to choose better paths, we outline conclusions of [7]. Resistance
to churn can be seen as a particular case of tolerance to faults. However, it is interesting to

9The site http://searchcrm.techtarget.com defines the “churn rate” as the number of costumers who discontinue
a service during a specified time period divided by the average total number of costumers over the same time period.



2 DHTS IN OVERLAY NETWORKS 14

Table 1: Comparison between expected performance of several peer-to-peer systems

P2P system Node degree Network diameter Node congestion

small-worlds O(1) O(log2 n) O
(
(log2 n)/n

)
Chord O(log n) O(log n) O ((log n)/n)

CAN O(d) O(dn1/d) O(dn1/d−1)
Pastry O(log n) O(log n) O ((log n)/n)

Tapestry O(log n) O(log n) O ((log n)/n)
D2B O(1) O(log n) O ((log n)/n)

Viceroy O(1) O(log n) O ((log n)/n)
Koorde cfg. 1 O(1) O(log n) O ((log n)/n)
Koorde cfg. 2 O(log n) O ((log n)/ log log n) O ((log n)/(n log log n))

isolate both concepts and analyze them under different perspectives. We base our evaluation
on tolerance to faults on the interesting work of Gummadi et al. [7] that defines the concept
of “static resilience” of a DHT. Although tolerance to faults depends on many different
mechanisms, static resilience measures the ability of the DHT to resist to node failures prior
to any attempt of reconstruction. Static resilience strongly depends on the particular DHT
and on the routing geometry. We evaluate the static resilience of the different DHTs in
Section 2.11. Other recovery mechanisms may be applicable to more than one DHT and
consequently they are less prone to comparisons. On the other hand, churn has an interest of
its own, because the patterns of utilization of existing peer-to-peer systems tend to show that
participation in the network is highly dynamic. Therefore, DHTs need to deal with a high
churn rate. However, there is little data available to compare the DHTs and additionally,
many techniques are applicable to all the DHTs. For this reason, we will focus on generic
measures to improve resistance to churn and, as a consequence, self-configurability. To infer
behavior under churn and to mitigate this problem, we outline conclusions of [18, 19, 20].

Performance and Scalability

Path lengths are measured in terms of hops traveled by a message in the overlay network, while the
degree of a node is the number of its overlay neighbors. These parameters are tightly connected
and cannot be simultaneously reduced, as any n-node network meets its fundamental limits in the
inequality dh+1/(d − 1) ≥ n − 1. dh+1/(d − 1) is an upper bound for the number of nodes within
h hops for a given maximum node degree d. In fact, for O(1) node degree, expected path lengths
can be, at best, O(log n), while for O(log n) node degree, expected path lengths cannot be shorter
than O(log n/ log log n) [15]. The path length/node degree trade-off is one of the central criterion
used to evaluate a DHT.

Besides path lengths and node degree, it is also common to find a theoretical derivation of conges-
tion at nodes in the papers where authors present their DHTs. Table 1 summarizes these figures for
the DHTs presented before, when available (see also [13, 12]). For comparative purposes, we have
also included networks with small-world characteristics. A small-world has a constant node degree
and poly-logarithmic diameter. In [21, 22, 23], we can find some notable works that study the
creation of small-worlds. One important aspect that we must be aware of is that there may be no
correspondence between these theoretical bounds and the results observed in practice, because the
O() notation hides a constant factor that may vary widely. For instance, experimental results of
Gummadi et al. [7] tend to demonstrate that, for instance, the butterfly network is very inefficient
when compared to networks with O(log n) node degree.
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Table 2: Flexibilities of the different DHTs architectures

Property Optimal paths Neighbor selection

Ring (Chord) O(log n) nlog n/2

Hyper-cube (CAN) O(log n) 1

Torus (eCAN) 1 nlog n/2

Hybrid (Pastry) 1 nlog n/2

Tree (Tapestry, TOPLUS) 1 nlog n/2

de Bruijn (D2B, Koorde) 1 1
Butterfly (Viceroy) 1 1

Self-Configurability

Path Latency As we referred before, there is often a mismatch between the theoretical bounds
for the trade-off between path lengths and node degrees and the observed performance. This
difference may result from two facts. First, the constant hidden in the O() notation may vary
widely. Second, this trade-off does not convey any information about latency. In a DHT where
nodes pick their identifiers in a random way, there are two main techniques to reduce latency [7]:
i) Proximity Neighbor Selection (PNS): pick nearby neighbors when creating the routing tables
(if possible) or ii) Proximity Route Selection (PRS): when more than a single path is available
to a destination, try to select paths through neighbors with a small latency. In general, PNS
consistently yields better results than PRS. According to [7], this is a consequence of the fact that
PNS has more alternatives than PRS. Many DHTs allow a large number of candidates for a single
routing entry10, while, at routing time, the candidates for the next hop are restricted to the few
options available in the routing table of the node. Interestingly, a combination of the two methods
is also possible and yields good results.

Now, the question that we want to answer is which DHTs allow PNS and which do not. This is
obviously related to the “neighbor selection” column of Table 2. Whenever more than one choice
for the routing table is available a node may try to pick a neighbor with a small latency. Therefore,
Chord, eCAN, Pastry, Tapestry and TOPLUS can select among multiple different neighbors, while
the remaining cannot. One of the conclusions of [7] is that the routing geometry (i.e., tree, ring,
etc.) does not seem to have any influence in the gains of PNS. The only thing that matters is
whether or not it is possible to implement it. Concerning PRS, the DHTs that allow multiple
paths, e.g., Chord or CAN, are also more prone to support “runtime” selection of neighbors.

Tolerance to Faults With respect to tolerance to faults, we make an analysis of the static
resilience of a DHT, which depends on the routing geometry. If a given routing geometry offers
more alternative paths to a destination, one may expect that a DHT based on this geometry will
resist to a larger number of broken links. Note that this is largely independent of two mechanisms
that can be included by virtually all DHTs: i) data replication to prevent data loss and ii) active
recovery mechanisms to repopulate the routing tables. As noted in [7], if DHT A has better static
resilience than DHT B, then DHT B needs to use quicker, more expensive, active recovery schemes,
to offer a comparable resilience.

Table 2 summarizes the flexibility considerations that we made in the previous sections [7]. Ex-
perimental results of [7] tend to confirm the hypothesis that more paths provide better resilience.
This result is consistent with the “optimal paths” column of Table 2. In particular, authors have
observed that the tree and the butterfly have a low resilience, while the ring and the hyper-cube

10However, it is not possible to measure the latency to each one of the nodes and therefore, nodes must pick a
neighbor from a small sampling subset.
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have the highest resilience of the analyzed DHTs11.

Resistance to Churn Churn is one of the most crucial problems of peer-to-peer systems. In-
formally, churn refers to the rapid membership changes that may occur. This was first observed
in the context of peer-to-peer applications like Napster, Gnutella or FastTrack12. However, given
the lack of widespread large-scale applications based on DHT [8], there is little or no consistent
and thorough analysis of churn in DHTs. For this reason, we restrict ourselves to outline the
conclusions of previous work [18, 19, 20].

The basic problem with churn is that there is a communication cost associated with the mainte-
nance of the DHT. On the other hand, it has been observed that nodes can have very small up
times (also known as “session times”) in a DHT [24, 25, 26, 27, 28]. Some of these figures point
to session times as low as a single minute for 50% of the nodes. This may occur if nodes that
join a DHT supporting a file sharing system leave immediately after they find or give up finding
a file the user was trying to retrieve. Hence, the basic trade-off is: either spending bandwidth
updating outdated routing table entries or accepting a large latency resulting from not updating
those entries. Li et al. [20] experimentally compared four DHTs (Chord, Pastry, Kademlia [17] and
Kelips [29]) to find the feasibility limits of this trade-off between “average live bandwidth” and
“average lookup latency”. They concluded that given the right parameter settings this trade-off
is identical for all the analyzed DHTs. Qualitatively, this trade-off curve looks like the function
y = 1/x+k, where x is the live bandwidth, y is the lookup latency and k is the minimum achievable
latency. This means that it is useless to spend more bandwidth beyond a certain point as this will
not reduce latency below k. On the other hand latency will sharply increase if the system tries to
save bandwidth below a critical point of the function.

Although interesting from a theoretical perspective, the basic problem is to make the system
converge to the intended pace of substitution of stalled routing table entries. Rhea et al. [18]
clearly show that some systems start failing most lookup requests when the churn rate increases.
Additionally, they show that this results from an inadequate policy of replacing stalled entries.
These systems replace entries in a reactive way, i.e., whenever a node detects that a given neighbor
failed it tries to replace that neighbor. This may create a positive feedback cycle where the node
congests its own access link trying to refresh its routing table and consecutively declaring more
and more neighbors as dead as it cannot communicate with them. Hence the authors identify the
three most important factors that may improve the response of a DHT to churn:

• periodic instead of reactive recovery from failures;

• calculation of message timeouts during lookups;

• choice of nearby over distant neighbors.

The first of these ideas is to recover at previously scheduled moments, instead of immediately
reacting to failures. On the other hand, correctly estimating the timeouts is also a central aspect
of resistance to churn. If a timeout is too short, a new request might be issued before the first
one is able to reach the requester, thus congesting the network even more. On the other hand,
an unnecessarily longer timeout will have a negative impact on latency. Finally, the third issue is
nothing more than PNS. As we have seen, choosing nearby, instead of distant neighbors, is only
possible with certain routing geometries. Although Rhea et al. [18] use the Bamboo [8] DHT13

to support their claims, the use of mechanisms based on these conclusions may also increase the
resistance of most other DHTs to churn.

11Gummadi et al. [7] have analyzed the following geometries: tree (Tapestry), hyper-cube (CAN), ring (Chord),
butterfly (Viceroy), xor (Kademlia [17]) and hybrid (Pastry).

12See http://en.wikipedia.org/wiki/Fasttrack.
13The routing scheme and the routing geometry of Bamboo are identical to Pastry. Most of the differences lie in

the maintenance mechanisms.
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3 Position-Based DHTs for Wireless Ad Hoc Networks

All the DHTs presented before assume that there is a network with operational routing underneath.
Then, most of these DHTs create a logical overlay network where nodes perform routing in a way
that is strongly decoupled from the data network. This creates an overhead for every lookup
operation of the DHT in a setting where resources are scarce. Additionally, routing can hardly be
taken for granted in wireless ad hoc networks, which makes the problem even harder. As a result,
if routing per se is such a complicated task, there is little sense in coming up with overlay networks
that need an independent routing facility. Therefore, the problem of creating a DHT for wireless
environments has deserved fewer efforts (there are, nevertheless, some examples, e.g., [30, 31, 32]).

Given these problems, we can use position to eliminate the mismatch between the data network and
the logical network. Hence, like in the routing problem [33], construction of a DHT can strongly
benefit from the use of positional information, whenever there is a strong relation between position
and topology. While the most obvious application of this idea is to wireless ad hoc networks, wired
networks can also benefit from this [34].

The idea of integrating routing with the DHT was first proposed in the Geographical Hash Table
(GHT) of Ratnasamy et al. [30](see also [35]). Despite not being localized (see [36] for a definition
of localized routing scheme), in most circumstances GHT will only need information of nearby
nodes to operate correctly. In GHT there is a space of identifiers for nodes and keys. Unlike
other DHTs, this space is not virtual, but physical. GHT relies on the Greedy Perimeter Stateless
Routing (GPSR) protocol [37, 38] with little modifications to operate. GHT uses two additional
related concepts: the “home node” and the “home perimeter”. The home node of a point is the
node which is geographically closest to that point in space. The home perimeter of a point is the
set of edges that encloses that point14. Assume that the network supporting the DHT is routing to
some destination D. In general, D will not correspond to any node. However, standard behavior
of GPSR ensures that a packet always reaches the home node, thus making the operation of the
DHT possible. Details on the operation and maintenance of the DHT can be found in [30].

One of the shortcomings of this DHT is that path lengths tend to increase as network density
increases (since the underlying graph is planar, edges become shorter when node density increases).
This problem is inherent to GPSR and we can use clustering to solve it. Perhaps the simplest way
of clustering nodes in a position-based algorithm is to divide the space into cells of predictable size.
This clustering can then be used to create a DHT. As a result, the cell becomes the addressing unit
of the DHT and the nodes inside each cell must cooperate to manage the keys. Gupta et al. [39]
suggest this form of clustering. Li et al. [40], take this idea a step further. They create a DHT on
top of a logical structure of cells, which is part of a more general peer-to-peer information sharing
architecture. A similar idea exists in [41], which presents a Two-tier Data Dissemination (TTDD).
TTDD creates a grid of dissemination for each type of data. This grid also follows a geometrical
arrangement. Then, TTDD uses flooding within the local area, while global dissemination is
achieved through the grid, for the sake of efficiency. In [42], Araújo et al. present “Cell Hash
Routing” (CHR), which is a DHT for wireless ad hoc networks, based in clusters of cells. CHR
builds its clusters in a very simple way and due to the geometry of the cluster, routes packets
directly using the logical clusters.

4 Summary

In this paper we surveyed some of the most well-known DHTs. These DHTs are implemented as
peer-to-peer overlay networks working on top of IP. To make a detailed comparison, we evaluated
the following aspects: performance and scalability (ability to share the load, path length vs. node

14The reader should keep in mind that GPSR needs a planar graph.
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degree trade-off and node congestion) and self-configurability (ability to improve path latency,
tolerance to faults and resistance to churn). Most if not all these DHTs are not suitable to wireless
ad hoc networks for a number of reasons, including the mismatch between the overlay network
and the topology. In this context, position-based DHTs have the advantage of not using a logical
overlay network, thus being much lighter and, therefore, applicable to wireless ad hoc networks.
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