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Abstract: This note discusses the appropriate way of uniformizing the notion
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1. Introduction

L-valued frames are structures of increasing interest for fuzzy topology (see
[14], [8], [15], [16], [17], [6], [7]). They were introduced by Pultr and Rod-
abaugh in [14] for the case of a complete chain L and were recently extended
for the more general case of a completely distributive lattice L by Gutiérrez
Garćıa, Höhle and de Prada Vicente [7]. This paper is a continuation of
our previous paper [6], and has its roots in the convenience of finding (after
[7]) an appropriate notion of a uniform L-valued frame. There are two obvi-
ous candidates for it: the most direct one, provided by the direct approach
of uniformizing the L-topologies as a frame, and the one suggested by [14],
based on the concept of an L-valued frame. In the previous [6] we chose the
latter (that would eventually provide a nice categorical picture of the cate-
gories at hand) since the former reveals to make no sense after the following
observation of Pultr and Rodabaugh in [14]:
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(...) we envisage potential applications of the notion of an L-
valued frame in the linear case. One of the questions of interest
in fuzzy topology concerns well-founded definitions of the struc-
tures of the uniformity type. The case of a complete chain L,
important historically and still very important for applications,
does not allow the direct uniformization of an L-topology τ as
a frame: a uniformity on τ induces a uniformity on L (as ob-
served by Banaschewski); and since the only linearly ordered
frame admitting a uniformity is the two point Boolean algebra
2 = {0 < 1} we would be left with the crisp case. One can, how-
ever, think of definitions based on the concept of an L-valued
frame which would be more satisfactory.

However, as we now have found with the following example, this observa-
tion is not true in general (it holds only for the stratified case): Let L be a
non-uniformizable frame, for example L = [0, 1] or any linearly ordered frame
different from 2 = {0 < 1}. Let 1∅ and 1X denote, respectively, the bottom
and top elements in LX . Clearly enough τ = {1∅, 1X} is a uniformizable
L-topology on X. If the observation above would be true, then there would
exist a uniformity on the frame L, a contradiction.

So, this places again the former alternative as the most natural candidate
for a good definition of a uniform L-valued frame and prompts for its study.
This is the problem that we address in this paper, having in mind the treat-
ment of the case of a completely distributive lattice L, following the lines of
[7]. As it is shown in [7], the case of a completely distributive lattice cannot,
in a certain sense, be weakened.

2. Preliminaries and notation

For standard notions and facts from category theory used here we refer to
[1]. As a general reference to frames we suggest [11] or [13].

2.1. Uniform frames. A frame is a complete lattice A satisfying the dis-
tributive law

∀a ∈ A, ∀S ⊆ A, a ∧ (
∨

S) =
∨{a ∧ b | b ∈ S}.

Given two frames A and B, a frame homomorphism h : A → B is a mapping
preserving all joins and finite meets. The category of frames and frame
homomorphism will be denoted by Frm.
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Let A be a frame. A set U ⊆ A is a cover of A if
∨

U = 1. The set of
covers of A can be preordered: a cover U refines a cover V , written U ≤ V ,
if for each a ∈ U there is a b ∈ V with a ≤ b.

For a ∈ A, the element st(a, U) =
∨{b ∈ U | b ∧ a 6= 0} is called the star

of a in U . Further, for a family U of covers of A, we write

a
U
C b if there exists U ∈ U such that st(a, U) ≤ b.

Remark 2.1. The following useful properties are easy to check:

(i) a
U
C b =⇒ a ≤ b,

(ii) a ≤ b
U
C c ≤ d =⇒ a

U
C d,

(iii) a
U
C b, c

U
C d =⇒ a ∧ c

U
C b ∧ d.

A family U of covers of A is a uniformity basis [12] provided that:

(U1) U is a filter basis of the preordered set (Cov(A),≤) of all covers of A.
(U2) Every U ∈ U has a star-refinement, i.e., for every U ∈ U there is a

V ∈ U with

st(V ) := {st(a, V ) | a ∈ V } ≤ U.

(U3) For every a ∈ A, a =
∨{

b ∈ A | b U
C a

}
.

Also, we understand by a uniformity subbasis a family of covers of A such
that finite meets of elements of the family constitute a uniformity basis.

A uniformity on A is a filter U of covers of A generated by some unifor-
mity basis. The pair (A,U) is then called a uniform frame. Let (A,U) and
(B,V) be uniform frames. A frame homomorphism h : A → B is a uniform
homomorphism if, for every U ∈ U , h[U ] = {h(a) | a ∈ U} ∈ V . We denote
by UFrm the category of uniform frames and uniform homomorphisms.

2.2. The iota functor ιTL : L-Top → Top. Let L denote a complete lattice.
An element p ∈ L is called prime if for each a, b ∈ L with a ∧ b ≤ p either
a ≤ p or b ≤ p. As in [4], we denote by PRIME L the set of all prime elements
of L and SpecL = PRIMEL \ {1}.
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Following [7], for each α ∈ L we denote by ↑↑↑↑↑↑↑↑↑↑↑α the set {β ∈ L : α <<<< β},
where <<<< is the opposite relation of the way-below relation in the lattice Lop:

α <<<< β ≡ for all S ⊆ L such that
∧

S ≤ α there exist γ1, . . . γn ∈ S :
n∧

i=1
γi ≤ β.

An L-valued topological space [2, 5] (shortly, an L-topological space) is a pair
(X, τ) consisting of a set X and a subset τ of LX (the L-valued topology or
L-topology on the set X), containing 1∅ and 1X and closed under finite meets
and arbitrary joins (where meets and joins in LX are defined pointwisely).

Given two L-valued topological spaces (X, τ1), (Y, τ2) a map f : X → Y is
an L-continuous map if the correspondence b 7→ f←(b) = b ◦ f maps τ2 into
τ1. The resulting category will be denoted by L-Top.

Of course, when L = 2, an L-topological space is precisely a topological
space and there is an isomorphism between Top and L-Top, via the charac-
teristic functor (the one associating to each subset its characteristic function
and leaving morphisms unchanged). If L is a frame then the L-topologies,
being subframes of the frame LX , are frames as well.

The well-known iota functor ιL, originally introduced by Lowen [10] for
L = [0, 1] and later on extended by Kubiak [9] to an arbitrary complete
lattice, was the original motivation to define chain-valued frames and the
corresponding category in [14]. It constructs at the fibre level, for each L-
topology, a traditional topology with subbasis the family of all level sets for
all members of the L-topology:

For each set X and each α ∈ L, the α-level mapping ια : LX → 2X is
defined by

ια(a) = [a 6≤ α] := {x ∈ X | a(x) 6≤ α}, for each a ∈ LX .

Now, given an L-topology τ on X, we consider the associated crisp topology

ιTL(τ) = 〈{ια(τ) | α ∈ L}〉 = 〈{ια(a) | a ∈ τ, α ∈ L}〉.
Remark 2.2. Notice that when L is a completely distributive lattice, the
collection {ιp(a) | a ∈ τ, p ∈ SpecL} is also a subbase of the topology ιTL(τ).

The correspondence (X, τ) 7→ (X, ιTL(τ)) defines a functor ιTL : L-Top →
Top: for each L-continuous map f : (X, τ1) → (Y, τ2), f : (X, ιTL(τ1)) →
(Y, ιTL(τ2)) is continuous, since b ◦ f ∈ τ1 and f−1[ια(b)] = ια(b ◦ f) for every
b ∈ τ2.
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Note that whenever L is a frame the mapping ιp : τ → ιTL(τ) is a frame
homomorphism for each p ∈ SpecL (see Corollary 3.5 bellow; this is not true
in general if p fails to be prime). Consequently we can consider the system
of frame homomorphisms(

ιp : τ → ιTL(τ) | p ∈ SpecL
)
. (2.2.1)

2.3. L-valued frames. ¿From now on let L denote a completely distributive
lattice. Recall that any completely distributive lattice is a spatial frame (i.e.
a frame isomorphic to the lattice of open sets of some topological space)
and therefore in any completely distributive lattice each element is a meet of
primes.

An L-valued frame (shortly, an L-frame) is a system

A =
(
ϕA

p : Au → Al | p ∈ SpecL
)

of frame homomorphisms (Au is the upper frame and Al is the lower frame)
satisfying the following conditions:

(F0) For every p ∈ SpecL, ϕA
p =

∨{ϕA
q | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ SpecL}.

(F1) Al = 〈⋃p∈Spec L ϕA
p (Au)〉. (collectionwise extremally epimorphic)

(F2) If a 6= b then ϕA
p (a) 6= ϕA

p (b) for some p ∈ SpecL. (collectionwise
monomorphic)

L-frames were introduced by Pultr and Rodabaugh [14] for the case of a
complete chain L and extended by Gutiérrez Garćıa, Höhle and de Prada
Vicente [7] for the case of a completely distributive lattice.

Given two L-frames A and B an L-frame homomorphism h : A → B is an
ordered pair of frame morphisms

(hu : Au → Bu, hl : Al → Bl)

satisfying
∀p ∈ SpecL, hl ◦ ϕA

p = ϕB
p ◦ hu.

The resulting category, with composition and identities component-wise in
Frm, is denoted by L-Frm.

Note that for each L-topological space (X, τ) with L completely distribu-
tive, the system (2.2.1) of frame homomorphisms defines an L-frame [7].

This was the motivating example for the notion of an L-frame.
We recall also the upper, resp. lower, forgetful functors

Uu : L-Frm → Frm, U l : L-Frm → Frm
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defined by sending (ϕA
p : Au → Al | p ∈ SpecL) to Au, resp. Al, and (hu, hl)

to hu, resp. hl.

3. An extension of the iota functor

Let L-UTop denote the category whose objects are of the form (X, τX ,UX)
where τX is an L-topology on X and UX is a uniformity on the frame τX ,
and morphisms f : (X, τX ,UX) → (Y, τY ,UY ) are the L-continuous functions
f : (X, τX) → (Y, τY ) for which f← : (τY ,UY ) → (τX ,UX) is a uniform
homomorphism.

In the particular case L = 2 the objects of 2-UTop are topological spaces
(X, TX) endowed with a uniformity on the spatial frame TX .

One can then try to extend the iota functor for L-UTop:

ιTUF
L : L-UTop → 2-UTop.

We will do that by defining how it acts on the additional structure (the
uniformity on the L-topology) since in the L-topology it will act precisely as
the iota functor already defined in Subsection (2.2).

For each p ∈ Spec L and each A ⊆ LX , let ιp[A] = {ιp(a) : a ∈ A} ⊆ 2X .
We state without proof some basic facts satisfied by the maps {ιp | p ∈

Spec L}:
Lemma 3.1. Let A ⊆ LX, f : X → Y , a ∈ LX, b ∈ LY and p, q ∈ Spec L.
Then:

(1) ιp(
∨A) =

⋃
a∈A ιp(a).

(2) ιp(
∧A) =

⋂
a∈A ιp(a) whenever A is finite.

(3) p ≤ q ⇒ ιq(a) ⊆ ιp(a).
(4) f−1(ιp(b)) = ιp(f

←(b)).

We have now the following, which is easy to check (cf. [6]):

Proposition 3.2. Let A and B be covers of the frame LX and p ∈ Spec L.
Then:

(1) ιp[A] is a cover of X.
(2) If A ≤ B then ιp[A] ≤ ιp[B]. Hence ιp[A∧B] ≤ ιp[A] and ιp[A∧B] ≤ ιp[B].
(3) st(ιp(a), ιp[A]) ⊆ ιp[st(a,A)].
(4) If st(A) ≤ B then st(ιp[A]) ≤ ιp[B].
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Corollary 3.3. Let (X, τX ,UX) ∈ L-UTop. The family

{ιp[U ] | U ∈ UX and p ∈ Spec L}

generates (as a subbase) a uniformity ιUF
L (UX) on the frame ιTL(τX) whose

base is

{ιp[U ] ∧ ιq[U ] | U ∈ UX and p, q ∈ Spec L}.

Proof : It follows from Lemma 3.1 and the properties in Proposition 3.2.

Regarding condition (U3) notice that, by Proposition 3.2(3), b
UXC a implies

that ιp(b)
ιUF
L (UX)
C ιp(a), thus we have ιp(a) =

⋃{
ιp(b) | ιp(b)

ιUF
L (UX)
C ιp(a)

}
for

every p ∈ Spec L and every a ∈ τX , which suffices to conclude (U3). Indeed:
for any element H of ιTL(τX), there are ai, bi ∈ τX and pi, qi ∈ Spec L such
that (cf. Remark 2.2)

H =
⋃

i∈I(ιpi
(ai) ∩ ιqi

(bi))

=
⋃

i∈I

(⋃{
ιpi

(c) | ιpi
(c)

ιUF
L (UX)
C ιpi

(ai)
} ∩⋃{

ιqi
(d) | ιqi

(d)
ιUF
L (UX)
C ιqi

(bi)
})

⊆ ⋃
i∈I

⋃{
ιpi

(c) ∩ ιqi
(d) | ιpi

(c) ∩ ιqi
(d)

ιUF
L (UX)
C ιpi

(ai) ∩ ιqi
(bi)

}

⊆ ⋃{
G ∈ ιTL(τX) | G

ιUF
L (UX)
C H

} ⊆ H,

where the last inclusions follow from Remark 2.1. ¤

The following is obvious:

Corollary 3.4. If f : (X, τX ,UX) → (Y, τY ,UY ) is a morphism of L-UTop
then f : (X, ιTL(τX), ιUF

L (UX)) → (Y, ιTL(τY ), ιUF
L (UY )) is a morphism of 2-

UTop. ¤

Consequently, we have a functor ιTUF
L : L-UTop → 2-UTop given on objects

by

ιTUF
L (X, τX ,UX) = (X, ιTL(τX), ιUF

L (UX)) for each (X, τX ,UX) ∈ L-UTop

and, on morphisms, for each f : (X, τX ,UX) → (Y, τY ,UY ), ιTUF
L (f) = f .
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Hence the diagram

L-UTop

FUF
L

²²

ιTUF
L // 2-UTop

FUF

²²

L-Top
ιTL // Top

commutes (where FUF
L and FUF denote, respectively, the forgetful functors).

Corollary 3.5. For each (X, τX ,UX) ∈ L-UTop and each p ∈ Spec L the
mapping ιp : (τX ,UX) → (ιTL(τX), ιUF

L (UX)) is a uniform homomorphism.

Proof : By Lemma 3.1(1) and (2), each ιp is a frame homomorphism. Clearly,
it is moreover uniform, that is, for every U ∈ UX , ιp[U ] ∈ ιUF

L (UX). ¤

4. L-valued uniform frames

Let us consider the following system of uniform homomorphisms:

(
ιp : (τX ,UX) → (ιTL(τX), ιUF

L (UX)) | p ∈ Spec L
)
.

Remarks 4.1. (1) As it was shown in [7], for each p ∈ Spec L,

ιp =
∨{ιq | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}. (4.1.1)

In particular, the assignment p 7→ ιp is antitone.

(2) We have

(ιTL(τX), ιUF
L (UX)) =

〈 ∨
p∈Spec L

ιp(τX ,UX)
〉
, (4.1.2)

where, by the previous expression we mean that the topology ιTL(τX) is gen-
erated by the subbase {ιp(a) | a ∈ τX and p ∈ Spec L} and the uniformity
ιUF
L (UX) is generated by the subbase {ιp[U ] | U ∈ UX and p ∈ Spec L}.

(3) For each pair of distinct a, b ∈ τX there exists x ∈ X such that a(x) 6=
b(x), hence there exists p ∈ SpecL such that either a(x) ≤ p and b(x) 6≤ p
or a(x) 6≤ p and b(x) ≤ p and so [a 6≤ p] 6= [b 6≤ p]. It follows that

if a 6= b ∈ τX then ιp(a) 6= ιp(b) for some p ∈ SpecL. (4.1.3)

(4) As a consequence of the previous comments, the system of uniform ho-
momorphisms (

ιp : (τX ,UX) → (ιTL(τX), ιUF
L (UX)) | p ∈ Spec L

)
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satisfies conditions (4.1.1), (4.1.2) and (4.1.3) above.

Proposition 4.2. Let (A,U) be a uniform frame and (X, TX ,UX) ∈ 2-UTop.
Let (ϕp : (A,U) → (TX ,UX) | p ∈ Spec L) be a system of uniform homomor-
phisms satisfying:

• for each p ∈ Spec L, ϕp =
∨{ϕq | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}. (4.2.1)

• (TX ,UX) =
〈∨

p∈Spec L ϕp((A,U))
〉
. (4.2.2)

• if a 6= b ∈ A then ϕp(a) 6= ϕp(b) for some p ∈ Spec L. (4.2.3)

Then there is a uniform frame (B,V) and a uniform isomorphism h : (A,U) →
(B,V) satisfying the following:

(1) B is an L-topology on X (hence (X, B,V) ∈ L-UTop).
(2) ιTUF

L (X,B,V) = (X, TX ,UX).
(3) For each p ∈ Spec L, ιp ◦ h = ϕp.

Proof : The proof follows the lines of Proposition 2.5 in [7].
Given a ∈ A, let h(a) ∈ LX be the L-valued function induced by the family

{ϕp(a) | p ∈ Spec L}, that is,

h(a)(x) =
∧{p ∈ Spec L | x /∈ ϕp(a)} for every x ∈ X.

Take B = {h(a) | a ∈ A} and V = {h[U ] : U ∈ U}. It is easy to check (see [7,
Proposition 2.5]) that condition (4.2.1) implies that h(a)(x) ≤ p ⇐⇒ x /∈
ϕp(a) and so ιp(h(a)) = [h(a) 6≤ p] = ϕp(a) for every a ∈ A and p ∈ Spec L,
i.e., ιp ◦ h = ϕp for every p ∈ Spec L.

We now check that h is injective: Given a 6= b ∈ A, by (4.2.3) we have
ϕp(a) 6= ϕp(b) for some p ∈ Spec L. We can assume, without loss of generality,
that there exists x ∈ ϕp(a) such that x /∈ ϕp(b). Then h(b)(x) ≤ p and
h(a)(x) 6≤ p which implies h(b) 6= h(a).

Moreover, h is a frame homomorphism. Indeed:
Let a, b ∈ A, x ∈ X and p ∈ Spec L. We have

h(a ∧ b)(x) ≤ p ⇐⇒ x /∈ ϕp(a ∧ b) = ϕp(a) ∩ ϕp(b)
⇐⇒ x /∈ ϕp(a) or x /∈ ϕp(b)
⇐⇒ h(a)(x) ≤ p or h(b)(x) ≤ p
⇐⇒ h(a)(x) ∧ h(b)(x) ≤ p
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and therefore, since L is a spatial frame, we conclude that h(a ∧ b) = h(a) ∧
h(b). Further, h(1) = 1, since ϕp(1) = X for every p ∈ Spec L. Thus h
preserves finite meets.

On the other hand, given {ai}i∈I ⊆ A, x ∈ X and p ∈ Spec L we have

h(
∨

i∈I ai)(x) ≤ p ⇐⇒ x /∈ ϕp(
∨

i∈I ai) =
∨

i∈I ϕp(ai)

⇐⇒ x /∈ ϕp(ai) for all i ∈ I
⇐⇒ h(ai)(x) ≤ p for all i ∈ I
⇐⇒ ∨

i∈I h(ai)(x) ≤ p

and thus, once again because L is a spatial frame, we may conclude that
h(

∨
i∈I ai) =

∨
i∈I h(ai).

Hence B = h(A) is a subframe of LX , i.e. an L-topology on X, and there-
fore, h : A → B is a frame isomorphism. The latter fact makes straight-
forward the proof that V = {h[U ] : U ∈ U} is a uniformity on B and that
h : (A,U) → (B,V) is a uniform isomorphism, since h and h−1 are trivially
uniform.

Finally, it follows from (4.2.2) that

ιTL(B) = 〈{ιp(h(a)) | a ∈ A, p ∈ Spec L}〉
= 〈{ϕp(a) | a ∈ A, p ∈ Spec L}〉 = TX

and

ιUF
L (V) = 〈{ιp[h(U)] | U ∈ U , p ∈ Spec L}〉

= 〈{ϕp[U ] | U ∈ U , p ∈ Spec L}〉 = UX ,

i.e., ιTUF
L (X,B,V) = (X, TX ,UX). ¤

Proposition 4.2 leads immediately to the following definition:

Definition 4.3. An L-valued uniform frame A is a system

A =
(
ϕA

p : (Au,Uu) → (Al,U l) | p ∈ Spec L
)

of uniform homomorphisms ((Au,Uu) is the upper uniform frame and (Al,U l)
is the lower uniform frame) satisfying the following conditions:

(UF0) For every p ∈ Spec L, ϕA
p =

∨{ϕA
q | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}.

(UF1) (Al,U l) = 〈∨p∈Spec L ϕA
p ((Au,Uu))〉.

(UF2) If a 6= b then ϕA
p (a) 6= ϕA

p (b) for some p ∈ Spec L.
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An L-uniform homomorphism h : A → B is an ordered pair of uniform
homomorphisms

(hu : (Au,Uu) → (Bu,Vu), hl : (Al,U l) → (Bl,V l))

satisfying
∀p ∈ Spec L, hl ◦ ϕA

p = ϕB
p ◦ hu.

The resulting category, with composition and identities component-wise in
UFrm, is denoted by L-UFrm.

Remarks 4.4. (1) Note that any L-valued uniform frame is, in particular,
an L-valued frame.

(2) For L = 2, we have exactly one uniform homomorphism ϕA
0 which auto-

matically satisfies (UF0): conditions (UF1) and (UF2) imply that ϕA
0 is an

isomorphism (Au,Uu) → (Al,U l). Thus a 2-uniform frame is a pair of iso-
morphic uniform frames. Further, each 2-uniform homomorphism is a pair
of uniform homomorphisms (hu, hl) such that each factors through the other
via isomorphisms. Each 2-uniform frame is a functor 2 → UFrm where 2
denotes the category

u•77 ++ l• gg

It is then easy to conclude that the category 2-UFrm of 2-valued uniform
frames is the category UFrm2 of functors 2 → UFrm and natural transfor-
mations between such functors. Consequently, 2-UFrm is equivalent to the
category UFrm, since UFrm2 is a category equivalent to UFrm via functors
F : UFrm2 → UFrm, with F ((Au,Uu), (Al,U l)) = (Au,Uu) and F (hu, hl) = hu,
and G : UFrm → UFrm2, with G(A,U) = ((A,U), (A,U)) and G(h) = (h, h).

(3) For a general completely distributive L, L-UFrm is a full subcategory of
the category UFrmL where L denotes the category

u•77
p∈Spec L

''// 77

...

@@ HH
l• gg

(the morphisms between u and l are indexed by Spec L).
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Theorem 4.5. The category L-UFrm is complete and cocomplete.

Proof : Let UF0 and UF1 denote the categories defined by relaxing the axioms
for objects in the definition of L-UFrm as follows: in UF0 the objects are
systems of uniform homomorphisms for which only (UF0) is required and
in UF1 the objects are systems of uniform homomorphisms for which only
(UF0) and (UF1) are required.

Claim 1. The category UF0 is complete and cocomplete.

Proof of Claim 1. Given any family of objects
(
Ai

)
i∈I

, with Ai = (ϕAi
p :

(Au
i ,Uu

i ) → (Al
i,U l

i) | p ∈ Spec L), in UF0, consider the uniform frame
coproduct [18] (Au,Uu) of the (Au

i ,Uu
i ) (with injections uu

i ) and the uni-
form frame coproduct (Al,U l) of the (Al

i,U l
i) (with injections ul

i). Then, for
each p ∈ Spec L, there exists a unique ϕA

p : (Au,Uu) → (Al,U l) such that

ϕA
p ◦ uu

i = ul
i ◦ ϕAi

p for every i ∈ I:

(Au
i ,Uu

i )
uu

i //

ϕ
Ai
p

²²

(Au,Uu)

ϕA
p

²²Â
Â
Â
Â
Â
Â

(Al
i,U l

i)
ul

i // (Al,U l)

Further, A = (ϕA
p : (Au,Uu) → (Al,U l))p∈Spec L is in UF0. Indeed, for each i,

ϕA
p ◦ uu

i = ul
i ◦ ϕAi

p = ul
i ◦

∨{ϕAi
q | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}

=
∨{ul

i ◦ ϕAi
q | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}

=
∨{ϕA

q ◦ uu
i | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}

=
(∨{ϕA

q | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}) ◦ uu
i ,

from which it readily follows that ϕA
p =

∨{ϕA
q | q ∈ ↑↑↑↑↑↑↑↑↑↑↑p ∩ Spec L}.

Finally, (A, (uu
i , u

l
i)i∈I) = ((ϕA

p : (Au,Uu) → (Al,U l))p∈Spec L, (uu
i , u

l
i)i∈I)) is

the coproduct in UF0 of the system of all Ai. Indeed, given any B = (ϕB
p :

(Bu,Vu) → (Bl,V l))p∈Spec L ∈ UF0 and any collection of L-uniform homo-
morphisms {hi = (hu

i , h
l
i) : Ai → B | i ∈ I}, since (Au,Uu) is the coprod-

uct in UFrm of the (Au
i ,Uu

i ), there exists a unique uniform homomorphism
hu : (Au,Uu) → (Bu,Vu) such that hu ◦ uu

i = hu
i for every i ∈ I. Similarly,
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there exists a unique uniform homomorphism hl : (Al,U l) → (Bl,V l) such
that hl ◦ ul

i = hl
i for every i ∈ I.

(Au
i ,Uu

i )

hu
i

**uu
i //

ϕ
Ai
p

²²

(Au,Uu)
hu

//______

ϕA
p

²²

(Bu,Vu)

ϕB
p

²²

(Al
i,U l

i)

hl
i

44

ul
i // (Al,U l)

hl
//_______ (Bl,V l)

Since, for each i ∈ I and p ∈ Spec L,

ϕB
p ◦ hu ◦ uu

i = ϕB
p ◦ hu

i = hl
i ◦ ϕAi

p = hl ◦ ul
i ◦ ϕAi

p = hl ◦ ϕA
p ◦ uu

i ,

then ϕB
p ◦ hu = hl ◦ ϕA

p , and the pair (hu, hl) is an L-uniform homomorphism
A → B. It is clearly the unique L-uniform homomorphism A → B such that
(hu, hl) ◦ (uu

i , u
l
i) = (hu

i , h
l
i) for every i ∈ I.

In a similar way, one can construct the coequalizers, products and equal-
izers of UF0 from the corresponding constructions in UFrm. ¤

Claim 2. UF1 is mono-coreflective in UF0. Consequently, UF1 inherits col-
imits from UF0 and the limits of UF1 are the coreflections of limits of UF0,
and hence UF1 is also complete and cocomplete.

Proof of Claim 2. Let B = (ϕB
p : (Bu,Vu) → (Bl,V l))p∈Spec L ∈ UF0 be

given and consider A = (ϕA
p : (Au,Uu) → (Al,U l))p∈Spec L where (Au,Uu) =

(Bu,Vu), Al is the subframe of Bl generated by
⋃

p∈Spec L ϕB
p [Bu], U l is the

uniformity contained in V l generated by {ϕB
p [V ] | p ∈ Spec L, V ∈ Vu} and

ϕA
p = ϕB

p |cod=ϕB
p [Bu]. It is immediate that A satisfies (UF0) and (UF1). Fur-

ther, define h : A → B by hu = idBu and hl : Al ↪→ Bl. It is straightforward
to check that h is a monomorphism in UF0 satisfying the required universal
property. ¤

Claim 3. UF1 is an (E,M)-category, for E the class RegEpi of regular
epimorphisms and M the class Mono-source of mono-sources.
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Proof of Claim 3. By Proposition 15.13 of [1], it suffices to check that each
source in UF1 has a (RegEpi, Mono-source)-factorization.

So let (hi : A → Ai)i∈I be a mono-source in UF1 and consider the product
((Bu,Vu), pu

i ) (resp. ((Bu,Vu), pu
i )) of the domains (Au

i ,Uu
i ) (resp. codomains

(Al
i,U l

i)) of the ϕAi
p . Then there exists, for each p ∈ Spec L, a unique ϕB

p :

(Bu,Vu) → (Bl,V l) such that pl
i ◦ ϕB

p = ϕAi
p ◦ pu

i for every i ∈ I.

The function fu : (Au,Uu) → (Bu,Vu) (resp. f l : (Al,U l) → (Bl,V l))
defined by pu

i ◦ fu = hu
i for each i ∈ I (resp. pl

i ◦ f l = hl
i for each i ∈ I) has a

factorization

(Au,Uu)
eu−→ (Cu,Wu)

mu−→ (Bu,Vu)

(resp. (Al,U l)
el−→ (C l,W l)

ml−→ (Bl,V l)) with eu and el surjections and mu

and ml injective functions.
Since, for each c ∈ Cu, ϕB

p (mu(c)) = ϕB
p (mu(eu(a))) = ϕB

p (fu(a)) =

f l(ϕA
p (a)) = ml(el(ϕA

p (a))) for some a ∈ Au, we may define

ϕC
p : (Cu,Wu) → (C l,W l)

by ϕC
p(c) = (ml)−1(ϕB

p (mu(c))) = el(ϕA
p (a)) (easily seen to be well defined).

Finally, if we define mu
i : Cu → Au

i by mu
i = pu

i ◦mu and ml
i : C l → Al

i by
ml

i = pl
i ◦ml(a) we have the following diagram:

(Au,Uu)

fu ))RRRRRRRRRRRRR

hu
i

**
eu

//

ϕA
p

²²

(Cu,Wu)

mu

²²

mu
i // (Au

i ,Uu
i )

ϕ
Ai
p

²²

(Bu,Vu)

ϕB
p

²²Â
Â
Â

pu
i

55lllllllllllll

(Bl,V l)
pl

i

((RRRRRRRRRRRRRR

(Al,U l)

f l 66llllllllllllll

hl
i

44el

// (C l,W l)

ml

OO

ml
i

// (Al
i,U l)

It follows that (hu
i , h

l
i) = (mu

i ◦ eu,ml
i ◦ el) is a (RegEpi, Mono-source)-

factorization of (hi)i∈I = (hu
i , h

l
i)i∈I in UF1. ¤
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Claim 4. L-UFrm is a full subcategory of UF1 closed under the formation of
mono-sources in UF1.

Proof of Claim 4. First, notice that for any mono-source (hi : A → Ai)i∈I

in UF1, (hu
i )i∈I is a mono-source in UFrm and, therefore, if hu

i (a) = hu
i (b) for

every i ∈ I then a = b. Thus, if each Ai belongs to L-UFrm and a, b ∈ Au

then, for each p ∈ Spec L,

ϕA
p (a) = ϕA

p (b) =⇒ hl
i(ϕ

A
p (a)) = hl

i(ϕ
A
p (b)), for all i ∈ I

⇐⇒ ϕAi
p (hu

i (a)) = ϕAi
p (hu

i (b)), for all i ∈ I

=⇒ hu
i (a) = hu

i (b), for all i ∈ I

=⇒ a = b,

which shows that A is also in L-UFrm. Hence L-UFrm is closed under the
formation of mono-sources in UF1. ¤

In conclusion, L-UFrm is a full subcategory of an (E,M)-category UF1,
closed under the formation of M-sources in UF1. Hence, by Theorem 16.8
of [1], L-UFrm is E-reflective in UF1. Consequently, L-UFrm inherits limits
from UF1 and the colimits of L-UFrm are the reflections of colimits of UF1,
and hence L-UFrm is complete and cocomplete. ¤
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[1] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and Concrete Categories: The Joy of Cats,

Wiley Interscience Pure and Applied Mathematics, Wiley, 1990.
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
[3] J. Frith, The category of uniform frames, Cahiers Topologie Géom. Différentielle Catég. 31
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16 J. GUTIÉRREZ GARCÍA, I. MARDONES-PÉREZ, J. PICADO AND M.A. PRADA VICENTE

[9] T. Kubiak, The topological modification of the L-fuzzy unit interval, in: S. E. Rodabaugh, E. P.
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tatea, Apartado 644, 48080, Bilbao, Spain
E-mail address: iraide.mardones@ehu.es

Jorge Picado
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail address: picado@mat.uc.pt

M. A. de Prada Vicente
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