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Abstract: In this paper we address the global optimization of functions subject
to bound and linear constraints without using derivatives of the objective function.
We investigate the use of derivative-free models based on radial basis functions
(RBFs) in the search step of direct-search methods of directional type. We also
study the application of algorithms based on difference of convex (d.c.) functions
programming to solve the resulting subproblems which consist of the minimization
of the RBF models subject to simple bounds on the variables. Extensive numerical
results are reported with a test set of bound and linearly constrained problems.
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1. Introduction
We are interested in solving optimization problems of the form

min
x∈Rn

f(x) s.t. x ∈ Ω,

without using derivatives of the function f and when the feasible set Ω is
a polyhedron. We will consider in more detail the case where Ω is solely
defined by lower and upper bounds on the variables

Ω = {x ∈ Rn : ` ≤ x ≤ u} . (1)

In (1) the inequalities ` ≤ x ≤ u are posed componentwise and ` ∈ (−∞, R)n,
u ∈ (R, +∞, )n, and ` < u.

Our approach to address this type of problems is to incorporate the mini-
mization of a radial basis functions (RBF) model in the search step of direct-
search methods of directional type. This class of methods has been exten-
sively studied in the literature (see the survey paper by Kolda, Lewis, and
Torczon [19] or Chapter 7 of the book by Conn, Scheinberg, and Vicente [6]).
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Under appropriate assumptions they guarantee global convergence to station-
ary points. Their ability to find global minima depends on the incorporation
of methods or heuristics for global optimization in their so-called search step.
Two illustrative examples of such hybridizations are the approaches of Vaz
and Vicente [37, 38], where a population-based heuristic was applied or, more
recently, the approach of Griffin and Kolda [11], where DIRECT [16] was the
chosen global optimization method.

On the other hand, models based on RBFs have been shown to be of interest
for global optimization. In fact, derivative-free global optimization methods
based on radial basis functions have been proposed by several authors (see the
references [5, 12, 17] and the sequence of papers by Regis and Shoemaker [31,
32, 33, 34] which includes extensions to the constrained and parallel cases).

The overall direct-search algorithmic structure chosen for this paper is sim-
ple, but relatively efficient and robust as we will show by reporting extensive
numerical experiments. In every iteration of direct search, we attempt to
form a RBF model with as many points as possible and then to minimize it
in the intersection of Ω with a trust region whose radius is proportional to
the direct-search step size. We choose an `∞-shape trust region so that, in
the case where Ω is given by (1), this intersection is still a box-constrained
set. When Ω is defined by linear constraints not of the simple bound type, we
apply some approximation procedure so that we still consider subproblems
formed by the minimization of RBFs subject to box constraints. Our main
conclusion is that a direct-search method with an RBF model minimization
in the search step offers a good compromise between global optimization and
computational effort (i.e., number of function evaluations), especially in the
linearly constrained case.

RBFs seem to offer a number of natural ways into which can be decomposed
as a difference of two convex functions. In this paper, we will introduce two
of such d.c. decompositions and adapt the d.c. algorithm (DCA) of [4] to
both. The most efficient one is used to solve the subproblems which arise in
the search step.

The structure of the paper is as follows. In Sections 2 and 3, we present
some background material on radial basis functions and d.c. programming.
The application of the DCA to the minimization of RBFs is studied in Sec-
tion 4. The use of RBFs in the context of derivative-free optimization is
described in Section 5. Finally, we provide numerical results with bound
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and linearly constrained problems in Section 6 and conclude the paper in
Section 7.

2. Radial basis functions for optimization
In order to interpolate a function f whose values on a set Y = {y1, . . . , ynp} ⊂

Rn are known, one can use a radial basis functions (RBF) model of the form

m(x) =

np∑
i=1

λiφ(‖x− yi‖), (2)

where φ(‖·‖), with φ : R+ → R, is a radial basis function and λ1, . . . , λnp
∈ R

are parameters to be determined.
For m(x) to be twice continuously differentiable, the function φ(x) must

be both twice continuously differentiable and have a derivative that vanishes
at the origin. The cubic RBF, defined by φ(r) = r3, is among the most
popular (twice continuously differentiable) radial basis functions, and has
been frequently used for optimization purposes. Other popular RBFs, also
twice continuously differentiable, are the Gaussian, the multiquadratic, and
the inverse multiquadric.

The term radial basis comes from the fact that φ(‖x‖) is constant on any
sphere centered at the origin in Rn. In many applications, it is desirable
that the linear space spanned by the basis functions include constant or
linear functions. Thus, it turns out to be useful to augment the radial basis
function model in (2) by a low-order polynomial tail

∑q
j=0 γjpj(x), where pj,

j = 0, . . . , q, are some basis functions for the polynomial and γ0, . . . , γq ∈ R.
The new model is now of the form

m(x) =

np∑
i=1

λiφ(‖x− yi‖) +

q∑
j=0

γjpj(x).

Furthermore, the coefficients λ’s are required to satisfy
np∑
i=1

λipj(y
i) = 0, j = 0, . . . , q.

These, in conjunction with the interpolation conditions m(yi) = f(yi), i =
1, . . . , np, give the linear system[

Φ P
P> 0

] [
λ
γ

]
=

[
f(Y )

0

]
, (3)
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where Φij = φ(‖yi−yj‖) for i, j ∈ {1, . . . , np}, Pij = pj(y
i) for i ∈ {1, . . . , np},

j ∈ {0, . . . , q}, and f(Y ) is the vector formed by the values f(y1), . . . , f(ynp).
The polynomial tails most frequently used in the context of RBFs are

linear, and we will write t(x) = c + g>x and

m(x) =

np∑
i=1

λiφ(‖x− yi‖) + t(x). (4)

This model has np + n + 1 parameters, np for the radial basis terms and
n + 1 for the linear polynomial terms. However, when the number of points
is n+1 (or less), the solution of the interpolation system gives rise to a linear
polynomial, since all the parameters λi, i = 1, . . . , np, are zero (see the second
block equation in (3)). Consequently, the simplest nonlinear model m(x) of
the form (4) is based on n+2 interpolation points (and has 2n+3 parameters).

The approaches by Oeuvray and Bierlaire [28, 29] and Wild, Regis, and
Shoemaker [39] for derivative-free optimization use cubic radial basis func-
tions and linear polynomial tails:

m(x) =

np∑
i=1

λi‖x− yi‖3 + t(x). (5)

3. A brief review of d.c. programming
D.C. programming addresses the problem of minimizing a function f which

is a difference of convex functions on the whole space Rp or on a convex set
C ⊂ Rp. Generally speaking, a d.c. program takes the form

β = inf{f(x) = g(x)− h(x) : x ∈ IRp}, (Pdc)

where g and h are in the set Γ0(IR
p) of all lower semicontinuous proper

convex functions in Rp. Such a function f is called a d.c. function and g− h
the d.c. decomposition of f , while g and h are the d.c. components of f.
The convex constraint x ∈ C can be incorporated in the objective function
of (Pdc) by using the indicator function on C denoted χC which is defined by
χC(x) = 0 if x ∈ C and by +∞ otherwise.

D.C. programming is one of the most relevant tools in nonsmooth non-
convex programming and global optimization. D.C. algorithms (DCA) were
introduced by Pham Dinh Tao (see [7]) in their preliminary form in 1985 and
have been extensively developed since 1994 by Le Thi Hoai An and Pham
Dinh Tao, see [2, 3, 4] and the references therein. DCA have been successfully
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applied to many large-scale (smooth or nonsmooth) nonconvex programs in
different fields of applied sciences for which they often give global solutions.
The algorithms have proved to be more robust and efficient than some of the
standard methods.

Recall that, for θ ∈ Γ0(IR
p) and x̄ ∈ dom θ = {x ∈ Rp : θ(x̄) < +∞}, the

subdifferential ∂θ(x̄) of θ at x̄ is defined as

∂θ(x̄) = {y ∈ IRp : θ(x) ≥ θ(x̄) + (x− x̄)>y, ∀x ∈ IRp}.

A point x∗ is critical or stationary for the minimization of g − h when

∂h(x∗) ∩ ∂g(x∗) 6= ∅.

Let g∗(y) := sup{x>y − g(x) : x ∈ Rp} be the conjugate function of g.
Then, the following program is called the dual program of (Pdc):

βD = inf{h∗(y)− g∗(y) : y ∈ Rp}. (Ddc)

One can prove that β = βD, (see, e.g., [4]) and there exists a perfect symmetry
between the primal and dual d.c. programs: the dual of (Ddc) is exactly (Pdc).

The transportation of global solutions between (Pdc) and (Ddc) is expressed
by:

[∪y∗∈Ddc
∂g∗(y∗)] ⊂ Pdc, [∪x∗∈Pdc

∂h(x∗)] ⊂ Ddc,

where Pdc and Ddc denote the solution sets of (Pdc) and (Ddc) respectively.
Under certain conditions, this property also holds for the local solutions of
(Pdc) and (Ddc), in the following sense. Let x∗ be a local solution to (Pdc)
and let y∗ ∈ ∂h(x∗). If g∗ is differentiable at y∗, then y∗ is a local solution to
(Ddc). Similarly, let y∗ be a local solution to (Ddc) and let x∗ ∈ ∂g∗(y∗). If h
is differentiable at x∗, then x∗ is a local solution to (Pdc).

Based on local optimality conditions and duality in DCA, the idea of DCA
is quite simple: each iteration k of DCA approximates the concave part
−h by its affine majorization (that corresponds to taking yk ∈ ∂h(xk)) and
minimizes the resulting convex function (that is equivalent to determining
xk+1 ∈ ∂g∗(yk)).

Generic DCA scheme
Initialization: Let x0 ∈ Rp be a best guess, 0← k.
Repeat

Calculate yk ∈ ∂h(xk)
Calculate xk+1 ∈ arg min{g(x)− h(xk)− (x− xk)>yk : x ∈ Rp} (Pk)
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k + 1← k
Until convergence of

{
xk

}
.

Convergence properties of the DCA and its theoretical basis are described
in [2, 3, 4]. However, for what comes next it is worthwhile to report the
following properties:

• DCA is a descent method without line search, say the sequence {g(xk)−
h(xk)} is decreasing.
• If g(xk+1) − h(xk+1) = g(xk) − h(xk), then xk is a critical point of

g − h. In this case, DCA terminates at the k-th iteration.
• If the optimal value β of problem (Pdc) is finite and the infinite se-

quence {xk} is bounded, then every limit point of this sequence is a
critical point of g − h.
• DCA has a linear convergence for general d.c. programs.

Note that a d.c. function f has infinitely many d.c. decompositions and
that the choice of a d.c. decomposition influences the speed of convergence,
robustness, efficiency, globality of computed solutions of DCA. For a given
d.c. program, the choice of the optimal d.c. decompositions is still open
and depends strongly on the structure of the problem being considered. In
practice, one chooses g and h such that the sequences {xk} and {yk} can be
easily calculated.

4. Optimizing RBFs using d.c. algorithms
The optimization problem we are addressing in this section is

min m(x) s.t. x ∈ Ω̄, (6)

where Ω̄ is the feasible region defined by upper and lower bounds on the
variables, i.e., Ω̄ = {x ∈ Rn : ¯̀≤ x ≤ ū}.

When φ is convex in [0, +∞), one possible d.c. decomposition of the RBF
model (4) in Ω̄ is given by

m(x) = g1(x)− h1(x),

where

g1(x) =
∑
λi≥0

λiφ(‖x−yi‖)+t(x)+χΩ̄(x), h1(x) =
∑
λi<0

(−λi)φ(‖x−yi‖),

and χΩ̄(x) is the indicator function associated with Ω̄. The d.c. algorithm
(DCA) corresponding to this decomposition is as follows.
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Algorithm 4.1 (d.c. algorithm 1 (DCA1)).
Initialization

Choose x0.

For k = 0, 1, 2, . . .

(1) yk = ∇h1(xk).

(2) Compute xk+1 as the solution of

min g1(x)−
(
h1(xk) + (x− xk)

>yk

)
s.t. x ∈ Ω̄. (7)

Another possible d.c. decomposition for the RBF model (4) in Ω̄ is the
following

m(x) = g2(x)− h2(x),

where

g2(x) =
ρ

2
‖x‖2 + t(x) + χΩ̄(x), h2(x) =

ρ

2
‖x‖2 − (m(x)− t(x)),

χΩ̄(x) is, again, the indicator function associated with Ω̄, and

ρ = max
x∈Ω̄
‖∇2(m(x)− t(x))‖.

Denoting by PS(s) the projection of s onto the set S, the DCA becomes then
the following.

Algorithm 4.2 (d.c. algorithm 2 (DCA2)).
Initialization

Choose x0. Compute ρ.

For k = 0, 1, 2, . . .

(1) yk = ∇h2(xk).

(2) xk+1 = PΩ̄(yk/ρ).

We have performed a number of numerical experiments in MATLAB R14
(7.0.1) [22] with both algorithms to assess their potential in the case where
cubic RBFs are chosen (5). Both algorithms were compared against fmincon
of MATLAB. We will report below an illustrative snapshot of these experi-
ments. All tests were run in a Pentium Centrino (2.0GHz and 2Gb of RAM).
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An upper bound for ρ can be computed as follows when φ(r) = r3 and Ω̄
is defined as in (6):

ρ = 12np‖λ‖∞max{‖¯̀‖, ‖ū‖}. (8)

The derivation of this upper bound is based on the fact that when φ is twice
continuously differentiable, one has

∇2m(x) =

np∑
i=1

λiΘ(x− yi),

with

Θ(r) =

{
φ′(‖r‖)
‖r‖ I +

(
φ′′(r)− φ′(‖r‖)

‖r‖

)
r
‖r‖

r>

‖r‖ if r 6= 0,

φ′′(0)I if r = 0.

We generated 10 problems in [−1, 1]n with n = 50 by first randomly gener-
ating np = 100 sample points and then computing the corresponding model
coefficients λ and γ. The function values were also randomly generated in
[−3,−1] and [1, 3]. The starting point was set to the origin for all the three
methods.

We used fmincon to solve the subproblems (7) in DCA1. The starting
point was the final point obtained in the previous iteration (except in the first
iteration where we have used the origin). The fmincon stopping tolerances
were set to 10−1. The stopping criteria of DCA1 was satisfied when the
absolute error of two consecutive iterations does not exceeded 10−4 or the
number of iterations exceeded 30000.

The stopping criteria of DCA2 was satisfied when the absolute error of
two consecutive iterations does not exceeds 10−6 or the number of iterations
exceeded 30000. We tested two versions. In the first version (DCA2a), the
value of ρ is kept constant as in (8). In the second version (DCA2b), we
start with an initial value for ρ given by (8) multiplied by 5 × 10−6, and
increase it by a factor of two each time a new point does not lead to a simple
improvement in the objective function value, until the upper bound in (8) is
reached.

When applying the fmincon to solve problem (6) we set the stopping tol-
erances to 10−5. Only first-order derivatives were provided.

The results presented in Table 1 summarize the average behavior of the
methods for the problems under consideration. We can observe that DCA2



OPTIMIZING RBF BY D.C. PROGRAMMING AND ITS USE IN DIRECT SEARCH 9

DCA1 DCA2a DCA2b fmincon

ng f final CPU f final CPU f final CPU f final CPU
25 -19.7301 264.34 -19.7378 0.03 -19.7200 0.02 -19.7334 0.50
50 -23.2822 174.66 -23.2800 0.02 -23.2610 0.01 -23.2641 0.47
75 -20.3773 187.40 -20.3774 0.04 -20.3213 0.01 -20.3774 0.51

Table 1. Results for the minimization of RBFs in box domains
(n = 50). The number of sample points is np = 100 (ng of them
have positive function values). The two versions of DCA2 differ
only in the values for ρ.

is typically 10-20 times faster than fmincon. The high CPU time taken by
DCA1 is due to the necessity of solving a subproblem in each iteration.

5. An application in global DFO
Now we investigate the use of radial basis models in the enhancement of

direct-search methods for global derivative-free optimization. Our approach
consists of forming and minimizing an RBF model in the search step of direct-
search methods of the directional type. The iterations of such methods can be
divided into two main steps (a search step and a poll step). For the purposes
of global convergence to stationary points, the search step is optional and
free of any rules except that it must terminate finitely and yield a point in
the underlying integer lattice.

The algorithmic description below applies to the case where Ω is solely
defined by bound constraints (1). In this situation, the poll step makes use
of a constant positive spanning set that includes the coordinate vectors and
their negatives, which conform to the feasible set. The linearly constrained
case is discussed afterwards.

Algorithm 5.1 (Direct-search method (RBFs in search step)).

Initialization
Choose x0, α0 > 0, ∆0 > 0. Let D = {e1, . . . , en,−e1, . . . ,−en, e,−e}
(where ei denotes the i-th column of the identity and e the vector of
ones, of dimensions n). Let nmin = n + 2 and nmax = (n + 1)(n + 2)/2
be the minimum and maximum number of points used to build the
RBF models. (The maximum number of points in cache considered
for the model building is 50(n + 1).)
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For k = 0, 1, 2, . . .

(1) Search step: Skip the search step if the number of points pre-
viously evaluated is less than nmin.
Use all the previously evaluated points if its number is lower then
nmax.
If there are more previously evaluated points in the cache than
nmax, 80% of the points for model building are selected as the
ones nearest to the current iterate. The last 20% are chosen as
the ones further away from the current iterate.
Form a RBF model (5) based on the selected previously evaluated
points.
Minimize the RBF model by solving the problem

min
x∈Ω∩B(xk;∆k)

m(x) (9)

where B(xk; ∆k) = {x ∈ Rn : ‖x − xk‖∞ ≤ ∆k}, ∆k = σαk, and
σ takes the value 1 if the previous search step was unsuccessful,
or 2 otherwise.
If the solution x̄k of the subproblem satisfies f(x̄k) < f(xk) then
set xk+1 = x̄k, declare the iteration and the search step successful,
and skip the poll step.

(2) Poll step: Optionally order the poll set Pk = {xk + αkd : d ∈
D}1. Start evaluating f at the poll points following the chosen
order. If a poll point xk +αkdk is found such that f(xk +αkdk) <
f(xk) then stop polling, set xk+1 = xk+αkdk, and declare the iter-
ation and the poll step successful. Otherwise declare the iteration
(and the poll step) unsuccessful and set xk+1 = xk.

(3) Step size update: If the iteration was successful then maintain
the step size parameter (αk+1 = αk) or double it (αk+1 = 2αk)
after two consecutive poll successes along the same direction.
If the iteration was unsuccessful, halve the step size parameter
(αk+1 = αk/2).

We provide some implementation details in the following subsections.

1The points in Pk can be ordered by increasing values of the RBF model.
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5.1. Linearly constrained problems. The subproblem considered in the
search step consists of the minimization of an RBF model on the intersection
of Ω with an `∞-shape trust region. When Ω is defined by bounds, as in (1),
this amounts to a box-constrained domain and the DCAs of the previous
section can be easily applied. If Ω contains linear constraints which are not
simple bounds, then we simplify the subproblem by temporarily removing
those constraints. The point to be evaluated in the search step is then defined
by xk + min{1, τk}(x̄k − xk), where τk is the largest positive scalar such that
xk+min{1, τk}(x̄k−xk) ∈ Ω. This procedure is similar to the one used in [38]
to address infeasible points in the search step.

To obtain an feasible initial guess and a set of poll directions which con-
forms to the feasible set, when Ω contains linear constraints which are not
simple bounds, we also use the same strategies as in [38].

5.2. Cache. In order to take the maximum advantage of previous implemen-
tations of the algorithm described in [37, 38], the PSwarm solver was coupled
with a cache for the true function evaluations. This cache can be used by
both the search and poll steps when a function evaluation is requested. The
cache proved not to be useful in the particle swarm search step as the num-
ber of hits in the cache was very low. For the herein proposed version the
cache implementation is mandatory, since the RBF model building relies on
previous evaluated objective function values.

6. Numerical results for bound and linearly constrained
optimization problems

We report numerical results with the PSwarm version 2.1 changed to include
the setup and minimization of an RBF model in the search step. The solver
is implemented in MATLAB R14 (7.0.1) [22]. All tests were run in a Pen-
tium Centrino (2.0GHz and 2Gb of RAM). As the problems are modeled in
AMPL [9], an AMPL-MATLAB interface was used, as described in [37, 38].
The test set used in the numerical results includes 119 bound constrained
problems and 109 linearly constrained problems coded in the AMPL format.

The bound constrained problems are the ones reported in [37]. These
problems are global optimization test problems collected from the literature
([1, 13, 14, 18, 20, 21, 25, 30]) and coded in AMPL. All coded problems have
lower and upper bounds on the variables. The problems description and their
source are available at http://www.norg.uminho.pt/aivaz/pswarm.
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The linearly constrained problems were gathered from a total of 1564 prob-
lems, collected from the following sources: Vanderbei [36] (given in AMPL,
which includes the CUTE [10] collection), GLOBALlib [26] (available in
AMPL format at [27]), one problem from [35], three problems from [15],
one from [23], and four from [24]. These problems can also be obtained at
http://www.norg.uminho.pt/aivaz/pswarm.

We provide aggregated results for all the test problems, results for the
class of bound constrained problems, and results for the class of linearly
constrained problems. Showing the results in this way allows us to suggest
different algorithmic options for each class of problems.

We are reporting numerical results for the RBF search step with DCA as
the algorithm used to solve problem (9) (RBF-DCA), for the RBF search step
with fmincon as the algorithm used to solve problem (9) (RBF-fmincon), for
an empty search step (Pattern), for the particle swarm search step (PSwarm),
and for the RBF search step with DCA as the algorithm to solve problem (9)
and the directions used in the poll step sorted by the RBF model value at
the poll points (RBF-DCA Sort). In all cases, the stopping criteria consisted
of reaching a maximum budget of 2000 function evaluations or driving the
step size parameter αk below 10−5.

The algorithm used in the RBF-DCA versions is the DCA2b described in
Section 4 for cubic RBFs. A limit of 3000 iterations for the DCA2 algorithm
was set, as an approximation with high accuracy to the problem (9) solution
is not required. Even when the DCA algorithm is unable to converge with
the requested accuracy, the last iterate is used to check for progress in the
objective function in the search step.

For a better visualization, brevity, and clarity of the numerical results, we
are providing performance profiles obtained by using the procedure described
in [37] (a modification of the performance profiles from [8]). The major
advantage of the performance profiles is that they can be presented in one
figure, by plotting, for the different solvers, a cumulative distribution function
υ(τ) representing a performance ratio.

The performance ratio is defined by setting rp,s =
tp,s

min{tp,s:s∈S} , p ∈ P , s ∈ S,

where P is the test set, S is the set of solvers, and tp,s is the value obtained
by solver s on test problem p. Then, define υs(τ) = 1

Np
size{p ∈ P : rp,s ≤ τ},

where Np is the number of test problems. The value of υs(1) is the probability
that the solver will win over the remaining ones (meaning that it will yield a
value lower than the values of the remaining ones). If we are only interested



OPTIMIZING RBF BY D.C. PROGRAMMING AND ITS USE IN DIRECT SEARCH 13

in determining which solver is the best (in the sense that wins the most), we
compare the values of υs(1) for all the solvers. At the other end, solvers with
the largest probabilities υs(τ) for large values of τ are the most robust ones
(meaning that are the ones that solved more problems).

Figure 1 presents a comparison between the DCA algorithm and fmincon

when using a RBF model in the search step. Additionally we include the
case where the search directions of the poll step are sorted accordingly to
the RBF model. For this comparison, we have set tp,s = b

a , where a is the
number of models leading to an improvement in the objective function and b
is the number of models built, corresponding to the inverse of the percentage
of success in using the RBF model. When none of the model building leads
to a success we have tp,s = +∞. Observing the profiles, we can see that in
nearly 30% of the problems all the versions where able to obtain the best tp,s

value (around 1). Looking at large values of τ , we observe that only in 75%
of the problems the model has a nonzero success rate. A careful inspection
to problems where the RBF model has a zero number of improvements shows
that AMPL is providing an initial guess that is already the problem global
optima (AMPL considers the origin as the initial guess when it is not provided
by the user and in fact the origin is the global optima for some problems).

For this comparison between success rates, the specific profiles for bound
and linearly constrained problems are omitted, since they provide similar
results. While the results are comparable, the simplicity of the DCA algo-
rithm completely justifies its use in our software. Furthermore, the inclusion
of DCA makes the solver widely available since it does not depend on a li-
cense for the MATLAB optimization toolbox. We have also tried to solve
the RBF subproblems up to global optimization in an attempt to improve
the success rate, but we did not observe any significant difference.

For the remaining analysis, we have removed the problems where the suc-
cess rate was zero for all the RBF versions (for these problems the search and
poll steps always reduce to failures). The problems used are listed in Table 2
for the bound constrained case and in Table 3 for the linearly constrained
case.

The profiles for the function evaluations are reported in Figures 2-3 com-
paring PSwarm, Pattern Search (PSwarm solver with an empty search step),
the RBF model minimized with the DCA algorithm, and the RBF model
minimized with the DCA algorithm and the directions in the poll step sorted
by using the RBF model. PSwarm is a stochastic solver but we chose to make
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Figure 1. Comparison among and RBF-DCA, RBF-fmincon,
and RBF-DCA Sort, for all test problems.

ap fx 10 ir2 lj3 98 ml 5 osp 20 sin 10 zlk3a
bhs fx 5 ir5 lm1 mr plj 38 sin 20 zlk3b
bl gp kl lms1a ms1 plj 75 st 17 zlk3c
bp grp lj1 38 lms1b ms2 plj 98 st 9 zlk4
cb6 h3 lj1 75 lms2 nf2 ptm swf zlk5
da h6 lj1 98 lms5 nf3 10 rb sz zzs
em 10 hm lj2 38 lv8 nf3 15 s10 szzs
em 5 hm1 lj2 75 mc nf3 20 s5 xor
ep hm3 lj2 98 mcp nf3 25 s7 zlk1
fls hm4 lj3 38 mgp nf3 30 sbt zlk2a
fr hv lj3 75 ml 10 osp 10 shv1 zlk2b

Table 2. Bound constrained problems used in the numerical results.

only one run for each problem, since we are only interested in an indication
of its performance.

As expected, Figures 2-3 show a slight advantage in the number of ob-
jective function evaluations for the pattern search version where an empty
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antenna2 bunnag12 gtm hubfit s231 s392
avgasa bunnag13 hatfldh Ji1 s232 simpllpa
biggsc4 ex2 1 10 himmelbi Ji2 s250 simpllpb
bunnag1 ex2 1 5 hs024 Ji3 s251 sipow1
bunnag2 ex2 1 7 hs035 ksip s253 sipow1m
bunnag3 expfita hs036 lowpass s268 sipow2
bunnag4 expfitb hs037 lsqfit s277 sipow2m
bunnag5 fir linear hs044 makela4 s278 sipow3
bunnag6 g01 hs076 nuffield continuum s279 sipow4
bunnag7 genocop07 hs086 oet1 s280 stancmin
bunnag8 genocop09 hs118 oet3 s331 structure2
bunnag9 genocop10 hs21mod pentagon s340 tfi2
bunnag10 genocop11 hs268 pt s354 weapons
bunnag11 goffin hs35mod s224 s359 zecevic2

Table 3. Linearly constrained problems used in the numerical results.
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Figure 2. Comparison among RBF-DCA, RBF-DCA Sort, Pat-
tern and PSwarm for all problems.

search step is considered (with more significance for the bound constrained
problems).
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Figure 3. Comparison among RBF-DCA, RBF-DCA Sort, Pat-
tern, and PSwarm for linearly constrained problems.
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Figure 4. Comparison among RBF-DCA, RBF-DCA Sort, Pat-
tern, and PSwarm for bound constrained problems.
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Figure 5. Comparison among RBF-DCA, RBF-DCA Sort, Pat-
tern, and PSwarm for all problems.

The last three figures depict profiles for the quality of the final objective
function value obtained. We can easily verify that PSwarm wins over the
remaining versions. This is due to the PSwarm ability to overcome some
non-convexity of the objective function. Recall that PSwarm is a population
based algorithm that often uses all the objective function evaluations budget.

We can observe that the RBF-DCA Sort version has an advantage over
the remaining version (except for PSwarm). The good performance of this
version in all the test problems is attained mainly due to the excellent perfor-
mance in the linearly constrained subset of test problems. Such performance
may be justified by the number and type of directions that are considered
in the poll step when linear constraints are present. Such number tends to
be larger than the one for the bound constrained case which is constant and
equal to 2n + 2.

7. Conclusions
In this paper we proposed the use of radial function basis (RBF) models to

improve the efficiency of a direct-search type method for the global optimiza-
tion of functions subject to bound and linear constraints. The RBF models
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Figure 6. Comparison among RBF-DCA, RBF-DCA Sort, Pat-
tern, and PSwarm for linearly constrained problems.
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Figure 7. Comparison among RBF-DCA, RBF-DCA Sort, Pat-
tern, and PSwarm for bound constrained problems.
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are known to model well multimodal functions and proved to be useful in the
context of black-box optimization of functions expensive to evaluate.

A minimizer of the RBF model is used to obtain an incumbent point where
the objective function is evaluated. The RBF model minimization problem
consists in a bound constrained optimization problem where the objective
function (the RBF model) is cheap to evaluate. To solve the minimization
problem we proposed to apply an algorithm based on difference of convex
(d.c.) functions. The proposed d.c. algorithm (DCA) was compared to the
MATLAB fmincon solver and proved to be competitive and simultaneously
simpler.

Extensive numerical results were reported for a test set of bound and lin-
early constrained problems in order to access the overall performance of the
resulting derivative-free optimization algorithms. The reported results con-
firmed the utility of the RBF in driving the algorithm for a better objective
function value at the expense of only a moderate increase in the number of
objective function evaluations.
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