THE SEMICONTINUOUS QUASI-UNIFORMITY OF A FRAME, REVISITED

MARIA JOÃO FERREIRA AND JORGE PICADO

ABSTRACT: In this note we present a new treatment of the pointfree version of the semicontinuous quasi-uniformity based on the new tool of the ring of arbitrary (not necessarily continuous) real-valued functions made available recently by J. Gutiérrez García, T. Kubiak and J. Picado [Localic real functions: a general setting, *Journal of Pure and Applied Algebra* 213 (2009) 1064-1074]. The purpose is to show how the basic facts about the semicontinuous quasi-uniformity can be easily presented and proved with that tool at hand.

KEYWORDS: Frame, quasi-uniform frame, quasi-uniform biframe, quasi-metric quasi-uniformity, totally bounded quasi-uniformity, semicontinuous real function, biframe of reals, countably compact frame.

AMS Subject Classification (2000): 06D22, 54C30, 54E05, 54E15, 54E55.

1. Introduction

Let X be a locale with corresponding frame $L = \mathcal{O}(X)$. The lattice of sublocales of X (that is, the subobject lattice of X in the category of locales) may be described in several equivalent ways. Here we use the following one [18]:

a subset S of L is a sublocale of X if, whenever $A \subseteq S$, $a \in L$ and $b \in S$, then $\bigwedge A \in S$ and $a \to b \in S$.

Any intersection of sublocales is again a sublocale, so that the set of all sublocales is a complete lattice under inclusion. In fact, it is a co-frame. We make it into a frame S(L) by considering the dual ordering $S_1 \leq S_2$ iff $S_2 \subseteq S_1$. Among the important examples of sublocales are the *closed* sublocales

$$\mathfrak{c}(a) = \uparrow a = \{b \in L : a \le b\}$$

Received August 16, 2009.

The authors gratefully acknowledge financial support by the Centre for Mathematics of the University of Coimbra (CMUC/FCT). The second named author also acknowledges support from the Ministry of Science and Innovation of Spain and FEDER under grant MTM2009-12872-C02-02.

and the open sublocales

$$\mathfrak{o}(a) = \{a \to b : b \in L\}$$

for every $a \in L$ (which are complements of each other). The map $a \mapsto \mathfrak{c}(a)$ is a frame embedding $L \hookrightarrow \mathcal{S}(L)$. The subframe of $\mathcal{S}(L)$ consisting of all closed sublocales will be denoted by $\mathfrak{c}L$. It is isomorphic to L. Denoting by $\mathfrak{o}L$ the subframe of $\mathcal{S}(L)$ generated by all $\mathfrak{o}(a)$, $a \in L$, the triple $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$ constitutes a biframe.

It is well-known that a quasi-uniformity \mathcal{E} on a set X may be described in several equivalent ways, most notably as a collection of ordered pairs of covers of X (the *paircover* approach) and as a collection of relations on X (the entourage approach). Associated with any quasi-uniformity \mathcal{E} on X there is the bitopological space $(X, \mathfrak{T}_{\mathcal{E}}, \mathfrak{T}_{\mathcal{E}^{-1}})$ induced by \mathcal{E} .

In the pointfree setting, the theory of quasi-uniformities was first exploited using the paircover approach [8, 9]; the Weil entourages of [15, 16, 17] provided then the direct analogue of entourages. The former is defined as a structure \mathcal{U} on a biframe (L_0, L_1, L_2) and the latter directly as a structure \mathcal{E} on a frame L which establishes two subframes $L_1(\mathcal{E})$ and $L_2(\mathcal{E})$ of L such that the triple $(L, L_1(\mathcal{E}), L_2(\mathcal{E}))$ is a biframe (this is the pointfree version of the bitopological space $(X, \mathfrak{T}_{\mathcal{E}}, \mathfrak{T}_{\mathcal{E}^{-1}})$ above). The two approaches are equivalent [15, 16].

While the approach via paircovers is most convenient for calculations (the entourage approach asks for a good knowledge of the construction of binary coproducts of frames), the entourage approach allows to formulate the theory directly on frames, in a way very similar to the spatial setting [4, 5, 17]. For instance, given a frame L, there exists a (entourage) transitive quasi-uniformity \mathcal{E} on the sublocale frame $\mathcal{S}(L)$ which is compatible with L, that is, $L_1(\mathcal{E}) = \mathfrak{c}L$ (which means that $L_1(\mathcal{E})$ is an isomorphic copy of the given frame L inside $\mathcal{S}(L)$) [4, 5]. This is the pointfree analogue of the well-known classical fact that for every topological space (X, \mathfrak{T}) there exists a transitive quasi-uniformity \mathcal{E} on X, compatible with (X, \mathfrak{T}) , that is, which induces as its first topology $\mathfrak{T}_{\mathcal{E}}$ the given topology \mathfrak{T} .

The semicontinuous quasi-uniformity $\mathcal{USC}(L)$ of L is a nice example of a transitive compatible quasi-uniformity [5, 6]. The purpose of this paper is to show how the basic facts about $\mathcal{USC}(L)$ can be nicely presented with the help of the ring of arbitrary (not necessarily continuous) real-valued functions made available recently by J. Gutiérrez García, T. Kubiak and J. Picado

[12]. To keep the background at the minimum possible we use the paircover approach [8, 10] to quasi-uniformities.

2. Background

For general information on locales and frames we refer to [13] and [18]. A biframe [2] is a triple $L = (L_0, L_1, L_2)$ in which L_0 is a frame, L_1 and L_2 are subframes of L_0 and $L_1 \cup L_2$ generates L_0 (by joins of finite meets). A biframe map $h: L \to M$ is a frame homomorphism from L_0 to M_0 such that the image of L_i under h is contained in M_i for i = 1, 2. Biframes and biframe maps are the objects and arrows of the category BiFrm. For more details on biframes consult [2].

Let $L = (L_0, L_1, L_2)$ be a biframe. A subset C of $L_1 \times L_2$ is a paircover [8, 10] of L if $\bigvee \{c_1 \wedge c_2 \mid (c_1, c_2) \in C\} = 1$. A paircover C of L is strong if, for any $(c_1, c_2) \in C$, $c_1 \vee c_2 = 0$ whenever $c_1 \wedge c_2 = 0$ (that is, $(c_1, c_2) = (0, 0)$ whenever $c_1 \wedge c_2 = 0$).

For any paircovers C and D of L we write $C \leq D$ (and say that C refines D) if for any $(c_1, c_2) \in C$ there is $(d_1, d_2) \in D$ with $c_1 \leq d_1$ and $c_2 \leq d_2$. Further $C \wedge D = \{(c_1 \wedge d_1, c_2 \wedge d_2) \mid (c_1, c_2) \in C, (d_1, d_2) \in D\}$. It is obvious that $C \wedge D$ is a paircover of L. For $a \in L_0$ and C, D paircovers of L, let

$$st_1(a, C) = \bigvee \{c_1 \mid (c_1, c_2) \in C \text{ and } c_2 \land a \neq 0\},$$

$$st_2(a, C) = \bigvee \{c_2 \mid (c_1, c_2) \in C \text{ and } c_1 \land a \neq 0\}$$

and

$$C \cdot D = \{ (st_1(d_1, C), st_2(d_2, C)) \mid (d_1, d_2) \in D \}.$$

The particular case $C \cdot C$ is usually denoted by C^* . The paircover C is said to star-refines D if $C^* \leq D$.

The following lemma is easy to prove [8].

Lemma 2.1. For any paircovers C, D of (L_0, L_1, L_2) and any $a, b \in L_0$ we have:

- (1) $a \le st_i(a, C)$ (i = 1, 2).
- (2) $a \le b \Rightarrow st_i(a, C) \le st_i(b, C)$ (i = 1, 2).
- (3) If $D^* \leq C$ then $st_i(st_i(a, D), D) \leq st_i(a, C)$ (i = 1, 2).
- (4) For any biframe map $h: (L_0, L_1, L_2) \to (M_0, M_1, M_2), st_i(h(a), h[C]) \le h(st_i(a, C)) \ (i = 1, 2), where h[C] = \{(h(c_1), h(c_2)) \mid (c_1, c_2) \in C\}.$

A non-empty family \mathcal{U} of paircovers of $L=(L_0,L_1,L_2)$ is a quasi-uniformity on L if:

- (U1) The family of strong members of \mathcal{U} is a filter-base for \mathcal{U} with respect to \wedge and \leq .
- (U2) For any $C \in \mathcal{U}$ there is $D \in \mathcal{U}$ such that $D^* \leq C$.
- (U3) For each $a \in L_i$, $a = \bigvee \{b \in L_i \mid st_i(b,C) \leq a \text{ for some } C \in \mathcal{U}\}$, (i = 1, 2).

The pair (L, \mathcal{U}) is called a quasi-uniform biframe [10]. $\mathcal{B} \subseteq \mathcal{U}$ is a base for \mathcal{U} if, for each $C \in \mathcal{U}$, there is $B \in \mathcal{B}$ such that $B \leq C$.

Let (L, \mathcal{U}) and (M, \mathcal{V}) be quasi-uniform biframes. A biframe map $h: L \to \mathcal{U}$ M is uniform if for every $C \in \mathcal{U}$, $h[C] \in \mathcal{V}$. Quasi-uniform biframes and uniform maps constitute a category that we denote by QUBiFrm.

The biframe of reals is the triple $(\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R}))$ where $\mathfrak{L}(\mathbb{R})$ is the frame of reals [1] defined by generators $(p,q) \in \mathbb{Q} \times \mathbb{Q}$ and relations

- (R1) $(p,q) \wedge (r,s) = (p \vee r, q \wedge s),$
- (R2) $(p,q) \lor (r,s) = (p,s)$ whenever $p \le r < q \le s$,
- (R3) $(p,q) = \bigvee \{(r,s) : p < r < s < q\},$
- (R4) $\bigvee_{p,q \in \mathbb{Q}} (p,q) = 1.$

We shall use also the following notation:

$$(p,-) = \bigvee_{q \in \mathbb{Q}} (p,q)$$
 and $(-,q) = \bigvee_{p \in \mathbb{Q}} (p,q);$

note that $(p, -) \land (-, q) = (p, q)$.

Equivalently, $\mathfrak{L}(\mathbb{R})$ may be defined by taking (p, -) and (-, q) as primitive notions, with relations

- (S1) $(p, -) \wedge (-, q) = 0$ whenever $p \geq q$,
- (S2) $(p, -) \lor (-, q) = 1$ whenever p < q,
- (S3) $(p, -) = \bigvee_{r>p} (r, -),$
- (S4) $(-,q) = \bigvee_{s < q} (-,s),$ (S5) $\bigvee_{p \in \mathbb{Q}} (p,-) = 1,$
- (S6) $\bigvee_{q \in \mathbb{O}} (-, q) = 1.$

Then $\mathfrak{L}_u(\mathbb{R})$ and $\mathfrak{L}_l(\mathbb{R})$ are just the following subframes of $\mathfrak{L}(\mathbb{R})$:

$$\mathcal{L}_u(\mathbb{R}) = \langle \{(p,-) : p \in \mathbb{Q}, (p,-) \text{ satisfy (R3) and (R5) for all } p \in \mathbb{Q} \} \rangle$$
, $\mathcal{L}_l(\mathbb{R}) = \langle \{(-,q) : q \in \mathbb{Q}, (-,q) \text{ satisfy (R4) and (R6) for all } q \in \mathbb{Q} \} \rangle$.

In general topology one sometimes deals with arbitrary (not necessarily continuous) real-valued functions on a topological space X. This is also possible in the pointfree setting with the approach recently introduced in [12] (which extends the approach to pointfree continuous real functions of Banaschewski [1]). Let L be a frame. A real-valued function on L is a frame homomorphism $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$. It is

- (1) lower semicontinuous if $f(\mathfrak{L}_u(\mathbb{R})) \subseteq \mathfrak{c}L$,
- (2) upper semicontinuous if $f(\mathfrak{L}_l(\mathbb{R})) \subseteq \mathfrak{c}L$,
- (3) continuous if $f(\mathfrak{L}(\mathbb{R})) \subseteq \mathfrak{c}L$.

The set F(L) of all real-valued functions on L is partially ordered by

$$f \leq g \quad \Leftrightarrow \quad f(p,-) \leq g(p,-) \quad \text{for every } p \in \mathbb{Q}$$

 $\Leftrightarrow \quad g(-,q) \leq f(-,q) \quad \text{for every } q \in \mathbb{Q}.$

We denote by LSC(L), USC(L) and C(L) the collections of all lower semicontinuous, upper semicontinuous, and continuous members of F(L). Of course, one has

$$C(L) = LSC(L) \cap USC(L)$$
.

Note that $USC(L) \simeq \mathsf{BiFrm}\,((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)).$

A nice way of constructing real functions is with the help of the so called scales [12]. A collection of sublocales $\{S_r : r \in \mathbb{Q}\} \subseteq \mathcal{S}(L)$ is a scale on $\mathcal{S}(L)$ if $S_r \vee S_s^* = 1$ whenever r < s and $\bigvee \{S_r : r \in \mathbb{Q}\} = 1 = \bigvee \{S_r^* : r \in \mathbb{Q}\}$ (here S^* denotes the pseudocomplement of S). For each scale $\{S_r : r \in \mathbb{Q}\}$ in $\mathcal{S}(L)$ the function f defined by

$$f(p,-) = \bigvee_{r>p} S_r$$
 and $f(-,q) = \bigvee_{r< q} S_r^*$ $(p,q \in \mathbb{Q})$ (2.1)

belongs to F(L). If, moreover, each S_r is an open sublocale then $f \in USC(L)$.

For instance, given a complemented sublocale S of L, with complement $\neg S$, the *characteristic map* $\chi_S : \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$ is defined by

$$\chi_S(p,-) = \begin{cases} 1 & \text{if } p < 0, \\ \neg S & \text{if } 0 \le p < 1, \\ 0 & \text{if } p \ge 1, \end{cases} \quad \text{and} \quad \chi_S(-,q) = \begin{cases} 0 & \text{if } q \le 0, \\ S & \text{if } 0 < q \le 1, \\ 1 & \text{if } q > 1, \end{cases}$$

for each $p, q \in \mathbb{Q}$ [12]. Then, as in the classical context, we have:

- (a) $\chi_S \in LSC(L)$ if and only if S is open,
- (b) $\chi_S \in USC(L)$ if and only if S is closed,

(c) $\chi_S \in C(L)$ if and only if S is clopen.

For any $f \in F(L)$ the upper regularization $f^- \in USC(L)$ of f is defined by

$$f^-(p,-) = \bigvee_{q>p} \neg \overline{f(-,q)}$$
 and $f^-(-,p) = \bigvee_{q< p} \overline{f(-,q)}$

(see [11] and [12] for more information). Of course, when $f \in USC(L)$ then $f^- = f$. Thus, for any $f \in USC(L)$, we have

$$f(p,-) = \bigvee_{q>p} \neg f(-,q) \in \mathfrak{o}L \quad \text{ and } \quad f(-,p) = \bigvee_{q< p} f(-,q) \in \mathfrak{c}L. \quad (2.2)$$

3. The semicontinuous quasi-uniformity $\mathcal{USC}(L)$

For each $n \in \mathbb{N}$,

$$Q_n = \left\{ ((-,q), (p,-)) \mid p, q \in \mathbb{Q}, \ 0 < q - p < \frac{1}{n} \right\}$$

is a strong paircover of the biframe $(\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R}))$. These paircovers satisfy the following (easy to check) properties:

(1) For every $n \in \mathbb{N}$ and $p, q \in \mathbb{Q}$ with $p < q, \frac{1}{q-p} < n$, we Lemma 3.1. have:

- (a) $st_1((-,p),Q_n) \leq (-,q)$.
- (b) $st_2((q, -), Q_n) \leq (p, -).$
- (2) For every $p_i, q_i \in \mathbb{Q}$ with $p_i < q_i$, we have:
 - (a) $st_1(\bigvee_{i \in I}(p_i, q_i), Q_n) = st_1(\bigvee_{i \in I}(-, q_i), Q_n).$
 - (b) $st_2(\bigvee_{i \in I}(p_i, q_i), Q_n) = st_2(\bigvee_{i \in I}(p_i, -), Q_n).$
- (3) For each $n \in \mathbb{N}$, $Q_{n+1} \subseteq Q_n$ (thus $Q_{n+1} \leq Q_n$).

Moreover:

Proposition 3.2. For every $n \in \mathbb{N}$ and $p \in \mathbb{Q}$, we have:

- $(2) (-,p) = \bigvee \{(-,q) \in \mathfrak{L}_l(\mathbb{R}) \mid st_1((-,q),Q_n) \leq (-,p) \text{ for some } n \in \mathbb{N} \}.$ $(3) (p,-) = \bigvee \{(q,-) \in \mathfrak{L}_u(\mathbb{R}) \mid st_2((q,-),Q_n) \leq (p,-) \text{ for some } n \in \mathbb{N} \}.$ \mathbb{N} .

Proof: (1) Let $((-,q),(p,-)) \in Q_{3n}$. We have to show that there is $((-,\tilde{q}),(\tilde{p},-)) \in Q_n$

such that $st_1((-,q),Q_{3n}) \leq (-,\tilde{q})$ and $st_2((p,-),Q_{3n}) \leq (\tilde{p},-)$. But

$$st_1((-,q),Q_{3n}) = \bigvee \{(-,d_1) \mid ((-,d_1),(d_2,-)) \in Q_{3n}, (d_2,-) \land (-,q) \neq 0\}$$

 $\leq (-,q+\frac{1}{3n})$

since $(d_2, -) \wedge (-, q) \neq 0 \Leftrightarrow d_2 < q$ and $0 < d_1 - d_2 < \frac{1}{3n}$ (which implies $d_1 < d_2 + \frac{1}{3n} < q + \frac{1}{3n}$). Similarly,

$$st_2((p,-),Q_{3n}) = \bigvee \{(d_2,-) \mid ((-,d_1),(d_2,-)) \in Q_{3n}, (-,d_1) \land (p,-) \neq 0\}$$

 $\leq (p-\frac{1}{3n},-).$

It suffices then to take $\tilde{q} = q + \frac{1}{3n}$ and $\tilde{p} = p - \frac{1}{3n}$. Indeed, $((-, q + \frac{1}{3n}), (p - \frac{1}{3n}, -)) \in Q_n$, since $0 < q + \frac{1}{3n} - p + \frac{1}{3n} < \frac{1}{3n} + \frac{1}{3n} + \frac{1}{3n} = \frac{1}{n}$.

(2) By Lemma 3.1(1), for every q < p there is some $n \in \mathbb{N}$ such that $st_1((-,q),Q_n) \leq (-,p)$. Thus, by Lemma 2.1(1),

$$(-,p) = \bigvee_{q < p} (-,q) \le \bigvee \{(-,q) \mid st_1((-,q),Q_n) \le (-,p) \text{ for some } n \in \mathbb{N}\}$$

 $\le (-,p).$

(3) may be proved similarly.

In conclusion, the strong paircovers Q_n $(n \in \mathbb{N})$, generate a quasi-uniformity Q on the biframe of reals $(\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R}))$.

Corollary 3.3. The pair $((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), \mathcal{Q})$ is a quasi-uniform biframe.

We refer to it as the quasi-metric quasi-uniformity of the reals.

Now let $f \in USC(L)$. Then (recall (2.2))

$$f(p,-) = \bigvee_{q>p} \neg f(-,q) \in \mathfrak{o}L$$
 and $f(-,p) = \bigvee_{q< p} f(-,q) \in \mathfrak{c}L$

so $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$ is a biframe map

$$f: (\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_n(\mathbb{R})) \to (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L).$$

Clearly, for each $n \in \mathbb{N}$,

$$C_{f,n} = \{ (f(-,q), f(p,-)) \mid p, q \in \mathbb{Q}, f(p,q) \neq 0, 0 < q - p < \frac{1}{n} \}$$

is a strong paircover of the sublocale lattice $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$. Further, we have |6|:

Lemma 3.4. (1) For any $f_1, \ldots, f_k \in USC(L)$, $n_1, \ldots, n_k \in \mathbb{N}$ and $S \in$ $\mathcal{S}(L)$:

- (a) $st_1(S, \bigwedge_{i=1}^k C_{f_i, n_i}) \in \mathfrak{c}L.$ (b) $st_2(S, \bigwedge_{i=1}^k C_{f_i, n_i}) \in \mathfrak{o}L.$
- (2) For any $a \in L$ and $n \in \mathbb{N}$:
 - (a) $st_1(\mathfrak{c}(a), C_{\chi_{\mathfrak{c}(a)},n}) = \mathfrak{c}(a).$

(b)
$$st_2(\mathfrak{o}(a), C_{\chi_{\mathfrak{c}(a)}, n}) = \mathfrak{o}(a).$$

We have finally the required result that extends Proposition 1.1 of [14] (also Theorem 3.1 of [3]).

Proposition 3.5. $\{C_{f,n} \mid f \in USC(L), n \in \mathbb{N}\}\ is\ a\ subbase\ for\ a\ quasi$ uniformity USC(L) on the biframe $(S(L), \mathfrak{c}L, \mathfrak{o}L)$.

Proof: For each $(f(-,q), f(p,-)) \in C_{f,3n}$ we have

$$st_1(f(-,q), C_{f,3n}) \le f(-, q + \frac{1}{3n})$$

and

$$st_2(f(p,-), C_{f,3n}) \le f(p - \frac{1}{3n}, -)$$

(the proof goes as in Proposition 3.2). Since $f(p-\frac{1}{3n},q+\frac{1}{3n})\geq f(p,q)\neq 0$, this shows that $C_{f,3n}^* \leq C_{f,n}$.

Conditions (U1) and (U3) follow immediately from Lemma 3.4.

 $\mathcal{USC}(L)$ is called the semicontinuous quasi-uniformity on L. This can be immediately generalized to any collection \mathcal{C} containing all characteristic functions χ_S for a closed sublocale S:

Corollary 3.6. Let C be a collection of upper semicontinuous real functions, containing all upper characteristic functions $\chi_{\mathfrak{c}(a)}$ ($a \in L$). $\{C_{f,n} \mid f \in \mathcal{C}, n \in \mathbb{N}\}\$ is a subbase for a quasi-uniformity $\mathcal{U}_{\mathcal{C}}$ on the biframe $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L).$

4. Properties of $\mathcal{USC}(L)$

Proposition 4.1. $\mathcal{USC}(L)$ is the coarsest quasi-uniformity \mathcal{U} on $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$ for which each biframe map $h : (\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})) \to (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$ is a uniform homomorphism $h : ((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), \mathcal{Q}) \to ((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U}).$

Proof: We begin by checking that any biframe map

$$h: (\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})) \to (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$$

is a uniform homomorphism

$$((\mathfrak{L}(\mathbb{R}),\mathfrak{L}_l(\mathbb{R}),\mathfrak{L}_u(\mathbb{R})),\mathcal{Q}) \to ((\mathcal{S}(L),\mathfrak{c}L,\mathfrak{o}L),\mathcal{USC}(L)),$$

that is, $h[Q_n] \in \mathcal{USC}(L)$ for every $n \in \mathbb{N}$. Obviously, the frame map $h : \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$ belongs to $\mathrm{USC}(L)$. It suffices then to show that $C_{h,n} \leq h[Q_n]$, which is obvious since $C_{h,n} \subseteq h[Q_n]$.

Now let \mathcal{U} be a quasi-uniformity on $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$ for which any biframe map

$$h: (\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})) \to (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$$

is a uniform homomorphism

$$h: ((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), \mathcal{Q}) \to ((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U}).$$

In order to show that $\mathcal{USC}(L) \subseteq \mathcal{U}$ it suffices to check that, for any $f \in USC(L)$ and $n \in \mathbb{N}$, $C_{f,n} \in \mathcal{U}$. By hypothesis,

$$f[Q_n] = \{ (f(-,q), f(p,-)) \mid p, q \in \mathbb{Q}, \ 0 < q - p < \frac{1}{n} \} \in \mathcal{U}.$$

So there is a strong paircover $C \in \mathcal{U}$ such that $C \leq f[Q_n]$. Then $C \leq C_{f,n}$. Indeed, for any $((-,q),(p,-)) \in C$ there are $\tilde{p}, \tilde{q} \in \mathbb{Q}$ with $(-,q) \leq f(-,\tilde{q})$, $(p,-) \leq f(\tilde{p},-)$ and $0 < \tilde{q} - \tilde{p} < \frac{1}{n}$; since $(p,q) \neq 0$, then $f(\tilde{p},\tilde{q}) \neq 0$. Hence $C_{f,n} \in \mathcal{U}$ as required.

For every frame L,

$$\{(\mathfrak{c}(a), 1), (1, \mathfrak{o}(a)) \mid a \in L\}$$

is a subbase for a quasi-uniformity on $(S(L), \mathfrak{c}L, \mathfrak{o}L)$ [8]. It is clearly a quasi-uniformity compatible with the given frame L since the first subframe $\mathfrak{c}L$ is an isomorphic copy of L. This is the pointfree analogue of the Császár-Pervin quasi-uniformity of a set X. We refer to it as the *Frith quasi-uniformity* and denote it by \mathcal{F} .

Since

$$C_{\chi_{\mathfrak{c}(a)},n} = \{ (\chi_{\mathfrak{c}(a)}(-,q), \chi_{\mathfrak{c}(a)}(p,-)) \mid p,q \in \mathbb{Q}, 0 < q-p < \frac{1}{n}, \chi_{\mathfrak{c}(a)}(p,q) \neq 0 \},$$

then it is straightforward to check the following.

Lemma 4.2. For each characteristic function $\chi_{\mathfrak{c}(a)}$, $a \in L$,

$$C_{\chi_{\mathfrak{c}(a)},n} = \{(\mathfrak{c}(a),1), (1,\mathfrak{o}(a))\}.$$

Therefore, for $C = \{\chi_{\mathfrak{c}(a)} \mid a \in L\}$, \mathcal{U}_{C} and \mathcal{F} have a common subbase and we have:

Corollary 4.3. Let
$$C = \{\chi_{\mathfrak{c}(a)} \mid a \in L\}$$
. Then $\mathcal{U}_C = \mathcal{F}$.

A real-valued function $f \in F(L)$ is bounded [12] if there exist some p < q in \mathbb{Q} for which f(p,q) = 1. More generally, f is upper bounded if f(-,q) = 1 for some $q \in \mathbb{Q}$. Since every upper characteristic function $\chi_{\mathfrak{c}(a)}$ is bounded, the previous corollary leads immediately to the following result, which is the pointfree extension of Proposition 2.10 of [7].

Proposition 4.4. Let C be the collection of all bounded upper semicontinuous real functions on L. Then $\{C_{f,n} \mid f \in C, n \in \mathbb{N}\}$ is a subbase for F.

Proposition 4.5. Let $h: (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L) \to (\mathcal{S}(M), \mathfrak{c}M, \mathfrak{o}M)$ be a biframe map. Then h is a uniform homomorphism

$$((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{USC}(L)) \to ((\mathcal{S}(M), \mathfrak{c}M, \mathfrak{o}M), \mathcal{USC}(M)).$$

Proof: Let $C_{f,n} \in \mathcal{USC}(L)$, for some $f \in \mathrm{USC}(L)$ and $n \in \mathbb{N}$. Evidently, $hf \in \mathrm{USC}(M)$ and

$$h[C_{f,n}] = \{ (hf(-,q), hf(p,-)) \mid p, q \in \mathbb{Q}, 0 < q - p < \frac{1}{n}, f(p,q) \neq 0 \}$$

$$\geq C_{hf,n} \in \mathcal{S}C(M)$$

because $hf(p,q) \neq 0 \Rightarrow f(p,q) \neq 0$.

We say that a quasi-uniform biframe (L, \mathcal{U}) is totally bounded if \mathcal{U} has a base of finite paircovers.

Lemma 4.6. If $((S(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U})$ is a totally bounded quasi-uniform biframe then every uniform homomorphism

$$h: ((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), \mathcal{Q}) \to ((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U})$$

is bounded.

Proof: Let $h: ((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), \mathcal{Q}) \to ((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U})$ be a uniform homomorphism. For each $n \in \mathbb{N}$, $h[Q_n] \in \mathcal{U}$, so there exists a finite paircover

$$C = \{(\mathfrak{c}(a_1), \mathfrak{o}(b_1)), \cdots, (\mathfrak{c}(a_k), \mathfrak{o}(b_k))\}\$$

of S(L) such that $C \leq h[Q_n]$. Therefore, for each $i \in \{1, \dots, k\}$, $\mathfrak{c}(a_i) \leq h(-, q_i)$ and $\mathfrak{o}(b_i) \leq h(p_i, -)$ for some $p_i, q_i \in \mathbb{Q}$ with $0 < q_i - p_i < \frac{1}{n}$. Hence $1 = \bigvee_{i=1}^k \mathfrak{c}(a_i) \wedge \mathfrak{o}(b_i) \leq \bigvee_{i=1}^k h(p_i, q_i)$. Let $q = \max_{i=1,\dots,k} q_i$ and $p = \min_{i=1,\dots,k} p_i$. Immediately, h(p,q) = 1 and h is bounded.

Proposition 4.7. Let $((S(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U})$ be a totally bounded quasi-uniform frame. Then there exists a collection C of bounded $f \in USC(L)$ such that $\{C_{f,n} \mid f \in C, n \in \mathbb{N}\}$ is a subbase for U.

Proof: Let $((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U})$ be a totally bounded quasi-uniform frame. Every uniform homomorphism

$$h: ((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})), \mathcal{Q}) \to ((\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L), \mathcal{U}),$$

which is bounded by Lemma 4.6, is upper semicontinuous. Let \mathcal{C} be the collection of every such maps. Since \mathcal{C} contains all characteristic functions $\chi_{\mathfrak{c}(a)}$ $(a \in L)$, then, by Corollary 3.6, $\{C_{h,n} \mid h \in \mathcal{C}, n \in \mathbb{N}\}$ is a subbase for a quasi-uniformity $\mathcal{U}_{\mathcal{C}}$ on $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$. Since h is uniform,

$$h[Q_n] = \{(h(-,q), h(p,-)) \mid p, q \in \mathbb{Q}, \ 0 < q - p < \frac{1}{n}\} \in \mathcal{U}.$$

So there is a strong paircover $C \in \mathcal{U}$ such that $C \leq h[Q_n]$. Then $C \leq C_{h,n}$ (the proof is similar to the proof at the end of 4.1 that $C \leq C_{f,n}$). Hence $\{C_{h,n} \mid h \in \mathcal{C}, n \in \mathbb{N}\}$ is also a subbase for \mathcal{U} .

Theorem 4.8. Let L be a frame. Then USC(L) is totally bounded if and only if every $f \in USC(L)$ is bounded.

Proof: Assume that $\mathcal{USC}(L)$ is totally bounded and let $f \in \mathrm{USC}(L)$. Then we have a biframe map $f : (\mathfrak{L}(\mathbb{R}), \mathfrak{L}_l(\mathbb{R}), \mathfrak{L}_u(\mathbb{R})) \to (\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$ which, by Proposition 4.1, is uniform. Then, by Lemma 4.6, f is bounded.

Conversely, let $\mathcal{C} = \text{USC}(L) = \{\text{bounded } f \in \text{USC}(L)\}$. Then $\mathcal{U}_{\mathcal{C}} = \mathcal{USC}(L)$ coincides by Proposition 4.4 with \mathcal{F} . Since \mathcal{F} is totally bounded, then $\mathcal{USC}(L)$ is totally bounded.

Recall that a frame is *countably compact* if each countable cover has a finite subcover.

Theorem 4.9. Let L be a frame. Then every $f \in USC(L)$ is upper bounded if and only if L is countably compact.

Proof: Let $A = \{a_i \mid i \in \mathbb{N}\}$ be a countable cover of L. For each $q \in \mathbb{Q}$ let $m(q) = \min\{n \in \mathbb{N}_0 \mid n \geq q\}$. Further, let $a_0 = 0$ and define, for each $r \in \mathbb{Q}$,

$$S_r = \mathfrak{o}(\bigvee_{i=0}^{m(r)} a_i).$$

This is clearly a scale of open sublocales so, by (2.1), the function f defined by

$$f(p,-) = \bigvee_{r>p} \mathfrak{o}(\bigvee_{i=0}^{m(r)} a_i)$$
 and $f(-,q) = \bigvee_{r< q} \mathfrak{c}(\bigvee_{i=0}^{m(r)} a_i)$ $(p,q \in \mathbb{Q})$

is in USC(L). By hypothesis, f is bounded. Consequently, there is some $q \in \mathbb{Q}$ for which f(-,q) = 1. This means precisely that

$$1 = \bigvee_{r < q} \mathfrak{c}(\bigvee_{i=0}^{m(r)} a_i) = \mathfrak{c}(\bigvee_{r < q} \bigvee_{i=0}^{m(r)} a_i) = \mathfrak{c}(\bigvee_{i=0}^{m(q)} a_i),$$

that is, $\bigvee_{i=0}^{m(q)} a_i = 1$. Hence $\{a_1, \ldots, a_{m(q)}\}$ is a finite subcover of A. This shows that L is countably compact.

Conversely, let L be countably compact and let $f \in USC(L)$. Then $\{f(-,q) \mid q \in \mathbb{Q}\}$ is a countable cover of $\mathfrak{c}L \cong L$. By hypothesis, there exist $q_1, \ldots, q_k \in \mathbb{Q}$ such that $\bigvee_{i=1}^k f(-,q_i) = 1$, that is, $f(-,\bigvee_{i=1}^k q_i) = 1$, which shows that f is upper bounded.

This is the pointfree counterpart of Lemma 3.2 of [3]. Our last result extends Corollary 3.3 of [3]. It asserts that every frame L with a unique compatible quasi-uniform structure is countably compact.

Corollary 4.10. If $(S(L), \mathfrak{c}L, \mathfrak{o}L)$ has a unique quasi-uniform structure then L is countably compact.

Proof: If \mathcal{U} is the unique quasi-uniform structure on $(\mathcal{S}(L), \mathfrak{c}L, \mathfrak{o}L)$ then \mathcal{U} coincides with \mathcal{F} which is totally bounded. But also $\mathcal{U} = \mathcal{USC}(L)$ so, by the theorems above, L is countably compact.

References

- [1] B. Banaschewski, *The Real Numbers in Pointfree Topology*, Textos de Matemática, Vol. 12, University of Coimbra, 1997.
- [2] B. Banaschewski, G. C. L. Brümmer and K. A. Hardie, Biframes and bispaces, *Quaest. Math.* 6 (1983) 13–25.
- [3] C. Barnhill and P. Fletcher, Topological spaces with a unique compatible quasi-uniform structure, *Arch. Math. (Basel)* 21 (1970) 206–209.
- [4] M. J. Ferreira, Sobre a construção de estruturas quase-uniformes em Topologia sem Pontos, PhD thesis, University of Coimbra, 2004.
- [5] M. J. Ferreira and J. Picado, Functorial quasi-uniformities on frames, *Appl. Categ. Structures* 13 (2005) 281-303.
- [6] M. J. Ferreira and J. Picado, The semicontinuous quasi-uniformity of a frame, *Kyungpook Math. J.* 46 (2006) 299–306.
- [7] P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces, Marcel Dekker, New York, 1982.
- [8] J. Frith, Structured frames, PhD thesis, University of Cape Town, 1987.
- [9] J. Frith, The category of quasi-uniform frames, *Research Reports*, Department of Mathematics, University of Cape Town, 1991.
- [10] J. Frith and A. Schauerte, The Samuel compactification for quasi-uniform biframes, *Topol.* Appl. 156 (2009) 2116-2122.
- [11] J. Gutiérrez García, T. Kubiak and J. Picado, Lower and upper regularizations of frame semicontinuous real functions, *Algebra Univ.* 60 (2009) 169-184.
- [12] J. Gutiérrez García, T. Kubiak and J. Picado, Localic real functions: a general setting, J. Pure Appl. Algebra 213 (2009) 1064–1074.
- [13] P. T. Johnstone, *Stone Spaces*, Cambridge Studies in Advanced Mathematics, Vol. 3, Cambridge University Press, Cambridge, 1982.
- [14] R. Nielsen and C. Sloyer, Quasi-uniformizability, Math. Ann. 182 (1969) 273-274.
- [15] J. Picado, Weil uniformities for frames, Comment. Math. Univ. Carolin. 36 (1995) 357–370.
- [16] J. Picado, Frame quasi-uniformities by entourages, in: Symposium on Categorical Topology (University of Cape Town 1994), Department of Mathematics, University of Cape Town, 1999, pp. 161–175.
- [17] J. Picado, Structured frames by Weil entourages, Appl. Categ. Structures 8 (2000) 351-366.
- [18] J. Picado and A. Pultr, *Locales Mostly Treated in a Covariant Way*, Textos de Matemática, Vol. 41, University of Coimbra, 2008.

Maria João Ferreira

CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal $E\text{-}mail\ address:\ mjrf@mat.uc.pt}$

JORGE PICADO

CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal $E\text{-}mail\ address:}$ picado@mat.uc.pt