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1. Introduction
Let X be a locale with corresponding frame L = O(X). The lattice of

sublocales of X (that is, the subobject lattice of X in the category of locales)
may be described in several equivalent ways. Here we use the following one
[18]:

a subset S of L is a sublocale of X if, whenever A ⊆ S, a ∈ L
and b ∈ S, then

∧
A ∈ S and a → b ∈ S.

Any intersection of sublocales is again a sublocale, so that the set of all
sublocales is a complete lattice under inclusion. In fact, it is a co-frame.
We make it into a frame S(L) by considering the dual ordering S1 ≤ S2

iff S2 ⊆ S1. Among the important examples of sublocales are the closed
sublocales

c(a) = ↑a = {b ∈ L : a ≤ b}
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and the open sublocales

o(a) = {a → b : b ∈ L}
for every a ∈ L (which are complements of each other). The map a 7→ c(a) is
a frame embedding L ↪→ S(L). The subframe of S(L) consisting of all closed
sublocales will be denoted by cL. It is isomorphic to L. Denoting by oL
the subframe of S(L) generated by all o(a), a ∈ L, the triple (S(L), cL, oL)
constitutes a biframe.

It is well-known that a quasi-uniformity E on a set X may be described
in several equivalent ways, most notably as a collection of ordered pairs of
covers of X (the paircover approach) and as a collection of relations on X (the
entourage approach). Associated with any quasi-uniformity E on X there is
the bitopological space (X, TE , TE−1) induced by E .

In the pointfree setting, the theory of quasi-uniformities was first exploited
using the paircover approach [8, 9]; the Weil entourages of [15, 16, 17] pro-
vided then the direct analogue of entourages. The former is defined as a
structure U on a biframe (L0, L1, L2) and the latter directly as a structure E
on a frame L which establishes two subframes L1(E) and L2(E) of L such that
the triple (L,L1(E), L2(E)) is a biframe (this is the pointfree version of the
bitopological space (X, TE , TE−1) above). The two approaches are equivalent
[15, 16].

While the approach via paircovers is most convenient for calculations (the
entourage approach asks for a good knowledge of the construction of binary
coproducts of frames), the entourage approach allows to formulate the theory
directly on frames, in a way very similar to the spatial setting [4, 5, 17].
For instance, given a frame L, there exists a (entourage) transitive quasi-
uniformity E on the sublocale frame S(L) which is compatible with L, that
is, L1(E) = cL (which means that L1(E) is an isomorphic copy of the given
frame L inside S(L)) [4, 5]. This is the pointfree analogue of the well-known
classical fact that for every topological space (X, T) there exists a transitive
quasi-uniformity E on X, compatible with (X, T), that is, which induces as
its first topology TE the given topology T.

The semicontinuous quasi-uniformity USC(L) of L is a nice example of a
transitive compatible quasi-uniformity [5, 6]. The purpose of this paper is
to show how the basic facts about USC(L) can be nicely presented with the
help of the ring of arbitrary (not necessarily continuous) real-valued functions
made available recently by J. Gutiérrez Garćıa, T. Kubiak and J. Picado
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[12]. To keep the background at the minimum possible we use the paircover
approach [8, 10] to quasi-uniformities.

2. Background

For general information on locales and frames we refer to [13] and [18]. A
biframe [2] is a triple L = (L0, L1, L2) in which L0 is a frame, L1 and L2

are subframes of L0 and L1 ∪ L2 generates L0 (by joins of finite meets). A
biframe map h : L → M is a frame homomorphism from L0 to M0 such that
the image of Li under h is contained in Mi for i = 1, 2. Biframes and biframe
maps are the objects and arrows of the category BiFrm. For more details on
biframes consult [2].

Let L = (L0, L1, L2) be a biframe. A subset C of L1 × L2 is a paircover
[8, 10] of L if

∨{c1 ∧ c2 | (c1, c2) ∈ C} = 1. A paircover C of L is strong if,
for any (c1, c2) ∈ C, c1 ∨ c2 = 0 whenever c1 ∧ c2 = 0 (that is, (c1, c2) = (0, 0)
whenever c1 ∧ c2 = 0).

For any paircovers C and D of L we write C ≤ D (and say that C refines
D) if for any (c1, c2) ∈ C there is (d1, d2) ∈ D with c1 ≤ d1 and c2 ≤ d2.
Further C ∧D = {(c1 ∧ d1, c2 ∧ d2) | (c1, c2) ∈ C, (d1, d2) ∈ D}. It is obvious
that C ∧D is a paircover of L. For a ∈ L0 and C, D paircovers of L, let

st1(a, C) =
∨
{c1 | (c1, c2) ∈ C and c2 ∧ a 6= 0},

st2(a, C) =
∨
{c2 | (c1, c2) ∈ C and c1 ∧ a 6= 0}

and
C ·D = {(st1(d1, C), st2(d2, C)) | (d1, d2) ∈ D}.

The particular case C · C is usually denoted by C∗. The paircover C is said
to star-refines D if C∗ ≤ D.

The following lemma is easy to prove [8].

Lemma 2.1. For any paircovers C, D of (L0, L1, L2) and any a, b ∈ L0 we
have:

(1) a ≤ sti(a, C) (i = 1, 2).
(2) a ≤ b ⇒ sti(a, C) ≤ sti(b, C) (i = 1, 2).
(3) If D∗ ≤ C then sti(sti(a,D), D) ≤ sti(a, C) (i = 1, 2).
(4) For any biframe map h : (L0, L1, L2) → (M0,M1,M2), sti(h(a), h[C]) ≤

h(sti(a, C)) (i = 1, 2), where h[C] = {(h(c1), h(c2)) | (c1, c2) ∈ C}.
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A non-empty family U of paircovers of L = (L0, L1, L2) is a quasi-uniformity
on L if:

(U1) The family of strong members of U is a filter-base for U with respect
to ∧ and ≤.

(U2) For any C ∈ U there is D ∈ U such that D∗ ≤ C.
(U3) For each a ∈ Li, a =

∨{b ∈ Li | sti(b, C) ≤ a for some C ∈ U},
(i = 1, 2).

The pair (L,U) is called a quasi-uniform biframe [10]. B ⊆ U is a base for
U if, for each C ∈ U , there is B ∈ B such that B ≤ C.

Let (L,U) and (M,V) be quasi-uniform biframes. A biframe map h : L →
M is uniform if for every C ∈ U , h[C] ∈ V . Quasi-uniform biframes and
uniform maps constitute a category that we denote by QUBiFrm.

The biframe of reals is the triple (L(R), Ll(R), Lu(R)) where L(R) is the
frame of reals [1] defined by generators (p, q) ∈ Q×Q and relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨{(r, s) : p < r < s < q},
(R4)

∨
p,q∈Q(p, q) = 1.

We shall use also the following notation:

(p, —) =
∨

q∈Q
(p, q) and (—, q) =

∨

p∈Q
(p, q);

note that (p, —) ∧ (—, q) = (p, q).
Equivalently, L(R) may be defined by taking (p, —) and (—, q) as primitive

notions, with relations

(S1) (p, —) ∧ (—, q) = 0 whenever p ≥ q,
(S2) (p, —) ∨ (—, q) = 1 whenever p < q,
(S3) (p, —) =

∨
r>p(r, —),

(S4) (—, q) =
∨

s<q(—, s),
(S5)

∨
p∈Q(p, —) = 1,

(S6)
∨

q∈Q(—, q) = 1.

Then Lu(R) and Ll(R) are just the following subframes of L(R):

Lu(R) = 〈{(p, —) : p ∈ Q, (p, —) satisfy (R3) and (R5) for all p ∈ Q}〉 ,
Ll(R) = 〈{(—, q) : q ∈ Q, (—, q) satisfy (R4) and (R6) for all q ∈ Q}〉 .
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In general topology one sometimes deals with arbitrary (not necessarily
continuous) real-valued functions on a topological space X. This is also
possible in the pointfree setting with the approach recently introduced in
[12] (which extends the approach to pointfree continuous real functions of
Banaschewski [1]). Let L be a frame. A real-valued function on L is a frame
homomorphism f : L(R) → S(L). It is

(1) lower semicontinuous if f(Lu(R)) ⊆ cL,
(2) upper semicontinuous if f(Ll(R)) ⊆ cL,
(3) continuous if f(L(R)) ⊆ cL.

The set F(L) of all real-valued functions on L is partially ordered by

f ≤ g ⇔ f(p, —) ≤ g(p, —) for every p ∈ Q
⇔ g(—, q) ≤ f(—, q) for every q ∈ Q.

We denote by LSC(L), USC(L) and C(L) the collections of all lower semi-
continuous, upper semicontinuous, and continuous members of F(L). Of
course, one has

C(L) = LSC(L) ∩ USC(L).

Note that USC(L) ' BiFrm ((L(R), Ll(R), Lu(R)), (S(L), cL, oL)).
A nice way of constructing real functions is with the help of the so called

scales [12]. A collection of sublocales {Sr : r ∈ Q} ⊆ S(L) is a scale on S(L)
if Sr ∨ S∗s = 1 whenever r < s and

∨{Sr : r ∈ Q} = 1 =
∨{S∗r : r ∈ Q}

(here S∗ denotes the pseudocomplement of S). For each scale {Sr : r ∈ Q}
in S(L) the function f defined by

f(p,−) =
∨
r>p

Sr and f(−, q) =
∨
r<q

Sr
∗ (p, q ∈ Q) (2.1)

belongs to F(L). If, moreover, each Sr is an open sublocale then f ∈ USC(L).

For instance, given a complemented sublocale S of L, with complement
¬S, the characteristic map χS : L(R) → S(L) is defined by

χS(p, —) =





1 if p < 0,

¬S if 0 ≤ p < 1,

0 if p ≥ 1,

and χS(—, q) =





0 if q ≤ 0,

S if 0 < q ≤ 1,

1 if q > 1,

for each p, q ∈ Q [12]. Then, as in the classical context, we have:

(a) χS ∈ LSC(L) if and only if S is open,
(b) χS ∈ USC(L) if and only if S is closed,
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(c) χS ∈ C(L) if and only if S is clopen.

For any f ∈ F(L) the upper regularization f− ∈ USC(L) of f is defined by

f−(p,−) =
∨
q>p

¬ f(−, q) and f−(−, p) =
∨
q<p

f(−, q)

(see [11] and [12] for more information). Of course, when f ∈ USC(L) then
f− = f . Thus, for any f ∈ USC(L), we have

f(p,−) =
∨
q>p

¬ f(−, q) ∈ oL and f(−, p) =
∨
q<p

f(−, q) ∈ cL. (2.2)

3. The semicontinuous quasi-uniformity USC(L)
For each n ∈ N,

Qn =
{

((−, q), (p,−)) | p, q ∈ Q, 0 < q − p <
1
n

}

is a strong paircover of the biframe (L(R), Ll(R), Lu(R)). These paircovers
satisfy the following (easy to check) properties:

Lemma 3.1. (1) For every n ∈ N and p, q ∈ Q with p < q, 1
q−p < n, we

have:
(a) st1((−, p), Qn) ≤ (−, q).
(b) st2((q,−), Qn) ≤ (p,−).

(2) For every pi, qi ∈ Q with pi < qi, we have:
(a) st1(

∨
i∈I(pi, qi), Qn) = st1(

∨
i∈I(−, qi), Qn).

(b) st2(
∨

i∈I(pi, qi), Qn) = st2(
∨

i∈I(pi,−), Qn).
(3) For each n ∈ N, Qn+1 ⊆ Qn (thus Qn+1 ≤ Qn).

Moreover:

Proposition 3.2. For every n ∈ N and p ∈ Q, we have:

(1) Q∗
3n ≤ Qn.

(2) (−, p) =
∨{(−, q) ∈ Ll(R) | st1((−, q), Qn) ≤ (−, p) for some n ∈ N}.

(3) (p,−) =
∨{(q,−) ∈ Lu(R) | st2((q,−), Qn) ≤ (p,−) for some n ∈

N}.
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Proof : (1) Let ((−, q), (p,−)) ∈ Q3n. We have to show that there is

((−, q̃), (p̃,−)) ∈ Qn

such that st1((−, q), Q3n) ≤ (−, q̃) and st2((p,−), Q3n) ≤ (p̃,−). But

st1((−, q), Q3n) =
∨
{(−, d1) | ((−, d1), (d2,−)) ∈ Q3n, (d2,−) ∧ (−, q) 6= 0}

≤ (−, q +
1

3n
)

since (d2,−) ∧ (−, q) 6= 0 ⇔ d2 < q and 0 < d1 − d2 < 1
3n (which implies

d1 < d2 + 1
3n < q + 1

3n). Similarly,

st2((p,−), Q3n) =
∨
{(d2,−) | ((−, d1), (d2,−)) ∈ Q3n, (−, d1) ∧ (p,−) 6= 0}

≤ (p− 1
3n

,−).

It suffices then to take q̃ = q + 1
3n and p̃ = p− 1

3n . Indeed, ((−, q + 1
3n), (p−

1
3n ,−)) ∈ Qn, since 0 < q + 1

3n − p + 1
3n < 1

3n + 1
3n + 1

3n = 1
n .

(2) By Lemma 3.1(1), for every q < p there is some n ∈ N such that
st1((−, q), Qn) ≤ (−, p). Thus, by Lemma 2.1(1),

(−, p) =
∨
q<p

(−, q) ≤
∨
{(−, q) | st1((−, q), Qn) ≤ (−, p) for some n ∈ N}

≤ (−, p).

(3) may be proved similarly.

In conclusion, the strong paircovers Qn (n ∈ N), generate a quasi-uniformity
Q on the biframe of reals (L(R), Ll(R), Lu(R)).

Corollary 3.3. The pair ((L(R), Ll(R), Lu(R)),Q) is a quasi-uniform bifra-
me.

We refer to it as the quasi-metric quasi-uniformity of the reals.

Now let f ∈ USC(L). Then (recall (2.2))

f(p,−) =
∨
q>p

¬ f(−, q) ∈ oL and f(−, p) =
∨
q<p

f(−, q) ∈ cL

so f : L(R) → S(L) is a biframe map

f : (L(R), Ll(R), Lu(R)) → (S(L), cL, oL).
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Clearly, for each n ∈ N,

Cf,n = {(f(—, q), f(p, —)) | p, q ∈ Q, f(p, q) 6= 0, 0 < q − p <
1
n
}

is a strong paircover of the sublocale lattice (S(L), cL, oL). Further, we have
[6]:

Lemma 3.4. (1) For any f1, . . . , fk ∈ USC(L), n1, . . . , nk ∈ N and S ∈
S(L):

(a) st1(S,
∧k

i=1 Cfi,ni
) ∈ cL.

(b) st2(S,
∧k

i=1 Cfi,ni
) ∈ oL.

(2) For any a ∈ L and n ∈ N:

(a) st1(c(a), Cχc(a),n) = c(a).
(b) st2(o(a), Cχc(a),n) = o(a).

We have finally the required result that extends Proposition 1.1 of [14]
(also Theorem 3.1 of [3]).

Proposition 3.5. {Cf,n | f ∈ USC(L), n ∈ N} is a subbase for a quasi-
uniformity USC(L) on the biframe (S(L), cL, oL).

Proof : For each (f(−, q), f(p,−)) ∈ Cf,3n we have

st1(f(−, q), Cf,3n) ≤ f(−, q +
1

3n
)

and

st2(f(p,−), Cf,3n) ≤ f(p− 1
3n

,−)

(the proof goes as in Proposition 3.2). Since f(p− 1
3n , q + 1

3n) ≥ f(p, q) 6= 0,
this shows that C∗

f,3n ≤ Cf,n.
Conditions (U1) and (U3) follow immediately from Lemma 3.4.

USC(L) is called the semicontinuous quasi-uniformity on L. This can be
immediately generalized to any collection C containing all characteristic func-
tions χS for a closed sublocale S:

Corollary 3.6. Let C be a collection of upper semicontinuous real func-
tions, containing all upper characteristic functions χc(a) (a ∈ L). Then
{Cf,n | f ∈ C, n ∈ N} is a subbase for a quasi-uniformity UC on the biframe
(S(L), cL, oL).
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4. Properties of USC(L)

Proposition 4.1. USC(L) is the coarsest quasi-uniformity U on (S(L), cL, oL)
for which each biframe map h : (L(R), Ll(R), Lu(R)) → (S(L), cL, oL) is a
uniform homomorphism h : ((L(R), Ll(R), Lu(R)),Q) → ((S(L), cL, oL),U).

Proof : We begin by checking that any biframe map

h : (L(R), Ll(R), Lu(R)) → (S(L), cL, oL)

is a uniform homomorphism

((L(R), Ll(R), Lu(R)),Q) → ((S(L), cL, oL),USC(L)),

that is, h[Qn] ∈ USC(L) for every n ∈ N. Obviously, the frame map h :
L(R) → S(L) belongs to USC(L). It suffices then to show that Ch,n ≤ h[Qn],
which is obvious since Ch,n ⊆ h[Qn].

Now let U be a quasi-uniformity on (S(L), cL, oL) for which any biframe
map

h : (L(R), Ll(R), Lu(R)) → (S(L), cL, oL)

is a uniform homomorphism

h : ((L(R), Ll(R), Lu(R)),Q) → ((S(L), cL, oL),U).

In order to show that USC(L) ⊆ U it suffices to check that, for any f ∈
USC(L) and n ∈ N, Cf,n ∈ U . By hypothesis,

f [Qn] = {(f(−, q), f(p,−)) | p, q ∈ Q, 0 < q − p <
1
n
} ∈ U .

So there is a strong paircover C ∈ U such that C ≤ f [Qn]. Then C ≤ Cf,n.
Indeed, for any ((−, q), (p,−)) ∈ C there are p̃, q̃ ∈ Q with (−, q) ≤ f(−, q̃),
(p,−) ≤ f(p̃,−) and 0 < q̃ − p̃ < 1

n ; since (p, q) 6= 0, then f(p̃, q̃) 6= 0.
Hence Cf,n ∈ U as required.

For every frame L,

{(c(a), 1), (1, o(a)) | a ∈ L}
is a subbase for a quasi-uniformity on (S(L), cL, oL) [8]. It is clearly a quasi-
uniformity compatible with the given frame L since the first subframe cL is
an isomorphic copy of L. This is the pointfree analogue of the Császár-Pervin
quasi-uniformity of a set X. We refer to it as the Frith quasi-uniformity and
denote it by F .
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Since

Cχc(a),n = {(χc(a)(−, q), χc(a)(p,−)) | p, q ∈ Q, 0 < q − p <
1
n

, χc(a)(p, q) 6= 0},
then it is straightforward to check the following.

Lemma 4.2. For each characteristic function χc(a), a ∈ L,

Cχc(a),n = {(c(a), 1), (1, o(a))}.
Therefore, for C = {χc(a) | a ∈ L}, UC and F have a common subbase and

we have:

Corollary 4.3. Let C = {χc(a) | a ∈ L}. Then UC=F .

A real-valued function f ∈ F(L) is bounded [12] if there exist some p < q
in Q for which f(p, q) = 1. More generally, f is upper bounded if f(−, q) = 1
for some q ∈ Q. Since every upper characteristic function χc(a) is bounded,
the previous corollary leads immediately to the following result, which is the
pointfree extension of Proposition 2.10 of [7].

Proposition 4.4. Let C be the collection of all bounded upper semicontinuous
real functions on L. Then {Cf,n | f ∈ C, n ∈ N} is a subbase for F .

Proposition 4.5. Let h : (S(L), cL, oL) → (S(M), cM, oM) be a biframe
map. Then h is a uniform homomorphism

((S(L), cL, oL),USC(L)) → ((S(M), cM, oM),USC(M)).

Proof : Let Cf,n ∈ USC(L), for some f ∈ USC(L) and n ∈ N. Evidently,
hf ∈ USC(M) and

h[Cf,n] = {(hf(−, q), hf(p,−)) | p, q ∈ Q, 0 < q − p <
1
n

, f(p, q) 6= 0}
≥ Chf,n ∈ SC(M)

because hf(p, q) 6= 0 ⇒ f(p, q) 6= 0.

We say that a quasi-uniform biframe (L,U) is totally bounded if U has a
base of finite paircovers.

Lemma 4.6. If ((S(L), cL, oL),U) is a totally bounded quasi-uniform biframe
then every uniform homomorphism

h : ((L(R), Ll(R), Lu(R)),Q) → ((S(L), cL, oL),U)

is bounded.
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Proof : Let h : ((L(R), Ll(R), Lu(R)),Q) → ((S(L), cL, oL),U) be a uniform
homomorphism. For each n ∈ N, h[Qn] ∈ U , so there exists a finite paircover

C = {(c(a1), o(b1)), · · · , (c(ak), o(bk))}
of S(L) such that C ≤ h[Qn]. Therefore, for each i ∈ {1, · · · , k}, c(ai) ≤
h(−, qi) and o(bi) ≤ h(pi,−) for some pi, qi ∈ Q with 0 < qi − pi < 1

n . Hence
1 =

∨k
i=1 c(ai)∧o(bi) ≤

∨k
i=1 h(pi, qi). Let q = maxi=1,...,k qi and p = min

i=1,...,k
pi.

Immediately, h(p, q) = 1 and h is bounded.

Proposition 4.7. Let ((S(L), cL, oL),U) be a totally bounded quasi-uniform
frame. Then there exists a collection C of bounded f ∈ USC(L) such that
{Cf,n | f ∈ C, n ∈ N} is a subbase for U .

Proof : Let ((S(L), cL, oL),U) be a totally bounded quasi-uniform frame. Ev-
ery uniform homomorphism

h : ((L(R), Ll(R), Lu(R)),Q) → ((S(L), cL, oL),U),

which is bounded by Lemma 4.6, is upper semicontinuous. Let C be the
collection of every such maps. Since C contains all characteristic functions
χc(a) (a ∈ L), then, by Corollary 3.6, {Ch,n | h ∈ C, n ∈ N} is a subbase for a
quasi-uniformity UC on (S(L), cL, oL). Since h is uniform,

h[Qn] = {(h(−, q), h(p,−)) | p, q ∈ Q, 0 < q − p <
1
n
} ∈ U .

So there is a strong paircover C ∈ U such that C ≤ h[Qn]. Then C ≤ Ch,n

(the proof is similar to the proof at the end of 4.1 that C ≤ Cf,n). Hence
{Ch,n | h ∈ C, n ∈ N} is also a subbase for U .

Theorem 4.8. Let L be a frame. Then USC(L) is totally bounded if and
only if every f ∈ USC(L) is bounded.

Proof : Assume that USC(L) is totally bounded and let f ∈ USC(L). Then
we have a biframe map f : (L(R), Ll(R), Lu(R)) → (S(L), cL, oL) which, by
Proposition 4.1, is uniform. Then, by Lemma 4.6, f is bounded.

Conversely, let C = USC(L) = {bounded f ∈ USC(L)}. Then UC =
USC(L) coincides by Proposition 4.4 with F . Since F is totally bounded,
then USC(L) is totally bounded.

Recall that a frame is countably compact if each countable cover has a finite
subcover.
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Theorem 4.9. Let L be a frame. Then every f ∈ USC(L) is upper bounded
if and only if L is countably compact.

Proof : Let A = {ai | i ∈ N} be a countable cover of L. For each q ∈ Q let
m(q) = min{n ∈ N0 | n ≥ q}. Further, let a0 = 0 and define, for each r ∈ Q,

Sr = o(
m(r)∨

i=0

ai).

This is clearly a scale of open sublocales so, by (2.1), the function f defined
by

f(p,−) =
∨
r>p

o(
m(r)∨
i=0

ai) and f(−, q) =
∨
r<q

c(
m(r)∨
i=0

ai) (p, q ∈ Q)

is in USC(L). By hypothesis, f is bounded. Consequently, there is some
q ∈ Q for which f(−, q) = 1. This means precisely that

1 =
∨
r<q

c(
m(r)∨

i=0

ai) = c(
∨
r<q

m(r)∨

i=0

ai) = c(
m(q)∨

i=0

ai),

that is,
∨m(q)

i=0 ai = 1. Hence {a1, . . . , am(q)} is a finite subcover of A. This
shows that L is countably compact.

Conversely, let L be countably compact and let f ∈ USC(L). Then
{f(−, q) | q ∈ Q} is a countable cover of cL ∼= L. By hypothesis, there
exist q1, . . . , qk ∈ Q such that

∨k
i=1 f(−, qi) = 1, that is, f(−,

∨k
i=1 qi) = 1,

which shows that f is upper bounded.

This is the pointfree counterpart of Lemma 3.2 of [3]. Our last result
extends Corollary 3.3 of [3]. It asserts that every frame L with a unique
compatible quasi-uniform structure is countably compact.

Corollary 4.10. If (S(L), cL, oL) has a unique quasi-uniform structure then
L is countably compact.

Proof : If U is the unique quasi-uniform structure on (S(L), cL, oL) then U
coincides with F which is totally bounded. But also U = USC(L) so, by the
theorems above, L is countably compact.
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Vol. 41, University of Coimbra, 2008.

Maria João Ferreira
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail address: mjrf@mat.uc.pt

Jorge Picado
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
E-mail address: picado@mat.uc.pt


