
Pré-Publicações do Departamento de Matemática
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Abstract: Complex diffusion is a common and broadly used denoising procedure

in image processing. The method is based on an explicit finite difference scheme

applied to a diffusion equation with a proper complex diffusion parameter in order

to preserve edges and the main features of the image, while eliminating noise. In

this paper we present a rigorous proof for the stability condition of complex diffusion

finite difference schemes.
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1. Introduction

Diffusion processes are commonly used in image processing in order to
remove noise. The main idea is that if one pixel is affected by noise, than the
noise should be diffused among the neighboring pixels in order to smooth the
region. In this way proper diffusion partial differential equations have been
considered to achieve this end. Taking the heat equation

∂u(x, t)

∂t
= ∇ · (D(x, t, u)∇u(x, t))

where u(x, t) represents the denoised image at time t with the initial noisy
image u(x, 0), the choice of the diffusion parameter D plays a very important
role for the purpose of denoising. Roughly speaking, one wants D to allow
diffusion on homogeneous areas affected only by noise and to forbid diffusion
on edges to preserve features of the original denoised image. In this way,
several expressions forD have been suggested. The first approaches indicated
that D should depend on the gradient of u with an inverse proportion [5, 9,
10]. However, this approach had a few handicaps. For instance, within
a ramp edge the diffusion coefficient is similar along all the edge delaying
the diffusion process, not distinguishing between the end points and interior
points of the ramp edge where diffusion should differ. Therefore, the use of
the laplacian was suggested as being more appropriate since it has a higher
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amplitude near the end points and low magnitude elsewhere, namely by
considering

D =
1

1 + |∆u|2
.

The drawback is that the computation of a higher order derivative is needed
leading to higher ill-posedness in the first steps while the image is strongly
affected by noise. To overcome this problem, Gilboa et al. [3] suggested to
use complex diffusion. The use of a complex diffusion coefficient turns the
partial differential equation into some sort of combination between the heat
and the Schrödinger equation. Having our goal of preserving image features
in view, Gilboa et al. [3] suggested

D =
eiϑ

1 +
(

Im(u)
κϑ

)2 , (1)

with ϑ ≈ 0 and κ > 0 a normalization constant, involving an approximation
to the laplacian of the image, namely by using the identity

lim
ϑ→0

Im(u(., t))

tϑ
= G ∗∆u(., 0)

where G is a gaussian and therefore the convolution with G represents a low
pass filter. We note that the right hand side is a low-pass filter of the structure
of edges of the initial image u(., 0) given by its laplacian, and therefore the
choice of D as in (1) penalizes diffusion across edges.
Complex diffusion proved to be much better conditioned numerically and

successfully applied in medical imaging despeckling and denoising [2, 6].
More recently an improvement of D by making κ adaptive was also strongly
suggested [1]. However, to the best of our knowledge a theoretical gap as
been open since, having in mind that explicit finite difference schemes for
the discretization of the equation are usually considered in order to obtain
fast computational methods: a stability condition for complex diffusion. It is
known that for a real positive diffusion parameter D in the one-dimensional
case, the method is stable if

∆t ≤
h2

2maxD
,

where ∆t and h are, respectively, the temporal and spatial discretization
steps. This upper bound has generally been used by engineers when imple-
menting complex diffusion, though no rigorous proof of stability condition
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was presented in this case. Moreover, the generalization seems not to be
straightforward, since the von Neumann stability analysis approach seems
to fail due to a non-constant D, as well as typical approaches using the
Gershgorin theorem ([8]).
The main result of this paper is the proof of a stability condition for com-

plex diffusion. We only present in detail the proof for the Neumann case.
Remark 2 in section 4 is devoted to the generalization of the proof for the
easier Dirichlet case. The papers is organized as follows. In section 2 the
complex diffusion equation is presented. In section 3 the details on the con-
sidered numerical scheme are also given. In section 4 the stability condition
is proven for Neumann boundary conditions. Finally we present numerical
examples in section 5 to illustrate the stability condition.

2. Complex diffusion equation

Let Ω be a bounded open set in R
d, d ≥ 1, with boundary Γ = ∂Ω.

Typically Ω is the cartesian product of open intervals in R, i.e.,

Ω =
d
∏

j=1

]aj, bj[,

with aj, bj ∈ R. We consider a diffusion process with a non-constant complex
coefficient D = D(x, t, u), where

0 ≤ |Im(D(x, t, u))| ≤ Re(D(x, t, u)), x ∈ Ω, t ∈ [0, T ], u ∈ C, (2)

T > 0. Let Q = Ω×]0, T ]. We define the initial boundary value problem for
the unknown function u : Q̄ = Ω̄× [0, T ] −→ C



























∂u

∂t
(x, t) = ∇ · (D(x, t, u)∇u(x, t)), (x, t) ∈ Q

u(x, 0) = u0(x), x ∈ Ω,

αu(x, t) + β
∂u
∂ν
(x, t) = 0, x ∈ Γ, t ∈ [0, T ],

(3)

where ∂u
∂ν

denotes the derivative in the direction of the exterior normal to Γ.
With a complex parameter D, the equation can be seen as a combination of
the Schrödinger equation with the second Fick’s Law or the Heat Equation,
depending on the science field.
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For the boundary conditions we consider that

αβ = 0 and α + β != 0. (4)

3. Numerical method

Let us construct a mesh on Q. Let h = (h1, . . . , hd), where hk denotes the
mesh-size in the kth spatial coordinate direction, such that hk = (bk−ak)/Nk,
k = 1, . . . , d, with Nk ≥ 2 an integer. Let ∆t = T/M be the mesh-size in the
t-direction, where M ≥ 1 is an integer. We define a mesh in Q by

Q
∆t
h = {(xj, t

m) : xj = (a1 + j1h1, . . . , ad + jdhd), 0 ≤ jk ≤ Nk, k = 1, ..., d,

tm = m∆t, 0 ≤ m ≤ M} .

Note that Q
∆t
h could be viewed as the cartesian product of a space grid Ωh and

a grid in the temporal domain. Let Q∆t
h = Q

∆t
h ∩Q and Γ

∆t
h = Q

∆t
h ∩Γ×[0, T ].

With the coordinate (j,m) = (j1, . . . , jd,m) is associated the point (xj, t
m) ∈

Q
∆t
h of the form

(xj, t
m) = (a1 + j1h1, . . . , ad + jdhd,m∆t).

We denote by V m
j the value of a mesh function V , defined on Q

∆t
h , at the

point (xj, t
m). We define the forward and backward finite differences with

respect to (xj, t
m) in the kth spatial direction by

δ+k V
m
j =

V m
j+ek

− V m
j

hk
, δ−k V

m
j =

V m
j − V m

j−ek

hk
,

where ek denotes the kth element of the natural basis in R
d.

On Q
∆t
h we approximate (3) by the one-parameter family of finite difference

schemes














































Um+1
j − Um

j

∆t
=

d
∑

k=1

δ+k (D
m
j−(1/2)ek

δ−k U
m+θ

j ) in Q̃∆t
h ,

U 0
j = u0(xj) in Ωh,

αUm
j +

β

2

d
∑

k=1

(

δ+k U
m
j + δ−k U

m
j

)

· νk = 0 in Γ
∆t
h ,

(5)
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where Um+θ

j = θUm+1
j +(1− θ)Um

j , θ ∈ [0, 1], Um
j representes the approxima-

tion of u(xj, t
m),

Dm
j−(1/2)ek

=
D(xj, t

m, Um
j ) +D(xj−ek , t

m, Um
j−ek

)

2
,

we use the notation Q̃∆t
h for the set Q∆t

h or Q
∆t
h , respectively, in the case

of Dirichlet or Neumann boundary conditions, and νk represents the kth
component of the normal vector ν.
Assuming enough regularity for the solution of (3), it is not difficult to

prove that this method is consistent with the differential problem of order
(h2,∆t), if θ #= 1

2 , and of order (h2, (∆t)2), if θ = 1
2 .

Remark 1. If the diffusion coefficient D = D(x, t) does not depend on the
field u, than the differential equation is linear and Lax equivalence theorem [4]
tells us that to prove convergence one only needs to prove the stability of the
method. However if D = D(x, t, u) - as in our case of interest - the proof
of stability might not imply convergence, since the fact that the differential
equation is non-linear does not satisfy the hypothesis of Lax equivalence the-
orem. However, the proof of a stability condition is of importance in order
to guarantee that the solution stays bounded.

4. Stability of the numerical scheme

In this section we investigate the stability of the finite difference scheme (5).
The approach we use here has some analogies with strategies more commonly
used in the context of the finite element method but it has already been used
in the context of the finite difference method (see e.g. [7]).

Theorem 1. Suppose that (2) and (4) hold. Then, if θ ∈ [12 , 1] the method

(5) is unconditionally stable and if θ ∈ [0, 12 [ the method (5) is stable under
the condition

∆t ≤
(min{h1, . . . , hd})

2

d(2(1− 2θ))max (DR + |DI |)
.

To prove this result we will consider the unidimensional case and consider-
ing Neumann boundary conditions (α = 0). For d ≥ 2 or Dirichlet boundary
conditions the proof follows the same steps.
We rewrite (5) as a system by separating the real and imaginary parts of

the main variable U = UR + iUI and the diffusion coefficient D = DR + iDI .
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We shall then study the stability of the family of finite difference schemes:
find Um

j ≈ u(xj, t
m), j = 0, . . . , N , m = 0, . . . ,M , such that







































































Um+1
Rj − Um

Rj

∆t
= δ

+
x (D

m
Rj−δ

−
x U

m+θ

Rj )− δ
+
x (D

m
Ij−δ

−
x U

m+θ

Ij ),
j = 0, . . . , N,

m = 0, . . . ,M − 1,

Um+1
Ij − Um

Ij

∆t
= δ

+
x (D

m
Ij−δ

−
x U

m+θ

Rj ) + δ
+
x (D

m
Rj−δ

−
x U

m+θ

Ij ),
j = 0, . . . , N,

m = 0, . . . ,M − 1,

U 0
Rj = u0R(xj), U

0
Ij = u0I(xj), j = 0, . . . , N,

δ
+
x U

m
R0 + δ

−
x U

m
R0 = 0, δ+x U

m
RN + δ

−
x U

m
RN = 0,m = 0, . . . ,M,

δ
+
x U

m
I0 + δ

−
x U

m
I0 = 0, δ+x U

m
IN + δ

−
x U

m
IN = 0,m = 0, . . . ,M,

(6)
where

Dm
−j =

D(xj−1, t
m, Um

j−1) +D(xj, t
m, Um

j )

2
, j = 1, . . . , N, m = 0, . . . ,M.

In (6) we need the extra points x−1 = x0 − h and xN+1 = xN + h and we
define Dm

−0 = Dm
−1, D

m
−(N+1) = Dm

−N .

We consider the discrete L2 inner products

(U, V )h =
N
∑

j=0

′′

hUjV j =
h

2
U0V 0 +

N−1
∑

j=1

hUjV j +
h

2
UNV N

and

(U, V )h∗ =
N
∑

j=1

hUjV j,

and their corresponding norms

‖U‖h = (U,U)
1/2
h and ‖U‖h∗ = (U,U)

1/2
h∗ .

Multiplying both members of the first and second equations of (6) by,
respectively, Um+θ

R and Um+θ

I , according to the discrete inner product (·, ·)h
and using summation by parts we obtain
(

Um+1
R − Um

R

∆t
, Um+θ

R

)

h

+ ‖(Dm
R−)1/2δ−x U

m+θ

R ‖2h∗ =
(

Dm
I−δ

−
x U

m+θ

I , δ−x U
m+θ

R

)

h∗
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and

(

Um+1
I − Um

I

∆t
, Um+θ

I

)

h

+‖(Dm
R−)1/2δ−x U

m+θ

I ‖2h∗ = −
(

Dm
I−δ

−
x U

m+θ

R , δ−x U
m+θ

I

)

h∗
.

Then
(

Um+1 − Um

∆t
, Um+θ

)

h

+ ‖(Dm
R−)1/2δ−x U

m+θ‖2h∗ = 0.

Since we can write

Um+θ = ∆t

(

θ −
1

2

)

Um+1 − Um

∆t
+

Um+1 + Um

2
,

we obtain

∆t

(

θ −
1

2

)∥

∥

∥

∥

Um+1 − Um

∆t

∥

∥

∥

∥

2

h

+
‖Um+1‖2h − ‖Um‖2h

2∆t
+‖(Dm

Rj−)
1/2

δ
−
x U

m+θ‖2h∗ = 0.

(7)
Let us now consider two different cases. First, we suppose that θ ∈ [1

2
, 1].

In this case θ − 1

2
≥ 0 and from (7) we immediately obtain that

‖Um+1‖h ≤ ‖Um‖h, m = 0, . . . ,M − 1,

which proves that the scheme is stable without any limitation in the time
step.
Now, let us consider that θ ∈ [0, 1

2
[. In this case,

‖Um+1‖2h − ‖Um‖2h
2∆t

+ ‖(Dm
R−)1/2δ−x U

m+θ‖2h∗ = ∆t

(

1

2
− θ

)∥

∥

∥

∥

Um+1 − Um

∆t

∥

∥

∥

∥

2

h

.

(8)
We recall that

∥

∥

∥

∥

Um+1 − Um

∆t

∥

∥

∥

∥

2

h

=

∥

∥

∥

∥

Um+1
R − Um

R

∆t

∥

∥

∥

∥

2

h

+

∥

∥

∥

∥

Um+1
I − Um

I

∆t

∥

∥

∥

∥

2

h

. (9)
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Using the right hand side of the difference equations and the boundary con-
ditions in (6), and applying the iniquality (a− b)2 ≤ 2a2 + 2b2, we obtain

∥

∥

∥

∥

Um+1
R − Um

R

∆t

∥

∥

∥

∥

2

h

≤
4

h2
‖Dm

R−δ
−
x U

m+θ

R −Dm
I−δ

−
x U

m+θ

I ‖2h∗

=
4

h2

(

‖Dm
R−δ

−
x U

m+θ

R ‖2h∗ + ‖Dm
I−δ

−
x U

m+θ

I ‖2h∗

)

−
8

h

N
∑

j=1

Dm
R−δ

−
x U

m+θ

R Dm
I−δ

−
x U

m+θ

I . (10)

Likewise,
∥

∥

∥

∥

Um+1
I − Um

I

∆t

∥

∥

∥

∥

2

h

≤
4

h2
‖Dm

I−δ
−
x U

m+θ

R +Dm
R−δ

−
x U

m+θ

I ‖2h∗

=
4

h2

(

‖Dm
I−δ

−
x U

m+θ

R ‖2h∗ + ‖Dm
R−δ

−
x U

m+θ

I ‖2h∗

)

+
8

h

N
∑

j=1

Dm
R−δ

−
x U

m+θ

R Dm
I−δ

−
x U

m+θ

I . (11)

From (9), (10) and (11), using the assumption (2), we obtain
∥

∥

∥

∥

Um+1 − Um

∆t

∥

∥

∥

∥

2

h

≤
4

h2
max (DR + |DI |) ‖(D

m
R−)1/2δ−x U

m+θ‖2h∗.

Then, (8) implies that

‖Um+1‖2h − ‖Um‖2h
2∆t

+

(

1−
2∆t(1− 2θ)max (DR + |DI |)

h2

)

‖(Dm
R−)1/2δ−x U

m+θ‖2h∗ ≤ 0.

If we assume that

∆t ≤
h2

2(1− 2θ)max (DR + |DI |)
(12)

then
‖Um+1‖2h ≤ ‖Um‖2h, m = 0, . . . ,M − 1.

We conclude that, in the case θ ∈ [0, 1
2
[, the scheme (6) is stable provided

that the condition (12) holds.
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Remark 2. In the case of Dirichlet boundary conditions (β = 0), we obtain
a similar stability result defining the following discrete L2 inner product

(U, V )h =
N−1
∑

j=1

hUjV j.

5. Numerical results

We have implemented the explicit scheme (5) in 1D and 2D to illustrate the
stability condition in Theorem 1, considering homogeneous Dirichlet bound-
ary conditions. We considered ϑ = π/180, κ = 10 for the complex diffusion
filter (1), which is commonly used to remove noise while preserving edges in
image processing.

5.1. Examples in 1D. To this end, we considered a characteristic function
scaled to the image color scale (that is, 255) as initial condition

U(x, 0) =

{

255, 8 ≤ x ≤ 15
0, otherwise.

We considered the discretization points xj = j, j = 1, 2, . . . , 25, that is, h = 1.
From Theorem 1, the stability condition is achieved if ∆t ≤ 0.50865.
In figure 1 we present reconstructions with several time steps ∆t in order

to illustrate the stability condition in Theorem 1. It is clear that the re-
constructions with time steps larger than the stabily condition allow (dotted
lines) present instability, while the ones that satisfy the stability condition
(full lines) do not. In this case, it is the first iteration that presents the
higher value for the right hand side of the stability condition (1) therefore
the instability is attenuated as the diffusion time increases.
To illustrate this, we plot the first two iterations with time steps around

the cut-off for stability ∆t = 0.50865.
We also considered a profile with ramp edges, namely considering a initial

condition of

U(x, 0) =















255, 10 ≤ x ≤ 15
125, 15 < x ≤ 20 ∧ 30 ≤ x ≤ 40
255∗(30−x)+125∗(x−20)

10 , 20 < x < 30
0, otherwise.

and discretization points xj = j, j = 1, 2, . . . , 51, again with h = 1. The
stability condition stays the same in this case. It is again clear in figures 3
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Figure 1. Numerical solution for the explicit method with dif-
ferent time step and diffusion times of T = 1 (left) and T = 2
(right).

Figure 2. First (left) and second (right) iteration for the ex-
plicit method with time steps close to the cut-off value for sta-
bility ∆t = 0.50865.

and 4 that the instability arise again in areas with strong edges whenever the
stability condition is not fulfilled, while the scheme is stable if the condition
is satisfied.
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Figure 3. Numerical solution for the explicit method with dif-
ferent time step and diffusion times of T = 1 (left) and T = 2
(right).

Figure 4. First (left) and second (right) iteration for the ex-
plicit method with time steps close to the cut-off value for sta-
bility ∆t = 0.50865.

5.2. Example in 2D. We considered

U(x, 0) =







240, x1 = x2 = 10
150, 13 < x1 ≤ 14 ∧ 13 ≤ x2 ≤ 14
0, otherwise.

and discretization points x = (i, j), i, j = 1, 2, . . . , 21, again with unitary
spatial spacement h1 = h2 = 1, that give rise to an image that we affected by
additive noise. Reconstructions using the explicit finite difference scheme are
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Figure 5. Approximation with the explicit method with differ-

ent time steps for a diffusion time of T = 1.

presented in figures 5 and 6, illustrating the stability condition ∆t ≤ 0.25432

given by Theorem 1 for this case.

The figures clearly illustrate the stability condition. In fact, when a time

step greater than the cut-off is used, the image has pixels with negative

values, which do not occur in the original noisy image. These examples

in 1D and 2D might even suggest that the stability condition obtained in

theorem 1 additionally to be sufficient is actually also necessary, considering

that the spatial step is equal in all directions.

Two more remarks should be made in what concerns the numerical appli-

cation of this scheme to image denoising. The first is that the time step used

should not be close to the cut-off value for stability. The examples illustrate

that in this case, though stability is assured in the sense that the L
2-norm

of the image does not explode, the image features are not preserved. In this
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Figure 6. First iteration for the explicit method with time steps

close to the cut-off value for stability ∆t = 0.25432.

way, a time step around half of the cut-off value seems to be a better choice

to this purpose. The second remark is that it seems also profitable to use

an adaptative time step along iterations, since the cut-off value for stability

seems to be smaller at early iterations and may allow the numerical scheme

to take higher steps in time as iterations go by. In this way, the time step

should be computed at each iteration having in mind the stability condition

in Theorem 1.
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