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WORST CASE COMPLEXITY OF DIRECT SEARCH

L. N. VICENTE

Abstract: In this paper we prove that direct search of directional type shares
the worst case complexity bound of steepest descent when sufficient decrease is
imposed using a quadratic function of the step size parameter. This result is proved
under smoothness of the objective function and using a framework of the type of
GSS (generating set search). We also discuss the worst case complexity of direct
search when only simple decrease is imposed and when the objective function is
non-smooth.
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1. Introduction
It was shown by Nesterov [11, Page 29] that the steepest descent method,

for unconstrained optimization, takes at most O(ε−2) iterations to drive the
norm of the gradient of the objective function below ε. Similar bounds have
been proved by Gratton, Toint, and co-authors [8, 9] for trust-region methods
and by Cartis, Gould, and Toint [3] for adaptive cubic overestimation meth-
ods, when these algorithms are based on a Cauchy decrease condition. Cartis,
Gould, and Toint [4] have shown that such a bound is tight for the steepest
descent method by presenting an example where the number of iterations is
arbitrarily close to it (these authors have also shown that Newton’s method
can also take a number of iterations arbitrarily close to O(ε−2)). The above

bound reduces to O(ε−
3
2 ) for the cubic regularization of Newton’s method

(see Nesterov and Polyak [12]) and for the adaptive cubic overestimation
method (see Cartis, Gould, and Toint [3]).

Direct search-methods that poll using positive spanning sets are directional
methods of descent type, and it is reasonable to expect that they share the
same worst complexity bound of steepest descent provided new iterates are
only accepted based on a sufficient decrease condition (see Section 2 for a
description of these and related methods). In fact, we prove in Section 3 of
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this paper that such generating set search (GSS) type methods take at most
O(ε−2) iterations to drive the norm of the gradient of the objective function
below ε. Interestingly, this bound is achieved when using a quadratic function
of the step size in the sufficient decrease condition, i.e., a function like ρ(t) =
ct2, c > 0 — which corroborates previous numerical experience [13] where
different functions of the form ρ(t) = ctp (with 2 6= p > 1) where tested but
leading to a worse performance.

Once we allow new iterates to be accepted based simply on simple decrease
(and therefore revert to integer lattices for globalization), such complexity
bound seems only provable if the objective function satisfies an appropriate
decrease rate (see Section 4). Deviation from smoothness also poses problems
to the derivation of an upper complexity bound (see Section 5), as it is unclear
how many directions (from a dense set in the unit sphere) must be tried until
a descent one is found.

The paper focuses on the unconstrained minimization of an n-dimensional
real function. Extension to the constrained case is achievable, in principle,
for certain type of constraints like bound and linear constraints.

2. Direct-search algorithmic framework
We will follow the algorithmic description in [6, Chapter 7] for direct-

search methods of directional type. Such framework can describe the main
features of pattern search, generalized pattern search (GPS), mesh adaptive
direct search (MADS), and generating set search (GSS). Following GPS and
MADS, each iteration of the algorithm is organized around a search step
(optional) and a poll step. Following GSS, we include provision to accept
new iterates based on a sufficient decrease condition which uses a forcing
function.

Following the terminology in [10], ρ : (0, +∞) → (0, +∞) will represent
a forcing function, i.e., a continuous and non decreasing function satisfying
ρ(t)/t → 0 when t ↓ 0. Typical examples of forcing functions are ρ(t) = ctp,
for p > 1. To write the algorithm in general terms we will use ρ̄(·) to either
represent a forcing function ρ(·) or the constant, zero function. A relatively
minor difference between the presentation below and the one in [6, Chapter
7] (see [13]) is the use of ρ̄(αk‖dk‖) instead of ρ̄(αk).

The evaluation process of the poll step is opportunistic, meaning that one
moves to a poll point once simple or sufficient decrease is found, depending
on the variant being used.
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Algorithm 2.1 (Directional direct-search method).
Initialization

Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.
Let D be a (possibly infinite) set of positive spanning sets.

For k = 0, 1, 2, . . .

(1) Search step: Try to compute a point with f(x) < f(xk)− ρ̄(αk)
by evaluating the function f at a finite number of points (in a
mesh if ρ̄(·) = 0, see the Appendix). If such a point is found then
set xk+1 = x, declare the iteration and the search step successful,
and skip the poll step.

(2) Poll step: Choose a positive spanning set Dk from the set D.
Order the set of poll points Pk = {xk + αkd : d ∈ Dk}. Start
evaluating f at the poll points following the chosen order. If a
poll point xk + αkdk is found such that f(xk + αkdk) < f(xk) −
ρ̄(αk‖dk‖) then stop polling, set xk+1 = xk + αkdk, and declare
the iteration and the poll step successful. Otherwise declare the
iteration (and the poll step) unsuccessful and set xk+1 = xk.

(3) Mesh parameter update: If the iteration was successful then
maintain or increase the step size parameter: αk+1 ∈ [αk, γαk].
Otherwise decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

The global convergence of these methods is heavily based on the analysis
of the behavior of the step size parameter αk which must approach zero as
an indication of some form of stationarity. There are essentially two known
ways of enforcing the existence of a subsequence of step size parameters
converging to zero (a refining subsequence) in direct search of directional
type. One way is by ensuring that all new iterates lie on an integer lattice
(rigorously speaking only when the step size is bounded away from zero).
The other form consists of imposing a sufficient decrease on the acceptance
of new iterates, which can be simply achieved by selecting ρ̄(·) as a forcing
function in Algorithm 2.1.

Table 1 summarizes the properties of the set D of directions used by the
different variants of this type of direct search. We include pointers to the
literature and to the technical assumptions described in the appendix of this
paper.
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method set D of directions
GPS [1], GSS simple decrease [10] integer and finite (Ass. A.1)

MADS, non-smooth [2] integer (Ass. A.4), dense in unit sphere
GSS suff. decrease, smooth [10] bounded below cosine measure (Ass. 3.1)
suff. decrease, non-smooth [13] dense in unit sphere

Table 1. Summary of the features of the directions used by the
various direct-search methods of directional type.

method search step step size update ρ̄(·)
GPS [1], GSS simple decrease [10] in mesh (Ass. A.3) integer (Ass. A.2) ρ̄(·) = 0

MADS, non-smooth [2] in mesh (Ass. A.3) integer (Ass. A.2) ρ̄(·) = 0
GSS suff. decrease, smooth [10] any any forcing
suff. decrease, non-smooth [13] any any forcing
Table 2. Summary of the remaining features of the various
direct-search methods of directional type.

Note that the set of directions used for polling is not necessarily required
to positively span Rn when this set of directions is (after normalization)
dense in the unit sphere and one wants to derive results in a non-smooth
context. In this setting, once we know that there exists a refining sequence,
the convergence results are established along particular directions, called
refining directions, which are already normalized. It is, in fact, the set of
refining directions associated with the refining subsequence that is required
to be dense in the unit sphere.

In Table 2 we continue the general description of the various variants of
direct search in what concerns the search step, the step size update, and the
type of decrease imposed to accept new iterates.

3. Complexity using sufficient decrease in the smooth
case

It is relatively easy to derive complexity upper bounds on the number of
successful and unsuccessful iterations for direct-search methods in the smooth
case and when sufficient decrease is imposed (methods described in the third
row of Tables 1 and 2). For this purpose, we need the following result, which
is taken from [7, 10] (see also [6, Theorem 2.4 and Equation (7.14)]) and
describes the relationship between the size of the gradient and the step size
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parameter at unsuccessful iterations. The results involves the cosine measure
of a positive spanning set Dk (with nonzero vectors) which is defined by

cm(Dk) = min
06=v∈Rn

max
d∈Dk

v>d

‖v‖‖d‖
.

Theorem 3.1. Let Dk be a positive spanning set and αk > 0 be given. As-
sume that ∇f is Lipschitz continuous (with constant ν > 0) in an open set
containing all the poll points. If f(xk) ≤ f(xk + αkd), for all d ∈ Dk, then

‖∇f(xk)‖ ≤ ν

2
cm(Dk)

−1αk‖dk‖+ cm(Dk)
−1ρ(αk‖dk‖)

αk‖dk‖
. (1)

The class of methods under study in this section require D to satisfy the
following assumption in order to achieve standard global convergence results
(see [10]).

Assumption 3.1. Any positive spanning set Dk in D satisfies cm(Dk) ≥
cmmin > 0 and 0 < dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dk.

In the following theorem we provide a complexity upper bound on the
number of successful iterations. Note that when p = 2, one has p/ min(p −
1, 1) = 2.

Theorem 3.2. Consider the application of Algorithm 2.1 when ρ̄(t) = ρ(t) =
ctp, p > 1, and Dk satisfies Assumption 3.1. Let f satisfy f(x) ≥ flow for x
in L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} and be continuously differentiable with
Lipschitz continuous gradient on an open set containing L(x0).

Given any ε ∈ (0, 1), assume that ‖∇f(x0)‖ > ε and let j1 be the first
iteration such that ‖∇f(xj1+1)‖ ≤ ε. Then, to achieve ‖∇f(xj1+1)‖ ≤ ε,
Algorithm 2.1 takes at most

|Sj1| ≤
(

f(x0)− flow

L

)
ε−

p
min(p−1,1)

successful iterations, where

L = c dp
min min

1, βp
1

(
1

ν cm−1
min dmax/2 + cm−1

min c dp−1
max

) p
min(p−1,1)

 .

Proof : Let us assume that ‖∇f(xk)‖ > ε, for k = 0, . . . , j1.
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If αk ≥ 1, then αk ≥ ε. Let us consider now the case where αk < 1. If k is
the index of an unsuccessful iteration, one has from (1) that

‖∇f(xk)‖ ≤ ν

2
cm−1

min dmaxαk + cm−1
min c dp−1

maxα
p−1
k ,

which then implies from αk < 1,

ε ≤ (ν cm−1
min dmax/2 + cm−1

min c dp−1
max)α

min(p−1,1)
k .

Since at unsuccessful poll steps the step size is reduced by a factor of at
most β1 and it is not reduced at successful iterations, we can derive for any
k = 0, . . . , j1, combining the two cases (αk ≥ 1 and αk < 1) and considering
that ε < 1,

αk ≥ β1 min

1,

(
1

ν cm−1
min dmax/2 + cm−1

min c dp−1
max

) 1
min(p−1,1)

 ε
1

min(p−1,1) . (2)

Let now k be the index of a successful iteration. From (2),

f(xk)− f(xk+1) ≥ c(αk‖dk‖)p

≥ c dp
min min

(
1, βp

1

(
1

ν cm−1
min dmax/2+cm−1

min c dp−1
max

) p
min(p−1,1)

)
ε

p
min(p−1,1) .

We then obtain summing up for all successful iterations that

f(x0)− f(xj1) ≥ |Sj1|Lε
p

min(p−1,1)

and the proof is completed.

Next, we bound the number of unsuccessful iterations.

Theorem 3.3. Consider the application of Algorithm 2.1 when ρ̄(t) = ρ(t) =
ctp, p > 1, and Dk satisfies Assumption 3.1. Let f satisfy f(x) ≥ flow for x
in L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} and be continuously differentiable with
Lipschitz continuous gradient on an open set containing L(x0).

Given any ε ∈ (0, 1), assume that ‖∇f(x0)‖ > ε and let j1 be the first
iteration such that ‖∇f(xj1+1)‖ ≤ ε. Then, to achieve ‖∇f(xj1+1)‖ ≤ ε,
Algorithm 2.1 takes at most

|Uj1| ≤ L1|Sj1|+ L2 +
log
(
L3ε

1
min(p−1,1)

)
log(β2)
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unsuccessful iterations, where

L1 = − log(γ)

log(β2)
, L2 = − log(α0)

log(β2)
,

and

L3 = β1 min

1,

(
1

ν cm−1
min dmax/2 + cm−1

min c dp−1
max

) 1
min(p−1,1)

 .

Proof : Since either αk+1 ≤ β2αk or αk+1 ≤ γαk, we obtain by induction

αj1 ≤ α0γ
|Sj1

|β
|Uj1

|
2 ,

which in turn implies from log(β2) < 0

|Uj1| ≤ − log(γ)

log(β2)
|Sj1| −

log(α0)

log(β2)
+

log(αj1)

log(β2)
.

Thus, from log(β2) < 0 and the lower bound (2) on αk, we obtain the desired
result.

Combining Theorems 3.2 and 3.3, we can finally state, informally, the
following corollary. Note, again, that p/ min(p− 1, 1) = 2 when p = 2.

Corollary 3.1. Under the assumptions of Theorems 3.2 and 3.3, Algo-

rithm 2.1 takes at most O
(
ε−

p
min(p−1,1)

)
iterations to reduce the gradient be-

low ε ∈ (0, 1).

It has been proved in [4] that the upper bound O(ε−2) for steepest descent
is sharp by providing an example where a steepest descent method (with a
Goldstein-Armijo linesearch) requires, for any ε ∈ (0, 1), at least O(ε−2+τ) it-
erations to reduce the norm of the gradient below ε, where τ > 0 is arbitrarily
small. The example constructed in [4] was given for n = 1.

It turns out that in the unidimensional case, a direct-search method of
the type given mentioned in the third row of Tables 1 and 2 (where suffi-
cient decrease is imposed) can be casted as a steepest descent method with
Goldstein-Armijo linesearch, when the objective function is monotone de-
creasing (which happens to be the case in the example in [4]) and one con-
siders the case p = 2. In fact, when n = 1, and up to normalization, there is
essentially one positive basis, {−1, 1}. Thus, unsuccessful steps are nothing
else than reductions of step size along the negative gradient direction. Also,
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since at unsuccessful iterations (see Theorem 3.1) one has ‖gk‖ ≤ C1αk for
some positive constant C1 and gk = ∇f(xk), and since successful iterations
do not decrease the step size, one obtains αk ≥ C2‖gk‖ for some constant
C2 ∈ (0, 1). By setting γk = αk/‖gk‖, one can then see that successful itera-
tions take the form xk+1 = xk − γkgk with f(xk+1) ≤ f(xk)− c C2γk‖gk‖2.

4. Complexity using integer lattices in the
smooth case

Let us recall an auxiliary result [1] (see also [6, Lemma 7.6]) about the
globalization of direct-search methods using integer lattices which says that
the minimum distance between any two distinct points in the mesh Mk (see
Assumption A.3) is bounded below by a multiple of the step size parame-
ter αk.

Lemma 4.1. Let Assumption A.1 hold. For any integer k ≥ 0, one has that

min
y,w∈Mk

y 6=w

‖y − w‖ ≥ αk

‖G−1‖
.

Thus, if the objective function exhibits in successful iterations a decrease
of the form

f(xk)− f(xk+1) ≥ θ‖xk − xk+1‖p, (3)

for some θ > 0, then, from Lemma 4.1, one would get

f(xk)− f(xk+1) ≥ (θ‖G−1‖−p) αp
k,

and one would be able to prove results of the form of Theorems 3.2 and 3.3
for the case where ρ̄(·) = 0 and the globalization is guaranteed by integer
lattices (methods mentioned in the first two rows of Tables 1 and 2). Without
a condition of the form (3), it seems unlikely to derive a worst complexity
bound for the simple decrease case.

5. Complexity using sufficient decrease in the non-smooth
case

Conceptually, a derivation of a complexity upper bound in the non-smooth
case seems also possible but under specific strong assumptions to overcome
some inherent technical difficulties. In the non-smooth case, the stopping
condition ‖∇f(xj1+1)‖ ≤ ε can be replaced by f ◦(xj1+1; v) ≥ −ε for all di-
rections v ∈ Rn, where f ◦(x; d) represents the Clarke generalized directional
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derivative at x along d (which is guaranteed to exists if f is Lipschitz contin-
uous near x). The first step in the analysis is to extend (1) from the smooth
to the non-smooth case. However, ultimately, what we need to show is that
when k is the index of an unsuccessful iteration and f ◦(xk; vk) ≤ −ε for some
direction vk ∈ Rn, the step size αk is bounded below by a constant times an
appropriate power of ε.

Towards this goal, since the iteration k under consideration is unsuccessful,

f(xk + αkdk) ≥ f(xk)− ρ(αk‖dk‖),

for all dk ∈ Dk. We are interested in the direction dk closest to vk. By
applying the Lebourg Theorem [5, Theorem 2.3.7],

〈g(xk + tk(αkdk)), αkdk〉 ≥ −ρ(αk‖dk‖),

where g(xk + tk(αkdk)) ∈ ∂f(xk + tk(αkdk)) and tk ∈ (0, 1). Now, let us
assume the existence of h(xk) ∈ ∂f(xk) such that ‖g(xk+tk(αkdk))−h(xk)‖ ≤
ν1‖tk(αkdk)‖. Under this condition,

ν1‖αkdk‖2 ≥ −〈h(xk), αkdk〉 − ρ(αk‖dk‖)
= −‖αkdk‖〈h(xk), dk/‖dk‖〉 − ρ(αk‖dk‖).

Thus, we obtain

−f ◦(xk; dk/‖dk‖) ≤ ν1‖αkdk‖+
ρ(αk‖dk‖)
αk‖dk‖

.

We have thus bounded the Clarke derivative but along dk/‖dk‖ not vk.
Assuming that vk satisfies ‖vk − dk/‖dk‖‖ ≤ rk, from the properties of the

Clarke generalized directional derivative,

−ν2rk − f ◦(xk; vk) ≤ ν1‖αkdk‖+
ρ(αk‖dk‖)
αk‖dk‖

,

where ν2 > 0 is the Lipschitz constant of f around xk. So, we can see that it
is possible to derive, under the condition stated above, a complexity upper
bound of the order of

(ε− ν2 max
k∈{0,...,j1}

rk)
− p

min(p−1,1) .

(Note that this result could have been derived assuming instead |f ◦(xk +
tk(αkdk); αkdk) − f ◦(xk; αkdk)| ≤ ν1‖αkdk‖2.) It is then obvious that one
must have ν2 maxk∈{0,...,j1} rk < ε which is not likely to happen.
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6. Final remarks
The study of worst case complexity of direct search (of directional type)

brings new insights about the differences and similarities of the various meth-
ods and their theoretical limitations. Without new ‘proof technology’, it
seems only possible to establish a worst case complexity bound for those
direct-search methods based on the acceptance of new iterates by a sufficient
decrease condition (using a forcing function of the step size parameter) and
when applied to smooth functions.

It is interesting to note that direct-search methods which poll using a set of
directions dense in the unit sphere allow the derivation of global convergence
results for non-smooth functions without specifically requiring the use of a
positive spanning set for polling (see [2, 13]). However, they seem not capable
of offering a complexity bound (even for the smooth case) without polling at
a positive spanning set.

Appendix A.Appendix
Generalized pattern search (GPS) makes use of a finite set of directions D =

D which satisfy appropriate integrality requirements for globalization by in-
teger lattices.

Assumption A.1. The set D of positive spanning sets is finite and the
elements of D are of the form Gz̄j, j = 1, . . . , |D|, where G ∈ Rn×n is a
nonsingular matrix and each z̄j is a vector in Zn.

In addition, the update of the step size parameter must conform to some
form of integrality.

Assumption A.2. The step size parameter is updated as follows: Choose
a rational number τ > 1, a nonnegative integer m+ ≥ 0, and a negative
integer m− ≤ −1. If the iteration is successful, the step size parameter is
maintained or increased by taking αk+1 = τm+

k αk, with m+
k ∈ {0, . . . ,m+}.

Otherwise, the step size parameter is decreased by setting αk+1 = τm−
k αk, with

m−
k ∈ {m−, . . . ,−1}.

Note that these rules respect those of Algorithm 2.1 by setting β1 = τm−
,

β2 = τ−1, and γ = τm+

.
Finally, the search step is restricted to points in a previously (implicitly

defined) mesh or grid.
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Assumption A.3. The search step in Algorithm 2.1 only evaluates points
in

Mk =
⋃

x∈Sk

{x + αkDz : z ∈ N|D|
0 },

where Sk is the set of all the points evaluated by the algorithm previously to
iteration k.

Note that poll points must also lie on the mesh, but this requirement is
trivially satisfied from the definition of the mesh Mk given below (i.e., one
trivially has Pk ⊂ Mk).

Generating set search (GSS) when based on globalization by integer lattices
requires a similar assumptions as the three above.

For non-smooth and discontinuous objective functions, ones needs to make
use of an infinite set of directions D dense (after normalization) in the unit
sphere. MADS makes use of such a set of directions but, since it is also based
on globalization by integer lattices, the set D must then be generated from
a finite set D satisfying Assumption A.1 (which will be guaranteed by the
first requirement of the next assumption).

Assumption A.4. Let D represent a finite set of positive spanning sets
satisfying Assumption A.1.

The set D is so that the elements dk ∈ Dk ⊆ D satisfy the following
conditions:

(1) dk is a nonnegative integer combination of the columns of D.
(2) The distance between xk and the point xk + αkdk tends to zero if and

only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0,

for any infinite subsequence K.
(3) The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈

Dk} are positive spanning sets for Rn.
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