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OPTIMAL CONTROL AND QUASI-VELOCITIES

LÍGIA ABRUNHEIRO, MARGARIDA CAMARINHA, JOSÉ F. CARIÑENA, JESÚS
CLEMENTE-GALLARDO, EDUARDO MARTÍNEZ AND PATRICIA SANTOS

Abstract: In this paper we study optimal control problems for nonholonomic sys-
tems defined on Lie algebroids by using quasi-velocities. We consider both kinemac-
tic, i.e. systems whose cost functional depends only on position and velocities, and
dynamic optimal control problems, i.e. systems whose cost functional depends also
on accelarations. Formulating the problem directly at the level of Lie algebroids
turns out to be the correct framework to explain in detail similar results appeared
recently [48]. We also provide several examples to illustrate our construction.

1. Introduction

The principles of analytical mechanics established by D’Alembert, La-
grange, Gauss and Hamilton can also be contemplated from additional math-
ematical xperspectives providing us methods for understanding Nature’s law
from new viewpoints which may be helpful in solving specific problems and
clarifying the way in which Nature works. The traditional techniques were
only applied to very simple models but current technology needs efficient
algorithms in areas ranging from robotics to spacecraft design. Furthermore
the computer development with the corresponding capability of computation
suggests the convenience of analysing different formulations to yield the dif-
ferential equations for multibody dynamics that involve a certain number of
constraints.

There exist different techniques to deal with such constrained systems.
The geometric framework of manifolds replacing Euclidean spaces allows us
to give a formulation for systems with holonomic constraints in terms of gen-
eralised coordinates and free of Lagrange multipliers. However it is not clear
how to choose generalised coordinates improving computational efficiency.
Kane’s method [1, 19, 21, 22, 27, 28, 51, 52] which eliminate constraint forces
and is a projection method is also useful for multibody dynamics analysis and
mobile manipulators (see e.g [33, 34] for a modern geometric approach). The
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Maggi equations [11, 31] formulation uses true coordinates and it is quite sim-
ilar to Kane’s method [4]. Another recent alternative formulation is given in
[54, 55].

Nonholonomic constraints are very relevant and appear in many prob-
lems in physics and engineering, and in particular in control theory. Such
nonholonomic constraints restrict possible virtual displacements and when
taking into account such constraints d’Alembert-Lagrange principle leads to
Boltzmann–Hamel equations [15, 16, 47, 48, 49].

The concept of quasi-velocity (or generalised velocity) [10, 35, 50] is of a
great relevance in the study of mechanical systems, mainly in nonholonomic
ones because the conditions of nonholonomic constraints can be expressed in
a simpler form. Boltzmann-Hamel equations, Gibbs–Appell and Gauss prin-
ciples, for instance, make use of quasi-coordinates (also called nonholonomic
coordinates) and the Hamel symbols [30, 50]. The use of quasi-velocities in
the dynamics of nonholonomic system with symmetry has recently been in-
vestigated under different approaches in [3, 15, 16, 17] and Hamel’s equations
have been recovered from this perspective.

It has been shown in recent papers [10, 17, 16] that the appropriate geo-
metric framework for studying systems with linear nonholonomic constraints
is the framework of Lie algebroids and actually these structures are receiving
a lot of attention [13, 14] during the last years due to its capability for deal-
ing with such constraints and its role in reduction processes for Lagrangian
systems with symmetry. The geometric approach to mechanics uses tangent
bundles in the Lagrangian formulation and tangent bundles are but partic-
ular instances of algebroids. The usual geometric approach to Lagrangian
formalism was then developed in this extended framework of Lie algebroids
[7, 39, 40, 56] the main advantage being that such structure arises in reduction
processes from tangent bundles when the vertical endomorphism character
is not projectable [8, 9]. Moreover this techniques are also extended to the
study of discrete mechanical systems [37, 25, 56]

Many of the techniques of classical mechanics can be used in control theory
[12, 15, 17, 41, 45]. The theory of Lie algebroids can be applied to deal with
control problems and the application of such geometric tools is very useful
for a better understanding of different control problems. This is our motiva-
tion for developing the theory of optimal control theory using the properties
of Lie algebroid theory which is going to be the appropriate approach to
Boltzmann–Hamel equations.
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This article is organized in the following way. A brief introduction with
the fundamental concepts of the theory of Lie algebroids and the modern
application to the theory of Lagrangian mechanics in Lie algebroids is given
in Section 2. The symplectic and Lagrangian mechanics in the framework
of Lie algebroids are respectively summarized in Sections 3 and 4. The ap-
proach to nonholonomic constrained systems and the Euler–Lagrange equa-
tions are also introduced in Section 4 within this geometric formalism which
in the standard case of mechanics on tangent bundles reduce to Lagrange–
d’Alembert equations in terms of quasi-velocities. Section 5 to 7 are specif-
ically devoted to optimal control theory. Section 5 deals with the optimal
control theory and the Pontryagin maximum principle [41], kinematic op-
timal control is studied in Section 6 and dynamical aspects are the aim of
Section 7. The theory is illustrated in Section 8 with several examples: the
Heisenberg system, the vertical rolling disk, rotational motion of the free
rigid body, and constrained systems with symmetry.

2. Preliminaries

Lie algebroids. A Lie algebroid structure on a vector bundle τ : E → M is
given by a vector bundle map ρ : E → TM over the identity in M , called
the anchor, together with a Lie algebra structure on the C∞(M)-module of
sections of E such that the compatibility condition [σ, fη] = (ρ(σ)f)η+f [σ, η]
is satisfied for every f ∈ C∞(M) and every σ, η ∈ Sec(E). See [5, 36] for
more information on Lie algebroids.

In what concerns Mechanics, it is convenient to think of a Lie algebroid
as a generalization of the tangent bundle of M . One regards an element a
of E as a generalized velocity, and the actual velocity v is obtained when
applying the anchor to a, i.e., v = ρ(a). A curve a : [t0, t1]→ E is said to be
admissible or an E-path if ṡ(t) = ρ(a(t)), where s(t) = τ(a(t)) is the base
curve. We will denote by Adm(E) the space of admissible curves on E.

A local coordinate system (xi) in the base manifold M and a local basis
{eα} of sections of E, determine a local coordinate system (xi, yα) on E. The
anchor and the bracket are locally determined by the local functions ρi

α and
Cα

βγ on M given by

ρ(eα) = ρi
α

∂

∂xi
and [eα, eβ] = Cγ

αβ eγ.
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The functions ρi
α and Cα

βγ satisfy some relations due to the compatibility
condition and the Jacobi identity which are called the structure equations:

ρj
α

∂ρi
β

∂xj − ρ
j
β

∂ρi
α

∂xj = ρi
γC

γ
αβ (1)

ρi
α

∂Cν
βγ

∂xi + ρi
β

∂Cν
γα

∂xi + ρi
γ

∂Cν
αβ

∂xi + Cµ
βγC

ν
αµ + Cµ

γαC
ν
βµ + Cµ

αβC
ν
γµ = 0. (2)

Cartan calculus. The Lie algebroid structure is equivalent to the existence
of a exterior differential on E, d : Sec(∧kE∗) → Sec(∧k+1E∗), defined as
follows

dω(σ0, . . . , σk) =
∑k

i=0(−1)iρ(σi)(ω(σ0, . . . , σ̂i, . . . , σk)) +

+
∑

i<j(−1)i+jω([σi, σj], σ0, . . . , σ̂i, . . . , σ̂j, . . . , σk),

for ω ∈ Sec(∧kE∗) and σ0, . . . , σk ∈ Sec(τ). d is a cohomology operator,
that is, d2 = 0. In particular, if f : M → R is a real smooth function then
df(σ) = ρ(σ)f, for σ ∈ Sec(τ). Locally,

dxi = ρi
αe

α and deγ = −
1

2
Cγ

αβe
α ∧ eβ,

where {eα} is the dual basis of {eα}. The above mentioned structure equa-
tions are equivalent to the relations d2xi = 0 and d2eα = 0. We may also
define the Lie derivative with respect to a section σ of E as the operator
Lσ : Sec(∧kE∗)→ Sec(∧kE∗) given by Lσ = iσ ◦d+d◦ iσ. Along this paper,
except otherwise stated, the symbol d stands for the exterior differential on
a Lie algebroid.

Morphisms. Given a second Lie algebroid τ ′ : E ′ →M ′, a vector bundle map
Φ: E → E ′ over ϕ : M → M ′ is said to be admissible if it maps admissible
curves in E into admissible curves in E ′, or equivalently if ρ′ ◦ Φ = Tϕ ◦ ρ.
The map Φ is said to be a morphism of Lie algebroids if Φ⋆dθ = d′Φ⋆θ for
every p-form θ ∈ Sec(∧pE∗). Every morphism is an admissible map.

In coordinates, a vector bundle map Φ(x, y) = (ϕi(x),Φα
β(x)y

β) is admissi-
ble if and only if

ρ′kβΦ
β
α = ρi

α

∂ϕk

∂xi
. (3)

Moreover, such a map is a morphism if in addition to the above equation it
satisfies

Φα
γC

γ
µν = ρi

µ

∂Φα
ν

∂xi
− ρi

ν

∂Φα
µ

∂xi
+ C ′αβγΦ

β
µΦ

γ
ν . (4)
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Prolongation. In what respect to Mechanics, the tangent bundle to a Lie
algebroid, to its dual or to a more general fibration does not have an ap-
propriate Lie algebroid structure. Instead one should use the so called pro-
longation bundle which has in every case the appropriate geometrical struc-
tures [39, 40, 46].

Let (E, [[ , ]], ρ) be a Lie algebroid over a manifold M and ν : P → M be
a fibration. For every point p ∈ P we consider the vector space

T E
p P = { (b, v) ∈ Ex × TpP | ρ(b) = Tpν(v) } ,

where Tν : TP → TM is the tangent map to ν and ν(p) = x . The
set T EP = ∪p∈PT

E
p P has a natural vector bundle structure over P , the

vector bundle projection τE
P being just the projection τE

P (b, v) = τP (v). We
will frequently use the redundant notation (p, b, v) to denote the element
(b, v) ∈ T E

p P . In this way, the projection τE
P is just the projection onto the

first factor.
The vector bundle τE

P : T EP → P can be endowed with a Lie algebroid
structure. The anchor map is the projection onto the third factor, that is,
the map ρ1 : T EP → TP is given by ρ1(p, b, v) = v. To define the bracket
on sections of T EP we will consider some special sections. A section Z ∈
Sec(T EP ) is said to be projectable if there exists a section σ ∈ Sec(E)
such that Z(p) = (p, σ(ν(p)), U(p)), for all p ∈ P . Now, the bracket of two
projectable sections Z1, Z2 given by Zi(p) = (p, σi(ν(p)), Ui(p)), i = 1, 2, is
given by

[[Z1, Z2]](p) = (p, [[σ1, σ2]](ν(p)), [U1, U2](p)), with p ∈ P.

Since any section of T EP can be locally written as a C∞(M)-linear combi-
nation of projectable sections, the definition of the Lie bracket for arbitrary
sections of T EP follows.

The Lie algebroid T EP is called the prolongation of ν : P → M with
respect to E or the E-tangent bundle to ν.

Given local coordinates (xi, uA) on P and a local basis {eα} of sections of
E, we can define a local basis {Xα,VA} of sections of T EP by

Xα(p) =
(
p, eα(ν(p)), ρi

α

∂

∂xi

∣∣∣
p

)
and VA(p) =

(
p, 0,

∂

∂uA

∣∣∣
p

)
.
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If z = (p, b, v) is an element of T EP , with b = zαeα, then v is of the form
v = ρi

αz
α ∂

∂xi + vA ∂
∂uA , and we can write

z = zαXα(p) + vAVA(p).

Vertical elements are linear combinations of {VA}.
The anchor map ρ1 applied to a section Z of T EP with local expression

Z = ZαXα + V AVA is the vector field on P whose coordinate expression is

ρ1(Z) = ρi
αZ

α ∂

∂xi
+ V A ∂

∂uA
.

In particular, the Lie brackets of the elements of the basis are

[[Xα,Xβ]] = Cγ
αβ Xγ, [[Xα,VB]] = 0 and [[VA,VB]] = 0,

and, therefore, the exterior differential is determined by

dxi = ρi
αX

α, duA = VA,

dX γ = −1
2
Cγ

αβX
α ∧ X β, dVA = 0,

where {X α,VA} is the dual basis to {Xα,VA}.

Prolongation of maps. We consider now how to prolong maps between two
fibrations ν : P →M and ν ′ : P ′ →M ′. Let Ψ: P → P ′ be a map fibered over
ϕ : M → M ′. We consider two Lie algebroids τ : E → M and τ ′ : E ′ → M ′

and a map Φ: E → E ′ fibered also over ϕ. If Φ is admissible, then we can
define a vector bundle map T ΦΨ: T EP → T E′

P ′ by means of

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TΨ(v)).

It follows that T ΦΨ is also admissible. In [43] it was proved that T ΦΨ is a
morphism of Lie algebroids if and only if Φ is a morphism of Lie algebroids.

In particular, when E = E ′ and Φ = id we have that any map from P
to P ′ fibered over the identity can be prolonged to a morphism T idΨ which
will be denoted simply by T Ψ. We will also identify T EM (the prolongation
of the ‘fibration’ id : M → M with respect to E) with E itself by means of
(m, b, ρ(b)) ≡ b. With this convention, the projection onto the second factor
of T EP is just T ν : T EP → E. It follows that T ν is a morphism of Lie
algebroids.
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3. Symplectic Mechanics on Lie algebroids

As our goal is to use Hamiltonian techniques to study optimal control
problems on Lie algebroids, we shall begin by presenting the Hamiltonian
approach to the problem of defining dynamics on a Lie algebroid. Basically,
it is just a generalization of the usual symplectic description of dynamical
system defined on cotangent bundles.

By a symplectic section on a vector bundle π : F → M we mean a section
ω of ∧2F ∗ which is regular at every point when it is considered as a bilinear
form. By a symplectic section on a Lie algebroid E we mean a symplectic
section ω of the vector bundle E which is moreover d-closed, that is dω = 0.
A symplectic Lie algebroid is a pair (E, ω) where E is a Lie algebroid and ω
is a symplectic section on it.

On a symplectic Lie algebroid (E, ω) we can define a dynamical system
for every function on the base, as in the standard case of a tangent bundle.
Given a function H ∈ C∞(M) there is a unique section σH ∈ Sec(τ) such
that

iσH
ω = dH.

The section σH is said to be the Hamiltonian section defined by H and the
vector field XH = ρ(σH) is said to be the Hamiltonian vector field defined by
H. In this way we get the dynamical system ẋ = XH(x).

A symplectic structure ω on a Lie algebroid E defines a Poisson bracket
{ , } on the base manifold M as follows. Given two functions F,G ∈ C∞(M)
we define the bracket

{F,G} = ω(σF , σG).

It is easy to see that the closure condition dω = 0 implies that { , } is a
Poisson structure on M . In other words, if we denote by Λ the inverse of
ω as bilinear form, then {F,G} = Λ(dF, dG). The Hamiltonian dynamical
system associated to H can be written in terms of the Poisson bracket as
ẋ = {x,H}.

An important particular class of symplectic dynamical systems on Lie al-
gebroids is to the following:

Hamiltonian Mechanics. [32, 40] On T EE∗, the E-tangent to the dual bundle
π : E∗ →M , we have a canonical symplectic structure.

The Liouville section Θ ∈ Sec((T EE∗)∗) is the 1-form given by

〈Θ , (µ, b, w) 〉 = 〈µ , b 〉. (5)
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The canonical symplectic section Ω ∈ Sec(∧2(T EE∗)∗) is the differential of
the Liouville section

Ω = −dΘ.

Taking coordinates (xi, µα) on E∗ and denoting by {Xα,P
β} the associated

local basis of sections T EE∗, the Liouville and canonical symplectic sections
are written as

Θ = µαX
α and Ω = X α ∧ Pα +

1

2
µγC

γ
αβX

α ∧ X β,

where {X α,Pβ} is the dual basis of {Xα,P
β}.

The Hamiltonian section defined by a function H ∈ C∞(E∗) is given in
coordinates by

ΓH =
∂H

∂µα

Xα −

(
ρi

α

∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

)
Pα,

and therefore, Hamilton equations are

dxi

dt
= ρi

α

∂H

∂µα

and
dµα

dt
= −ρi

α

∂H

∂xi
− µγC

γ
αβ

∂H

∂µβ

. (6)

The Poisson bracket { , } defined by the canonical symplectic section Ω
on E∗ is but the canonical Poisson bracket, which is known to exists on the
dual of a Lie algebroid [5] and the Hamilton equations coincide with those
defined by Weinstein in [56].

4. Lagrangian Mechanics

The Lie algebroid approach to Lagrangian Mechanics builds on the geo-
metrical structure of the prolongation of a Lie algebroid [39] (where one can
develop a geometric symplectic treatment of Lagrangian systems parallel to
J. Klein’s formalism [29]). It is also possible to derive the equations within a
variational framework [44] which be extended for classical field theories [42].
We will discuss that point later because it shall be useful when commenting
on the case of nonholonomic constrained motion.

On the E-tangent T EE to E itself we do not have a canonical symplectic
structure. Instead, we have the following two canonical objects: the vertical
endomorphism S : T EE → T EE which is defined by

S(a, b, v) = (a, 0, bV

a),
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where bV

a denotes the vertical lift to TaE of the element b ∈ E, and the
Liouville section, which is the vertical section corresponding to the Liouville
vector field,

∆(a) = (a, 0, aV

a).

Given a Lagrangian function L ∈ C∞(E) we define the Cartan 1-section
θL ∈ Sec((T

EE)∗) and the Cartan 2-section ωL ∈ Sec(∧
2(T EE)∗) and the

Lagrangian energy EL ∈ C
∞(E) as

θL = S∗(dL), ωL = −dθL and EL = L∆L− L. (7)

If the Cartan 2-section is regular, then it is a symplectic form on the Lie
algebroid T EE, and we say that the Lagrangian L is regular. The Hamil-
tonian section ΓL corresponding to the energy is the Euler-Lagrange section
and the equations for the integral curves of the associated vector field are
the Euler-Lagrange equations.

If (xi, yα) are local fibered coordinates on E, (ρi
α, C

γ
αβ) are the correspond-

ing local structure functions on E and {Xα,Vα} is the corresponding local
basis of sections of T EE then SXα = Vα and SVα = 0, and the Liouville
section is ∆ = yαVα. The energy has the expression EL = ∂L

∂yαy
α − L, and

the Cartan 2-section is

ωL =
∂2L

∂yα∂yβ
X α∧Vβ +

1

2

(
∂2L

∂xi∂yα
ρi

β −
∂2L

∂xi∂yβ
ρi

α +
∂L

∂yγ
Cγ

αβ

)
X α∧X β, (8)

from where we deduce that L is regular if and only if the matrixWαβ =
∂2L

∂yα∂yβ

is regular. In such case, the local expression of ΓL is

ΓL = yαXα + fαVα,

where the functions fα satisfy the linear equations

∂2L

∂yβ∂yα
fβ +

∂2L

∂xi∂yα
ρi

βy
β +

∂L

∂yγ
Cγ

αβy
β − ρi

α

∂L

∂xi
= 0. (9)

Thus, the Euler-Lagrange equations for L are

ẋi = ρi
αy

α,
d

dt

( ∂L
∂yα

)
+
∂L

∂yγ
Cγ

αβy
β − ρi

α

∂L

∂xi
= 0. (10)

Within a varitional formalism, these equations arise as the extremals of
the action functional S =

∫
γ
L(γ(t)dt, defined on the set of admissible curves

γ : R → E on the Lie algebroid E, with an appropriate manifold structure
(see [44] for the details). From a geometric point of view variations are
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encoded in the Euler-Lagrange operator δL : Adm(E) → E∗ locally defined
by

δL =

[
d

dt

( ∂L
∂yα

)
+
∂L

∂yγ
Cγ

αβy
β − ρi

α

∂L

∂xi

]
eα,

where {eα} is the dual basis of {eα}, then the Euler-Lagrange differential
equations read

δL = 0.

Finally, we mention that, as in the standard case, the relation between
the Lagrangian and the Hamiltonian formalism is provided by the Legendre
transformation FL : E → E∗ defined by

〈FL(a) , b 〉 =
d

dt
L(a+ tb)

∣∣
t=0
, (11)

for a, b ∈ E with τ(a) = τ(b). Then it is easy to see that

T FL
⋆(Θ) = θL and T FL

⋆(Ω) = ωL

and therefore, in the regular case, the corresponding Hamiltonian sections
are related by ΓH ◦ FL = T FL ◦ ΓL.

Nonholonomic systems and Lagrange-d’Alembert equations [15, 16].
Consider now the case of a nonholonomic Lagrangian system defined by a
Lagrangian L ∈ C∞(E) and linear constraints given by a subbundle D ⊂ E.
D’Alembert principle affirms that the evolution of the system is given by the
admissible curves a taking values in D and such that the work along virtual
displacements vanishes. In other words, the evolution is given by curves a
satisfying

a(t) ∈ D and δL(a(t)) ∈ D◦.

A nonholonomic system will be denoted by the triple (E,L,D), or just by
(L,D) whenever E is understood.

Solution of Lagrange-d’Alembert equations. Let us now perform a precise
global analysis of the existence and uniqueness of the solution of Lagrange-
d’Alembert equations.

Definition 1. A constrained Lagrangian system (L,D) is said to be regular
if the Lagrange-d’Alembert equations have a unique solution.
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Let GL be the fundamental tensor associated with the Lagrangian function
L, which locally reads

GL = Wαβe
α ⊗ eβ.

In order to characterize geometrically those nonholonomic systems which are
regular, we define the tensor GL,D as the restriction of GL to D, that is,
GL,D

a (b, c) = GL

a(b, c) for every a ∈ D and every b, c ∈ Dτ(a). The following
theorem was proved in [16].

Theorem 1. The following properties are equivalent:

(1) The constrained Lagrangian system (L,D) is regular,
(2) KerGL,D = {0},
(3) T DD ∩ (T DD)⊥ = {0}.
(4) T EE|D = T DD ⊕ (T DD)⊥.

Projection to T DD. The regularity condition for the constrained system
(L,D) can be equivalently expressed by requiring that the subbundle T DD
is a symplectic subbundle of (T EE, ωL). It follows that, for every a ∈ D, we
have a direct sum decomposition

T EE[a] = T Da D ⊕ (T Da D)⊥.

Let us denote by P̄ and Q̄ the complementary projectors defined by this
decomposition, that is,

P̄a : T EE[a]→ T Da D and Q̄a : T EE[a]→ (T Da D)⊥, for all a ∈ D.

Then, we have the following result:

Theorem 2. Let (L,D) be a regular constrained Lagrangian system and let
ΓL be the solution of the free dynamics, i.e., iΓL

ωL = dEL. Then the solution
of the constrained dynamics is the sode Γ(L,D) obtained by projection Γ(L,D) =
P̄ (ΓL|D).

Lagrange-d’Alembert equations in local coordinates. Let us analyze the form
of the Lagrange-d’Alembert equations in local coordinates. Let us choose a
special coordinate system adapted to the structure of the problem as follows.
We consider local coordinates (xi) on an open set U of M and we take a
basis {ea} of local sections of D and complete it to a basis {ea, eA} of local
sections of E (both defined on the open U). In this way, we have coordinates
(xi, ya, yA) on E. In this set of coordinates, the constraints imposed by the
submanifold D ⊂ E are simply yA = 0. If {ea, eA} is the dual basis of
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{ea, eA}, then a basis for the annihilator D◦ of D is {eA} and a basis for D̃◦

the pullback of D◦ to (T EE)∗, is XA.
In this basis, the matrix elements of GL,D are given by

Cab(x
i, yc) =

∂2L

∂ya∂yb
(xi, yc, 0) (12)

and therefore, there exists a unique solution of the Lagrange-d’Alembert
equations if and only if the matrix [Cab] is regular.

The differential equations for the integral curves of the vector field ρ1(Γ)
are the Lagrange-d’Alembert differential equations, which read

ẋi = ρi
ay

a,

d
dt

(
∂L
∂ya

)
+ ∂L

∂yγC
γ
aby

b − ρi
a

∂L
∂xi = 0, (13)

yA = 0.

Finally, notice that the contraction with XA just gives the components λA =
〈 iΓωL − dEL ,XA 〉|yA=0 of the constraint forces λ = λAe

A.

Remark 1 (Equations in terms of the constrained Lagrangian). In some
occasions, it is useful to write the equations in the form

ẋi = ρi
ay

a,

d
dt

(
∂L
∂ya

)
+ ∂L

∂ycC
c
aby

b − ρi
a

∂L
∂xi = − ∂L

∂yAC
A
aby

b, (14)

yA = 0,

where, on the left-hand side of the second equation, all the derivatives can be
calculated from the value of the Lagrangian on the constraint submanifold
D. In other words, we can substitute L by the constrained Lagrangian Lc

defined by Lc(x
i, ya) = L(xi, ya, 0).

Remark 2 (Lagrange-d’Alembert equations in quasi-coordinates). A par-
ticular case of this construction is given by constrained systems defined in
the standard Lie algebroid τM : TM → M . In this case, the equations (13)
are the Lagrange-d’Alembert equations written in quasi-coordinates, where
Cα

βγ are the so-called Hamel’s transpositional symbols, which obviously are
nothing but the structure coefficients (in the Cartan’s sense) of the moving
frame {eα}, see e.g., [20, 24].
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5. Optimal control theory

As it is well known, optimal control theory is a generalization of classical
mechanics. It is therefore natural to see whether our results can be extended
to this more general context. The central result in the theory of optimal
control systems is Pontryagin maximum principle. The reduction of optimal
control problems can be performed within the framework of Lie algebroids,
see [41]. This was done as in the case of classical mechanics, by introducing
a general principle for any Lie algebroid and later studying the behavior
under morphisms of Lie algebroids. See also [23] for a recent direct proof of
Pontryagin principle in the context of general algebroids.

Pontryagin maximum principle [41]. By a control system on a Lie algebroid
τ : E →M with control space π : B →M we mean a section of E along π. A
trajectory of the system σ is an integral curve of the vector field ρ(σ) along
π.

E

τ
��

ρ
// TM

τM||yy
y
y
y
y
y
y

B

σ
>>

}
}

}
}

}
}

}
}

π
// M

Given an index function L ∈ C∞(B) we want to minimize the integral of
L over some set of trajectories of the system which satisfies some boundary
conditions. Then we define the Hamiltonian function H ∈ C∞(E∗×M B) by
H(µ, u) = 〈µ, σ(u)〉 − L(u) and the associated Hamiltonian control system
σH (a section of T EE∗ along pr1 : E∗×M B → E∗) defined on a subset of the
manifold E∗ ×M B, by means of the symplectic equation

iσH
Ω = dH. (15)

The integral curves of the vector field ρ(σH) are said to be the critical tra-
jectories.

In the above expression, the meaning of iσH
is as follows (see [6] for similar

constructions in the context of mechanics). Let Φ: E → E ′ be a morphism
over a map ϕ : M → M ′ and let η be a section of E ′ along ϕ. If ω a section
of

∧pE ′∗ then iηω is the section of
∧p−1E∗ given by

(iηω)m(a1, . . . , ap−1) = ωϕ(n)(η(m),Φ(a1), . . . ,Φ(ap−1))

for every m ∈ M and a1, . . . , ap−1 ∈ Em. In our case, the map Φ is the
prolongation T pr1 : T E(E∗ ×M B)→ T EE∗ of the map pr1 : E∗×M B → E∗
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(this last map fibered over the identity in M), and σH is a section along pr1.
Therefore, iσH

Ω− dH is a section of the dual bundle to T E(E∗ ×M B).
It is easy to see that the symplectic equation (15) has a unique solution

defined on the following subset

SH = { (µ, u) ∈ E∗ ×M B | 〈 dH(µ, u) , V 〉 = 0 for all V ∈ KerT pr1 } .

Therefore, it is necessary to perform a stabilization constraint algorithm to
find the integral curves of σH which are tangent to the constraint submani-
fold.

In local coordinates, the solution to the above symplectic equation is

σH =
∂H

∂µα

Xα −

[
ρi

α

∂H

∂xi
+ µγC

γ
αβ

∂H

∂µβ

]
Pα,

defined on the subset where
∂H

∂uA
= 0,

and therefore the critical trajectories are the solution of the differential-
algebraic equations

ẋi = ρi
α

∂H
∂µα

µ̇α = −
[
ρi

α
∂H
∂xi + µγC

γ
αβ

∂H
∂µβ

]
(16)

0 = ∂H
∂uA .

Notice that ∂H
∂µα

= σα.

One can easily see that whenever it is possible to write µα = piρ
i
α then the

above differential equations reduce to the critical equations for the control
system Y = ρ(σ) on TM and the index L. Nevertheless it is not warranted
that µ is of that form. For instance in the case of a Lie algebra, the anchor
vanishes, ρ = 0, so that the factorization µα = piρ

i
α will not be possible in

general.

6. Kinematic Optimal Control

Let τ : E →M be a Lie algebroid and D a constraint distribution. Given a
cost function κ : E → R, we consider the following kinematic optimal control
problem: we can control directly all the (constrained) velocities, and we want
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to minimize some index functional

I(a) =

∫ β

α

κ(a(t)) dt,

for a : [α, β] ⊂ R → E over the set of admissible curves taking values in D.
We shall be using coordinates (xi, ya) to denote the elements of this bundle,
where ya will represent the coordinates with respect to some basis of section
for D, as in the last section.

Remark 3. Whenever the cost function κ is a quadratic function defined on
D, the problem that we are considering is just the problem of sub-Riemannian
geometry. In the case of a degree 1 homogeneous cost function this is sub-
Finslerian geometry, and in the more general case this problem can be called
sub-Lagrangian problem.

Since we can control directly the velocities or pseudovelocities, the control
bundle is B = D and the system map σ : D → E is just the canonical
inclusion σ(a) = a.

E

τ
��

ρ
// TM

τM||yy
y
y
y
y
y
y

D

σ
>>

}
}

}
}

}
}

}
}

// M

Pontryagin Hamiltonian is a functionH ∈ C∞(E∗×MB) defined asH(µ, b) =
〈µ, σ(b)〉 − κ(b), which in coordinates reads

H(xi, µa, µA, u
a) = µau

a − κ(xi, ua). (17)

The Maximum principle corresponds to the choice of the control functions
such that

µa =
∂κ

∂ua

(
from

∂H

∂ua
= 0

)
. (18)

Under appropriate regularity conditions the set SH of solutions of this equa-
tion is a submanifold of E∗ ×M B, which we call the critical submanifold.
Frequently, this set is but the image of a section of E∗ ×M B → E∗, given
locally by

ua = ua(x, µ). (19)

Thus the set SH is diffeomorphic to E∗ and the optimal Hamiltonian, with
local expression H(xi, µα, u

a(x, µ)), defines via the canonical symplectic form
a Hamiltonian system on E∗.
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The restriction of the Pontryagin-Hamilton equations to this submanifold
provide us with the control system

ẋi = ρi
au

a (20)

and the dynamics of the momenta

µ̇a = −
[
ρi

a
∂H
∂xi + µcC

c
abu

b + µBC
B
abu

b
]

(21)

µ̇A = −
[
ρi

A
∂H
∂xi + µcC

c
Abu

b + µBC
B
Abu

b
]
. (22)

These are the equations to solve and use to determine, by using the mapping
(19), the control functions defining the solution which optimizes the value
of the cost function. By substitution of µa = ∂κ

∂ua into these equations, and

taking into account that ∂H
∂xi = − ∂κ

∂xi , we get

ẋi = ρi
au

a

d
dt

(
∂κ

∂ua

)
− ρi

a
∂κ

∂xi + ∂κ

∂ucC
c
abu

b + µBC
B
abu

b = 0 (23)

µ̇A + µBC
B
Abu

b − ρi
A

∂κ

∂xi + ∂κ

∂ucC
c
Abu

b = 0.

These equations are also obtained in [47, 48] for the case E = TM .

Remark 4. For simplicity we are considering only normal extremals. For
abnormal extremals we just have to consider the Hamiltonian function to be
H = µau

a and solve the same equations, i.e.

µa = 0

ẋi = ρi
au

a

µBC
B
abu

b = 0 (24)

µ̇A + µBC
B
Abu

b = 0.

with (µA(t)) 6= (0) for all t.

Remark 5. In the particular case when D = E and σ = idE we recover the
Euler-Lagrange equations on the Lie algebroid E for the Lagrangian L = κ.
Also when D ⊂ E we get the so-called vakonomic equations for the La-
grangian L = κ (see [26, 38])

7. Dynamic Optimal Control

In the dynamic problem, we can control directly the motion on a nonholo-
nomic problem, with the exception of the constraint forces, of course. For
instance, we can consider the equations of motion to be δL(z)|D = u, with
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u ∈ D∗ the control variables representing the external (generalized) forces
acting on the system. Another possibility would be to consider systems on
which the accelerations are the control variables.

In both kind of problems the state space is the manifold D and the control
bundle π : B → D is

B =
{

(z, ν) ∈ T DD ×D∗
∣∣ z ∈ Adm(E) and δL(z)|D = ν

}
. (25)

An element (z, ν) of B is of the form z = (a, a, v) with a ∈ D and v ∈ TaD
and where ν is determined by the equations 〈ν, b〉 = 〈δL(z), b〉 for every
b ∈ D.

When we consider the forces as control variables, since we are assuming
that the constrained Lagrangian system is regular, we can identify B with
pr1 : D⊕D∗ → D, via (a, a, v; ν) ≡ (a, ν), because the vector v is determined
by the point a and the equation δL(z)|D = u.

When we consider the accelerations as controls we can identify B with
T DD ∩ Adm(E) → D, via (a, a, v; ν) ≡ (a, a, v) because ν is determined by
ν = δL(z)|D.

From a formal point of view both problems are equivalent, since the rela-
tion between them is one-to-one and thus it is possible to use the optimal
solution written in terms of accelerations to determine the optimal forces and
viceversa. In other words, they are related by a feedback transformation.

However, from the practical point of view the second problem produce
simpler expressions. Therefore, we will identify B with T DD ∩Adm(E) and
we can take coordinates (xi, ya, va) where va are the acceleration coordinates,
i.e. our control variables.

On this set we also need to specify a control system where the optimization
will be built. Such a system is specified by giving a section σ : B → T ED,
i.e. the resulting system must always define an admissible velocity and
acceleration. The Lie algebroid relevant for this case is the E-tangent to
D. An element of T ED is of the form z = (a, b, w) with a ∈ D, b ∈ E,
with τ(a) = τ(b) and w ∈ TaD with ρ(b) = Tτ(w). Taking a local ba-
sis {ea} for D, and completing a local basis {ea, eA} for E, we can write
a = yaea, b = zaea + zAeA, and w = (ρi

az
a + ρi

Az
A) ∂

∂xi + wa ∂
∂ya . By tak-

ing coordinates (xi) in the basis, we have coordinates (xi, ya, za, zA, wa) on
T ED. A local basis of sections of T ED → D is {Xa,XA,Va} and the
element z can be written z = zaXa(x, y) + zAXA(a, y) + waVa(a, y), and
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ρ1(z) = w = (ρi
az

a + ρi
Az

A) ∂
∂xi + wa ∂

∂ya . The corresponding coordinates on

the dual bundle (T ED)∗ will be denoted (xi, ya, µa, µA, πa).
If we choose to control the accelerations of the system {ua}, the map σ :

B → T ED is given by the natural inclusion σ(z) = z,

T ED

τ
��

ρ1

// TD

τD
{{xx

x
x
x
x
x
x
x
x

B

σ
<<

z
z

z
z

z
z

z
z

// D

which in coordinates corresponds to

σ(xi, ya, ua) = (xi, ya, ya, 0, ua)

Given a cost function κ : B → R we take the Pontryagin Hamiltonian
H ∈ C∞((T ED)∗ × B), defined as H(µ, z) = 〈µ, σ(z)〉 − κ(z) which in
coordinates is

H(xi, ya, µa, µA, πa, u
a) = µay

a + πau
a − κ(xi, ya, ua),

where the control functions are the accelerations ua.
From ∂H

∂ua = 0, we get

πa =
∂κ

∂ua
. (26)

These equations determine the optimal submanifold SH in (T ED)∗×B, which
in this case is a section of the projection (T ED)∗ ×B → B, given locally by
the equations ua = ua(xi, ya, πa). On SH , the equations of motion are the
following. From ẋ = ρ∂H

∂µ
, since in this case the base variables are (x, y), we

get the original control system

ẋi = ρi
ay

a + ρi
A0 = ρi

ay
a ẏa = ua. (27)

Also, the equation of motion for πa

π̇a = −
∂H

∂ya
=
∂κ

∂ya
− µa,

because all the structure functions involved vanish (i.e. Va commute with all
the others). Therefore we get

µa =
∂κ

∂ya
−
d

dt

(
∂κ

∂ua

)
=
∂κ

∂ya
− π̇a
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which is the combination that appear in [47], equation (11), for the case
E = TM , under the notation κJ and without a justification.

The equation of motion for µa is

−µ̇a = ρi
a

∂H

∂xi
+ µcC

c
aby

b + µCC
C
aby

b

= −ρi
a

∂κ

∂xi
+ µcC

c
aby

b + µCC
C
aby

b, (28)

and the equation of motion for µA is

−µ̇A = ρi
A

∂H

∂xi
+ µcC

c
Aby

b + µCC
C
Aby

b

= −ρi
A

∂κ

∂xi
+ µcC

c
Aby

b + µCC
C
Aby

b. (29)

These two last equations corresponds to equations (18) and (19) obtained
in [47, 47] for the case E = TM .

Remark 6. As in the previous case, we have considered only normal ex-
tremals. For abnormal extremals we just have to take the cost function κ = 0
and solve the same equations for κ = 0, that is

µa = 0 (30)

πa = 0 (31)

ẋi = ρi
ay

a (32)

µBC
B
aby

b = 0 (33)

µ̇A + µBC
B
Aby

b = 0. (34)

with (µA(t)) 6= (0) for all t. Interestingly, we get exactly the same equations
(plus πa = 0) as in the kinematic case.

8. Examples

First we discuss two of the examples discussed in [48] from the point of
view of the theory of Lie algebroids. The result is naturally analogous to the
results obtained previously, but within the new framework the treatement of
dynamical control systems becomes much more natural.

8.1. Mechanical systems defined on tangent bundles.
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8.1.1. Kinematic optimal control of the Heisenberg system. Consider the case
of a system modelled on M = R

3 using the set of coordinates x = (x1, x2, x3)
and the nonholonomic constraint

ẋ3 = x2ẋ1 − x1ẋ2.

Let us denote as D the subbundle of admissible velocities and consider a basis
for it. The quasi-velocities of the system are thus the coordinates defined with
respect to this new basis, and are written:

y1 = x2ẋ1 − x1ẋ2 − ẋ3, y2 = ẋ1, y3 = ẋ2.

Analogously we can write the velocities in terms of the quasi-velocities as:

ẋ1 = y2, ẋ2 = y3, ẋ3 = −y1 + x2y2 − x1y3.

The local basis of sections of TM determined by the quasi-velocities reads

e1 = −
∂

∂x3
≡ (0, 0,−1), (35)

e2 =
∂

∂x1
+ x2 ∂

∂x3
≡ (1, 0, x2), (36)

e3 =
∂

∂x2
− x1 ∂

∂x3
≡ (0, 1,−x1). (37)

It is simple to compute the structure constants and the anchor mapping
with respect to this basis [e2, e3] = 2e1 ⇔ C1

23 = −C1
32 = 2 all other elements

being zero. The corresponding anchor mapping reads ρ(e1) = − ∂
∂x3 , ρ(e2) =

∂
∂x1 + x2 ∂

∂x3 and ρ(e3) = ∂
∂x2 − x

1 ∂
∂x3 .

Consider now the problem of controlling the admissible velocities

y2 = u2 and y3 = u3,

i.e. the system

TR
3

τ
��

id
// TR

3

τ
{{ww

w
w
w
w
w
w
w

D

inc
==

{
{

{
{

{
{

{
{

//
R

3

,

in order to optimize the cost function κ(xi, ua) = 1
2 [(u

2)2 + (u3)2]. The
corresponding Pontryagin Hamiltonian H ∈ C∞(T ∗M ×M D) is written as
H(xi, µa, u

a) = µ2u
2 + µ3u

3 − 1
2
[(u2)2 + (u3)2].

The Maximum principle implies thus - ∂H
∂uI = 0:
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∂H
∂u2 = 0⇔ µ2 = u2,

∂H
∂u3 = 0⇔ µ3 = u3.

This defines the optimal submanifold W . On it, the dynamics reads

ẋ1 = µ2,
ẋ2 = µ3,
ẋ3 = x2µ2 − x

1µ3,
µ̇1 = 0 hence, µ1 = c,
µ̇2 = −2cµ3,
µ̇3 = 2cµ2,

with c constant, or equivalently,

ẋ3 = x2ẋ1 − x1ẋ2,
ẍ1 = −2cẋ2,
ẍ2 = 2cẋ1.

Remark 7. We can also consider a case of abnormal extremals for this case.
If we set the κ = 0 (or analogously, H = µau

a), we find

ẋ1 = u2, ẋ2 = u3, µ̇1 = 0, µ1u
2 = 0 and µ1u

3 = 0,

which has solution of the form x1 = x0, x
2 = y0, x

3 = z0, y
1 = 0, y2 =

0, and µ1 = µ0
1 6= 0. These are equilibrium points.

8.1.2. Dynamic optimal control of the vertical rolling disc. For such a system,
the state space manifold corresponds toM = R

2×S1×S1, and we will use the
coordinates x = (x1, x2, x3, x4), where x1 = x, x2 = y, x3 = θ, and x4 = φ.

The rolling without slipping condition of the motion on the plane leads to
a pair of nonholonomic constraints

ẋ1 − cos(x4)ẋ3 = 0 and ẋ2 − sin(x4)ẋ3 = 0.

We can define then a set of coordinates adapted to these constraints and
write a set of coordinates {y} for the new velocities. Thus the quasi-velocities
shall correspond to:

y1 = ẋ1 − cos(x4)ẋ3, y2 = ẋ2 − sin(x4)ẋ3, y3 = ẋ3, y4 = ẋ4.

Analogously the inverse transformation allows us to write:

ẋ1 = y1 + cos(x4)y3, ẋ2 = y2 + sin(x4)y3, ẋ3 = y3, ẋ4 = y4.
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The local basis of sections of TM determined by the quasi-velocities turns
out to be:

e1 =
∂

∂x1
, e2 =

∂

∂x2
, e3 = cos(x4)

∂

∂x1
+ sin(x4)

∂

∂x2
+

∂

∂x3
, e4 =

∂

∂x4
.

The Lie algebroid structure is the usual one for the tangent bundle. But in
the basis above, the anchor mapping is written as:

ρ(e1) =
∂

∂x1
, ρ(e2) =

∂

∂x2
, ρ(e3) = cos(x4)

∂

∂x1
+sin(x4)

∂

∂x2
+

∂

∂x3
, ρ(e4) =

∂

∂x4
.

The Lie algebra structure is obtained also,

[e3, e4] = sin(x4)e1 − cos(x4)e2,

and we can read then the Hamel symbols γǫ
αβ in [10, 48].

In what regards the control part, we are considering a situation where we
control the external forces in the directions of the admissible velocities. Thus,
as the velocities on the constrained system are of the form

y1 = y2 = 0, y3 = ẋ3 and y4 = ẋ4,

the natural coordinates are a = (x1, x2, x3, x4, y3, y4) = (x, ya). The control
bundle B becomes thus D⊕D∗ and we take as coordinates (xi, y3, y4, u3, u4),
where u3 = 3

2 ẏ
3 and u4 = 1

4 ẏ
4 for ua = (δL)a.

The cost function corresponds to κ(a, u) = 1
2(u

2
3 + u2

4) and the control
system is defined as:

ẋ1 = cos(x4)ẋ3, ẋ2 = sin(x4)ẋ3, u3 =
3

2
ẍ3, u4 =

1

4
ẍ4.

The Pontryagin Hamiltonian H ∈ C∞((T ED)∗ ×D B) corresponds now to

H(a, p, u) = 〈p, σa(u)〉 − κ(a, u) = µIy
I + πI

uI

cI
−

1

2
(u2

3 + u2
4),

with c3 = 3/2 and c4 = 1/4.
The Maximum principle is encoded as

∂H
∂u3

= 0 ⇔ u3 = 2
3π3 and ∂H

∂u4

= 0 ⇔ u4 = 4π4,

and the Pontryagin equations (optimal dynamical control equations) corre-
spond to:
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ẋ1 = cos(x4)y3 ẋ2 = sin(x4)y3

ẋ3 = y3 ẋ4 = y4

ẏ3 = 2
3u3 ẏ4 = 4u4

π̇3 = −µ3 π̇4 = −µ4

µ̇1 = 0 µ̇2 = 0
µ̇3 = [−µ1sin(x4) + µ2cos(x4)]y4 µ̇4 = [µ1sin(x4)− µ2cos(x4)]y3

Since y3 = ẋ3, y4 = ẋ4 and ẏI = uI , then µ3 = −
9

4

...
x3 and µ4 = −

1

16

...
x4.

Thus, we can reduce the set of equations to:

ẋ1 = cos(x4)ẋ3, ẋ2 = sin(x4)ẋ4,

....
x 3 =

4

9
[µ1sin(x4)− µ2cos(x4)]ẋ4,

....
x 4 = 16[−µ1sin(x4) + µ2cos(x4)]ẋ3,

where µ1, µ2 are constants.

8.2. Optimal control problems of rotational motion of the free rigid

body. Consider the problem of rotational motion of the free rigid body. As
configuration manifold we take the Lie group SO(3) and choose the type-I
Euler angles (x1, x2, x3) as local coordinate system. We shall consider the
canonical Lie algebroid structure of the tangent bundle TSO(3), whose an-
chor map is ρ = idTSO(3). Let {e1, e2, e3} be the set of sections for the bundle

e1 = sec x2sinx3 ∂

∂x1
+ cosx3 ∂

∂x2
+ tanx2sinx3 ∂

∂x3

e2 = sec x2cosx3 ∂

∂x1
− sinx3 ∂

∂x2
+ tanx2cosx3 ∂

∂x3

e3 =
∂

∂x3

whose Lie algebra structure is given by [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.
The anchor and the Lie bracket are locally determined by the functions

ρ1
1 = sec x2sinx3 ρ2

1 = cosx3 ρ3
1 = tanx2sinx3

ρ1
2 = sec x2cosx3 ρ2

2 = −sinx3 ρ3
2 = tanx2cosx3

ρ1
3 = 0 ρ2

3 = 0 ρ3
3 = 1

and
C3

12 = −C3
21 = C1

23 = −C1
32 = C2

31 = −C2
13 = 1.

We shall consider now two different situations, the rigid body without con-
straints and the same system subject to the constraint ẋ1cosx2sinx3+ẋ2cosx3 =
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0. This implies that the constraint distribution D is the 2-dimensional sub-
bundle of TSO(3) generated by e2 and e3.

8.2.1. Unconstrained kinematic problem. Assume that the controls are all
the components of the angular velocity, y1 = u1, y2 = u2 and y3 = u3. The
control system is

ẋ1 = sec x2sinx3u1 + sec x2cosx3u2 ẋ2 = cosx3u1 − sinx3u2

ẋ3 = tanx2sinx3u1 + tanx2cosx3u2 + u3 (38)

The cost function is the rotational kinetic energy given by

k(xi, ua) =
1

2

[
I1(u

1)2 + I2(u
2)2 + I3(u

3)2
]
,

where I1, I2 and I3 represent the principal momenta of inertia of the body.
The optimality conditions (18) correspond now to µ1 = I1u

1, µ2 = I2u
2, µ3 =

I3u
3. Thus, on that submanifold, the control system (38) and

µ̇1 +
I3 − I2
I2I3

µ2µ3 = 0; µ̇2 +
I1 − I3
I1I3

µ1µ3 = 0; µ̇3 +
I2 − I1
I1I2

µ1µ2 = 0 (39)

are the Pontryagin-Hamilton equations for this case. Note that the equations
(39) are the classical Euler equations of the rigid body.

8.2.2. Unconstrained dynamic problem. We study now the example consid-
ered in [48], Section 4.4. The controlled magnitudes are the components of
the angular acceleration v1 = u1, v2 = u2 and v3 = u3. The control system
is

ẋ1 = sec x2sinx3y1 + sec x2cosx3y2 ẋ2 = cosx3y1 − sinx3y2

ẋ3 = tanx2sinx3y1 + tanx2cosx3y2 + y3 ẏ1 = u1, ẏ2 = u2, ẏ3 = u3

(40)
In this case the relevant Lie algebroid is the TSO(3) extension of TSO(3),

which is equivalent to TTSO(3). The control bundle corresponds to T 2SO(3).
The diagram describing the system turns out to be:

TTSO(3)

τ
��

id
// TTSO(3)

τwwpp
p
p
p
p
p
p
p
p
p

T 2SO(3)

inc
77

p
p

p
p

p
p

p
p

p
p

p

// TSO(3)
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The cost function we shall consider now is the total torque k(xi, ya, ua) =
1
2

[
(M1)

2 + (M2)
2 + (M3)

2
]
, where M1,M2 and M3 are

M1 = I1u
1+(I3−I2)y

2y3, M2 = I2u
2+(I1−I3)y

1y3 M3 = I3u
3+(I2−I1)y

1y2.
(41)

So,

k(xi, ya, ua) = 1
2

[
(I1)

2(u1)2 + (I2)
2(u2)2 + (I3)

2(u3)2+

+2I1(I3 − I2)u
1y2y3 + 2I2(I1 − I3)u

2y1y3 + 2I3(I2 − I1)u
3y1y2+

+(I3 − I2)
2(y2)2(y3)2 + (I1 − I3)

2(y1)2(y3)2 + (I2 − I1)
2(y1)2(y2)2

]

The optimality condition becomes in this case

π1 = (I1)
2u1 + I1(I3 − I2)y

2y3

π2 = (I2)
2u2 + I2(I1 − I3)y

1y3

π3 = (I3)
2u3 + I3(I2 − I1)y

1y2

and this determines the submanifold W which we specify by writing ua =
ua(x, y, π). On W , the Pontryagin-Hamilton equations become the control
system (40) and

π̇1 =
M2(M2 − I2u

2) +M3(M3 − I3u
3)

y1
− µ1

π̇2 =
M1(M1 − I1u

1) +M3(M3 − I3u
3)

y2
− µ2

π̇3 =
M1(M1 − I1u

1) +M2(M2 − I2u
2)

y3
− µ3

µ̇1 + µ3y
2 − µ2y

3 = 0 µ̇2 − µ3y
1 + µ1y

3 = 0 µ̇3 + µ2y
1 − µ1y

2 = 0

The equations above are equivalent to equation (27) in [48].

8.2.3. Constrained kinematic problem. Let us study now the constrained
system, i.e., the system with admissible velocities belonging to the subbundle
D ⊂ TSO(3) defined by the condition y1 = 0. Thus the system is

ẋ1 = sec x2cosx3u2, ẋ2 = −sinx3u2, ẋ3 = tanx2cosx3u2 + u3, (42)
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or in terms of the diagram,

TSO(3)

τ
��

id
// TSO(3)

τxxqq
q
q
q
q
q
q
q
q

D

inc
;;

w
w

w
w

w
w

w
w

w
w

// SO(3)

The cost function corresponds to the energy provided by the controls
k(xi, ua) = 1

2

[
I2(u

2)2 + I3(u
3)2

]
. The Hamiltonian in this case is written

as H = µ2u
2 + µ3u

3 − 1
2

[
I2(u

2)2 + I3(u
3)2

]
. Optimality conditions defining

the submanifold W (18) are µ2 = I2u
2 µ3 = I3u

3. Using the represen-
tation u2 = u2(x, µ) and u3 = u3(x, µ) for W , the equations (21) become
then the control system (42) together with µ̇2 + µ1u

3 = 0 µ̇3 − µ1u
2 =

0 µ̇1 + (I3 − I2)u
2u3 = 0.

In the case of the completely symmetric rigid body we get µ̇2 + µ1u
3 =

0 µ̇3 − µ1u
2 = 0 µ̇1 = 0, which are equivalent to the equations obtained

by Sastry and Montgomery in [53].

8.2.4. Constrained dynamic problem. Finally let us study the case of dynamic
control for the constrained system. From the geometrical point of view, the
control bundle B corresponds to T DD ∩ Adm(TSO(3)) and the system can
be described as

T TSO(3)D
τ

��

ρ1

// TD

vvllllllllllllllllll

B

inc
99

t
t

t
t

t
t

t
t

t
t

// D

where

ẋ1 = sec x2cosx3y2, ẋ2 = −sinx3y2, (43)

ẋ3 = tanx2cosx3y2 + y3, ẏ2 = u2, ẏ3 = u3 (44)

We shall consider now as cost function, the restriction to D of the cost
function defined in Section 8.2.2

k(xi, ya, ua) = 1
2

[
(I2)

2(u2)2 + (I3)
2(u3)2 + (I3 − I2)

2(y2)2(y3)2
]
,

where we assume that the control functions are the components of the ad-
missible angular accelerations of our system u2 = v2 and u3 = v3.
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Optimality condition leads to the submanifoldW defined as π2 = (I2)
2u2 π3 =

(I3)
2u3. ThenW is defined by specifying u2 = u2(x, y, π) and u3 = u3(x, y, π).

The motion on W corresponds then to the control system (43) and

π̇2 =
(M1)

2

y2
− µ2, π̇3 =

(M1)
2

y3
− µ3,

µ̇2 + µ1y
3 = 0, µ̇3 − µ1y

2 = 0,

µ̇1 + µ3y
2 − µ2y

3 = 0

where M1 = (I3 − I2)y
2y3 is a torque on D, defined in (41).

In the case of the completely symmetric rigid body we obtain

π̇2 = −µ2, π̇3 = −µ3, µ̇2+µ1y
3 = 0, µ̇3−µ1y

2 = 0, µ̇1+µ3y
2−µ2y

3 = 0.

This system gives the following equations obtained by Crouch and Silva Leite
in [18], Ex. 6.4, Case II

...
y 2 − µ1y

3 = 0,
...
y 3 + µ1y

2 = 0, µ̇1 − ÿ
3y2 + ÿ2y3 = 0

8.3. Systems with symmetry and constraints: quasi-coordinates for

the Atiyah algebroid.

8.3.1. The geometrical setting. Consider a ball rolling without sliding on
a fixed table (see Example 8.12 in [16]). The configuration space is Q =
R

2×SO(3), where SO(3) is parameterized by the Eulerian angles θ, φ and ψ.
In quasi-coordinates (x, y, θ, φ, ψ, ẋ, ẏ, ωx, ωy, ωz) the energy may be expressed
by T = 1

2 [ẋ
2 + ẏ2 +k2(ω2

x +ω2
y +ω2

z)], where ωx, ωy and ωz are the components
of the angular velocity of the ball.

The system is invariant under SO(3) transformations, and thus it is natu-
ral to consider the corresponding formulation on the Atiyah algebroid E =
TQ/SO(3) ≡ TR

2 × R
3. On that system we must still implement the

nonholonomic constraint arising from the rolling-without-sliding condition
ẋ1 − rω2 = 0 ẋ2 + rω1 = 0.

For the configuration space we can choose coordinates M = Q/G = R
2 ←

x = (x1, x2), with x1 = x and x2 = y. In what regards the fiber, we can choose
thus a transformation mapping the set of fiber coordinates {ẋ1, ẋ2, ω3, ω1, ω2}
onto a new set {yα}. These quasi-velocities become then yi = ẋi, y3 =
ω3, y4 = ẋ1 − rω2, y5 = ẋ2 + rω1.
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Analogously we can consider the inverse transformation. Thus the original
velocities can be written in terms of the quasi-velocities as ẋi = yi, ω3 =
y3, ω1 = −1

r
y2 + 1

r
y5, ω2 = 1

r
y1 − 1

r
y4

The local basis of sections of E determined by the quasi-velocities turns
out to be

f1 = e′1 +
1

r
e′4, f2 = e′2 −

1

r
e′3, f3 = e′5, f4 = −

1

r
e′4, f5 =

1

r
e′3

where {e′1, e
′
2, · · · , e

′
5} is the local basis defined in [16], page 36.

With respect to this basis, the structure constants and the anchor mapping
of the Lie algebroid structure become

[f2, f1] = [f1, f5] = [f4, f2] = [f5, f4] =
1

r2
f3

[f3, f1] = [f4, f3] = f5 [f2, f3] = [f3, f5] = f4

ρ(f1) = ∂x, ρ(f2) = ∂y,

the remaining elements being zero.
The set of admissible velocities becomes thus the fiber of the distribution
D, which corresponds to

D = {(xi, yα) ∈ E | y4 = y5 = 0}

The coordinates for these points are therefore a = (x1, x2, y1, y2, y3) = (xi, yα),
where in terms of the original set of coordinates these correspond to y1 =
ẋ1 = u1, y2 = ẋ2 = u2, y3 = ω3 = u3 and y4 = 0 = y5.

The dynamical system on the algebroid is defined by a Lagrangian function
on E, which can be written in terms of the velocities as

L(x, y, ẋ, ẏ, ω1, ω2, ω3) =
1

2
[ẋ2 + ẏ2 + k2(ω2

1 + ω2
2 + ω2

3)], (45)

and in terms of the quasi-velocities

L(xi, yα) =
1

2

[
(y1)2 + (y2)2+

k2

r2
((y1)2 + (y2)2 + (y4)2 + (y5)2 − y2y5 − y1y4) + k2(y3)2

]
. (46)
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8.3.2. Two different optimal control problems. Let us consider now two dif-
ferent optimal control problems on this Lie algebroid.

Kinematic Control Problem

Consider the following problem: determine the minimal value among the
set of admissible solutions a : R → E, of the controlled Euler-Lagrange
equations of the form δL(a(t)) = 0, a(t) ∈ D, where the cost fuction

is κ(xi, ua) = 1
2

{
(u1)2 + (u2)2 + k2

r2

[
(u2)2 + (u1)2

]
+ k2(u3)2

}
. The control

bundle is D, and the section we consider σ : (xi, ua) ∈ D → (xi, ua, 0, ua) ∈ E
is the canonical inclusion. Please notice that we use the notation ua to denote
the elements of the fiber of D when considered as the control bundle.

E

τ
��

ρ
// TR

2

||yy
y
y
y
y
y
y

D

σ
>>

~
~

~
~

~
~

~
~

//
R

2

The Pontryagin Hamiltonian is then written as a function H ∈ C∞(E∗×R2

D). The optimality condition of the Maximum principle on this function
implies

∂H

∂ua
= 0⇔ µa = cau

a (47)

where c1 = c2 = 1 + k2/r2 and c3 = k2.
If we write the set of Pontryagin equations we see:

ẋi = yi µ̇1 = µ3
µ2

c2r2
+ µ5

µ3

c3
µ̇2 = −µ4

µ3

c3
− µ3

µ1

c1r2

µ̇3 = −µ5
µ1

c1
+ µ4

µ2

c2
µ̇4 = −µ3

µ2

c2r2
− µ5

µ3

c3
µ̇5 = µ4

µ3

c3
+ µ3

µ1

c1r2

Thus we can use (47) and the above equations to define the resulting system
on D:

ẍ1 =
1

c1
(d2ω3 − ẋ

2ω3) ẍ2 =
1

c2
(ẋ1ω3 − d1ω3) ω̇3 =

1

c3
(d1ẋ

2 − d2ẋ
1)

with d1, d2 constants and c1 = c2 = 1 + k2/r2 and c3 = k2.

Dynamic Optimal Control Problem

Let us consider now a different control problem, where we are able to control
the forces acting on the system, i.e. we consider a system corresponding to
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(δL)a = ua, where L is defined as (46) and δ represents the variational
derivative. In this case, for the Lagrangian given above, this implies that
ẏa = ua

ca
a = 1, 2, 3, where again c1 = c2 = 1 + k2/r2 and c3 = k2 (see

equations 1.9.13 in [2]).
The control system is thus defined as a section

T ED

τ
��

ρ1

// TD

{{xx
x
x
x
x
x
x
x
x

D ⊕D∗

σ
99

t
t

t
t

t
t

t
t

t

// D

,

where σ : (xi, ya, ua) ∈ D ⊕D
∗ 7→ (xi, ya, ya, 0, ua/ca) ∈ T

ED.
The cost function now shall be the energy provided by the control func-

tions: κ(xi, ua) = 1
2

∑
a u

2
a. As a result, the Pontryagin Hamiltonian H ∈

C∞((T ED)∗ ×D B) reads now H(xi, ya, µα, πa, ua) = µay
a + πa

ua

ca
− 1

2

∑
a u

2
a.

The maximum principle applied to this function results

∂H

∂ua

= 0⇔ ua =
πa

ca
, with a = 1, 2, 3

Then the optimal manifold correponds to this submanifold of (T ED)∗×D B.
The Pontryagin equations on (T ED)∗ ×D B are:

ẋi = yi ẏa =
ua

ca
π̇a = −µa µ̇1 = µ3

y2

r2
+ µ5y

3

µ̇2 = −µ4y
3 − µ3

y1

r2
µ̇3 = −µ5y

1 + µ4y
2 µ̇4 = −µ̇1 µ̇5 = −µ̇2

But if we restrict them to the optimized submanifold we obtain the reduced
system of equations:

....
x 1 = [

c3
c1r

]2ẋ2ω̈3 − ω3
...
x 2 −

e2

c21
ω3

....
x 2 = −[

c3
c2r

]2ẋ1ω̈3 + ω3
...
x 1 +

e1

c22
ω3

...
ω 3 = [

c2
c3

]2ẋ1...x 2 − [
c1
c3

]2ẋ2...x 1 +
e2

c23
ẋ1 −

e1

c23
ẋ2

where c1 = c2 = 1 + k2/r2, c3 = k2 and e1, e2 are arbitrary constants.
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