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In [6] the second author explored homological properties of algebras graded
over a small category. Our interest in these algebras arose from our research
on the homological properties of Schur algebras, but we believe that they
play an important organizational role in representation theory in general.
Recall that an abelian category C is called perfect if every object of C has a

projective cover (see Section 1). The existence of projective covers for every
object guarantees the existence of minimal projective resolutions for every
object in the category. The category C is called semi-perfect if every finitely
generated object has a projective cover. We say that a category-graded
algebra A is (semi)-perfect if the category of A-modules is (semi)-perfect.
In [6] it was given a criterion for category-graded algebras to be semi-perfect.
This criterion is sufficient to ensure that all category-graded algebras which
appear in [5] are semi-perfect. But this is not enough to prove the existence of
a minimal projective resolution for some of them, as the kernel of a projective
cover may not be finitely generated. In this article we fill this gap by giving
a criterion for a category-graded algebra to be perfect.
Now we introduce the notions related with category-graded algebras that

will be needed and explain the main result in more detail. Recall that, given
a small category C, a C-graded algebra (see [6]) is a collection of vector spaces
Aα parametrised by the arrows α of C, with preferred elements es ∈ A1s for
every object s of C and a collection of maps µα,β : Aα ⊗Aβ → Aαβ for every
composable pair of morphisms α, β of C. For a ∈ Aα and b ∈ Aβ we shall
write ab for µα,β(a ⊗ b). For every composable triple α, β, and γ of arrows
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in C and a ∈ Aα, b ∈ Aβ, and c ∈ Aγ we require associativity

a(bc) = (ab)c.

Suppose also that α : s → t. Then we require

eta = a = aes.

A C-graded module M over a C-graded algebra A is a collection of vector
spacesMγ parametrised by the arrows γ of C with maps rα,β : Aα⊗Mβ → Mαβ

for every composable pair of morphisms in C. We shall write am instead of
rα,β(a⊗m) for a ∈ Aα and m ∈ Mβ.
As always we will assume the usual module axioms:

a(bm) = (ab)m for a ∈ Aα, b ∈ Aβ, m ∈ Mγ,

where α, β, and γ are composable; and

etm = m,

where γ : s → t and m ∈ Mγ.
An A-homomorphism between two C-graded A-modules M and N is a

collection of linear homomorphisms fγ : Mγ → Nγ such that for every com-
posable pair of morphisms α, β ∈ C

fαβ(am) = afβ(m).

We denote the category of all C-graded A-modules by A-mod.
Given a morphism γ : s → t of C, the left stabiliser Stlγ of γ is the sub-

monoid of C(t, t)

Stlγ = {α ∈ C(t, t)|αγ = γ} .
For every C-graded algebra A the multiplication maps µα,β induce an (un-
graded) algebra structure on the vector space

Al(γ) :=
⊕
α∈Stlγ

Aα

with unity et.
The main result of this paper is

Theorem 0.1. Let C be a small category such that every sequence β1, β2,
. . . of morphisms in C, where βk+1 is a right divisor of βk, stabilizes. Suppose
A is a C-graded algebra such that Al(γ) is (left) perfect for all γ. Then A-mod
is a perfect category.
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In particular we will recover a well-known result that for every positively
graded algebra A = ⊕n≥0An with A0

∼= K the category of graded A-modules
is perfect.
The main idea of the proof of this theorem is to apply the general criterion

of perfectness obtained in [3]. Therefore we start in Section 1 with a result on
the radical of an abelian category and a recollection of notions used in that
work. Section 2 is devoted to Harada’s criterion and the study of perfectness
of a class of abelian categories, which will be useful in the sequel. In Section 3
we prove the main result and in Section 4 we give examples.
For undefined notation the reader is referred to [6].

1. Preliminaries
The notion of radical for general additive categories was introduced in [4].

Let C be an additive category. An ideal I of C is a collection of subgroups
I(A,B) of C(A,B) for each A, B ∈ Ob C, such that

I(B,C)C(A,B) ⊂ I(A,C)

C(B,C)I(A,B) ⊂ I(A,C).

Definition 1.1 ([4]). A radical of an additive category C is an ideal I of C
such that for every object A of C we have I(A,A) = J(C(A,A)), where J
denotes the Jacobson radical of the ring.

It can be shown that for an abelian category there is a unique radical. For
convenience of the reader we provide a proof of this fact in the appendix.
Let C be an abelian category and A, B objects of C. Denote by πA : A⊕B →

A, πB : A ⊕ B → B, iA : A → A ⊕ B, and iB : B → A ⊕ B the canonical
projections and inclusions associated with the definition of the direct sum
A⊕B. Using these maps we can identify the ring C(A⊕B,A⊕B) with the
matrix ring (

C(A,A) C(B,A)
C(A,B) C(B,B)

)
.

It will be shown in Proposition 5.1 that the radical J of C is given by

J (A,B) =

{
f

∣∣∣∣ ( 0 0
f 0

)
∈ J

(
C(A,A) C(B,A)
C(A,B) C(B,B)

)}
.

We will also need the following technical property of the radical of C.
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Proposition 1.1. Let C be an abelian category and A, B objects of C. Sup-
pose that A = A′ ⊕ A′′ and B = B′ ⊕B′′. Then J(A′, B′) = πB′J(A,B)iA′.

Proof : We can identify C(A⊕B,A⊕B) with the matrix ring

R :=


C(A′, A′) C(A′′, A′) C(B′, A′) C(B′′, A′)
C(A′, A′′) C(A′′, A′′) C(B′, A′′) C(B′′, A′′)
C(A′, B′) C(A′′, B′) C(B′, B′) C(B′′, B′)
C(A′, B′′) C(A′′, B′′) C(B′, B′′) C(B′′, B′′)

 .

Then if we repeat the considerations in the proof of Proposition 5.1 we see
that J(A′, B′) is the set of maps f : A′ → B′ such that the matrix

0 0 0 0
0 0 0 0
f 0 0 0
0 0 0 0


is an element of J(R). Now the elements of J(A,B) can be identified with
the elements of the form 

0 0 0 0
0 0 0 0
f11 f12 0 0
f21 f22 0 0


in J(R). Thus f : A′ → B′ is an element of J(A′, B′) if and only if

(
f 0
0 0

)
is an element of J(A,B). Note that in matrix notation πB′ = (1B′, 0) and

iA′ =

(
1A′

0

)
. This shows that J(A′, B′) ⊂ πB′J(A,B)iA′. Now suppose

that f11 ∈ πB′J(A,B)iA′. Then there is a matrix(
f11 f12
f21 f22

)
that lies in J(A,B). Since J is an ideal of C we get that(

f11 0
0 0

)
=

(
1B′ 0
0 0

)(
f11 f12
f21 f22

)(
1A′ 0
0 0

)
∈ J(A,B),

which shows that f11 ∈ J(A′, B′). Thus πB′J(A,B)iA′ ⊂ J(A′, B′).
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Next we introduce some standard notation which will be used in the fol-
lowing sections.
We say that X ⊂ Y is a small subobject of Y if for any S ⊂ Y such

that X + S = Y we have S = Y . An epimorphism π : P � Y , where
P is projective, is called a projective cover of Y whenever Ker π is a small
subobject of P .
Note that in a perfect abelian category every object has a (unique up to

isomorphism) minimal projective resolution. By definition a minimal pro-
jective resolution of an object X is an exact complex (P•, d•) with a map
ε : P0 � X, such that the maps dk : Pk+1 → Ker(dk−1) and ε are projective
covers. The existence of minimal projective resolutions in a perfect category
can be shown by induction.

2. Harada criterion
In this section we give a sufficient condition for a Grothendieck category

C to be perfect. This is based on Harada’s criterion of perfectness, Corol-
lary 1 p.338 of [3]. The crucial ingredient of this criterion is the notion of
locally right T -nilpotent system with respect to an ideal I of C.

Definition 2.1. A set of objects {Mi | i ∈ I} in an additive category is called
locally right T -nilpotent with respect to an ideal I if for any sequence of maps
fk ∈ I

(
Mik,Mik+1

)
, k = 1, 2, . . . , and every small subobject X of M1 there is

a natural number m such that fmfm−1 . . . f1(X) = 0.

Since the only ideal we are interested in is the radical J of an abelian
category C, we abbreviate the term “locally right T -nilpotent system with
respect to J” to “T -nilpotent system”.

Definition 2.2. Let C be an abelian category. We say that an object B ∈ C is
semi-perfect ( completely indecomposable) if the ring C(B,B) is semi-perfect
(local).

Note that our definition of semi-perfect object is different from the defini-
tion given in [3] on p. 330, but this does not interfere with the work.
Let {Pα |α ∈ I} be a generating set of semi-perfect objects of an abelian

category C. Then each ring C(Pα, Pα) is semi-perfect. By Theorem 27.6 of [1]
for each α the ring C(Pα, Pα) has a complete orthogonal set of idempotents
eα,1, eα,2, . . . , eα,nα

and for every α ∈ I and every 1 ≤ i ≤ nα the ring
eα,iC(Pα, Pα)eα,i is local. We denote by Pα,i the direct summand of Pα that
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corresponds to eα,i. We also write πα,j for the canonical projection of Pα on
Pα,j and iα,j for the canonical embedding of Pα,j in Pα.

Proposition 2.1. The objects Pα,i are completely indecomposable.

Proof : Since eα,1, . . . , eα,nα
is a complete orthogonal set of idempotents the

ring C(Pα,i, Pα,i) ∼= eα,iC(Pα, Pα)eα,i is local. Thus Pα,i is completely inde-
composable.

Proposition 2.2. Let C be a Grothendieck category with a generating set
of finitely generated objects. Suppose C has a generating set {Pα |α ∈ I} of
semi-perfect projective objects. If {Pα |α ∈ I} is a right T -nilpotent system
then C is perfect.

Proof : In this proof we are going to apply Corollary 1 on p.338 of [3].
This claims that if C has a generating set of finitely generated objects and
{Qβ | β ∈ K} is a T -nilpotent generating set of completely indecomposable
projective objects, then C is perfect. Thus we have to construct a T -nilpotent
generating set of completely indecomposable projective objects.
If we apply the construction described above to {Pα |α ∈ I}, we get a

generating set G = {Pα,i |α ∈ I, i = 1, . . . , nα}. Every object Pα,i is a direct
summand of Pα and so Pα,i is projective. The object Pα,i is also completely
indecomposable by Proposition 2.1.
Now we will show that G is T -nilpotent. Let Pα1,i1, Pα2,i2, . . . be a sequence

of objects in G and fk ∈ J(Pαk,ik, Pαk+1,ik+1
). From Proposition 1.1 it follows

that J(Pαk,ik, Pαk+1,ik+1
) = παk+1,ik+1

J(Pαk
, Pαk+1

)iαk,ik. Thus there is f̃k ∈
J(Pαk

, Pαk+1
) such that fk = παk+1,ik+1

f̃kiαk,ik. Denote by gk the element

iαk+1,ik+1
παk+1,ik+1

f̃k of J(Pαk
, Pαk+1

). Then we have

fr . . . f1 = παr+1,ir+1
gr . . . g1iα1,i1.

Let X be a small subobject of Pα1,i1. Then iα1,i1(X) is a small subobject of
Pα. Since {Pα |α ∈ I} is T -nilpotent there is some n such that

gn . . . g1iα1,i1(X) = 0.

But then fn . . . f1(X) = 0.

3. The main result
Let C be a small category. We define a C-graded vector space V over a

field K to be a collection of K-vector spaces Vγ parametrized by the arrows
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of C. A map of a C-graded vector space V to a C-graded vector space W
is a collection of linear homomorphisms fγ : Vγ → Wγ. The category of C-
graded vector spaces is denoted by V . We denote by K[γ] the C-graded
vector space with all components equal to zero except the one with index γ
and (K[γ])γ = K.
Let A be a C-graded algebra. In Section 2 of [6] it was defined a functor

FA : V → A-mod

given on objects by the formula

FA (V )γ =
⊕
γ=αβ

Aα ⊗ Vβ.

We will call the objects in the image of FA free. Note that the functor FA is
a left adjoint to the obvious forgetful functor A-mod → V .
Recall from the introduction that given an arrow γ : s → t of the small

category C we denote by Al(γ) the algebra⊕
α∈Stlγ

Aα,

where Stl(γ) is the left stabilizer of γ.

Theorem 3.1. Let C be a small category such that every sequence β1, β2,
. . . of morphisms in C, where βk+1 is a right divisor of βk, stabilizes. Suppose
A is a C-graded algebra such that Al(γ) is (left) perfect for all γ. Then A-mod
is a perfect category.

Proof : We will use several results of [6] and Proposition 2.2. It is proved
in Proposition 4.3 [6] that A-mod is a Grothendieck category. By Proposi-
tion 4.1 [6] the set

{FA (K[γ]) | γ an arrow in C}
is a generating set of A-mod. Every A-module FA (K[γ]) is projective by
Proposition 5.1 [6] and finitely generated by Corollary 6.1 and Proposition 6.1
of [6].
It is proved in Theorem 8.1 of [6] that there is an isomorphism of rings

A-mod(FA(K[γ]), FA (K[γ])) ∼= Al(γ)op. Note that every left or right perfect
ring is semi-perfect. Thus, since Al(γ)op is a right perfect ring, we get that
A-mod(FA(K[γ], )FA (K[γ])) is a semi-perfect ring. Hence FA(K[γ]) is a semi-
perfect object.
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We will show now that {FA (K[γ]) | γ an arrow in C} is a T -nilpotent sys-
tem. Let fk : FA(K[βk]) → FA (K[βk+1]) be a sequence of maps such that

fk ∈ J (FA (K[βk]) , FA (K[βk+1])) .

From the adjunction isomorphism referred above we have an isomorphism of
C-graded vector spaces

A-mod (FA (K[βk]) , FA (K[βk+1])) ∼= V (K[βk], FA (K[βk+1]))

∼= (FA (K[βk+1]))βk

∼=
⊕

αβk+1=βk

Aα.

Therefore if βk+1 is not a right divisor of βk then necessary fk = 0. Now by
the theorem hypothesis there are two possibilities:
1) there is some n such that βn+1 is not a right divisor of βn. Then fn = 0

and fn (fn−1 . . . f1 (X)) = 0 for any small subobject X of FA (K[β1]).
2) There is some N such that for all n ≥ N we have βn = βN . Then

fn ∈ J (A-mod (FA (K[βn])) , FA (K[βn+1])) ∼= J
(
Al(βN)

op
)
.

Denote by f̃n the element of J
(
Al (βN)

op) that corresponds to fn under

this isomorphism. Then fn . . . fN corresponds to f̃n . . . f̃N in J(Al(βN)
op) ⊂

Al(βN)
op. This last product corresponds under duality to the product f̃ op

N . . . f̃ op
r

in J
(
Al (βN)

)
. Now the algebra Al(βN) is left perfect by the hypothesis of

the theorem. Therefore by Theorem 28.4(b) [1] the ideal J
(
Al (βn)

)
is left

T -nilpotent. Thus there is r ≥ N such that f̃ op
N . . . f̃ op

r in J
(
Al (βN)

)
= 0.

Hence fr . . . fN = 0.

4. Examples
In this section we apply the main theorem to some classes of interesting

algebras.

4.1. Algebras graded over a monoid. Let Γ be a monoid with unit e.
We denote by (∗,Γ) the category with one object ∗ and the set of morphisms
given by Γ. Recall that a Γ-graded algebra is an algebra A with a fixed
direct sum decomposition into subspaces Aγ, γ ∈ Γ such that eA ∈ Ae and
AαAβ ⊂ Aαβ. Analogously, a Γ-graded module M over a Γ-graded algebra A
is defined as an A-module with a direct sum decomposition M =

⊕
γ∈ΓMγ

such that AαMβ ⊂ Mαβ. Homomorphisms of Γ-graded algebras (A-modules)



PERFECT CATEGORY-GRADED ALGEBRAS 9

are homomorphisms of algebras (A-modules) that preserve the components
of the direct sum decomposition.
It immediately follows that purely syntactical replacement of the sign

⊕
γ∈Γ

by the brackets ( )γ∈Γ gives an equivalence between the category of Γ-graded
algebras and the category (∗,Γ)-graded algebras. By the same argument,
if A =

⊕
γ∈ΓAγ is an Γ-graded algebra then the category of Γ-graded A-

modules is equivalent to the category of A′-modules, where A′ is the (∗,Γ)-
graded algebra that corresponds to A.
Recall that a poset (S,≤) is called artinian if every descending sequence

s1 ≥ s2 ≥ . . . of elements in S stabilizes.

Proposition 4.1. Let Γ be an artinian ordered monoid such that e is the
least element. Suppose A is a Γ-graded algebra such that Ae is left perfect.
Then the category of left Γ-graded A-modules is perfect.

Proof : Let A′ be the (∗,Γ)-graded algebra that corresponds to A under the
equivalence described above. It is sufficient to show that the category A′-
mod is perfect. We apply Theorem 3.1 to A′. Let γ ∈ Γ. Then Stl(γ) = {e}.
In fact, suppose αγ = γ and α ̸= e. Since e is the least element of Γ we
have α > e, and, since Γ is an ordered monoid it follows that αγ > eγ = γ.
Contradiction. Therefore for all γ ∈ Γ the algebra (A′)l(γ) = A′

e = Ae is left
perfect.
Suppose γ1, γ2, . . . is a sequence of elements in Γ such that γk+1 is a right

divisor of γk. Since e is the least element of Γ we get that γk > γk+1. Therefore
γ1, γ2, . . . is a descending sequence and must stabilize as Γ is artinian.

An example of a graded algebra in the conditions just described is the
Kostant form of the universal enveloping algebra of the complex Lie algebra
of strictly upper triangular matrices. In our work on Schur algebras [5], we
were led to the construction of a minimal projective resolution of the trivial
module of this Kostant form. Although this module is obviously finitely
generated the same can not to be said of the kernels of the projective covers
which appear in the resolution. It was this example that motivated the
present paper.
Now we give an example which shows that the condition “Γ is artinian” in

Proposition 4.1 is essential.
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Let Γ = (Z,+) and denote (∗,Γ) by C. Define a C-graded algebra A by

Ak :=

{
Kak k ≥ 0
0 otherwise

, k ∈ Z

and multiplication akal = ak+l. In fact, A is just the polynomial algebra
in one variable considered as a C-graded algebra. We define a C-graded
A-module X by

Xk := Kxk, k ∈ Z
and the action of A on X is given by akxl = xk+l.

Proposition 4.2. The module X has no projective cover in A-mod.

Proof : Suppose P is a projective cover of X. We show first that P is a
free module. Since every object in A-mod can be covered by a free module
(Proposition 4.1 [6]) and every epimorphism to P is splitable, we know that P
is a direct summand of a free module FA(V ), where V is a C-graded vector
space. Let e : FA(V ) → FA(V ) be the idempotent that corresponds to P .
Note that for every k we have

FA(V )k =
⊕
l≥k

al−k ⊗ Vl.

We claim that the following maps are idempotent:

ek : Vk → (FA(V ))k
e−→ (FA(V ))k → Vk,

where the first map is the inclusion induced by the unity of A and the last map
is the natural projection πk with respect to above direct decomposition. Let
v ∈ Vk, then e(a0⊗v) =

∑
l≥0

∑
i∈Il λlalvl, where vl ∈ Vk−l. Now all elements

of e
(∑

l>0

∑
i∈Il λlalvl

)
lie in the direct sum

⊕
l>k al−k ⊗ Vl. Therefore

πke

(∑
l>0

∑
i∈Il

λlalvl

)
= 0.

This show that

πke
2(v) = πke(πke(v)).

Since e2 = e we get ek(v) = e2k(v). Now for every k we choose a basis
{ vk,i | i ∈ Ik} ∪ { vk,j | j ∈ Jk} such that ek(vk,i) = vk,i for all i ∈ Ik and
ek(vk,j) = 0 for all j ∈ Jk. Then e(vk,i) = vk,i +

∑
l>k

∑
j∈Il λl,jal−kvl,j

for i ∈ Ik, and e(vk,j) =
∑

l>k

∑
j∈Il λl,jal−kvl for j ∈ Jk. Let W be a
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C-graded vector space with basis {wk,i | i ∈ Ik}, wk,i ∈ Wk. Define a map
f : FA(W ) → FA(V ) by

f (as ⊗ wk,i) = as ⊗ vk,i +
∑
l>k

∑
j∈Il

λl,jas+l−kvl,j.

This is obviously an injective map of A-modules. Moreover, from the above
computations it follows that all elements of e (FA (V )) belong to the image
of f . Thus f provides an isomorphism between FA (W ) and P .
Suppose ϕ : FA(W ) → X is a projective cover. By the adjunction property

of FA the map ϕ is given by its values on wk,i, i ∈ Ik. Note first that
ϕ(wk,i) ̸= 0, since otherwise the direct summand Awk,i of FA (W ) would lie
in the kernel of ϕ, which contradicts the fact that Kerϕ is small. Analogously,
we see that all the elements ϕ (wk,i), i ∈ Ik, should be linearly independent.
Since the Xk are one dimensional, every set Ik contains no more than one
element. We shall denote this unique element, if it exists, by wk. After scalar
multiplication we can assume without loss of generality that ϕ (wk) = xk. Let
us fix k such that Ik is non-empty. Since xl for l > k are not in the image
of Awk there is r > k such that Ir is non-empty. Denote by W ′ the C-
graded vector space spanned by {wl | Il is non-empty and l > k}. Let ϕ′ be
the restriction of ϕ on FA(W

′). Then ϕ can be factorized via ϕ′ by ϕ = ϕ′ ◦θ,
where θ (ws) = ar−swr for all s ≥ k and θ (ws) = ws for s < k. Since θ
is surjective we see that FA(W

′) has a direct complement P in FA(W ). As
θ(P ) = 0, it follows that P ⊂ Kerϕ which contradicts the fact that Kerϕ is
small.

4.2. Poset-graded algebras. Let (Λ,≤) be a poset. Denote by Λ̃ the
category with the set of objects Λ and exactly one morphism µλ from λ to
µ for µ ≥ λ.
Let A be a K-algebra with an orthogonal unit decomposition

e =
∑
λ∈Λ

eλ, eλeµ = δλµeλ

such that eµAeλ = 0 if µ ̸≥ λ. Define the Λ̃-graded algebra Ã by

Ãµλ := { JaK | a ∈ eµAeλ}
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with the vector space structure inhereted from eµAeλ via the bijection JaK 7→
a. We define multiplication on Ã byJxK JyK := JxyK , x ∈ eνAeµ, y ∈ eµAeλ.

Then JeλK ∈ Ãλλ are local units in Ã.

Proposition 4.3. Let Λ, A and Ã be as above. Suppose that for every λ,
µ ∈ Λ, µ ≥ λ the interval [λ, µ] is an artinian poset and that for every λ ∈ Λ

the algebra eλAeλ is left perfect. Then the category Ã-mod is perfect.

Proof : We apply Theorem 3.1. Note first that Stl(µλ) = µµ for every µ ≥ λ.

Therefore Ãl(µλ) = Ãµµ = eµAeµ are left perfect algebras for all maps in Λ̃.

Suppose α1, α2, . . . is a sequence of maps in Λ̃ such that αk+1 is a right
divisor of αk. Then there are λ, µ1, µ2, . . . in Λ such that αk = µkλ and
µk+1 ≤ µk. Since [λ, µ1] is artinian and every µk lies in this interval, we get
that µ1 > µ2 > . . . stabilizes. Therefore α1, α2, . . . stabilizes as well.

5. Appendix
As we mentioned before, in this appendix we prove that the radical of an

abelian category is unique and characterize it.

Proposition 5.1. If C is an abelian category then there is a unique radical
in C.

Proof : We use the notation introduced immediately after Definition 1.1. Let
I be a radical of C. Then

iBI(A,B)πA ⊂ I(A⊕B,A⊕B)

and

πBI(A⊕B,A⊕B)iA ⊂ I(A,B).

Therefore

I(A,B) = πBiBI(A,B)πAiA ⊂ πBI(A⊕B,A⊕B)iA ⊂ I(A,B)

and, as a consequence,

I(A,B) = πBI(A⊕B,A⊕B)iA = πBJ (C(A⊕B,A⊕B)) iA.

This shows that the radical is unique if it exists.
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Next we show the existence of a radical in C. Define J(A,B) by

J (A,B) =

{
f

∣∣∣∣ ( 0 0
f 0

)
∈ J

(
C(A,A) C(B,A)
C(A,B) C(B,B)

)}
.

First we show that J is an ideal in C. Let C be an object in C. Denote by E
the idempotent  1A 0 0

0 1B 0
0 0 0


in C(A⊕B⊕C,A⊕B⊕C). By Proposition 5.13 [2] we have an isomorphism

J (C(A⊕B,A⊕B)) ∼= EJ (C(A⊕B ⊕ C,A⊕B ⊕ C))E.

Therefore

J(A,B) =

 f : A → B

∣∣∣∣∣∣
 0 0 0

f 0 0
0 0 0

 ∈ J

 C(A,A) C(B,A) C(C,A)
C(A,B) C(B,B) C(C,B)
C(A,C) C(B,C) C(C,C)

 .

Let g : B → C. Then 0 0 0
0 0 0
0 g 0

 0 0 0
f 0 0
0 0 0

 =

 0 0 0
0 0 0
gf 0 0

 ∈ J

 C(A,A) C(B,A) C(C,A)
C(A,B) C(B,B) C(C,B)
C(A,C) C(B,C) C(C,C)

 .

Switching the roles of B and C in the above considerations we obtain

J(A,C) =

h : A → C

∣∣∣∣∣∣
 0 0 0

0 0 0
h 0 0

 ∈ J

 C(A,A) C(B,A) C(C,A)
C(A,B) C(B,B) C(C,B)
C(A,C) C(B,C) C(C,C)


and therefore gf ∈ J(A,C). This shows that J is a left ideal of C. That J is
a right ideal can be shown analogously.
Now we have to check that J(A,A) = J (C(A,A)). By definition we have

J(A,A) =

{
f : A → A

∣∣∣∣ ( 0 0
f 0

)
∈ J

(
C(A,A) C(A,A)
C(A,A) C(A,A)

)}
.

Let f ∈ J(A,A). Then(
f 0
0 0

)
=

(
0 1A
0 0

)(
0 0
f 0

)
∈ J

(
C(A,A) C(A,A)
C(A,A) C(A,A)

)



14 ANA PAULA SANTANA AND IVAN YUDIN

since J (C(A⊕ A,A⊕ A)) is an ideal of C(A⊕ A,A⊕ A). As(
f 0
0 0

)
= e

(
f 0
0 0

)
e,

where e =

(
1A 0
0 0

)
, we obtain by Proposition 5.13 [2](

f 0
0 0

)
∈ eJ

(
C(A,A) C(A,A)
C(A,A) C(A,A)

)
e = J

(
e

(
C(A,A) C(A,A)
C(A,A) C(A,A)

)
e

)

= J

(
C(A,A) 0

0 0

)
.

Therefore f ∈ J(C(A,A)) and J(A,A) ⊂ J (C(A,A)).
Now suppose that f ∈ J(C(A,A)). Then(

f 0
0 0

)
∈ J

(
C(A,A) C(A,A)
C(A,A) C(A,A)

)
and (

0 0
f 0

)
=

(
0 0
1A 0

)(
f 0
0 0

)
∈ J

(
C(A,A) C(A,A)
C(A,A) C(A,A)

)
since J (C(A⊕ A,A⊕ A)) is an ideal of C(A⊕A,A⊕A). Thus f ∈ J(A,A)
and J (C(A,A)) ⊂ J(A,A).
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