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Resumo

Os robôs de trepar estruturas têm inúmeras aplicações no campo da inspecção de estruturas tubu-

lares tridimensionais construı́das pelo Homem. A aplicação que mais se destaca é a inspecção

periódica com recurso a sondas de testes não destrutivos (NDT) de forma a determinar o estado

de degradação da estrutura bem como identificar possı́veis defeitos nas soldaduras. Hoje em

dia, as inspecções deste tipo são realizadas por técnicos especializados que se deslocam através

das estruturas enquanto estas estão a ser utilizadas, normalmente transportando substâncias

quı́micas perigosas. Este tipo das tarefas é designado na literatura inglesa como tarefas DDD

(de Dirty, Dangerous and Difficult - Sujas, Perigosas e Difı́ceis).

Se um Robô for capaz de trepar estruturas tubulares 3D com curvas e ramificações, bem como

realizar uma digitalização de toda a sua superfı́cie exterior, então pode ser equipado com son-

das NDT de forma a executar inspecções autónomas. Este cenário seria mais seguro, barato e

provavelmente, mais rápido do que utilizando as técnicas actuais. A investigação na área dos

robôs de trepar tem-se focado maioritariamente em robôs de trepar paredes (WCRs), sendo o

número de trabalhos sobre robôs de trepar estruturas (PCRs) bastante reduzido. Isto deve-se

à dificuldade acrescida no desenvolvimento de PCRs comparativamente aos WCRs, já que os

PCRs necessitam de garras dedicadas e graus de liberdade adicionais. Dentro dos PCRs, há

que distinguir os robôs simples, capazes de trepar apenas estruturas tubulares lineares daqueles

capazes de lidar com curvas e ramificações. Esta tese trata do projecto e desenvolvimento de um

robô industrial do tipo PCR, capaz de trepar e varrer estruturas 3D com um mı́nimo de graus de

liberdade. Este robô é capaz de ultrapassar secções curvas e em T, sendo ainda capaz de varrer

a estrutura com uma sonda de inspecção sem recorrer a um braço extra.
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Abstract

Pole climbing robots have many applications in the inspection of human made 3D tubular struc-

tures. The most important application is performing periodical inspections by NDT probes in

order to detect the progression of material degradation and welding defects.

Nowadays, NDT methods are applied by dextrous technicians in elevated structures, while dan-

gerous chemicals run inside the pipes. These jobs can be categorized as DDD (or 3D) jobs (jobs

that are Dirty, Dangerous, and Difficult). In the United States, wages for DDD jobs can be over

70,000 USD annually, even though there are lack of workers for such jobs.

If a robot is able to climb across 3D tubular structures with bends and branches and also scan all

of its exterior surface, it might be equipped with NDT probes to perform autonomous inspec-

tions. This is safer, cheaper, and probably faster to do than using human workers.

Previous researches on climbing robots all around the world focused mostly on Wall Climb-

ing Robots (WCRs) and only a few research works were performed on Pole Climbing Robots

(PCRs). The reason is the higher difficulty in designing PCRs compared to WCRs, as WCRs

use standard grippers like vacuum cups or magnets to stick to the surface, PCRs need dedicated

grippers. Furthermore there are fundamental differences between simple PCRs that only climb

from a straight pole and those that should pass bends and branches. This thesis presents the

“Design, development and automation of an industrial pole climbing and manipulating robot

with minimum possible degrees of freedom, which is able to overcome bends and T-junctions

of a structure, manipulate across the structure, and scan all of its surface, without need to an

extra arm.”
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Faria, Gonçalo Cabrita and Joao Lucas for their supports on my project and for their friendship

and Mitra Shahabi for the proofreading of this thesis. I would also like to thank my kind parents

for their love and support from many kilometers away. I would like to especially thank my wife

Leila, for all her love, patience, support and inspiration.

v





Contents

Resumo i

Abstract iii

Acknowledgment v

List of Abbreviation xxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Robot Mission 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Working area of the robot (environment) . . . . . . . . . . . . . . . . . 20
2.2.2 Definition of the mission . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Metrics and quantitative evaluation . . . . . . . . . . . . . . . . . . . 22

2.3 The 3DCLIMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Conceptual Design 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Conceptual designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Tripod climbing concept . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Flexible gripper concept . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Belt-pushing continuous climbing concept . . . . . . . . . . . . . . . . 31
3.2.4 Step by step based climbing concepts . . . . . . . . . . . . . . . . . . 33

3.3 PCR design groups: adaptation with requirements . . . . . . . . . . . . . . . . 34
3.3.1 Continuous motion PCRs . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Noncontinuous serial climbing structures . . . . . . . . . . . . . . . . 38

vii



viii CONTENTS

3.3.3 Noncontinuous parallel climbing structures . . . . . . . . . . . . . . . 39
3.3.4 Noncontinuous hybrid climbing structures . . . . . . . . . . . . . . . . 40

3.4 Selection of the final design category . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Minimum degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 The final conceptual design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 Climbing structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.2 Grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Kinematics, Dynamics, and Workspace Analyses 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Kinematics analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Direct kinematics problem . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Inverse kinematics problem . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Jacobian matrix and singularities . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Optimization of the links length of the 3-DOF arm . . . . . . . . . . . . . . . 61
4.5 Constant orientation workspace analysis . . . . . . . . . . . . . . . . . . . . . 64
4.6 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 3D modeling and validation of equations . . . . . . . . . . . . . . . . . . . . . 67

4.7.1 3D modelling in SolidWorks . . . . . . . . . . . . . . . . . . . . . . . 67
4.7.2 Validation of developed codes . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Detailed Mechanical Design, Manufacturing, and Assembly 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Link lengths and actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Detailed design of the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Climbing structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.3 Custom design links and base plates . . . . . . . . . . . . . . . . . . . 83

5.4 Optimum structural design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Motion simulation and validation of the design . . . . . . . . . . . . . . . . . 88

5.5.1 Climbing over the straight path . . . . . . . . . . . . . . . . . . . . . . 89
5.5.2 Passing the bent section . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Manufacturing, assembly, and mechanical characteristics . . . . . . . . . . . . 91
5.6.1 Grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6.2 Climbing structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Sensors and Electrical Architecture 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CONTENTS ix

6.2.1 Sensors of the gripping mechanism . . . . . . . . . . . . . . . . . . . 100
6.2.2 Positioning sensors of the climbing mechanism . . . . . . . . . . . . . 102
6.2.3 Range finders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Motor drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 DC drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.2 AC drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Electronics architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.1 Electronics architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Path Planning and User Interface 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Autonomy level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.1 Low level trajectory generation . . . . . . . . . . . . . . . . . . . . . 115
7.3.2 Mid level straight line and bent section passing algorithms . . . . . . . 118
7.3.3 Multi step straight line path planner . . . . . . . . . . . . . . . . . . . 123

7.4 Angular deviation compensation and calibration algorithms for fine manipulation 126
7.4.1 Error sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.2 Angle compensation and autonomous calibration algorithm . . . . . . . 129

7.5 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.6 Server-client based remote control . . . . . . . . . . . . . . . . . . . . . . . . 135
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Testing and Results 139
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 First experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.1 Safety and tolerance to power failure . . . . . . . . . . . . . . . . . . 143
8.2.2 Test of grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Second experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Limitations and problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Biological Inspired Designs and Actuators 151
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2 Biologically inspired design . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2.1 Design inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3 Biologically inspired actuators . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.3.1 Comparison procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.3.3 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.3.4 Discussion about biologically inspired actuators . . . . . . . . . . . . . 169

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10 Conclusions and Future Works 173



x CONTENTS

10.1 Future works and novel concepts . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.1.1 A lighter climbing robot . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.1.2 Gripping mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.1.3 Server-client based remote control . . . . . . . . . . . . . . . . . . . . 178
10.1.4 Absolute localization on the structure . . . . . . . . . . . . . . . . . . 179
10.1.5 Optimization of the gait generation . . . . . . . . . . . . . . . . . . . 180

10.2 Main contributions and publications . . . . . . . . . . . . . . . . . . . . . . . 180

A Technologies 183

B Notation 189

C Publications 191
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



List of Figures

1.1 Chernobyl disaster is considered as the worst nuclear power plant disaster in

history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A typical piping model in an industrial plant. . . . . . . . . . . . . . . . . . . 3

1.3 Inspection of pipelines in refineries is a difficult and dangerous job. . . . . . . . 4

1.4 A continuous motion PCR developed in University of Tehran for cleaning the

poles [YAH+04]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 “ROMA” is a pole climbing robot with a 6-DOF serial climbing mechanism

[BGP+00b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 “Trepa” robot is a pole climbing robot with a 6-DOF parallel climbing mecha-

nism [SARS05]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 The biologically inspired pole climbing robot “RISE” can climb from straight

structures with soft and non metallic materials [HKL+09]. . . . . . . . . . . . 11

1.8 typical piping in industrial plants. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Entities involved in a benchmarking process. . . . . . . . . . . . . . . . . . . . 18

2.2 Developed structure for pole climbing robot benchmarking. . . . . . . . . . . . 22

3.1 Systematic approach to design process. . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Systematic approach utilized in the design process of 3DCLIMBER. . . . . . . 29

3.3 Tripod climbing robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The flexible gripper concept can adapt to a big range of section sizes and shapes

of the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



xii LIST OF FIGURES

3.5 The belt pushing climbing concept can adapt to a big range of section sizes and

shapes of the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Step by step basis robot with a hybrid (serial-parallel) climbing configuration. . 33

3.7 Step by step basis robot with a serial climbing configuration. . . . . . . . . . . 33

3.8 Step by step basis robot rotating around the pole. . . . . . . . . . . . . . . . . 34

3.9 Biologically inspired climbing robot consisting of 4 articulated arms. . . . . . . 35

3.10 A gripper concept consisting of electromagnet modules. . . . . . . . . . . . . . 36

3.11 V shaped gripper concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.12 Climbing along a pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.13 Overtaking the bent section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.14 Rotating around pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.15 3D model of the designed 4-DOF climbing structure . . . . . . . . . . . . . . 46

3.16 6-DOF vs 4-DOF articulated serial arm motion. . . . . . . . . . . . . . . . . . 46

4.1 The 4-DOF climbing mechanism and the simplified model for the kinematics

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Kinematic configuration of the climbing module. . . . . . . . . . . . . . . . . 51

4.3 The constant workspace of the articulated 3-DOF arm. . . . . . . . . . . . . . 63

4.4 If l3 = D/2, the vertical diameter of the concentric circles coincides with the

axis of the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 The condition l1 = l2 increases the thrust of the articulated arm. . . . . . . . . . 63

4.6 The condition l1 = l2 minimizes the Sv, which indeed maximizes the arm thrust

in X (bent section) direction. In the middle and the right figure, the constant

workspace for θ = 90o is demonstrated. The center of the workspace shifts in Z

direction equal to l3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Different views of the workspace for θ = 90◦, dimensions in mm. . . . . . . . . 65

4.8 Different views of the workspace for θ = 180◦, dimensions in mm. . . . . . . . 65

4.9 Schematic draw of the 3-DOF arm along with the links parameters. . . . . . . . 68

4.10 Validation of the direct kinematics equations and related MATLAB routines. . . 69

4.11 Validation of Inverse kinematics equations and related routines. . . . . . . . . . 70



LIST OF FIGURES xiii

5.1 The method which was used for calculation of the length of the links . . . . . . 74

5.2 Position, velocity, and angular acceleration of all joints, when the robot is pass-

ing a 90° bent section. The trajectory of each joint (position and time) was

introduced to the software as input. The occasional abrupt changes in curves

are due to problems associated with the modeling of the contact between the

grippers and the structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Performance graph of the FHA-25C-160H Harmonic Drive actuator [LLC08]. . 76

5.4 The detailed design of the 3DCLIMBER. . . . . . . . . . . . . . . . . . . . . 77

5.5 4-DOF climbing structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 The Detailed design of the Z axis rotation mechanism. . . . . . . . . . . . . . 79

5.7 Construction of the HCR guide and slider. . . . . . . . . . . . . . . . . . . . . 80

5.8 The detailed design and parts of each gripper. . . . . . . . . . . . . . . . . . . 81

5.9 For the structural analysis of the gripper arm, the holes on the right side of the

link are set as fixed. On the left a torque and a force are applied. . . . . . . . . 85

5.10 The safety factor distribution in structural analysis of one of the grippers’ arm. . 86

5.11 The strain distribution in structural analysis of the grippers’ arm. . . . . . . . . 86

5.12 The deflection which is the result of the applied force and torque in an exagger-

ated scale of about 488 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.13 The structural analysis was performed for most of the parts with the objective

of minimizing the weight of the parts and thus to minimize the over all weight

of the robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.14 Trajectory of the joints and torque of the electrical actuators for a straight climb-

ing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.15 Sample shots of simulated motion of the robot model over a straight pole. . . . 91

5.16 Sample shots of simulated motion of the robot model passing a bent section of

90odeg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.17 Trajectory of the joints and torque of the electrical actuators for passing a 90o

bent section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.18 Custom designed and manufactured parts of the robot. . . . . . . . . . . . . . 95



xiv LIST OF FIGURES

5.19 Gripper of the 3DCLIMBER. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.20 The 3-DOF serial link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.21 The Z axis rotation mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.22 The 3DCLIMBER robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 FSR sensors attached to a gripper. . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 The inclinometer board developed at ISR. . . . . . . . . . . . . . . . . . . . . 102

6.3 One of the inclinometer boards which is installed on the gripper. . . . . . . . . 103

6.4 Y axis values of the accelerometer at 40◦. . . . . . . . . . . . . . . . . . . . . 104

6.5 Y axis values of the accelerometer at 40◦ with a 6 Hz normal amplitude vibration.105

6.6 Y axis values of the accelerometer at 40◦ with a 3 Hz normal amplitude vibration.106

6.7 Y axis values of the accelerometer at 40◦ with a 5 Hz wide amplitude vibration. 107

6.8 A range sensor faces the structure and measures the relative distance. . . . . . . 107

6.9 Sharp range finder used for distance measurement. . . . . . . . . . . . . . . . 107

6.10 The output “voltage” of the Sharp sensor against the distance to a gray & a white

paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.11 The output voltage of the range sensors for a flat surface and a circular pole with

the diameter of 219 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.12 Electronics architecture of the 3DCLIMBER robot. . . . . . . . . . . . . . . . 112

7.1 Path planning and path tracking in robotic applications . . . . . . . . . . . . . 114

7.2 Half step and one step concepts (The opening and closing of grippers not shown). 116

7.3 Generated trajectory for climbing mechanism motors for making one step up,

including opening and closing of grippers. . . . . . . . . . . . . . . . . . . . . 117

7.4 Generated trajectory for climbing mechanism motors while passing a bent sec-

tion. In the figures, the term “rel” stands for the position relative to the initial

position and “abs” stands for the absolute position. . . . . . . . . . . . . . . . 118

7.5 The GRAFCET representation of the “one step forward” straight line planner

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6 The GRAFCET representation of the 45o and 90o bent section passing algorithm. 122



LIST OF FIGURES xv

7.7 Z axis rotating mechanism is designed to place the X-Z plane of the robot coin-

ciding with the X-Z plane of the structure. . . . . . . . . . . . . . . . . . . . . 123

7.8 The GRAFCET representation of the φ angle planner algorithm. . . . . . . . . 124

7.9 The GRAFCET representation of the start up calibration algorithm. . . . . . . 125

7.10 The GRAFCET representation of the multi step straight line planner. . . . . . . 126

7.11 Demonstration of the tilt angle error and compensation: a -Correct status. b-

After occurrence of the error. c- Error compensation for the upper gripper. d-

Error compensation for the lower gripper. . . . . . . . . . . . . . . . . . . . . 129

7.12 The error on the placement of the base generates a relative error on the manipulator.129

7.13 Self-calibration algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.14 A simplified schematic of the control loop. . . . . . . . . . . . . . . . . . . . . 133

7.15 Autonomous self-calibration illustration. . . . . . . . . . . . . . . . . . . . . . 133

7.16 Snapshots from the user interface of the climbing robot. . . . . . . . . . . . . . 134

7.17 Segmentation of message codes by component. . . . . . . . . . . . . . . . . . 136

7.18 Joints properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.19 Client software architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.20 Client application GUI adapted for the 3DCLIMBER. . . . . . . . . . . . . . . 138

8.1 Sample snapshots of the experimental results. . . . . . . . . . . . . . . . . . . 141

8.2 Sample snapshots of the experimental results (2). . . . . . . . . . . . . . . . . 142

8.3 The robot can stay attached to the structure with only one gripper. . . . . . . . 145

8.4 Sample snapshots of the experiments of the robot with the bigger links. . . . . 145

9.1 Gecko (Left) and opossum (Right) use balancing, clinging, and sticking tech-

niques for climbing over trees. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2 Sloths can hang from a branch. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.3 Bushbabies leap up and glide down the tree. . . . . . . . . . . . . . . . . . . . 154

9.4 Tree-kangaroos, goannas, coconut crabs, and tree snakes use body clasping

techniques to attach themselves to the tree. . . . . . . . . . . . . . . . . . . . . 154

9.5 Monkeys, squirrels, birds, and chameleons, clasping with their hands and feet. . 155



xvi LIST OF FIGURES

9.6 Spider monkeys and gibbons can brachiate over trees and swing from one hold

to the next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.7 Humans use different techniques and additional tools to climb trees. . . . . . . 156

9.8 McKibben pneumatic actuators relaxed (top) and inflated (bottom) [rc08]. . . . 161

9.9 The one DOF joint considered for the comparison study. . . . . . . . . . . . . 163

9.10 A rotational joint derived by two PMs as extensor and flexor. . . . . . . . . . . 163

9.11 A screen shot from the MuscleSim package [FES08]. . . . . . . . . . . . . . . 165

9.12 Two pneumatic muscles are required to drive a revolute joint in both directions

[OL02]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.13 The τ.α values for PMs (red) and electrical rotary actuators with 30 rpm rota-

tional speed and travel angles of α = 1 to α = 5 against the weight of the actuators.167

9.14 The τ.α values for PMs (red) and electrical rotary actuators with 40 to 60 rpm

rotational speed and travel angles of α = 1 to α = 5 against the weight of the

actuators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.15 The installation length of pneumatic muscles against their τ.α value. . . . . . . 168

10.1 The conceptual design model of the one-DOF biologically inspired gripper con-

cept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.2 Integrated wheel increases the climbing speed . . . . . . . . . . . . . . . . . . 178

10.3 Wheels might help the robot moving on the ground. . . . . . . . . . . . . . . . 179

10.4 Close view of the robot model moving on the ground. . . . . . . . . . . . . . . 179

A.1 Construction of the HCR guide and the slider. . . . . . . . . . . . . . . . . . . 184

A.2 Permissible moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.3 Load rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.4 The construction of the kr2602 THK guide. . . . . . . . . . . . . . . . . . . . 184

A.5 Permissible forces and moments on kr2602 linear guide. . . . . . . . . . . . . 184

A.6 The bevel gear (Left) and the coupling (Right) which have been used for the

3DCLIMBER’S grippers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.7 The harmonic drive gearing technology (left) and the FHA-25C-160H actua-

tor(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



LIST OF FIGURES xvii

A.8 SICK/STEGMANN sine/cosine encoder with HIPERFACE interface. . . . . . 186

A.9 IBL2403 DC motor driver from TECHNOSOFT. . . . . . . . . . . . . . . . . 186

A.10 NI USB-6009 data acquisition from National Instrument. . . . . . . . . . . . . 186

A.11 MDX 60/61B driver from SEW is used for control of AC motors of the 3-DOF

serial arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187





List of Tables

2.1 Metrics for evaluation of PCRs performance . . . . . . . . . . . . . . . . . . . 25

4.1 Denavit-Hartenberg parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Characteristics of the FHA-25C-160H Harmonic Drive actuator [LLC08]. . . . 74

5.2 Main Robot Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Characteristics of the inclinometer sensors. . . . . . . . . . . . . . . . . . . . 108

8.1 Main characteristics of the robot with 220 mm links . . . . . . . . . . . . . . . 147

8.2 Main characteristics of the robot with 350 mm links . . . . . . . . . . . . . . . 147

8.3 Improvements on the robot’s performance after integration of self-calibration

algorithms and sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xix





List of Abbreviation

2D 2 Dimensional.

3D 3 Dimensional.

AuRA Autonomous Robot Architecture.

CAN Controller Area Network.

DDD Dirty, Dangerous, Difficult.

DOF Degree(s) Of Freedom.

FOS Factor Of Safety.

FSR Force Sensitive Resistors.

GUI Graphical User Interface.

I/O Input-Output.

ISR-UC Instituto de Sistemas e Robótica da Universidade de Coimbra.
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Chapter 1

Introduction

1.1 Motivation

Climbing robots have received an increasing attention during the last decade due to their po-

tential applications in the maintenance of tall buildings, agricultural harvesting, highways and

bridge maintenance, shipyard production facilities, etc. Pole Climbing Robots (PCR), form a

branch of climbing robots which are usually considered for inspection and maintenance of struc-

tures with circular cross section. In this section three different application areas of pole climbing

robots are described:

• Inspection of pipelines in industrial plants

• Maintenance of lighting poles in highways

• Elevated observer in disasters and beacon for swarm robot rescue navigation

An important application area for PCRs is inspection and maintenance of pipelines. Oil refiner-

ies, nuclear plants, fertilizer plants, petrochemical plants, and cement plants need to monitor

the condition of their equipment to detect the progression of material degradation and welding

defects specially in their static pressure equipments, reservoirs, and pipes. Any failure in the

mentioned plants may result in a disaster similar to what happened in Chernobyl in 1986 (Fig-

ure 1.1). Periodical tests are necessary to locate possible defection, and prevent failures. Many

1
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Figure 1.1: Chernobyl disaster is considered as the worst nuclear power plant disaster in history.

NDT methods were developed for monitoring material degradation by employing appropriate

techniques and equipments implemented by well trained technicians. Some examples are:

• Ultrasonic wall thickness measurement using digital thickness gauges to monitor re-

duction in thickness due to corrosion and erosion [Sit08].

• Magnetic Particle Inspection of welds in high pressure piping and vessels. The objec-

tive of testing is to detect cracks in the welding, heat affected zone, and adjacent parent

material [Sit08].

• A Liquid penetrant inspection is a low cost and easy to perform method which looks

for surface defects in a variety of nonferrous materials including some metals, plastics,

rubber, and ceramics. It can also be very precise, revealing flaws such as cracks caused

by fatigue, damage, strain, or improper manufacturing when these cracks are too small to

be seen in a casual visual inspection. In a liquid penetrant inspection a dye is applied to

the surface and the excess dye is wiped off. Then a developer is applied and dye which

has adhered to cracks and other defects will activate the developer, revealing flaws in the

surface of the material being tested [Sit08].
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Figure 1.2: A typical piping model in an industrial plant.

• Ultrasonic flaw detection is used for pipe lines operating under combinations of high

pressure and temperature, where the material failure due to the phenomena of creep starts

from inner surface and proceeds to the pipe outer diameter giving way to direct leak path

or sudden failure. Ultrasonic flaw detection detects initiation and progression of such

cracks [Sit08].

To perform NDT methods, usually a probe should approach to the testing area. Figure 1.2 shows

a typical piping installation which can be found in such plants. The inspection of such piping is

very difficult, not only due to the height of the pipes, but also because of radioactive radiation

on nuclear plants or chemical pollution in oil and gas industries. In the current approach for

performing these tests, a human worker carries the probe to the test areas. This is not a prob-

lem until the job is done on the floor, but applying NDT in elevated structures, where dangerous

chemicals or hot fluids run inside the pipes and the working area is polluted by chemicals, makes

it extremely difficult and can be categorized in the 3D jobs (jobs that are Dirty, Dangerous, and
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Figure 1.3: Inspection of pipelines in refineries is a difficult and dangerous job.

Difficult). In the United States, wages for 3D occupations can be over 70,000 USD annually,

even though there are lack of workers who wish to do such jobs. On the other hand since these

jobs are dangerous to human life, employers should buy a very expensive life insurance for their

employees. Power line and lamp posts are other examples of tall structures, which need regular

repairs and maintenance. Like the previous examples, these jobs also require skilled and fearless

workers (See figure 1.3).
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If a climbing robot has the ability of climbing from such structures and carrying the test probe

to the test area, it will address this problem. If the robot can climb over such structures and scan

the whole surface of the pipes, one can equip it with NDT probes and do the required testing

automatically. This method is safer, cheaper, and probably faster to do than using human work-

ers. This is the main application of PCRs.

The second application area of PCRs is maintenance of lighting poles in the highways, includ-

ing simple tasks like washing the pole surface to more complicated missions such as changing

the damaged lamp bulb with a new one.

The third application area for PCRs was discussed in a European project called GUARDIANS.

GUARDIANS is a Group of Unmanned Autonomous Robots for Discovery and Information

Acquisition, Navigating to detect chemicals and explosives. The GUARDIANS project devel-

oped a swarm of autonomous robots to survey, inspect and map two types of terrains, a partly

destroyed urban area and a havocked country side. The swarm included mobile wheeled robots.

During the experiments of the swarm, the project partners declared the need for an elevated ob-

server as well as an elevated beacon. As the GUARDIANS swarm aims to explore areas after a

disaster and provide quick information to authorities, installation of an observer and/or a beacon

in an elevated structure is time consuming. But a PCR can climb from a lighting pole and carry

the necessary equipments, providing beacon for communication between robots, which is not

effected by local on land obstacles and can provide live video broadcast for authorities.

1.2 State of the art

During the last two decades, different types of climbing robots were developed either for climb-

ing over flat or curved surfaces. In this section, first a short categorization of various climbing

robots including wall climbing robots and in pipe robots will be presented. Then a deeper study
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about pole climbing robots which have been developed will be presented.

In the category of wall climbing robots, to hold the robot attached to a smooth surface, suction

cups [DT02, NH94, Rac02, RPRC01, YSD+99] or magnets [CPA+98, HNT91] have been used.

Robots whose end-effectors match engineered features of the environment like fences, porous

materials, or bars [BDM00, XBFK94, YHR01, AOT01] have been also developed.

Furthermore robots for climbing inside pipes or ducts have received an increasing attention due

to their applications in pipe inspection. Most of the already developed in pipe robots [Neu94,

RP97, HOMS99, OO05, RC05, RKL+09, LMLW09] have similar mechanical structures. They

use springs to push derived wheels to the internal circumference of the pipe. Recently developed

in-pipe robots use linkages to overcome the bent sections and T-junctions.

During the last two decades, most of the research in the area of climbing robots focused on

WCRs and in pipe robots and only a few number of PCRs were designed and developed. Gen-

erally, design and implementation of PCRs face more problems than those of WCRs and in-pipe

robots. Many factors contribute to this. For instance using vacuum grippers on human made

3D structures like poles and scaffolds is not a good choice because the vacuum system can not

work efficiently on curved surfaces. Another example is wheeled wall climbing robots. In such

WCRs all wheels are on a single plane, but in continuous motion PCRs this is more problematic

as the wheels should first encircle the pole and then adapt their diameter to the structure cross

section and apply enough normal force to the wheels. It should be noted that design of in-pipe

robots is quite different from PCRs as in-pipe robots take advantage of the internal circumfer-

ence of pipes which is not the case for the PCRs.

Due to many problems associated with the design and development of PCRs, to the best of the

author’s knowledge less than 10 PCRs have been developed all around the world so far [BGP+00a,

ASAR03, RSAS00, TZVB05, BAH05, HH01, HKL+09].
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Previously developed PCRs can be categorized into two main design categories.

• Continuous motion PCRs

• Noncontinuous PCRs either with serial, parallel, or hybrid climbing mechanisms.

Continuous motion PCRs [BAH05, HH01] usually take advantage of a simple structure and are

faster than step by step based robots, but they have lower maneuverability. This kind of robots

are mostly appropriate for climbing over simple poles and performing simple tasks which do not

require a manipulator, like washing poles [BAH05]. Figure 1.4 shows a continuous motion PCR

developed in University of Tehran [YAH+04, MNA06]. This robot aims to wash the poles of

highways. The robot uses three spring loaded wheels which encircle the structure. It can climb

from straight poles rapidly and continuously. However it can not pass bends or T-junctions and

is not able to perform in situ manipulations. The main advantages of continuous motion PCRs

include:

• High climbing speed, provided by its continuous climbing mode using wheels.

• Simplicity of the design and implementation.

• Possibility of modular design using similar simple wheeled modules connected to each

other through active or passive joints.

The main disadvantages of continuous motion PCRs include:

• Difficulties in passing bent sections: This design group can only pass bent sections of the

structure if the robot contains a separate arm or if several continuous motion modules are

connected together through active joints, (see [YAH+04] and [MNA06]).

• Inability of passing T-junctions: Due to the close structure of each module as it can be

seen in [YAH+04, MNA06, LXGL07, HH01], it can not pass T-junctions of structures.

• Low maneuverability: To perform some manipulation around the pole, they need an extra

articulated arm.
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Figure 1.4: A continuous motion PCR developed in University of Tehran for cleaning the poles
[YAH+04].

• Lack of safety in case of power failure: This is mainly due to the lack of separate climbing

and gripping modules. Any failure of the climbing mechanism will be also a failure in the

gripping mechanism. There exist passive mechanical locking mechanisms which make

the system fault tolerant in case of power failures. For instance application of high ratio

gear boxes on gripping mechanism increases the gripper inertia, and locks the grippers

at its last pose, e.g. closed, in case of power failure. Such mechanisms might not be

used on the continuous motion PCRs as there exist no separate climbing and gripping

mechanisms.

A few step by step based PCRs with different types of grippers and climbing mechanisms have

been also developed [BGP+00a, ASAR03, TZVB05]. But in this area many problems remain

unsolved. For example most of the researches were addressing the climbing problem and less

efforts were given to address the manipulation over the structure. For instance “ROMA” is a

75 kg pole climbing robot with a 6-DOF serial climbing mechanism[BGP+00b] (Figure 1.5)
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Figure 1.5: “ROMA” is a pole climbing robot with a 6-DOF serial climbing mechanism
[BGP+00b].

and the “Trepa” robot is a 6-DOF parallel climbing mechanism pole climbing robot [SARS05]

(Figure 1.6). In both cases using a 6 degrees of freedom mechanism make the robots heavy.

These studies did not report any analysis about the minimum necessary degrees of freedom for

climbing over 3D structures. Excessive degrees of freedom increase the robot’s weight without

necessarily increasing its efficiency. Furthermore, even when a 6-DOF climbing mechanism

is used, such mechanism can be also used for manipulation purposes over the structure. But

in none of the previous cases manipulation was considered. For instance in the “Trepa” robot

an additional arm is considered for manipulation (Figure 1.6). Another problem of the “Trepa”

robot is its closed gripping structure which does not allow passing T-junctions which limits more

its maneuverability. Except the fact that maneuverability and manipulation precision of the

PCRs have not been studied because the preference was given to address the climbing problem

itself, another fact contributing to lack of such studies might be the difficulties associated with

the fine manipulation with large actuators.

Recently a quadrupedal PCR which can rapidly climb across straight poles was reported (See

figure 1.7 [HKL+09]). This robot takes advantage of a novel biologically inspired gripper. This

robot may not be able to climb from metallic surfaces due to the claws-like grippers which are

designed to penetrate into the soft materials, like wood. Furthermore the ability of passing the
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Figure 1.6: “Trepa” robot is a pole climbing robot with a 6-DOF parallel climbing mechanism
[SARS05].

bent sections and T-junctions was not reported.

Even though each of the previously mentioned PCRs address some of the relative problems, but

none of them considered the whole problem of climbing and manipulating over 3D structures

comprehensively. Furthermore, they did not report optimization in the design process. Finally

it should be also referred that the manipulation problem of the current PCRs can not be solved

by simply adding an additional arm to an existing climbing mechanism as stated in [SARS05]

(Figure 1.6) since the accurate positioning of an arm installed on a mobile base will be a problem

which should be addressed.

Considering the few researches conducted on the area of pole climbing robots, the previously

developed PCRs had one or more of the following problems unsolved:

• Not being able to pass bent sections or branches [BAH05, HH01].

• Having more DOF than necessary, resulting in heavier and slower mechanisms [BGP+00a].
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Figure 1.7: The biologically inspired pole climbing robot “RISE” can climb from straight struc-
tures with soft and non metallic materials [HKL+09].

• Not being able to perform manipulation and practical operation on the pole, or needing

an extra arm to do so [BAH05, ASAR03].

• Lack of analysis on the industrial pipings and not being designed for industrial applications[RSAS00].

1.3 Statement of the problem

To develop an industrial pole climbing robot, able to perform in situ manipulation for NDT in

elevated industrial pipings of plants, the definition of the project objectives should consider the

size and geometry of the piping in plants. Even though the development of a robot which can

climb and manipulate across all kinds of piping and scaffolds with wide range of profile shapes

and sizes is not possible due to the large variety of such structures, the wider range of structures

that the robot handle, the better.

For a better perception of the problem, an analysis of existing structures is necessary. To develop

an industrial PCR, one should consider all problems which are associated with navigation on

piping of plants. Figures 1.2 and 1.8 show some examples of typical piping in plants. As it can
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be seen the piping includes a range of cross section diameters, bends of 90° and 45°, T-junctions,

step changes on cross section size, and also obstacles with large diameters.

Therefore, considering the existing piping and scaffolds in plants, the main objectives of the

project are defined as:

• Design and prototyping of an industrial pole climbing and manipulating robot with

the minimum possible degrees of freedom which is able to pass bends and T-junctions,

overcome step changes in the cross section, operate in a reasonable range of cross

section diameters, scan all of the pole’s exterior circumference, and perform in situ

manipulation without need for an extra arm. Weight optimization, safety, modu-

larity and simplicity of the design and control should be considered in the design

process.

Modularity grants the robot the ability of operating in a wider range of structures. For instance

modular grippers can be developed for different ranges of cross section shapes and diameters,

provided that the grippers can be replaced easily and quickly. Weight optimization, safety,

tolerance to power failure, climbing speed, etc. are some other parameters which increase the

usability of the robot. Such parameters along with an analysis of the problem is discussed more

extensively in chapter 2.

1.4 Contributions

The main contribution of this thesis is design and implementation of a novel PCR able to climb

and manipulate across industrial 3D structures. The following list describes the main contri-

butions in the design, development and automation process of the 3DCLIMBER (the robot is

named “3DCLIMBER”) in detail.

• Design of a climbing robot which can pass bends and T-junctions and overcome regular
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Figure 1.8: typical piping in industrial plants.



14 Chapter 1. Introduction

and step changes on the cross section size.

• Design and implementation of a climbing mechanism with minimum possible degrees of

freedom which makes it possible to scan the whole exterior surface of the structure.

• Design and implementation of unique V-shaped grippers which have a self centering char-

acter eliminated the necessity of integration of additional sensors and complicated center-

ing algorithms. Furthermore, design of an open gripping structure, allows full detachment

from the structure and thus performance of manipulation across the structure. Being able

to perform some manipulation on the structure without an extra arm, means that the robot

is able to stay on the pole with only one gripper while the other gripper can detach from

the pole and perform the necessary manipulation.

• Design and implementation of grippers which are tolerant to power failure allows the

robot to stay on the structure without any active actuator. Even if after grasping the

structure, the gripper actuator fails to operate for any reason, the robot will not detach

from the structure or slip on it.

• Development and integration of necessary algorithms and low cost sensors for fine ma-

nipulation with the serial arm. These algorithms and sensors effectively reduced the po-

sitioning errors and can be used for similar articulated arms where the base of the arm is

not fix and contains positioning errors.

To achieve all of the mentioned contributions, some innovative designs in the climbing and grip-

ping mechanisms will be introduced.

Furthermore, designing a system involves analysis about the supporting technologies i.e. actu-

ators. In this project two kinds of actuators (pneumatic muscles and electrical rotary actuators)

have been analyzed and compared. It is important to mention that in this thesis more emphasis

is given to the mechanical design of the robot due to the author’s background in mechanical

engineering.
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1.5 Organization of the thesis

The next chapter specifies the robot mission, including a detailed definition of the project, the

desired goals of the robot, and the definition of the type of structures that the robot should climb.

According to the defined mission and the specified structure, some conceptual designs for the

robot are proposed in chapter 3, and the design which better fits the project goals is presented.

Later in this chapter, a study which determines the minimum necessary degrees of freedom

required for a robot to be able to perform all objectives of the project is presented. Then a con-

ceptual design for the climbing mechanism of the robot is presented.

Chapter 4 contains a transition between conceptual and detailed design. Kinematic, workspace,

singularity, Jacobean matrix, and dynamic analysis of the conceptual design are presented. All

analyses were performed by considering parametric variables as length of the links, mass of the

parts etc., as they were unknown in this stage.

Chapter 5 describes the detailed design, prototyping, and assembly of the robot. In all stages

of the project from conceptual to detailed design, SolidWorks[web08] was used for 3D mod-

eling of the designs. Using the model and the analysis performed in the previous phase, the

lengths of the links were calculated and the actuators were selected. All of these analyses along

with the detailed design of non standard parts, and selection process of the standard parts of

the robot are presented in chapter 5. Then, a task space trajectory generating algorithm is pre-

sented. This algorithm uses the inverse kinematics equations to generate joint space trajectories

for the actuators. The final step in the detailed design of the robot is validation of the design.

Using the 3D model of the robot and the task space trajectory generation algorithm, a set of

robot movements was simulated in Cosmos Motion[web08] and VisualNastran[sC08] simula-

tion softwares. Results from simulation proved the concept and validated the calculated link

lengths and the kinematics equations. Furthermore it helped in selecting nearly optimized actu-
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ators and link lengths. Manufacturing, assembly, and the mechanical properties of the robot’s

prototype is presented in the last section of chapter 5.

The electrical architecture of the 3DCLIMBER, motor drivers and sensors utilized for automa-

tion of the robot are described in chapter 6. Then in chapter 7 path planning algorithms along

with the control and the GUI are presented. Chapter 8 describes the testings and the results.

Chapter 9 presents a study about possibility of integration of biologically inspired designs and

actuators. To perform this study, another study was achieved to compare pneumatic muscles

and rotary electrical actuators in terms of force/torque, weight, power, and size which is also

presented.

Chapter 10 concludes the thesis and discusses the future works.



Chapter 2

The Robot Mission

”It is better to know some of the questions than all of the answers.”

James Thurber

2.1 Introduction

The detailed and comprehensive definition of a project and its goals orients the project in the

proper direction. To achieve this, the working environment of the robot (the 3D structure) and

the robot missions should be well defined. Then we should develop a robot which can climb

over the designed structure and perform the defined mission.

Furthermore, a robot may achieve a mission, but the quality of the performance should be

also evaluated. For example, a mission can be defined as “the robot should reach the pose

P=(x,y,z, θ, γ, φ)”, but the quality of the performance can be determined by parameters such

as the time that the robot spends to reach P, the precision, accuracy and repeatability of the

action, etc. Therefore an evaluation method should be defined which receives such data as input

and calculates a numerical index for quality of the performance. Although these methods are

17
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Robot

MissionEnvironment

Figure 2.1: Entities involved in a benchmarking process.

used to compare the performance between the already developed robots, they are useful in the

early stages of designing a robot. Therefore we defined an evaluation method to compare the

performance of the previously developed robots in achievement of some specific tasks, to select

the most appropriate mechanisms for the interests of the project. For a more comprehensive

definition of the project, measures which help to assess the quality of the performance should

be well defined.

This can be achieved by designing a benchmark for PCRs with the objective of pipe inspection

in industrial plants. Definition of benchmarks for robotic applications consists of definition of

3 inter-related elements (figure 2.1), which are the robot, the environment, and the mission.

A working environment should be fully defined, and then the robot mission should be defined

based on the environment. Then the functionality of a robot can be measured according to the

level of success in achievement of each task of the mission on the defined environment.

Benchmarks are usually used to compare performance of different robots performing the same

assignment. A benchmark is proposed here that can be used for this goal, but the standardization

of a benchmark mainly depends on approval by several experts in this area and also employment

of the benchmark by several research groups. On the other hand the measures which are defined

in the proposed benchmark will be useful in future, to compare the robot’s performance qual-

ity after improvements or application of different algorithms. It means to measure the robot

performance in different phases of the project. For example if a mechanical system or a con-
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trol algorithm does not produce the desired results, one may apply an alternative algorithm or

replace an alternative system and then compare the performance of both methods against the

designated benchmark.

In this chapter, a short definition of benchmarking will be presented and then a benchmark

for PCRs with industrial applications will be proposed. Design and implementation of a 3D

structure, definition of the robot missions and metrics for assessment of the robot performance

will be also presented. As the objective of this project is to develop an industrial PCR which

can make NDT inspections, the definition of the environment, mission, and measures will be

according to this objective. It is important to mention that the missions defined in the benchmark

are more comprehensive and more idealistic than the objectives of the 3DCLIMBER project,

because the benchmark should consider further developments.

2.2 Benchmark

There is, in the robotics community, a growing awareness of the difficulty to compare in a rigor-

ous quantitative way the many research results obtained in the many different application areas

of the field. [BHdP09]. Though for pure theoretical articles this may not be the case, typically

when researchers claim that their particular algorithm or system is capable of achieving some

performance, those claims are intrinsically unverifiable, either because it is their unique system

or because lack of experimental details, including working hypothesis [dP06a]. Benchmarking

can principally reduce the research efforts by preventing ineffective researches and, as a result

of benchmarking one can compare results from different robots and different methods. The

importance of robotic benchmarking was discussed by Angel P. del Pobil in [dP06b]. Three

essential aspects of benchmarks are: [HPC01]

1. Task: the robot has to perform a given mission.

2. Standard: the benchmark is accepted by a significant set of experts in the field.
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3. Precise Definition: the task is described precisely, especially the execution environment,

the mission goal, and limiting constraints.

According to dillmann [Dil04], the definition of these three aspects lacks one important feature

of benchmarks, which is a numerical evaluation of the performance. Without that, it is only

possible to decide whether or not a given system is able to perform a mission. What we need,

in fact, is to “develop performance metrics” [JME01] for a given application [Dil04]. There are

also disadvantages connected to the introduction of benchmarks. As soon as benchmarks enter

the field and are widely respected, researchers and manufacturers are likely to compare and op-

timize their products to the benchmarks rather than to the real application areas. Whenever there

exists a gap between the benchmark and the real world, optimization towards the benchmark test

will not necessarily improve the system’s performance in the real application [Dil04]. So it is

important to consider real applications when designing a benchmark. To address this problem,

the proposed benchmarks in this thesis are based on achievement of practical and useful tasks

with industrial applications.

2.2.1 Working area of the robot (environment)

According to our previous experiences on design of climbing robots [TZVB05, TZV+04], ge-

ometry and size of the structure can have a huge impact on complexity of the robot. Structures

can vary from a simple straight pole, to poles with bends and branches, and even with changes on

the cross section size. The proposed testing environment should be similar to real human made

3D structures (e.g., pipe structures which are used in petrochemical plants (figure 1.8)). Usually

these kind of structures are not only a straight pole, but include bent sections and branches. On

the other hand, robots which can just climb over straight poles are very different from those

which can overcome bends and branches. They are less complicated in several technical aspects

and thus can not be evaluated with the same benchmark designed for those PCRs which can pass

bent and branches. Therefore the structure employed in the proposed benchmark includes bents

and T-junctions. The angle of bent sections is also an important parameter. Usually in human
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made plants, poles and tubes have 90° bends, while in few cases it can be between 90° to 135°.

Therefore the bends of the structure are either 90° or 135°.

The size of the structure cross section can also affect the complexity level of the robot. The size

of the structure can be defined in a certain range, but if the outer diameter of the cross section

profile is very large (e.g. more than 400 mm), wall climbing robots with vacuum or magnet

gripper can be used. In this case another benchmark might be proposed which is out of the

domain of this thesis. Furthermore we should not consider structures designed specifically to

facilitate the robot operation, instead the robot should be designed to operate in common real

structures.

According to these considerations a structure was designed and built as shown in (figure 2.2).

As it can be seen in the picture, the structure includes bent sections of 90° and 135° degrees. The

outer diameter of the pipes is 219 mm and does not include engineered features on the surface

(e.g. handles).

2.2.2 Definition of the mission

A mission is defined for the robot considering the defined environment. The mission is defined

as:

“The robot should climb over a straight structure and should overcome bent sections and branches.

The robot’s manipulator should be able to reach to any position in the structure and scan all sur-

face of the structure, since for practical application (e.g. NDT test of welding on the pipe) the

robot should be able to reach every position on the structure.” Finally the mission is divided to

some submissions which are called tasks. The following set of standard tasks are defined:

• Start climbing from one side of the structure.

• Scanning the entire surface of the structure and finding the defected areas and publishing

a report of that.
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Figure 2.2: Developed structure for pole climbing robot benchmarking.

• Descending from the other side of the structure.

2.2.3 Metrics and quantitative evaluation

To evaluate the performance of robots in achievement of the defined mission on the defined en-

vironment, quantitative metrics for different parameters should be considered. Some parameters

considered to be used for the performance evaluation of robots are:

• Fulfillment of the mission and quality of achievement.

• Speed of the robot (the total time to accomplish the mission).

• Fault tolerance of the robot.

• Self attachment to the pole.

• Ability to move on the floor.
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• Level of autonomy.

As numerical values are necessary for comparison, a scoring system was developed to evaluate

the performance of the robot against each parameter. So a 0 to 100 scaling system was con-

sidered and divided to some portions according to the importance of each parameter for our

application.

Fulfillment of the mission and quality of performance

The fulfillment of the mission and quality of performance are the most important parameters of

evaluation including 50 percent of the total score. If the robot can just climb from one side of the

structure, scan some parts, and descend from the other side of the pole, it means that it fulfills the

mission. The quality of performance can be measured by several methods. A suggestion can be

distributing some defected weldings on the structure, and the robot should find and register the

position of those defected weldings. This can be done by an ultrasonic NDT probe, which can be

installed on the robot manipulator. The quantity of non detected items or wrongly detected items

will determine the score. Table 2.1 shows a proposed example of a metrics table for evaluation

of all parameters.

Speed of the robot

Speed of climbing is an important factor, because it is a fundamental parameter in industrial

applications. Scoring can be easily defined according to the mission completion time.

Fault tolerance

As the robot should work at high altitudes, it is important to evaluate its performance in the

case of power failures. Scoring method depends on the level of safety considered for such case.

A power failure can occur in the controller’s power supply or in the main power supply. The

desirable situation is that the robot maintains its position on the pole in such cases of power

failure and can locate itself after the failure cause is abolished.
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Ability to move on the floor and self attachment to the pole

It would be quite interesting if the robot can move on the floor, with wheels or legs. In this case

the robot can perform bigger missions. For instance it can start to test a set of structures, because

it can move on floor and locate each structure independently. Moreover another parameter

should be considered: The robot should be able to attach itself to the pole without the help of

human.

Level of the automation

Level of the automation is also of great importance. The most autonomous robot is the one

which can perform a mission without having the geometry and dimensions of the structure.

It means that the robot also makes the “World Modeling”. A robot can be considered semi-

autonomous if it can perform the mission autonomously when it has the geometry and dimen-

sions of the structure in advance (priori knowledge of the working area). A robot which is

controlled manually e.g. by a joystick is considered non autonomous.

Other Parameters

Parameters like modular design, simplicity, creativity, etc. are also important and can be con-

sidered.

Evaluation Function

An evaluation function can be proposed as:

PI = ∑
n
1(WiPi)

Where PI is the performance index, Pi is the indicator of the performance quality of the ith

parameter during achievement of a predefined mission and Wi is the weight factor, showing the

importance of the ith parameter for the aims of the mission. Wis are determined based on the

objectives of the project. For instance one can consider the following two different applications:

first, Autonomous inspection of sophisticated pipelines, and second, cleaning and maintenance
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Table 2.1: Metrics for evaluation of PCRs performance

Item Evaluation Method Total Scores
Fulfillment of the mission The robot can climb over the structure from one

side and descend from the other part.
30

Quality of performance 10 defected weldings should be recognized and
their position should be registered. Each success-
ful register gains 2 scores.

20

Speed of mission achieve-
ment

10 scores for the robot which achieves the mis-
sion in time

10

Fault tolerance The robot gains 10 scores if the robot is tolerant
to failure on main power and controller power. If
it is tolerant just to one of them it gains 5 scores.

10

Ability to move on floor Yes: 5 points, No: 0 Points 5
Self attachment to the pole Yes: 5 points, No: 0 Points 5
Level of autonomy Fully Autonomous: 10 points, Semi Au-

tonomous: 5 points, Non autonomous: 0 points
10

Other parameters, Modular
design simplicity, creativity

Without metrics 10

of lamp posts of highways. While “ability of overcoming branches” is necessary for the first

application and a big weigh factor can be considered for it, it is not necessary for the second

application and a zero weight factor can be assigned to it. Conversely, considering “climbing

speed”, the weight factor assigned to it for the second application should be bigger than the one

for the first application.

2.3 The 3DCLIMBER

In the 3DCLIMBER project we aim to build an industrial PCR with good maneuverability skills.

After a survey on the already developed PCRs, our objectives and possibilities and looking at

the current available technologies, the following objectives were chosen for the 3DCLIMBER.

The robot should:

• be able to climb from the designed structure.
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• scan the whole surface of the structure.

• be fault tolerant according to the benchmark definition. So the robot should maintain its

position on the pole in case of power failure, and can locate itself after the failure cause

abolished.

• autonomously navigate across the structure, while having a priori knowledge of the struc-

ture. It means that the structure geometry would be provided to the robot beforehand, and

the robot should be able to reach to any location in the structure autonomously.

• Modularity and simplicity should be considered in the design of the robot.

2.4 Conclusion

In this chapter a benchmark for evaluation of PCRs was proposed. The benchmark is designed

for PCRs with industrial applications. The PCR benchmark was published as a book chapter

in [TMdA08b]. A structure with tubular profile and bends and branches which is similar to

piping in industrial plants was designed and implemented as the environment for the experi-

ments. The mission, the benchmark parameters and the evaluation metrics were also defined.

The benchmark contributed to a better and more precise definition of the project objectives, and

a better perception of the problems and parameters which should be considered in the design of

the robot.
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Conceptual Design

3.1 Introduction

Design is the process by which the needs of the customer or the marketplace are transformed into

a product satisfying these needs. Figure 3.1 shows general systematic approaches of the design

process and figure3.2 shows the approach used in the design process of the 3DCLIMBER.

After identification of the problem, some designs for the 3DCLIMBER robot were proposed.

A few of them will be described in the next section. Some designs are demonstrated by a 2D

sketch, while others are demonstrated by a 3D model. All 3D models which can be seen in this

thesis were modeled in Solidworks.

27
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Figure 3.1: Systematic approach to design process.

In this chapter some of the conceptual designs which proposed during this project will be pre-

sented. Considering these concepts and previously developed PCRs in various research centers,

PCRs were categorized into 4 design groups and the advantages and disadvantages of each

group, in general, and also regarding the objectives of the project will be presented. Regard-

ing these advantages and disadvantages, the best category which fits into the objectives of the

project was selected. Also an analysis was performed in order to calculate the minimum degrees

of freedom which is necessary for a robot to perform all required goals of the project. At the

end of this chapter the final conceptual design will be presented.

It is worth mentioning that in the first phase of the conceptual design, it was tried not to take

into account all objectives of the project. This is for not restricting the possible innovative de-

signs which might be adaptable to fulfill the requirements of the project with some changes.

Therefore, primarily some of the possible concepts for 3DCLIMBER will be described (even

though some of them might not fulfill the project requirements) and then both previously devel-

oped robots and conceptual designs which were proposed in this chapter were categorized into

4 different design groups. Afterwards the adaptability of each design group to the requirements
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Figure 3.2: Systematic approach utilized in the design process of 3DCLIMBER.

of the 3DCLIMBER project will be discussed.

3.2 Conceptual designs

Several conceptual designs for gripping and climbing modules of 3DCLIMBER were proposed

and evaluated in the early stages of the project. Some designs were inspired by previously

developed robots, but most of them were novel designs. In this section a short overview of the

proposed designs will be presented. Each design may demonstrate a concept for the gripper of

the robot, for the climbing module or for both.
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Figure 3.3: Tripod climbing robot.

3.2.1 Tripod climbing concept

Tripod climbing is a continuous motion concept. Figure 3.3 shows one module of this design

which consists of one active and two passive wheels, and springs to push the wheels to the pole.

One motor is employed to adjust the springs and to create enough force to grasp the pole by

all wheels. In fact, gripping action can be done with one motor and a self adjustment system,

which pushes all wheels to the pole, and climbing action can be done by another driven wheel.

Using two modules, the robot will be able to pass bends, but it can not pass branches due to

its closed structure. The main advantages of this conceptual design are simplicity, modularity,

and high speed. The main drawbacks are the inability of passing T-junctions and the limited

maneuverability. Therefore to manipulate across the structure, a separate robotic arm should be

integrated.

3.2.2 Flexible gripper concept

Design of the gripper is one of the most important problems in pole climbing robots which

should be addressed, as it should be able to withstand forces and torques generated by the robot

weight. Wall climbing robots can take the advantage of magnetic or vacuum grippers which are

not a good choice in pole climbing robots due to the curvature of the pole. Also, poles may have

different section sizes and dimensions. None of the previously developed PCRs included a uni-

versal gripper appropriate for different section sizes and forms. While in continuous motion pole



3.2. Conceptual designs 31

Figure 3.4: The flexible gripper concept can adapt to a big range of section sizes and shapes of
the pole.

climbing robots, tires are responsible for both climbing and gripping actions, in non-continuous

climbing robots, there exist separate climbing and gripping modules. Consequently gripping

mechanisms and climbing structures can be designed and developed separately.

The flexible gripper concept introduces an interesting design for the gripper. The proposed

gripper design is a flexible and universal design. As it is shown in figure 3.4, a flexible belt is

rolled around 2 cylinders. One of the cylinders is equipped with a motor, which can establish

enough tension in the belt and consequently provide the required friction for the gripping action.

This gripping module can be used with all noncontinuous climbing mechanisms and is adaptable

to different section sizes and shapes. The main drawback is the closed gripper structure, which

makes it problematic to overcome T-junctions.

3.2.3 Belt-pushing continuous climbing concept

Inspired by the previously described belt gripper, a concept for a continuous motion robot is

proposed. As it is shown in figure 3.5, a flexible belt is used to encircle the entire climbing

mechanism. A cylinder for rolling the belt around it and a motor for driving the cylinder, estab-
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Figure 3.5: The belt pushing climbing concept can adapt to a big range of section sizes and
shapes of the pole.

lish enough tension in the belt to provide the required normal force to push the tires to the pole.

At least one of the tires should be active and driven by a motor. It is also possible to use several

climbing modules, and connect them with an appropriate mechanisms to obtain the required

DOF for overcoming bent sections.

All of the previously developed PCRs can travel along structures with a limited range of cross

section size. If it is necessary to adapt them for structures with bigger diameters, the size and

weight of the robot increases relatively. Consequently, the size of the climbing mechanism in-

creases and thus the robot will be heavier. Belt pushing continuous climbing concept addresses

this problem with a flexible belt concept in which the robot can climb over a wide range of

poles. In contrast with previously developed robots, this concept would be very light for struc-

tures with big diameters.
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Figure 3.6: Step by step basis robot with a hybrid (serial-
parallel) climbing configuration.

Figure 3.7: Step by step basis robot
with a serial climbing configura-
tion.

The main advantages of this design are ability of climbing over structures with big cross section,

ability of climbing over a wide range of cross section sizes, simplicity, modularity, high speed,

and ability of passing bends. The main drawback is that a robot built based on this design can

not pass T-junctions.

3.2.4 Step by step based climbing concepts

Step by step based PCRs may take advantage of separate climbing and gripping modules. At

least two gripping modules and a climbing mechanism form the PCR. The climbing mechanism

can be a serial, a parallel or a hybrid (serial-parallel) configuration. At each time at least one of

the grippers should grip the structure. We call this gripper “base of the robot”. Meanwhile, the

other gripper can detach from the structure and act as a manipulator. The climbing mechanism,

on the other hand is the arm of the robot and should contain adequate degrees of freedom in order

to perform all of the desired missions, e.g. NDT inspections. We proposed several concepts for

the climbing mechanisms which can be seen in figures 3.6, 3.7, 3.8, and 3.9.

For all designs we took into account that the robot should be able to scan all area of the structure

in order to do inspection. Thus, in all concepts we considered a straightforward mechanism for
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Figure 3.8: Step by step basis robot rotating around the pole.

rotation around the pole. On the other hand, different climbing configurations were purposed.

Figure 3.6 demonstrates a hybrid (serial-parallel) climbing configuration. In fact two serial arms

are paralleled in order to help the climbing action. Figure 3.7 shows a serial climbing configura-

tion which consists of two 3-DOF planar serial arms and a rotation mechanism around the pole.

It also proposes an innovative V-shaped gripper, which will be described later comprehensively.

Figure 3.8 presents a biomimetic design, which consists 4 arms in order to climb from bents and

branches, while it also takes advantage of a mechanism for rotation around the pole. A concep-

tual design for a gripper is demonstrated in figure 3.10. Some electromagnet modules connect

to each other through passive joints. By activating the magnets of all modules, the gripper encir-

cles the structure. The main advantages of this design are simplicity and adaptability to different

cross section shapes and sizes. Another conceptual design for a gripper is demonstrated in fig-

ure 3.11. A motor drives two ballscrews and consequently a linear slider moves in the linear

guide. V-shaped end effectors are applied as they can mechanically centralize themselves to the

circular structures.

3.3 PCR design groups: adaptation with requirements

In addition to conceptual designs which were firstly proposed in this project, previously devel-

oped PCRs have been also analyzed. Categorization of the concepts and developed PCRs will
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Figure 3.9: Biologically inspired climbing robot consisting of 4 articulated arms.
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Figure 3.10: A gripper concept consisting of electromagnet modules.

Figure 3.11: V shaped gripper concept.
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promote a better perception of each category and its advantages and disadvantages. Therefore

considering the previously developed PCRs and the proposed conceptual designs, PCRs can be

categorized to 4 main design groups.

• Continuous motion PCRs.

• Noncontinuous PCRs with serial climbing structure.

• Noncontinuous PCRs with parallel climbing structure.

• Noncontinuous PCRs with hybrid climbing structure.

Each category will be described and its advantages and disadvantages will be discussed. These

discussions are based on a comprehensive investigation on previously developed PCRs [SSA+00,

SSA+06, ABG+99, RJGB06, VBT+04, HH01, YAH+04] and personal experience of the author

in design of PCRs [VBT+04, ZVB+04, ZTVB04, TZV+04, TZVB05].

3.3.1 Continuous motion PCRs

Continuous motion PCRs use tires to move along poles and structures. Tires are used both for

climbing and gripping. Bagheri et al. have developed a wheel based pole climbing robot which

does not have the ability of passing bends and branches, but, like all the other robots in this

category, it has a high climbing speed [YAH+04, MNA06]. Hosokai et al. developed a robot

with three modules [HH01]. Each module has three wheels and connected to its adjacent module

with a revolute joint. Each module of the robot is able to climb a straight pole independently.

The robot can adapt to different diameters of the pipeline by adjusting the length of arms of

the robot. Tripod climbing concept and Belt-pushing continuous climbing concept which were

introduced in the last section, are also continuous motion concepts. The main advantages of

continuous motion PCRs include:

• High climbing speed: Because it takes advantage of continuous climbing along the pole

using wheels.
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• Simplicity of the design and implementation.

• Possibility of modular design: Similar simple wheeled modules can be connected to each

other through active or passive joints.

The main disadvantages of these robots include:

• Difficulties in passing the bent section: This design group can pass the bent section of

the structure, just if the robot contains a separate arm, or several climbing modules are

connected together through active joints (See [YAH+04] and [MNA06]).

• Inability of passing branches: Due to the closed structure of each module as it can be seen

in [YAH+04, MNA06, LXGL07, HH01] and also in the proposed conceptual designs, it

can not pass the bent section on structures with branches.

• Low maneuverability: To perform some manipulation around the pole, they need an extra

articulated arm.

3.3.2 Noncontinuous serial climbing structures

Noncontinuous motion PCRs don’t use wheels for climbing. Their motion is based on step by

step sequence. They always have separate gripping and climbing module which enable them to

climb over poles on a step-by-step basis. Noncontinuous PCRs are divided into several groups,

regarding their climbing structure i.e. serial, parallel, or hybrid (serial-parallel) structure. Serial

structures are the most wide-spread structures in robotic applications. Most of the industrial

robots are serial robots. But what make them so wide spread? The most important reason

is their simplicity including simplicity of structure, kinematics and dynamics, and control. In

comparison with parallel mechanisms they have some advantageous and disadvantages, which

will be analyzed in the next section. Balaguer et al, have developed a serial structure PCR for

inspection applications in 3D complex environments[BGP+00a]. The main advantages of serial

climbing structures include:

• Ability of passing bends and branches.



3.3. PCR design groups: adaptation with requirements 39

• Built-in manipulating arm: When one gripper grasps the pole, the other gripper can detach

from the pole and manipulate over the pole. So in case of existence of an appropriate

climbing mechanism which has enough degrees of freedom to act as an articulated arm,

and also existence of an appropriate gripping mechanism which can withstand all forces

and torques generated by the robot weight, there would be no need to an extra arm for

manipulation and inspection applications.

• Safety and failure tolerance: Due to existence of separate climbing and gripping mecha-

nisms, any failure in gripping mechanism is not also a failure in climbing mechanism and

vice versa. For instance if the gripper is tolerant to power failure, the robot can maintain

its last position on the structure in case of power failure.

• Simplicity: Simplicity of implementation, analysis, and control.

• Good workspace and Maneuverability.

The main drawbacks are:

• Low climbing speed.

• Heaviness (compared to parallel structures).

• low payload/weight ratio (compared to parallel structures).

3.3.3 Noncontinuous parallel climbing structures

The manipulating structures, now known as the parallel manipulators, have their origin in the

tire testing machine designed by Gough and Whitehall [GW62], and the flight simulator plat-

form devised by Stewart [Ste65]. It is well known that serial configurations demand a greater

amount of torque at the joints than parallel configuration. Thus, application of serial configura-

tions as climbing structure would call for larger and heavier actuators which results in smaller

payload to weight ratio which is a critical factor in climbing robots. In contrast, using parallel

platforms can result in decrease of the weight to power ratio, thus allowing for larger payloads.
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On the other hand, parallel mechanisms have smaller workspace compared with serial mecha-

nisms which reduce their maneuverability. Besides, they have a complex structure. Kinematics,

dynamics, and singularity analysis of these structures are more complicated than those of seri-

als. To the best of author’s knowledge, the only PCR with fully parallel structure was developed

at Miguel Hernandez University of Elche, Spain [ASS99]. The main advantages of parallel

climbing structures include:

• Ability of passing bends and branches.

• Built-in manipulation arm.

• Safety and failure tolerance.

• High payload to weight ratio (compared with serial configurations).

The main drawbacks are:

• Low climbing speed.

• Complexity of mechanical implementation and control.

• Lower workspace and consequently lower maneuverability.

3.3.4 Noncontinuous hybrid climbing structures

Hybrid mechanisms, combination of serial and parallel structures, can take advantages of both

parallel and serial structures namely good payload to weight ratio, good workspace, and good

maneuverability. The most important design issue in hybrid structures is the appropriate design

of the structure. It means usage of serial mechanism on joints which need more workspace and

less force, and usage of parallel mechanisms on joints which may need high force (or torque) for

running. The author developed Sharif PCR with a hybrid mechanism as the climbing module,

in Sharif University of Technology in Iran [TZVB05, TZV+04]. Using hybrid mechanisms has

advantages of both serial and parallel mechanisms provided that the mechanism is well designed

and optimized for achievement of desired missions. On the other hand, it may have some of the
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disadvantages of both parallel and serial configurations. Therefore, the pros and cons of such

mechanisms, depends on the specific design. However in any case it inherits complexity of

implementation and control from parallel mechanisms.

3.4 Selection of the final design category

Four design categories for PCRs were introduced in the last section. One of these categories

which fits better with the objectives of the 3DCLIMBER, should be selected. For this purpose

the objectives of the project which were discussed in the last section should be considered.

1. The 3DCLIMBER, should be able to climb from the designed structure with bends and

branches.

2. It should be able to scan the whole surface of the structure.

3. It should be tolerant to power failure according to the benchmark definition. In the other

word, the robot should maintain its position on the pole in case of power failure.

4. It should be autonomous with a priori knowledge of the structure. It means that the

structure geometry will be provided to the robot beforehand, and the robot should be able

to reach to any location in the structure autonomously.

5. Modularity, simplicity, and weight optimization should be considered in design of the

robot.

From the previous discussion and according to the objectives number 1, 3, and 5, continuous

motion climbing robots can not fulfill the objectives of the project. As it is discussed they have

difficulties to pass T-junctions. Furthermore, to pass the bent section they need a separate arm.

As they do not have separate climbing and gripping modules, design of fault tolerant mecha-

nisms would be more problematic. Finally, they have a very low maneuverability unless they

are equipped with an articulated arm. The other three design groups can act similar in some of

the objectives. For instance, due to availability of separate climbing and gripping modules, they
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can be fault tolerant if an appropriate gripper design is applied and also they can manipulate

over the structure without a need to an extra arm. Besides, if a robot is able to pass structures

with bents, it can also pass bent section on structures with branches, provided that the gripper

design is not a closed structure. But to pass the bent section, the workspace of the climbing

mechanism should be sufficient. Therefore, decision making for selection of the most appro-

priate configuration depends mainly on 2 factors: Simplicity and Workspace of the robot. On

the other hand, the main advantage of serial arms over parallel configurations is simplicity and

better workspace. The previous experience of the author in development and optimization of

hybrid configurations [TZV+04] revealed that even though an optimized hybrid configuration

has a reasonable workspace and payload to weight ratio, it inherits the complexity of the par-

allel robots. Furthermore, when the robot is passing the bent section, a large constant angle

workspace is required, otherwise the robot either can not pass the bent section or should take

too many steps to pass the bent section. Considering previous experiences on design of climbing

robots, and many literatures about cons and pros of serial and parallel robots we concluded that

a serial configuration fits better to the objectives of the project. The most important reason for

choosing serial configuration as climbing mechanism is to increase workspace and manipula-

bility which is a key factor for a multi purpose robot. The details of the analysis is published in

[TMdA06b].

3.5 Minimum degrees of freedom

As PCRs should take their weight up during climbing; it is very important to design optimized

and dedicated mechanisms to decrease the weight of the robot. Based on this fact, a designer

should consider optimization in all steps of the design process to reduce the weight and the

size of the robot as much as possible. The most significant optimization step takes place in the

conceptual design step. Redundant DOF make the robot heavier without necessarily increasing

the robot abilities for performing a given task.

Therefore we should address the problem of designing a mechanism with minimum degrees



3.5. Minimum degrees of freedom 43

of freedom which can climb over structures with bends and branches. Some of the previously

developed PCRs [SAS+99, ABG+99] include 6 degrees of freedom, and thus can reach to any

pose within their workspace. But is it necessary to employ a 6-DOF mechanism for climbing

and manipulation over 3D Structures?

To design the climbing mechanism with minimum DOF a survey was performed in order to

study the necessary degrees of freedom for climbing and manipulating over 3D structures. Fig-

ure 3.12 represents a step-by-step based PCR climbing along the straight part of a pole. As can

be seen in figure 3.12, one DOF is sufficient to perform this task.

Figure 3.13 represents a PCR passing a bent section. It requires two additional degrees of free-

dom: One rotation in order to overcome the bend and another translation to move the upper

gripper to the straight section after the bend.

But if the robot is not aligned with the desired XZ plane in poles containing T-junctions, then

an additional rotation is necessary in order to align the robot with the desired straight segment

(see figure 3.14).

The latterly mentioned DOF is also necessary for performing NDT tests as the robot’s manipu-

lator should be able to scan every point on the structure. The combination of the above 4 DOF

provides the necessary manipulability not only to reach to every point on the structure, but also

to perform necessary operations after reaching target point on pole. In figures 3.12, 3.13, and

3.14, “G” stands for gripper and “M” stands for Mechanism. Design of a serial arm which

contains the mentioned DOF will be described in the next section.
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Figure 3.12: Climbing along a pole

Figure 3.13: Overtaking the bent section Figure 3.14: Rotating around pole

3.6 The final conceptual design

3.6.1 Climbing structure

A dedicated serial mechanism providing the required DOF, which was stated in the previous

section, was designed. The designed climbing module consists of a 3-DOF planar serial arm

and a Z axis rotating mechanism (see figure 3.15). Combining the 3-DOF arm with the rotat-

ing mechanism provides two rotations and two translations on the manipulator in relation with

the base, which are necessary to achieve the design objectives as explained in the previous sec-

tion. The 3-DOF planar serial arm consists of 3 arms connected together through three revolute

joints. This arm can reach to any Pose in its workspace which is a part of a plane. Therefore it



3.6. The final conceptual design 45

provides 2 translations and 1 rotation which are Tz (Translation along Z), Tx (Translation along

x), and Ry (Rotation around Y). An innovative rotating mechanism is designed in a different

way from articulated arms. This mechanism can orient the robot for appropriate bent section

and significantly increases the manipulability and workspace of the robot; the robot can rotate

around the pole axis and scan the whole surface of the pole. An articulated 4-DOF serial arm

without using the proposed rotating mechanism concept might also be designed, but as it can be

seen in Figure 3.16, a 6-DOF arm can directly move from face A1 to A2, while a 4-DOF serial

arm should transit from C1 and B1 to do so. A 4-DOF mechanism was applied by Balaguer et

al. in ROMAII robot using a 4-DOF articulated serial arm[BGA02]. But this is not a desirable

approach due to two reasons. First: Because if the robot is aimed to make NDT inspections, it

should be able to rotate around the pole rapidly and scan the whole surface of the pole, which

is not possible with articulated serial arm design. Second: Because the robot is not be able to

traverse across all plane mates rapidly. The 3DCLIMBER rotating mechanism concept, solves

these problems. It can rotate around the pole rapidly which allows a fast inspection of the whole

surface. Also transition between different working planes is easier and faster.

Figure 3.15 shows a detailed design of the 4-DOF serial arm which is used as climbing module

of the 3DCLIMBER.

3.6.2 Grippers

To design the gripper, we investigated advantages and disadvantages of the proposed conceptual

designs. Flexible gripper concept that uses flexible belts for gripping action 3.4, has many

advantages which were mentioned, namely simplicity, low weight, adaptation to different cross

section shapes, and adaptability to a large range of sizes. On the other hand, due to its close

mechanical structures, this gripper can not pass poles with branches, which is an important

drawback which can not be neglected according to the project definition. Electromagnet gripper

concept 3.10, also has several advantages which were mentioned, but after a survey and some

researches, it was concluded that the force to weight ratio of the electromagnets is not enough for
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Figure 3.15: 3D model of the designed 4-DOF climbing structure

Figure 3.16: 6-DOF vs 4-DOF articulated serial arm motion.

the 3DCLIMBER application and, furthermore, they can not be used in non-metallic structures.

We also investigated the possibility of using a vacuum gripper, but it was problematic due to the

curvature of the pipes. This problem might be solved by a dedicated design of a curvy vacuum

pads but then it will not be adaptable to different cross section sizes. Finally, we chose the V-

shaped concept 3.11; as it can pass branches, it can adapt to a range of cross section sizes and it

has the self centralizing characteristic. The main drawback of this concept is that for structures

with a large cross section size, the gripper will be heavy and large.
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3.7 Conclusion

The systematic approach for design and development of a mechanism was employed for the de-

velopment of the 3DCLIMBER. In the first phase, the conceptual design of the robot was stud-

ied. Considering all proposed conceptual designs for the gripping and climbing mechanisms,

the developed benchmark which took into account the objectives of the project, the optimal

weight strategy and some other factors, the best gripping and climbing concepts for the defined

objectives of the project were selected. Other proposed concepts in this chapter are a valuable

source of design ideas which might have a contribution in similar projects.





Chapter 4

Kinematics, Dynamics, and Workspace

Analyses

4.1 Introduction

To transit from the conceptual design phase to the detailed design phase, it is necessary to

perform kinematics and workspace analyses in order to determine the optimum length of the

links and dynamics analysis in order to calculate the required torque for actuators. Furthermore

these analyses will be necessary for path planning and control of the robot.

49
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4.2 Kinematics analysis

The study of manipulator kinematics is divided into two parts, inverse (or reverse) kinematics

and forward (or direct) kinematics. The inverse kinematics problem involves mapping a known

pose (position and orientation) of the moving platform of the manipulator to a set of input joint

variables that will achieve that pose. The forward kinematics problem involves the mapping

from a known set of input joint variables to a pose of the moving platform that results from

those given inputs [Cra89]. To perform kinematics analysis, a simplified model of the robot

is considered which is showed in figure 4.1 along with the original model. In this model the

rotation mechanism is substituted by an arm, which has an equal length with the radius of the

rotation guide. The reference coordinate system is placed in the center of the rotation mecha-

nism.

Note the following common abbreviations in kinematic analysis:

s represents sinus.

c represents cosinus.

s12 represents sin(θ1+θ2).

Figure 4.2 shows the Denavit-Hartenberg frame assignments. As it can be seen l0, l1, l2, and l3

are the lengths of the links 1 to 4. Relatively θ0,θ1,θ2, and θ3 are the angles of the joints 0 to 3.

Table 4.1 shows the Denavit-Hartenberg parameters.

ı α(i−1) a(i−1) di θi

0 0 0 0 θ0

1 90 l0 0 θ1

2 90 l1 0 θ2

3 90 l2 0 θ3

Table 4.1: Denavit-Hartenberg parameters.
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Figure 4.1: The 4-DOF climbing mechanism and the simplified model for the kinematics anal-
ysis

Figure 4.2: Kinematic configuration of the climbing module.

4.2.1 Direct kinematics problem

Using the Denavit-Hartenberg joint parameters listed above and according to the assigned coor-

dinate axes in Fig. 4.2, transform matrices of joint coordinate systems are derived as follows:
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0T1 =



cos(θ0) −sin(θ0) 0 0

sin(θ0) cos(θ0) 0 0

0 0 1 0

0 0 0 1


(4.1)

1T2 =



cos(θ1) −sin(θ1) 0 l0

0 0 −1 0

sin(θ1) cos(θ1) 0 0

0 0 0 1


(4.2)

2T3 =



cos(θ2) −sin(θ2) 0 l1

sin(θ2) cos(θ0) 0 0

0 0 1 0

0 0 0 1


(4.3)

3T4 =



cos(θ3) −sin(θ3) 0 l2

sin(θ3) cos(θ3) 0 0

0 0 1 0

0 0 0 1


(4.4)

Therefore, the overall transform matrix, 4
0T can be written in the form:

0T4 =0 T1×1 T2×2 T3×3 T4.

After multiplication and simplification:

0T4 =



0.5(cos(v)+ c0123) 0.5(sin(v)− s0123) s0 Px

0.5(sin(v)− s0123) 0.5(−cos(v)+ c0123) c0 Py

s123 c123 0 Pz

0 0 0 1


(4.5)
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Where:

v =−θ3−θ2−θ1 +θ0

And:

Px = 0.5l2 cos(θ0−θ1−θ2)+0.5l2c012 +0.5l1 cos(θ0−θ1)+0.5l1c01 + c0l0

Py = 0.5l2 sin(−θ2θ0−θ1)+0.5l2s012 +0.5l1 sin(θ0−θ1)+0.5l1s01 + s0l0

Pz = s12l2 + s1l1

θ0,θ1,θ2,θ3 are joint angles of the serial arm. {Px,Py,Pz} shows the position of the manipulator

coordinate system in relation with the base coordinate system. The above 0T4 matrix represents

the direct kinematics equation for the 4-DOF climbing mechanism. The position vector P(q)

and the orientation Matrix R(q) of the tool frame (manipulator) relative to the base frame are:

P(q) =


Px

Py

Pz



R(q) =


0.5(cos(v)+ c0123) 0.5(sin(v)− s0123) s0

0.5(sin(v)− s0123) 0.5(−cos(v)+ c0123) c0

s123 c123 0

 (4.6)

4.2.2 Inverse kinematics problem

For the inverse kinematics analysis, the position and orientation of the moving frame is consid-

ered known, thus the input joint variables that achieve that pose should be obtained.

0T4 =0 T1×1 T2×2 T3×3 T4 (4.7)
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And:

(0T1)−1×0 T4 =1 T4 =⇒1 T4 =1T2×2 T3×3 T4 (4.8)

From 4.7, and 4.8:



c0 s0 0 0

−s0 c0 0 0

0 0 0 1

0 0 0 0





R11 R12 R13 Px

R21 R22 R23 Py

R31 R32 R33 Pz

0 0 0 1


=



c123 −s123 0 l2c12 + l1c1 + l0

0 0 −1 0

s123 c123 0 l2s12 + l1s1

0 0 0 1


consequently:

c0Px + s0Py = l2c12 + l1c1 + l0 (4.9)

−s0Px + c0Py = 0 (4.10)

Pz = l2s12 + l1s1 (4.11)

From 4.10:

θ0 = arctan2
Py

Px
(4.12)

let us define Q as:

Q =
P2

x +P2
y +P2

z −2l0
√

P2
x +P2

y + l2
0 − l2

1 − l2
2

2l1l2

squaring both sides of equations 4.9 and 4.11 and adding the sides:

c2 = Q & s2 =±
√

1−Q2

consequently θ2 can be obtained as:
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θ21,θ22 = arctan2(±
√

1−Q2,Q) (4.13)

Therefore the inverse kinematics equation results in 2 answers for the θ2. To obtain the inverse

kinematics equation for θ1, one can write the equations 4.9 and 4.11 in the following form:

c0Px + s0Py− l0 = K1c1−K2s1

Pz = K1s1 +K2c1

letting:

K1 = l1 + l2c2

K2 = l2s2

considering:

r = +
√

K2
1 + k2

2

γ = arctan2(K2,K1)

consequently:

K1 = r cosγ

K2 = r sinγ−→

cos(γ+θ1) =
x
γ

sin(γ+θ1) =
y
γ
−→

θ1 = arctan2(Pz,c0Px + s0Py− l0)− arctan2(K2,K1) (4.14)

As there are 2 values for θ2 , relatively there are also 2 values for k1 and k2 and consequently

2 values for θ1 which are called θ11 and θ12. Finally from the geometrical solutions one can
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easily find:

θ31 = θ−θ11−θ21 (4.15)

θ32 = θ−θ12−θ22 (4.16)

Where θ is the angle between X4 and X1, around Z4. θ is a known parameter in the inverse kine-

matics problem of the 4-DOF climbing mechanism. Therefore, the inverse kinematics problem

has two solutions:

θ0 = arctan2
Py

Px
(4.17)

θ21 = arctan2(+
√

1−Q2,Q) (4.18)

θ22 = arctan2(−
√

1−Q2,Q) (4.19)

θ11 = arctan2(Pz,c0Px + s0Py− l0)− arctan2(K21,K11) (4.20)

θ12 = arctan2(Pz,c0Px + s0Py− l0)− arctan2(K22,K11) (4.21)

θ31 = θ−θ11−θ21 (4.22)

θ32 = θ−θ12−θ22 (4.23)

Where:

Q =
P2

x +P2
y +P2

z −2l0
√

P2
x +P2

y + l2
0 − l2

1 − l2
2

2l1l2
(4.24)

K11 = l1 + l2c21,K21 = l2s21 (4.25)

K12 = l1 + l2c22,K22 = l2s22 (4.26)

4.3 Jacobian matrix and singularities

The Jacobian matrix is a first-order partial derivatives matrix. For robots, the Jacobian relates

the end-effector velocity to the joint speeds. Jacobian matrix is a dynamic matrix which is a
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function of joint space positions θ0 to θ4. Singularities are commonly used to indicate a po-

sition where a particular mathematical formulation fails. In robotics, singularity is a position

in the robot’s workspace where one or more joints no longer represent independent controlling

variables. Singularities of serial arms are either boundary or Interior. Boundary singularities

occur when the tool tip is on the surface of the robot’s workspace. Interior singularities oc-

cur inside the work envelope when two or more of the axes of the robot form a straight line,

i.e., collinear. To calculate the Jacobean matrix, the following formulation [Cra89] should be

replaced by the 4-DOF mechanism formulas:

i+1wi+1 =i+1
i R iwi + θ̇i+1

i+1Zi+1 (4.27)

i+1vi+1 =i+1
i R(ivi +i wi×i Pi+1) (4.28)

Therefore:

1w1 =


0

0

θ̇0

 & 1v1 =


0

0

0



2w2 =


c1 0 s1

−s1 0 c1

0 −1 0




0

0

θ̇0

+


0

0

θ̇1

=


s1θ̇0

c1θ̇0

θ̇1



2v2 =


c1 0 s1

−s1 0 c1

0 −1 0





0

0

θ̇0

×


l0

0

0


=


0

0

−l0θ̇0


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3w3 =


c2 s2 0

−s2 c2 0

0 0 1




s1θ̇0

c1θ̇0

θ̇1

+


0

0

θ̇2

=


s12θ̇0

c12θ̇0

θ̇1 + θ̇2



3v3 =


c2 s2 0

−s2 c2 0

0 0 1





0

0

−l0θ̇0

+


s1θ̇0

c1θ̇0

θ̇1

×


l1

0

0




=


s2l1θ̇1

c2l1θ̇1

−c1l1θ̇0− l0θ̇0



4w4 =


c3 s3 0

−s3 c3 0

0 0 1




s12θ̇0

c12θ̇0

θ̇1 + θ̇2

+


0

0

θ̇2

=


s123θ̇0

c123θ̇0

θ̇1 + θ̇2 ++θ̇3



4v4 =


c3 s3 0

−s3 c3 0

0 0 1





s2l1θ̇1

c2l1θ̇1

−c1l1θ̇0− l0θ̇0

+


s12θ̇0

c12θ̇0

θ̇1 + θ̇2

×


l1

0

0




=


s23l1θ̇1 + l2s3(θ̇1 + θ̇2)

c23l1θ̇1 + l2c3(θ̇1 + θ̇2)

θ̇0(−l2c12− l1c12− l0)



5w5 = 4w4 =


s123θ̇0

c123θ̇0

θ̇1 + θ̇2 ++θ̇3


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5v5 =4 v4 +4 w4×


l3

0

0

=


s23l1θ̇1 + l2s3(θ̇1 + θ̇2)

c23l1θ̇1 + l2c3(θ̇1 + θ̇2)+ l3(θ̇1 + θ̇2 + θ̇3)

θ̇0(−l2c12− l1c12− l0− l3c123)



consequently considering the velocity matrix ν as

ν =

 ν

ω

=⇒

ν =
[

νx νy νz ωx ωy ωz

]T

(4.29)

We also know:

ν = J(θ).θ̇ (4.30)

(4.31)

As the mechanism include 4 degrees of freedom, the right side of the equation 4.30 is a 4× 1

matrix while the left side is a 6× 1 matrix. Therefore, the Jacobean matrix is a 6× 4 matrix

which can be written in the following form:

5J(θ) =



0 s23l1 + l2s3 l2s3 0

0 c23l1 + l2c3 + l3 l2c3 l3

−(l2c12 + l1c12+ l0 + l3c123) 0 0 0

s123 0 0 0

c123 0 0 0

1 0 0 0


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0J(θ) =

 0
5R 0

0 0
5R

 .5J(θ)

But the ν matrix on the equation 4.29 has six elements because all elements are not independent

and in fact 2 of the variables are dependent to the others which are νy and ωx. Eliminating them

from the ν matrix, we will have: ν =
(

νx νz ωy ωz

)T

and consequently:

0
ν =



0νx

0νz

0ωy

0ωz


=0 J′.



θ0

θ1

θ2

θ3


In which:

0J′ =



0J(1)

0J(2)

0J(3)

0J(4)


Where 0J(n) is the nth row of the J matrix.

4.3.1 Singularities

A configuration where |J|= 0 is called a singularity of the robot. In this configuration the forces

in the leg of the robot may go to infinity, causing a breakdown of the robot. Hence a very

important issue is to be able to determine if there is a singularity within a given workspace W

of the robot. |J′|= 0 equation leads to:

sin(θ2 +2θ0)+ sin(θ2−2θ0)+2sin(θ2) = 0 =⇒ 2sin(θ2)(1+ cos(2θ0)) = 0
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Consequently 2 conditions sating this equation are:

Case 1: θ2 = 0 or θ2 = 180

Case 2: θ0 =±90

Both cases are well known singularity configurations for robotic arms which happen at the

boarders of the workspace. Therefore, the 4-DOF climbing mechanism does not have singulari-

ties inside its workspace except on borders. This facilitates the trajectory generation algorithms

as the need for singularity avoidance algorithms is abolished.

4.4 Optimization of the links length of the 3-DOF arm

The kinematics analysis was performed with parameters, because the numerical values of the

links were not determined yet. The length of the links affects the workspace and the demanded

torque of the serial mechanism. Lengthier links may construct a bigger workspace, but they also

increase the demanded torque by the joints. The length of the links should be calculated with

the objective of reaching a more efficient workspace and not necessarily a bigger workspace. A

more efficient workspace can be obtained when the required workspace (The workspace which

makes the arm able to pass bends up to 90◦) coincides with the robot’s actual workspace. An-

alytical and geometrical analyses were performed to increase the workspace efficiency. These

analyses led to two specific formulas between the design parameters which will be presented in

this section.

Figure 4.3 shows the schematics of the 3DCLIMBER climbing mechanism when climbing a

structure. l1, l2, and l3 are the lengths of the climbing arm links, D is the diameter of the Z-axis

rotating mechanism guide, and d is the diameter of the pole. The concentric circles show the

constant workspace of the serial mechanism considering θ = 180o (θ is the angle between the

manipulator and the base of the robot as it can be seen in figure 4.2). The exterior radius of

the circles is equal to l1 + l2 and the interior radius is equal to |l1− l2|. If we neglect the third

link in the workspace analysis, the center of these concentric circles would locate on “O” (see
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figure 4.3). However the third link transfers the center from “O” to “C” equal to the length of

the links (l3).

To have the the maximum straight step size, or in the other word the maximum thrust on the

pole in each step following issues should be observed:

1. “l1 + l2” is the diameter of the exterior workspace circle and determines the maximum

thrust of the robot and thus should be as big as possible.

2. For the maximum thrust, the difference between the minimum and maximum distances

of the manipulator and the base should be maximized. This means that the minimum

distance (Smin in figure 4.4) should be as small as possible and the maximum distance

(Smax in figure 4.4) should be as big as possible.

While the first condition is to enlarge the workspace of the robot, the second condition tries to

make the workspace as efficient as possible. Enlarging the workspace as suggested by the first

condition increases other costs like the weight, required torque, and size. To maximize Smin, the

vertical diameter of the concentric circles of the workspace should coincide with the axis of the

pole. In this way, the maximum thrust would be possible. To do this the l3 = D
2 condition should

be fulfilled (figure 4.4).

The minimum and maximum distance between the base and the manipulator are also shown in

figure 4.4. To minimize Smin, should be minimized. To do this, the radius of the internal circle of

the workspace should be zero. This leads to the condition l1 = l2 which is shown in figure 4.5.

To maximize the thrust on the X direction which is necessary for passing the 90◦ bend sec-

tions in minimum number of steps, the vertical distance Sv (see figure 4.6) should be minimum.

As it can be seen in figure 4.6, the maximum possible X thrust happens at the horizontal diam-

eter of the workspace circle. Thus, by minimizing the Sv, workspace circles shift toward the Z

axis direction and consequently the thrust on the X direction increases. To minimize Sv, Smin

should be minimized, which is indeed the same condition which has been discussed previously

(l1 = l2).
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Figure 4.3: The constant workspace of the articulated 3-DOF arm.

Figure 4.4: If l3 = D/2, the vertical diameter of the
concentric circles coincides with the axis of the pole.

Figure 4.5: The condition l1 = l2 in-
creases the thrust of the articulated arm.

Figure 4.6: The condition l1 = l2 minimizes the Sv, which indeed maximizes the arm thrust in X
(bent section) direction. In the middle and the right figure, the constant workspace for θ = 90o

is demonstrated. The center of the workspace shifts in Z direction equal to l3.
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Therefore in order to maximize the thrust, the following three conditions were considered in the

detailed design phase.

1. l1 + l2 should be maximized within the limits of the robot’s weight and the joint required

torques.

2. |l3− D
2 | should be minimized or in the optimal condition should be zero.

3. |l1− l2| should be minimized or in the optimal condition should be zero.

Considering the above conditions and some other affective parameters, the numerical values for

the length of the links were obtained as [l0, l1, l2, l3] = [300,220,220,350] (all in mm). The other

affecting parameters and the method that was used to calculate these values are related to the

detailed design of the robot and will be described in the next chapter.

4.5 Constant orientation workspace analysis

The constant orientation workspace is defined as the region that can be reached, by the refer-

ence point on the moving platform, when the orientation of the moving platform is kept constant.

When the 3DCLIMBER climbs over 3D structures, most of the time it has a constant θ angle. θ

is the angle between manipulator and base of the robot 4.2. For climbing across the straight pole

the angle is always θ = 180◦ and for passing bends, θ is equal to the bent angle (for a bent angle

of 90◦ , θ = 90◦). A MATLAB script was developed for constant workspace analysis of the

mechanism considering physical limitations of the joints. The results of the constant workspace

analysis for θ = 180◦ and θ = 90◦ is shown in figures 4.7 and 4.8.

4.6 Dynamic analysis

Dynamic analysis of the robot is required for several reasons:

• To calculate the required torque for the joints and to select the appropriate actuator.
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Figure 4.7: Different views of the workspace for θ = 90◦, dimensions in mm.

Figure 4.8: Different views of the workspace for θ = 180◦, dimensions in mm.

• To reduce the controller effort and thus controlling the robot joints precisely.

• For applications which may need precise control of the applied force by the manipulator.

Yet, in the current status of the project we have only used the dynamic analysis for calculating

the required torque for the joints. The 4-DOF mechanism consists of the 3-DOF serial arm and

the Z axis rotation mechanism. The rotation only changes the working plane of 3-DOF arm

around the Z axis. Once the 3-DOF arm reached the desired φ angle, the Z axis rotation mecha-

nism maintains its position, and manipulation is performed by the planar serial arm. Therefore,

the Z axis rotation mechanism is neglected in the dynamic analysis in order to avoid unneces-

sary complication. Figure 4.9 shows the schematic draw of the 3-DOF arm along with the links

parameters. The recursive Newton-Euler algorithm was applied to obtain dynamic equations.

Recursive Newton-Euler algorithm was firstly proposed by Luh et al. in 1980 [LWP80]. Recur-
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sive algorithms are desirable from the viewpoint of simplicity and uniformity of computation.

On the other hand, in this phase, the detailed design of the parts and actuators is not achieved.

Therefore numerical values for many parameters namely: moment of inertia of links, moment

of inertia of actuators, weights, frictions, etc. is not known yet. Consequently the closed form

of the inverse dynamics equations of the robot arm were obtained by parametric variables. Ap-

plication of recursive Newton-Euler algorithm to obtain parametric equations of the 3-DOF arm

resulted in complicated and long equations. To simplify and shorten those equations and make

them in the standard format, symbolic computation toolboxes of Maple and MATLAB were

employed. Further Simplifications were performed manually. As probably it is not necessary

to present all of the detailed calculations and simplifications, here the final inverse dynamic

equations are presented:

τ3 = (α1 +α2 +α3)(Izz3 +P2
xc3m3)+Pxc3m3(L2s3(ω1 +ω2)

+ L2c3(α1 +α2)+ c123g+ s23ω
2
1L1 + c23α1L1)+L3 fy (4.32)

τ2 = (α1 +α2 +α3)(Izz3 +P2
xc3m3 +Pxc3m3c3L2)

+ (α1 +α2)(Izz2 +Pxc3m3c3L2 +P2
xc2m2 +L2

2m3)

+ α1(c23L1Pxc3m3 + c2L1Pxc2m2 + c2L1L2m3)

− (ω1 +ω2 +ω3)2Pxc3m3s3L2 +(ω1 +ω2)2Pxc3m3L2s3

+ ω
2
1(Pxc3m3s23L1 + s2L1Pxc2m2 + s2L1m3L2)

+ Pxc3m3c123g+L3 fy +m2Pxc2c12g+L2s3 fx +L2c3 fy +L2m3c12g (4.33)
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τ1 = (α1 +α2 +α3)(Izz3 +P2
xc3m3 +Pxc3m3c3L2 +C23L1Pxc3m3)

+ (α1 +α2)(Izz2 +Pxc3m3c3L2 +P2
xc2m2 +L2

2m3 +L1(L2m3m2Pxc2c2))

+ α1(Izz1 + c23L1Pxc3m3 + c2L1Pxc2m2 + c2L1L2m3 +P2
xc1m1 +L2

1(m2 +m3))

− (ω1 +ω2 +ω3)2(−Pxc3m3s3L2−Pxc3m3s23L1)

− (ω1 +ω2)2(Pxc3m3L2s3 +L1s2(−L2m3−m2Pxc2))

+ ω
2
1(Pxc3m3s23L1 + s2L1Pxc2m2 + s2L1m3L2)

+ g(Pxc3m3c123 +Pxc2m2c12 +Pxc1m1c1 +L2m3c12 +L1(m3 +m2)c1)

+ fy(L3 +L2c3 +L1c23)+ fx(L2s3 +L1s23) (4.34)

In which:

τn is the required torque for the nth joint.

θn is the angle of the nth joint.

ωn is the angular velocity of the nth joint.

αn is the angular acceleration of the nth joint.

In is the moment of inertia of the nth link.

mn is the weight of the nth link.

4.7 3D modeling and validation of equations

4.7.1 3D modelling in SolidWorks

SolidWorks were used as the modeling software from the early stages of conceptual design.

COSMOSMotion, a plug-in software for SolidWorks was used to simulate the motion of the 3D

model in SolidWorks. COSMOSWorks, also a plug-in software for SolidWorks, was used for

structural analysis of the mechanical parts.
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Figure 4.9: Schematic draw of the 3-DOF arm along with the links parameters.

4.7.2 Validation of developed codes

As stated earlier, a routine for direct kinematics and a routine for inverse kinematics of the 4-

DOF mechanism were developed in MATLAB. These routines will be used in all further steps

like workspace analysis, path planning, and optimization. The validity of kinematics equations

and also MATLAB codes was verified through some numerical examples. Numerical exam-

ples were solved by the MATLAB functions and then were demonstrated by the 3D model in

SolidWorks and their results were compared. For example, considering a mechanism with the

following parameters for the links: [L0,L1,L2,L3] = [300,220,220,350] (all in mm) and the fol-

lowing values for the angles of the joints: θ0 = 10◦, θ1 = 30◦, θ2 = 60◦, θ3 = 60◦, the output of

the direct kinematics routine is the pose vector of the 3rd joint coordinate system relative to the

base coordinate system. The pose vector from the MATLAB routine was obtained as:

P = (X Y Z θ)T = ( 483.07 85.18 330.00 150.00 )
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Figure 4.10: Validation of the direct kinematics equations and related MATLAB routines.

The validity of this result is checked by the Solidworks model as it can be seen in figure 4.10.

The inputs of the Inverse kinematics routine are numerical values of the link lengths of the

4-DOF mechanisms, and the pose vector of the tool coordinate system relative to the base coor-

dinate system. For the 4-DOF mechanism pose vector is shown as P = (X Y Z θ)T . The output

of the routine is the vector of the joint angles, which is indeed [θ0,θ1,θ2,θ3] which leads to the

desired Pose. As the inverse kinematics of the mechanism have 2 answers, 2 vectors will be

obtained.

The pose vector example is considered as: P = [483.07,85.18,330.0000,180]

Matlab function:

[solution1,solution2] = invkin( L0 L1 L2 L3 X Y Z θ )

[solution1,solution2] = invkin( 300 220 220 350 483.07 85.18 330.0000 180 )−→

[solution1] = ( 10.0002 30.0000 60.0008 89.9992 )

[solution2] = ( 10.0002 90.0008 −60.0008 150.0000 )

Both solutions were given as inputs for the joint values and the Pose vector was obtained. As it

can be seen in figure 4.11, both solutions lead to the same pose which is P = [483.07,85.18,330.0000,180].

Considering link length of [L0,L1,L2,L3] = [300,220,220,350] (all in mm).
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Figure 4.11: Validation of Inverse kinematics equations and related routines.

4.8 Conclusion

The kinematics, Jacobian matrix, singularities, and dynamics of the climbing mechanism were

studied and the related equations were obtained and simplified. The accuracy of the kinematics

equations were validated through a numerical example and the simulation softwares.



Chapter 5

Detailed Mechanical Design,

Manufacturing, and Assembly

“The primary function of the design engineer is to make things difficult for the fabricator and

impossible for the serviceman.”

citation related to Murphy’s Law.

5.1 Introduction

The detailed design of the 3DCLIMBER is described in this chapter. In the conceptual design

phase, the 4-DOF structure was introduced as the climbing mechanism of the 3DCLIMBER.

Further theoretical analyses including kinematics and dynamics analysis of the structure were

achieved parametrically as the length of the links were not obtained yet. Obtaining the length

of the links as well as selection of the appropriate actuator for the joints are interrelating issues

which will be described in the next section.

71
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Afterwards, the detailed design of the robot will be comprehensively described. Some of the

robot’s parts are commercially available while others are custom design and should be manu-

factured. In selection process of the standard parts and design process of the custom made parts,

minimum weight concept was considered as a critical factor. Therefore, COSMOSWorks, a

finite element analysis software was used for optimum structural design of non standard parts.

After finalizing the detailed design of the robot and development of a trajectory generation rou-

tine, the system was simulated and validated. The 3D model of the parts were developed in

SolidWorks and using the trajectory generating routine, the robot’s ability to climb from the

structure and to pass bent sections was examined through simulation in COSMOSMotion.

5.2 Link lengths and actuators

Long links have the advantage of increasing the workspace of the serial climbing mechanism

resulting in longer climbing steps and consequently higher climbing speeds. But application

of longer links increases the required torque for driving each joint. Therefore, application of

heavier actuators would be necessary which results in a heavier robot. The lengths of the links

should be calculated so that a reasonable balance between the robot’s speed and it’s weight to be

established. Also the following conditions which were obtained through analytical optimization

of the links lengths through workspace analysis (demonstrated in the previous chapter) should

be considered:

1. l1 + l2 should be maximized within the limits of the required torques on the joints.

2. |l3− D
2 | should be minimized.

3. |l1− l2| should be minimized.

The method that was applied to obtain numerical values of the links lengths is partially demon-

strated in figure 5.1 as a flowchart and can be described as the following steps:

1. The length of the first link (l0 in figure 4.2), depends on the diameter of the structure

which the robot should climb from, and the detailed design of the rotation mechanism.
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Considering the diameter of the structure (219 mm-figure 2.2), and other design restric-

tions, the Z-axis rotation guide was chosen from the commercially available guides with

a diameter of φ = 600 mm. Therefore l0 = 300 mm was obtained.

2. The 2nd and the 3rd conditions are considered for calculation of the length of the other

links. Considering that the |l3− D
2 | should be minimized, one can calculate l3 = 300 mm.

However as the value of the l3 is dependent to the design of the upper gripper and some

structural analysis, the minimum value that we could obtain was l3 = 350 mm.

3. Considering the value obtained for l0 and l3, and the fact that the length of the links should

allow the robot to pass a bent section of 90°, the minimum possible length for l1 and l2

were calculated. The third condition i.e. l1 = l2 was respected.

4. Considering the preliminary lengths, an actuator was selected from available options and

then the length of the links (l1 and l2) were increased within the limits of the actuators

torque and considering a factor of safety.

When choosing high-tech actuators (e.g. Harmonic Drive actuators), designer should opt from

what is available in market as ordering an actuator with custom torque and speed is costly (for

normal gears, one may design and manufacture a gearbox with a custom ratio and obtain the

exact torque and speed combination at a low price). As the serial arm joints demand for high

torques, then high ratio gearboxes should be used. After a comprehensive survey about available

commercial high ratio gearboxes we concluded that Harmonic Drive technology is the lightest

and the most efficient technology for high ratio gearboxes (figure A.7 presented in annex A).

Therefore actuators were selected from the Harmonic Drive catalogue. Using the dynamics

analysis formulas, the required torques for driving the joints for the primarily considered link

lengths were estimated. Also, these values were estimated by COSMOSMotion through simulat-

ing the model of the robot passing the bent section. Figure 5.2 shows the results of a simulation

achieved through COSMOSMotion software. Due to problems on modeling of the “contacts” in

the simulation software, the demonstrated curves in figure 5.2 could not be trusted. However the
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Figure 5.1: The method which was used for calculation of the length of the links

Gear Ratio 160:1.
Max Torque N.m 260.

Continuous stall torque N.m 102.
Max Output Speed rpm 28.

Weight without brake Kg 4.3.

Table 5.1: Characteristics of the FHA-25C-160H Harmonic Drive actuator [LLC08].

simulations helped us to estimate the required torque with less complicated models, e.g. fixing

the gripper to the “simulation ground” rather than modeling the contacts.

The Harmonic Drive FHA-25C-160H actuator (figure A.7), which was opted for all three joints,

is composed of a 600W AC motor coupled with a 160:1 Harmonic Drive gearbox. It can deliver

torques up to 261 N.m. and a continuous torque of 102 N.m. Figure 5.3 shows the performance

graph of the actuator and table 5.1 summarizes its characteristics. The length of the links were

recalculated so that the torque which can be delivered by the actuator be at least 2.5 times

bigger than the required torque by the joints(FOS=2.5) . As a result, following values for the

link lengths were obtained: [L1,L2,L3] = [220,220,350] (all in mm).
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Figure 5.2: Position, velocity, and angular acceleration of all joints, when the robot is passing a
90° bent section. The trajectory of each joint (position and time) was introduced to the software
as input. The occasional abrupt changes in curves are due to problems associated with the
modeling of the contact between the grippers and the structure.
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Figure 5.3: Performance graph of the FHA-25C-160H Harmonic Drive actuator [LLC08].

5.2.1 Payload

A minimum FOS(Factor of Safety) of 2.5 was considered for the actuators of the climbing

mechanism in the worst case. The value of FOS for all of the parts, mechanisms and actuators

was bigger then 2. Therefore, one can say that theoretically the robot can carry a payload equal

to its own weight, reducing the FOS to 1. As many NDT devices are lighter than the weight

of the robot itself, the current robot can carry those devices. For instance video inspection

of pipes only needs a light camera. The eddy current NDT probes are also light and small.

GemX-160 [S.A08] is a portable X-ray NDT device which can be mentioned as an example of a

heavier NDT device and weights 15 kg. All of these devices can be carried by the robot, slightly

reducing the FOS of the system.

5.3 Detailed design of the robot

Figure 5.4 shows the detailed design of the robot. The proposed design consists of two main

parts: the 4-DOF climbing module and two similar gripping modules. One of the grippers is
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Figure 5.4: The detailed design of the 3DCLIMBER.

attached to a manipulator, and the other one is attached to the base of the rotating platform. This

configuration provides four DOF between grippers, allowing the movement along poles with

different cross sections and geometric configurations. The proposed design takes advantage of

novelties in the design of both climbing and gripping modules.

5.3.1 Climbing structure

Figure 5.5 shows the detailed design of the 4-DOF climbing structure. The climbing structure

previously described was implemented with the following elements:
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Figure 5.5: 4-DOF climbing structure.

• The 3-DOF serial link.

• The rotation mechanism around the axis of the structure.

The 3-DOF serial link

The 3-DOF serial link consists of 3 Harmonic Drive AC brushless motors coupled with 160

to 1 Harmonic Drive gearbox, capable of generating torques upto 260 N.m. Links are custom

design and therefore were designed and simulated against the reacting forces and torques. The

structural design of custom made parts will be described in the next section.

The Z axis rotation mechanism

One of the novelties in design of the 3DCLIMBER is the Z axis rotation mechanism. The Z axis

rotation mechanism provides a fast manipulation around the structure axis, which is necessary

for performing most of the inspection tasks like inspection of welding. Using traditional serial

mechanisms as in [BGP+00a], makes the inspection operations time consuming and inefficient.

Using the Z axis rotation mechanism, a fast transition between working planes of the 3-DOF

arm is obtainable. The Z axis rotation mechanism is also necessary for placing the manipulator

below one of the bent sections of a T-junction. Figure 5.6 shows the detailed design and parts of
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Figure 5.6: The Detailed design of the Z axis rotation mechanism.

the Z axis rotation mechanism. The motor is MAXON EC-45 brushless motor. It is a 50 watt

motor capable of generating a nominal torque of 84 mNm and a stall torque of 822 mNm. The

gearbox is Maxon Planetary Gearhead GP-32C, with a 111:1 gearbox ratio. Coupling the motor

and gearbox and considering the 70% efficiency of the gearbox, a nominal torque of 5 N.m at

60 rpm is reachable. More information can be found from MAXON motor website [mot08].

The circular sliding mechanism consists of three THK rotation guides (each of them making

a 60°arc), three sliders and a gearing mate. Figure 5.7 shows the detailed construction of the

guide and structures. Balls roll in four rows of precision-ground raceways on the rail and the

slider. The end plate attached to the slider causes the trains of balls to circulate. Integrated balls

increase the efficiency by decreasing the friction. Therefore, it is possible to drive the mecha-

nism with a small torque and thus a light actuator. It should be considered that sliders should

withstand the reaction moments generated by the actuators of the 3-DOF arm and the moments

generated by the weight of the robot (figure A.2 presented in annex A). They should also with-

stand the normal and lateral forces (figure A.3 presented in annex A). Taking into consideration

all of such forces and torques in all directions and a safety factor of 3, we concluded that 3

sliders should be mounted on the guide in order to withstand all torques and forces.
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Figure 5.7: Construction of the HCR guide and slider.

5.3.2 Grippers

Grippers have an important role in the performance of the climbing robots, including:

• The safety of the robot during the normal operation and during the power failure deponds

on the grippers.

• Positioning precision of the 3-DOF serial arm manipulator depends on the stability of its

basement, which indeed is one of the grippers at each time. Therefore quality of grasping

the pole affects the precision of the manipulator.

Figure 5.8 shows the detailed design of the grippers. Each gripper consists of:

• Two unique multi-fingered V-shaped bodies.

• A brushless motor and planetary gearbox.

• One right-hand and one left-hand ball screws integrated in linear guides.

• Base and adapting plates.

V-shaped grippers

Grippers take advantage of a novel design which have mechanical self centering properties due

to their “V” shape. Such design significantly reduces the necessity for integration of sensors and

control algorithms for precise control and positioning of the gripper. In industrial applications,
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Figure 5.8: The detailed design and parts of each gripper.

“V” shaped gauges are used as jigs and fixtures for positioning of the circular profiles.

Another main factor which increases significantly the efficiency of the robot is that the grippers

are designed in a way that each gripper can withstand the total torque that is generated by

the robot weight and by the motors reaction torques. Therefore, when one of the grippers is

attached to the pole the other gripper can freely manipulate over the pole and perform some

tests on the structure. This eliminates the need for an extra manipulating arm and increases

the maneuverability of the robot. To do so, all parts of the gripper should be able to withstand

high forces and moments. Consequently the V-shaped part is designed long enough (250 mm)

to withstand such moments.
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Grippers’ Actuator

The grippers’ actuators are same as the actuator for the Z axis rotation mechanism and can

provide a nominal torque of 5 N.m at 60 rpm.

Ball screws and linear guide

Ball screws are used for efficient transformation of rotary motion to linear motion. Using One

right-hand and one left-hand ball screws, makes it possible to drive the grippers with one motor.

For selection of appropriate ball screw and linear guide, following issues were considered:

1. To increase safety, the gearbox ratio and ball screw’s pitch are calculated in a way that the

robot can stay attached to the pole by only one of the grippers.

2. In case of power failure, the robot should stay attached to the pole without slippage on the

structure. For this purpose, when the gripper is closed, the total force required to open the

gripper (or to make it slip on the structure), i.e. inertia of the gripper, should be higher

than forces exerted to it by weight of the robot. The inertia of the gripper depends on

several factors, namely the inertia of the motor’s rotor, the ratio of the gearbox, and the

pitch of the ballscrew.

3. The linear guide should be able to withstand all existing forces and moments.

4. Gripper should be able to grasp a range of pole diameters. First, because in industrial

applications there exist pipes and poles with different diameters and second, because

there are flange couplings (see figure 1.3 for instance) which should be overtaken by the

robot. Therefore the gripper was designed to operate on structures with diamater range of

200 mm to 350 mm.

Considering all of these measures, an integrated linear guide and ballscrew was selected. THK

kr2602 linear guide consists of a linear guide, a slider block, and a built-in ballscrew. Figure

A.4 (presented in annex A) shows the construction of the kr2602 linear guide. Load-bearing ball

trains are arranged with two trains on each side, thus constituting a double-row angular contact
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design. The slider with such design can bear an equal rated load in all four directions (upward,

downward, right side, and left side) (see figure A.5 presented in annex A) [Co.08]. All forces

and torques which are applied to the gripper during climbing a straight pole or when passing a

bent section were calculated. Based on this calculation, two slider blocks with a center distance

of 90 mm should be installed on each THK linear guide to be able to withstand all torques and

forces.

On the other hand, the pitch of the ball screw determines the travel speed and force of the

gripper. Using lower pitches results in higher forces but lower travel speeds. Also, lower pitches

increase the total inertia of the system which increases the safety during power failure. As the

travel distance for the grippers is short, high travel speed is not required. Therefore, the pitch of

the ballscrews was considered 2 mm. We calculated that the force applied by the gripper to the

structure can reach to 1250 N and the travel speed of the gripper can reach 120 mm/min. This

might seem slow, but during each step of the operation, normally the gripper should open just

about 2 cm (2 cm each side) which takes about 5 seconds. For obtaining a higher velocity, the

gripper’s motor can be replaced.

Couplings and Bevel gearbox

Figure A.6 (Presented in annex A) shows the bevel gear and the coupling which have been used.

The bevel gearbox is used in order to transform the rotation axis of the motor by 90◦ and also to

transform the rotation to both ballscrews. Therefor, it includes a bevel gear set and double-side

shaft. To couple these shafts to ballscrews, couplings with a small degree of radial and angular

flexibility were selected. This flexibility allows the system working even with existence of small

misalignments due to imprecise assembly of parts.

5.3.3 Custom design links and base plates

As it can be seen in figure 5.8, each gripper consists of custom design links and a base plate.

Therefore, similar to other parts, optimum structural design was achieved and will be described
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in the next section.

5.4 Optimum structural design

Many parts of the 3DCLIMBER are custom design and should be manufactured. For the struc-

tural analysis of the parts, the first step is to estimate forces and torques that the part should

withstand and then consider a safety factor. Designing the parts with the determined safety fac-

tor guarantees the safe operation of the part without failure. When a part is under load, the stress

is not distributed equally in all volume of the part. Computer aided structural analysis helps to

demonstrate stress and strain analysis and safety factor distribution of a part subject to loads

and moments. Using such tools, one can redesign a part several times until it reaches the nearly

minimum weight. To achieve a minimum-weight design, the variance of the safety factor distri-

bution should be decreased. For instance if the minimum FOS is 3, the least-weight structure is

a structure which has a FOS equal to 3 (and not more) everywhere in the part. But this might not

be possible due to some other constraints i.e. geometrical and manufacturing restrictions as well

as manufacturing costs. Many optimization techniques might be used for selecting the best ele-

ment from some set of available alternatives. But these methods are not easily applicable to the

least-weight structural design problem. This is due to difficulties associated with modeling and

formulation of manufacturing costs and limitations. But using finite element structural analysis

software, one can redesign a part several times until it reaches the near optimal structure, while

considering the manufacturing limitations and costs. This method was applied in design of all

non-standard and non-commercial parts of the 3DCLIMBER. COSMOSMotion engine which

is a plug-in for SolidWorks was used as the finite elements analysis tool. Figure 5.10 shows the

safety factor distribution in structural analysis of one of the grippers’ arm. The minimum safety

factor is 3, but the variance in the distribution of the safety factor is decreased as much as the

geometrical design parameters and also manufacturing limitations allowed. While the distribu-

tion of FOS is the most important factor related to the design optimization, other factors should

also be verified. Figure 5.9 shows the definition of the torques, forces, and fixed points. The
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Figure 5.9: For the structural analysis of the gripper arm, the holes on the right side of the link
are set as fixed. On the left a torque and a force are applied.

holes on the right side of the link will be fixed by bolts, and therefore in this analysis they are set

as fixed. On the left a torque and a force are applied. The amount of the forces and the torques

applied to each part were calculated based on the worst cases. Then for a reliable design many

parameters were checked. For instance, the deflection on each part should be less than a certain

value which is the maximum permissible deflection value. This value depends on many factors

including the material being used and the permissible geometrical deflection of the part due to

restrictions related to the whole mechanism design. Here the maximum permissible deflection

of the gripper arm was considered 0.2 mm. Figure 5.12 shows the deflection which is the result

of the applied force and torque in an exaggerated scale of about 500 times. As it can be seen the

maximum deflection is about 0.05 mm. Figure 5.11 shows relatively the strain distribution on

the gripper’s arm.

Such analysis was performed for all custom design parts of the 3DCLIMBER, in order to reduce

the weight of the robot as much as possible. Figure 5.13 shows the analysis of the final design

of some parts.
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Figure 5.10: The safety factor distribution in structural analysis of one of the grippers’ arm.

Figure 5.11: The strain distribution in structural analysis of the grippers’ arm.

Figure 5.12: The deflection which is the result of the applied force and torque in an exaggerated
scale of about 488 times.
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Figure 5.13: The structural analysis was performed for most of the parts with the objective of
minimizing the weight of the parts and thus to minimize the over all weight of the robot.
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5.5 Motion simulation and validation of the design

After completion of the detailed design of the robot, the model of the robot in Solidworks was

simulated in COSMOSMotion in order to validate the detailed design of the robot. The motion

simulation of the model has several advantages:

• To detect the possible collisions between the parts of the robot during operation.

• To check undesired collision between the parts of the robot and the structure.

• To determine the boundaries of each joint.

• To determine more precisely the required torques for deriving the joints of the climbing

structure and gripping mechanism and to verify if the selected actuators can provide it.

To simulate the motion of the robot, the motion input should be provided to all actuators in

the robot model. As the geometry of the structure is defined in the Cartesian space, the robot

motion should be planned in the Cartesian space as well. Some routines were developed to turn

a specified Cartesian-space trajectory (Pe) into appropriate joint position reference values. The

routine has two steps:

1. Convert the trajectory in Cartesian space, to a series of intermediate manipulator poses.

2. Use inverse kinematics of a robot manipulator arm to find joint values for any particular

location of (Pe).

And the output would be a series of joint position/velocity reference values to be sent to the

controller (in this case is the simulation engine). The path planning of the robot and detailed

trajectory generation will be extensively described in chapter 7. Therefore, in this section the

details of the trajectory generating algorithms are not described, but results from these algo-

rithms are used for the simulation purpose. The proposed tasks of the robot are climbing and

manipulating over the structure. All of these tasks are performable with composition of 3 more

basic tasks:
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1. Climbing over the straight part of the structure.

2. Rotating around the axis of the structure.

3. Passing the bent section of the pole.

Since the second item is rather simple, the simulation results of the first and the third items are

presented.

5.5.1 Climbing over the straight path

Supposing the upper gripper is open and the lower gripper is closed in the beginning, a straight

climbing step includes moving up the manipulator, closing of the top gripper, opening of the

bottom gripper, moving up the base, and closing of the bottom gripper. A routine was developed

in MATLAB which receives the values of the manipulator’s coordinate system relative to the

base coordinate system and angle of the manipulator relative to the base (θ), at the start and end

points (Ps and Pe) of each step and the total time for implementation of the step. The output

includes vectors of joint position versus time for 4 joints of the 4-DOF climbing structure, and

torque versus time for the actuators of the grippers. Considering inputs as (all dimensions in

mm):

Ps = [ Xs Ys Zs θs ]

= [ 0 0 310 180 ]

Pe = [ Xe Ye Ze θe ]

= [ 0 0 470 180 ]

Tt = 22 sec

In which Xs is the X value of the manipulators coordinate system relative to the base coordinate

system in mm at the start point. The output of the routine is showed in the figure 5.14, which
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Figure 5.14: Trajectory of the joints and torque of the electrical actuators for a straight climbing
step.

shows the trajectory of the joints in degrees and the torque which should be applied by the

gripper’s actuators in Nmm.

These trajectories were transfered to the simulation engine. Figure 5.15 shows sample shots

from the simulation.

5.5.2 Passing the bent section

Similar to climbing over a straight pole, a routine was developed in MATLAB for passing the

bent section of the structure. Figure 5.17 shows trajectory of the joints and torque of the elec-

trical actuators for passing a 90o bent section in which θrel shows the travel angle of each joint

relative to its initial position and θabs shows the absolute value of the joint. These trajectories

were transfered to the simulation engine. Figure 5.16 shows sample shots from the simulation.

In fact the result of the simulations was a proof of the concept, and also validated the detailed
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Figure 5.15: Sample shots of simulated motion of the robot model over a straight pole.

design of the robot. The simulation was based on position control. In the position control mode,

the simulation engine can generate the chart of the deriving torques for all joints. Based on those

graphs we were assured that the joints can be derived by the selected actuators.

5.6 Manufacturing, assembly, and mechanical characteristics

After the detailed design of the robot was completed and validated by simulations, the standard

parts were ordered and the custom design parts were manufactured and assembled.

It should be highlighted that after the assembly of the robot, the first test of the 3DCLIMBER

on the structure was successful and did not show any failure in the concept, the detailed design,

structural analysis, kinematics analysis etc.

Figure 5.18 shows all custom designed and manufactured parts. As it is the first prototype it

was tried to design the parts in several pieces so that in case of any change on the design, one

can easily redesign and change only one part rather than the whole system. Easy access to all

parts were considered in the design of each subassembly. All non-standard parts were designed
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Figure 5.16: Sample shots of simulated motion of the robot model passing a bent section of
90odeg.

and manufactured with 7075-T6 aluminum. This type of aluminum is heavily alloyed with zinc

making it very tough and strong. It has an ultimate tensile strength of 510− 538 MPa (better

than steel 1018) and thus has a very good strength to weight property [Rob08].

5.6.1 Grippers

Each gripper consists of two unique multi-fingered V-shaped bodies, a brushless motor, one

right-hand and one left-hand ball screws, and 2 linear guides. Figure 5.19 shows one of the

grippers. When one of the grippers is attached to the pole the other gripper can manipulate

over the pole and perform some tests on the structure. This eliminates the need for an extra

manipulating arm and therefore significantly increases the maneuverability of the robot. The

contacting part of the gripper is covered with rubber in order to increase the friction between the
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Figure 5.17: Trajectory of the joints and torque of the electrical actuators for passing a 90o bent
section.

pole and the gripper. Each gripper is actuated by a 50Watt Maxon brushless DC motor coupled

with a planetary gearbox which can apply 5 N.m torque. Coupled by THK ballscrew with 2 mm

pitch, the gripper can exert forces up to 1250N. To increase the safety, the gearbox ratio and ball

screw pitch are calculated in a way that after that one gripper grasps the structure, the robot can

stay attached to the pole by one gripper even if there is a power failure. This was successfully

tested. But during the robot operation, after the gripper grasps the structure, the motor will still

remain powered and apply torque to increase safety.

5.6.2 Climbing structure

The climbing structure was implemented with the following elements:
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Table 5.2: Main Robot Characteristics

Degrees of Freedom 4
Quantity of Motors 6
Climbing Procedure Step by Step
Weight (kg) 42
Material of the Parts Aluminium 7075-T6
Robot Size (m) 0.5×0.6×0.5
Extended Robot Size (m) 0.5×0.6×0.85
Climbing Speed (m/min) 0.8
Minimum diameter of the pole that gripper is able to grasp 200 mm
Maximum diameter of the pole that gripper is able to grasp 350 mm

• The 3-DOF serial link includes 3 Harmonic Drives AC brushless motors coupled with

160 to 1 Harmonic Drive gearbox, capable of generating torques up to 260 N.m. Har-

monicdrive gearboxes are lighter, more precise, and more efficient than many other types

of gearboxes. Figure 5.20 shows the 3-DOF serial link while the trajectory generation

routines and motion control algorithms were being tested.

• The rotation mechanism consists of three THK rotation guides and three sliders, one

gearing mate, and one Maxon brushless DC motor. Figure 5.21 shows the Z axis rota-

tion mechanism. This mechanism provides a fast manipulation around the structure axis,

which is necessary for performing most of the inspection tasks like inspection of welding.

Figure 5.22 shows the 3DCLIMBER robot. Table 5.2 shows the main characteristics of

the robot.

5.7 Conclusion

The detailed design of the robot includes analysis and calculations of different but interrelating

aspects of the mechanisms. The length of the links is determined by the required workspace of

the robot while the required workspace depends on the project’s objectives (e.g. to pass bent

section up to 90°). Also, the length of the links has an effect on the driving torque of the joints
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Figure 5.18: Custom designed and manufactured parts of the robot.

and thus on the actuator which should be selected. Furthermore the weight of the standard

parts of the robot and the custom design parts influences the driving torque of the joints. One

of the objective of the project was to minimize the weight of the standard and manufactured

parts. Since all these parameters interact with each other, there could not be a determined

single formulation for addressing all issues. Thus some of the parameters were fixed in each

analysis step, and the others were analyzed by different tools. Structural analysis of the parts

was achieved by structural analysis softwares in order to reduce the weight of the robot as

much as possible. The standard parts were selected from the lightest possible technologies and

the custom designed parts were manufactured from the 70 series aluminum which has a good

yield stress to density ratio. Then a straight-climbing-step and also a bent-section-passing-

step were successfully simulated using a path planning routine developed in MATLAB and a
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Figure 5.19: Gripper of the 3DCLIMBER.

motion simulating software. The robot was assembled and tested on the structure in order to

examine the “proof of the concept” and also to validate the detailed design of the parts. The

mechanical design of the system was completely validated after this test. During the test no

problem was detected regarding the mechanical design. The tests and experiments of the robot

will be described more extensively in chapter 8.
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Figure 5.20: The 3-DOF serial link.

Figure 5.21: The Z axis rotation mechanism.
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Figure 5.22: The 3DCLIMBER robot.



Chapter 6

Sensors and Electrical Architecture

6.1 Introduction

This chapter describes the sensors and the electrical architecture of the 3DCLIMBER. The ne-

cessity of application of some of the sensors which are described in the current chapter will

be clarified more in the next chapter, where path planning algorithms of the 3DCLIMBER will

be described. After describing the sensors, drivers of the actuators are described and then a

schematics of the overall electrical architecture is presented. It should be mentioned that in

general more emphasis in this thesis is given to the mechanical design of the robot due to the

author’s background in mechanical engineering.

6.2 Sensors

Sensors used in a system can be categorized to proprioceptive and exteroceptive. Propriocep-

tive sensors report internal state of a system part relative to an internal frame of reference. In

the other word proprioception is sensing one’s own internal status. Examples are encoders,

gyros, and accelerometers. Exteroceptive sensors report current state of the working environ-

ment. Examples are light sensors, touch sensors, and range sensors. Both categories are used in

3DCLIMBER. But we only preferred not using external reference systems which use triangula-

99
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tion or trilateration to a fixed reference system. Because in this case, a reference base station is

required which should be calibrated before starting the robots operation. This is not a practical

solution for outdoor industrial applications sometimes, as the installation and calibration of the

observer is a time consuming task and requires an expert. 3DCLIMBER possess sensors on

both gripping and climbing mechanisms.

6.2.1 Sensors of the gripping mechanism

The control aspects of the gripper will be discussed later, but in order to proceed with the

description of sensors, it is necessary to mention that the gripper is controlled in positional

control mode when it is opening and in torque control mode when it is closing. Therefore both

position (openness) and contact forces should be measured. Furthermore for a precise gripping,

it is important to know the position and orientation of the gripper relative to the structure before

grasping.

Force Sensitive Resistors

As the name suggests, Force Sensitive Resistors (FSR) are sensors that change their electrical

resistance as a function of the force exerted over their surface. A total of 16 FSRs were attached

to the grippers in order to measure force on different locations of the gripper. Figure 6.1 shows

4 FSR sensors attached to one side of the gripper. The data from these sensors are used along

with the amount of current of the motors to estimate the amount of force exerted by grippers and

to serve as feedback for the torque control algorithm of the grippers’ motors. They also provide

more information about how grippers are connected to the structure. If during the operation

of the robot, the 3-DOF link has some performance errors, or if the angle on the bend section

of the robot is not exactly the one expected, it means that the gripper is not precisely oriented

perpendicular to the pole. In this case different FSR sensors of the gripper report different

values which means incorrect orientation of the gripper. Should this error be bigger than an

specific adjustable amount, an error will be reported to the operator for further decision. In this
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Figure 6.1: FSR sensors attached to a gripper.

case the operator may stop the operation and calibrate the system. It will be shown in the next

chapter that after integration of a self calibration system, orientation of the grippers are corrected

automatically before grasping, and FSR sensors will only report errors occurred after grasping.

Another advantage of using FSR sensors are during the assembly and calibration of the grippers.

As both links of each gripper should be installed completely symmetric to the center, measured

values from the FSRs help us to precisely install and calibrate the grippers.

Encoders

Each gripper is actuated by a motor, whose encoder provides feedback to the position control

mode. The encoder is an incremental encoder with 500 counts per revolution. Considering 111:1

gearbox ratio and 2 mm pitch of the ball screw, it provides a resolution of 40 ηm. Obviously,

the precision of the system is much less than the resolution due to mechanical system tolerance

and clearances.



102 Chapter 6. Sensors and Electrical Architecture

Figure 6.2: The inclinometer board developed at ISR.

6.2.2 Positioning sensors of the climbing mechanism

The sensors described in this section are internal encoders required for positioning control of

the climbing mechanism manipulator and other sensors for calibration of the mechanism and

compensation of the positioning errors. The application of these sensors on the 3DCLIMBER

will be described in the next section along with the path planning algorithms.

Climbing mechanism encoders

HarmonicDrive motors used as actuators of the serial planar 3-DOF mechanism are equipped

with an encoder with 1024 sin/cosine periods per count and HIPERFACE interface [Co.09]

(figure A.8 in Annex A).

External reference sensors

External reference sensors are necessary for the robot autonomous calibration in the startup

process of the robot. For all 4 DOF of the climbing mechanism, home made photocells based

on opto-transistors were used. Consequently at the robot startup, an autonomous calibration

step is defined in which all links move until aligning with a zero reference point.

Inclinometers

Inclinometers are necessary for estimation of absolute angle∗ of grippers as well as links of the

climbing mechanism. They also serve for compensation of some other errors which will be

∗Inclination angle relative to the horizon
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Figure 6.3: One of the inclinometer boards which is installed on the gripper.

described later. This inclinometers are based on STMicroelectronics ultra compact LIS244AL

two-axis analogue accelerometer chips which are integrated in a board shown in figure 6.2 and

figure 6.3. The board is fixed on a link vertical plane. This sensor has two analogue outputs for

X and Y axes. Any change in the angle of each link, causes a change in the effect of the gravity

acceleration on each axis and thus changes the output voltage of the accelerometers. The output

voltage is read through a National Instrument data acquisition. The value is then compared with

a pre-filled data table, in which ”X” and ”Y” axes voltages are assigned to each angle in range of

0◦−180◦ with 0.3◦ steps. Four accelerometers are necessary for absolute inclination measure-

ment of all links including base and manipulator of the robot. Measuring absolute inclination

of all links and using the direct kinematics formulation, the current task space position of the

manipulator relative to the base can be calculated in every moment. Moreover, by installing an

inclinometer on the base, the deviation of the robot’s base angle from the desired angle can be

measured. The absolute inclination of links acts as external positioning feedbacks. Encoders

of actuators cannot report the deflection of the links and positioning errors initiated from the

coupling errors and system backlash and/or tolerances of the system. Additionally, as the robot

should climb from bent sections, inclinometers can provide useful data about the current angle

of the manipulator for grasping a 45◦ or 90◦ bent section.
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Figure 6.4: Y axis values of the accelerometer at 40◦.

Sensitivity of inclinometers ( ∂Vo
∂θ

) The sensitivity of accelerometers on each axis varies be-

tween 0.2 mV to 6 mV per degree. However, each axis is more sensitive in a specific range of

values and less sensitive in other ranges (as the effect of the gravity is multiplied by the sine

of the angle). For instance, sensitivity of Y axis in range of 45◦−135◦ degrees varies between

3 mV to 6 mV per degree. Consequently, using each axis on its more sensitive domain, a sensi-

tivity of 3 mV to 6 mV per degree is possible. It should be noted that the angle which should be

measured is always around the same axis, and application of the two-axis analog accelerometer

was only in order to keep the adequate sensitivity in a range of 0◦−180◦. Figure 6.4 shows the

measurement of signal on Y axis in 4 seconds, while the angle of the link relative to the horizon

is 40 degrees. The signal ranges from 1.209 mV to 1.226 mV which has a range of 17 mV .

Considering the 4 mV per degree the error on angle estimation based on a single sample might

be up to 4◦.

Fault tolerance and filtering of mechanical vibrations For an effective calibration of the

system, a precision of about 0.5◦ is desired. This value is calculated based on the maximum
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Figure 6.5: Y axis values of the accelerometer at 40◦ with a 6 Hz normal amplitude vibration.

permissible error on the manipulator’s pose in each step. It should be mentioned that in practice

the 3DCLIMBER robot always has vibrations due to spring characteristics of the links. Vibra-

tions change the angle of the base and manipulator of the robot. It also adds some acceleration to

the links which affects the output value of the accelerometers. Therefore we should estimate the

absolute angle of the links after filtering the vibration component. A positive aspect is that the

mechanical vibrations are of low frequency and mostly under 10 Hz. Therefore, a method which

averages sufficient samples acquired at high frequency was applied. If the sampling frequency

is adequately greater than the mechanical vibration frequency and if a large enough number of

samples gets acquired and averaged, the low frequency vibrations will be eliminated. With some

experiments, we found the average value of 200 to 400 samples in a total time of 2-4 seconds,

acquired at the rate of 100 Hz (10 times larger than the mechanical vibrations frequency of the

links) is very reliable. This method has good repeatability and can filter the effect of the me-

chanical vibrations. It showed a repeatability precision of 0.07◦ (4′). To test the repeatability

against the mechanical vibrations effect, the accelerometer board was installed on a link and the

link was manually vibrated with different frequencies and amplitudes similar to the frequency
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Figure 6.6: Y axis values of the accelerometer at 40◦ with a 3 Hz normal amplitude vibration.

and amplitude of vibrations which is happening in the 3DCLIMBER. This is shown in figure 6.5

and 6.6. In both cases the average value did not change more than 0.1 mV even with existence

of vibrations with 6 Hz frequency.

The average value in a relatively high amplitude vibration (figure 6.7) has only changed about

1 mV . This provides us with a precision better than 0.3◦ (20′) even with existence of relatively

high amplitude vibrations. The characteristics of the developed inclinometers are summarized

in Table 6.1.

6.2.3 Range finders

The distance between the pole and the structure is measured using Sharp GP2Y0A21 optical

triangulation sensors (figure 6.8). These sensors can measure distances in the range of 10 cm to

80 cm (figure 6.9) being used to estimate the distance between the manipulator and the struc-

ture. These sensors are based on geometrical principles, being highly independent of the optical

properties of the target surface (figure 6.10). As it can be seen in figure 6.8, the pole surface is

not flat and therefore the output voltage could be different from the flat surface. This was tested
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Figure 6.7: Y axis values of the accelerometer at 40◦ with a 5 Hz wide amplitude vibration.

as it can be seen in figure 6.11. This error depends on the radius of the circular profile but the

amount of offset value is fixed for all distances for a specific radius (figure 6.11). Consequently,

a compensation function was developed which receives the radius of the profile as an input and

corrects the distance according to that. Finally, as can be seen in the figure 6.10, the sensor is

more sensitive in the closer ranges. To increase the resolution, the range finder was placed as

near as possible to the structure (in the distance of 60mm from the structure, when the gripper is

closed). As an example, our experiments showed that in the distance of 200 mm the sensitivity

Figure 6.8: A range sensor faces the structure
and measures the relative distance.

Figure 6.9: Sharp range finder
used for distance measurement.
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Type STMicroelectronics ultra com-
pact LIS244AL two-axis ana-
logue accelerometer

Sensitivity 3mV/◦ to 6mV/◦

Repeatability based on one sample 4◦

Repeatability based on average of 400 samples at
100 Hz

0.07◦

Repeatability based on average of 400 samples at
100 Hz and existence of 5 Hz mechanical vibrations

0.3◦

Table 6.1: Characteristics of the inclinometer sensors.

of the sensor is 8 mV/mm. Using a 12 bit data acquisition and considering a 1 mV resolution of

voltage acquisition, a resolution of better than 0.2 mm can be obtained. However, the accuracy

of measurement is mainly limited by the accuracy of the calibration method for the specific

color and radius. It is worth mentioning that the SHARP range sensors currently being used are

very inexpensive (10-20 Euros) and with reasonable accuracy. An industrial grade triangulation

sensor would be more accurate, but it would cost at least 500 Euros.

6.3 Motor drivers

There are tow types of actuators and consequently two types of drivers: DC drivers for MAXON

DC motors (used in the grippers and the Z axis rotation mechanism) and SEW drivers for AC

motors of the climbing mechanism.

6.3.1 DC drivers

DC motor drivers are IBL2403 from TECHNOSOFT (figure A.9 in Annex A) [Tec09]. It is an

intelligent drive combining motion controller, driver, and PLC functionality in a single compact

unit. The IBL2403 drive is a compact driver for distributed and coordinated control of brushless,
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DC or step motors of powers up to 75 W, and voltages up to 24 V. It functions in a CAN network

and has various control modes, namely: Torque, speed, or position control. A high level graphi-

cal environment from TECHNOSOFT called “EasyMotion Studio”, supports the configuration,

parameterization and programming of the driver. Therefore in the first step the driver should be

configured according to the motor characteristics through a set up process. Some of the motor

parameters e.g. number of the poles, maximum current, etc. should be provided to the driver

while some others e.g. the rotor inertia may be provided or can be detected automatically by the

driver. EasyMotion Studio also has a programming environment in which high level routines
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can be programmed using a specific programming language called Technosoft Programming

Language (TML). Two TML programs (one for the gripping mechanism motors and one for the

rotating mechanism motor) were developed and loaded to the drivers of the DC motors. Us-

ing this program, the driver receives motion trajectories as well as high level commands from

the CAN network and transfers the low level commands to drive the motors. The trajectory

generation algorithms will be described in the next chapter.

6.3.2 AC drivers

AC motor drivers are SEW MOVIDRIVE MDX61B 3-phase 1.4 kW drivers (figure A.11 in

Annex A) [SE09]. These drivers are equipped with a CAN/CANopen interface card of DFC11B

The MotionStudio program package allows start up, set parameters, and run diagnostics for

MOVIDRIVE MDX60/61B drive inverters. MotionStudio also has a programming environment

called IPOS positioning and sequence control system. IPOS includes four main control means

which are user programs, PLC functions, positioning functions and monitoring. Currently we

only use the high level programming environment. In a very similar manner to the DC drivers a

routine was developed in AC drivers programming language which is loaded to all drivers. Mo-

tion trajectories are transfered from the upper level controller(here a PC) to the drivers through

the CAN network. The higher level trajectory generation algorithms are executed on a PC and

will be described in the next chapter. A protocol was defined for communication between the

computer with the motor drivers that are all connected to each other via CAN bus interface.

The high level trajectory generation routine (running on a PC) converts the position and ve-

locity trajectories to a CAN command based on this protocol. The same protocol was used in

the IPOS routine which converts the commands received from the CAN network to low level

motion patterns of the driver.
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6.4 Electronics architecture

6.4.1 Electronics architecture

As illustrated in figure 6.12, three AC brushless motor controllers, three DC brushless motor

controllers, and National Instrument data acquisition modules are used. Controllers can control

motors in position, velocity, and torque modes. The AC motors of the 3-DOF serial arm are con-

trolled in velocity control mode. The Z axis rotation mechanism has a DC motor which is also

controlled in velocity mode. Other 2 DC motors which are used in the grippers are controlled

in position mode while opening and torque control mode while closing and gripping. All of the

drivers are communicating by CAN bus through CANopen protocol. A CAN to USB module is

used to connect the CANbus to a PC. Data acquisition modules are NI USB-6009 from National

Instruments (figure A.10 in Annex A) [Ins09]. Each module provides connection to 8 analog

inputs (14 bits, 48 kS/s), 2 analog outputs (12-bit, 15 kS/s) and 12 digital I/O. These modules

are connected to a PC through USB.

A user interface and an upper level communicating software have been developed in Visual

C].NET and will be described in the next chapter.

6.5 Conclusion

The sensors of the gripping and climbing mechanisms were described in this chapter. Their

resolution and accuracy against the required accuracy were discussed. The motor drivers as

well as their applications on the robot were delineated. Finally a global view of the electronics

architecture was presented.
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Figure 6.12: Electronics architecture of the 3DCLIMBER robot.



Chapter 7

Path Planning and User Interface

7.1 Introduction

This chapter describes the path planning, autonomy and control of the 3DCLIMBER. First the

required level of autonomy for the 3DCLIMBER is discussed and then the path planing and

control algorithms which have been applied in order to fulfill the required autonomy level will

be discussed.

7.2 Autonomy level

In order to develop the path planning and control algorithms, and user interface of the 3DCLIMBER,

it is important to first define the required level of autonomy. High level path planning algorithms

highly depends on the required level of autonomy. In robotics applications, path planning can

be done online or off-line (figure 7.1). This depends on several factors including existence

of obstacles, predictability level of obstacle locations, and the amount of knowledge available

from the robot working area before start of the robot operation [FGL87]. If some knowledge

of the environment is available, the path can be planned before the execution. Planning paths

before execution allows efforts to get shorter paths, more efficient dynamics, and absolute col-

lision avoidance. A priori knowledge may not be used for unpredictable or random motion as

113
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Figure 7.1: Path planning and path tracking in robotic applications

there is no detection method allowed by its definition. For the 3DCLIMBER application we

should choose between a Priori path planner or a Postieri path planner, or combination of them.

As stated earlier the working area of the 3DCLIMBER robot is human made 3D structures.

Structures used in plants for piping purpose, are based on available maps and are not unknown

environments. Consequently, equipments and algorithms for mapping, detection of obstacles,

and world modeling are not necessary. The missions for the 3DCLIMBER might be defined as

scanning a specific part of a structure. In order to do that, the robot should be able to reach any

point and configuration on the structure. Therefore, autonomous approach to any specific point

on the structure is desired. This means that the geometry and map of the structure will be given

to the 3DCLIMBER as input. Then a specific point on the structure will be given as an input of

the mission. The mission of the robot is to autonomously reach to the desired point. Therefore

here the problem is defined as:

“Giving a known structure and a starting pose, how to reach a given point in the structure within

a specified accuracy.”

A more complex mission, such as scanning a specific area can be defined as a set of continuous
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points that the 3DCLIMBER should reach to.

7.3 Path planning

The Path planning algorithm is composed of three hierarchy levels. The lower level trajectory

generation algorithm, the mid-level straight line and bent section passing planners, and the high

level autonomous path planner. Before describing the algorithms, the concept of one step and

half steps should be described. Suppose that the lower gripper of the robot is closed and the

upper gripper of the robot is in position Pc (stands for current position) relative to the base

of the robot which is indeed the lower gripper. Also suppose that the upper gripper is closed

and the manipulator (connected to the upper gripper) should move from its current position

Pc : {Xc,Yc,Zc,θc} to a desired position Pd : {Xc,Yc,Zc,θc}. If the desired point Pd falls within

the workspace of the robot, then it is possible to perform the movement in a single step. Then

the terms “half step” and “one step” are defined as:

• Half step:

The upper gripper opens, then the manipulator (connected to the upper gripper) moves

from Pc to Pd and finally the upper gripper closes and grasps the structure (figure 7.2 a

and b).

• One step:

One step is composed of a “half step”, then the lower gripper opens, afterwards it moves

from its current position to a new position in which the position of the manipulator relative

to the base becomes again Pc and finally the lower gripper closes (figure 7.2 a,b and c).

7.3.1 Low level trajectory generation

The lowest level part of the path planner is the straight line trajectory generating algorithm.

This algorithm generates appropriate data to control the motors of the 4-DOF mechanism and

grippers so that the robot travels along a straight path. A routine was developed in MATLAB
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Figure 7.2: Half step and one step concepts (The opening and closing of grippers not shown).

to simulate the robot model in Cosmos motion∗ and after the successful experiment, a simi-

lar routine was developed in C] for the physical robot. The algorithm receives the start point

Pc : {Xc,Yc,Zc,θc} and the end point Pf : {X f ,Yf ,Z f ,θ f } of one climbing step in the Cartesian

order. The desired travel time and desired “path following” precision are also the inputs of

the algorithm. The output of the algorithm is the matrix of the position versus time for the

4-DOF mechanism motors, the applied algorithm estimates “n” points on the straight path and

by applying inverse kinematics, it generates appropriate data for all motors for every time devi-

ation. Clearly increasing the number of intermediate points “n” will result in better precision,

but the calculation cost increases. Figure 7.3 shows the generated trajectory for making one

step up. This is indeed the result of the mid-level straight line routine developed in Matlab,

which uses the trajectory generation algorithm. In figure 7.3, the following values were con-

sidered as initial and final points of one straight line climbing step: Pc = [0 0 200 180] and

Pd = [0 0 400 180]. Figure 7.4 shows the generated trajectory for passing a bent section of 90o,

where Pc = [0 0 200 180] and Pd = [600 0 400 90]. After moving each step up or passing the

bent section, the manipulator of the robot goes back to its previous location before making the

step. Therefore, in all graphs the initial position of each joint is equal to its final position.

∗http://www.cosmosm.com/



7.3. Path planning 117

0 5 10 15 20 25
300

400

500
 Values of the Z, 0, 1, 2, 3 and gripper motor torques versus time

Z 
(m

m
)

0 5 10 15 20 25
-1

0

1
0 

(
)

0 5 10 15 20 25
20

40

60

1 
(

)

0 5 10 15 20 25
50

100

150

2 (
)

0 5 10 15 20 25
20

40

60

3 
(

)

0 5 10 15 20 25
-4000

-2000

0

T1
 (N

m
m

)

0 5 10 15 20 25
-4000

-2000

0

Time (sec)

T2
 (N

m
m

)

Figure 7.3: Generated trajectory for climbing mechanism motors for making one step up, in-
cluding opening and closing of grippers.

Estimation of minimum number of necessary intermediate points

The inputs of the trajectory generation algorithm are the current and desired poses of the ma-

nipulator relative to the base of the robot and the desired “path following” precision. The “path

following” precision is important, because it has a direct effect on the overall speed of the

3DCLIMBER. Since opening and closing of grippers are time consuming, the grippers should

not open or close to their final possible stroke in each step. Instead, as long as the complete

detachment of the gripper from the structure is not necessary (it might be necessary in some

NDT applications and when the robot is passing the bent section), it is preferred that the gripper

just takes the minimum stroke for opening and closing. On the other hand, a precise and ac-

curate path tracking algorithm is necessary because if the manipulator can not precisely follow

a straight line, the gripper should open more in order to avoid any collision with the structure.

On the other side, if the precision is more than required, it means that there is an additional
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Figure 7.4: Generated trajectory for climbing mechanism motors while passing a bent section.
In the figures, the term “rel” stands for the position relative to the initial position and “abs”
stands for the absolute position.

unnecessary calculation cost and intermediate points are more than enough. This also reduces

the calculation and path tracking speed. Taylor straight line planning method [Tay79] was used

in order to calculate the minimum number of intermediate points between the poses which

guarantees the required precision. Algorithm 1 shows the trajectory generation and execution

algorithm based on this method.

7.3.2 Mid level straight line and bent section passing algorithms

The mid-level planners are:
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Algorithm 1: Trajectory generation algorithm
Readθ1,θ2,θ3 from inclinometers
Pc← Calculate current Pose using direct kinematics
Pd ← Read the desired Pose from inputs
δmax← Read the maximum possible deviation from the path
n← 0, δ←C (Constant big enough value) while δ > δmax do

n = n+1;
Calculate “n” points between Pc and Pd
δ← Calculate the error on the path based on “n” points

Calculate the trajectory based on “n” points using inverse kinematics
Execute the trajectory

End of algorithm

• One step straight line planner

• One maximum step planner

• φ angle planner (Rotation around the pole axis)

• Bent section passing algorithms

• Calibration algorithms

These algorithms also use the low level trajectory planners and are described below.

One step straight line planner

The one step straight line planner, receives the current and desired position of the manipulator

Pc and Pd and the required precision. These information can be entered by the user in the

user interface, or will be provided by an upper level algorithm. Then the low level trajectory

generating algorithm is applied in which the number of intermediate points is calculated. Finally,

upper gripper reaches to the desired destination Pd and closes and then lower gripper opens and

goes to its target position. In all algorithms at least a gripper should always be closed and apply

a specific amount of force to the structure. Yet another important function is used in the one step

planner, which is called “angle compensation algorithm”. This algorithm will be described later

in this chapter. Figure 7.5 demonstrates the GRAFCET representation of the “one step forward”

straight line planner algorithm.
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Figure 7.5: The GRAFCET representation of the “one step forward” straight line planner algo-
rithm.

Maximum stroke step and maximum Z axis step

Some routines were designed according to the requirements of higher level planners and based

on the straight line planner. The “maximum stroke algorithm” acts very similar to the “one

step straight line planner”. The difference is that the Pc and Pd are inserted automatically

equal to the position of the climbing mechanism at minimum ([0 0 Zmin 180]) and at maxi-

mum ([0 0 Zmax 180]).

On the other hand, the “maximum Z step algorithm” is also a similar algorithm in which the

manipulator moves from its current position to the maximum possible Z stroke and thus replaces

Pc and Pd of the straight line planner as Pc = [0 0 Zcurrent 180] and Pd = [0 0 Zmax 180].
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Bent section passing algorithms

To pass bent sections with any arbitrary angle the straight line trajectory generation algorithm

should be applied in several consecutive steps. In the other word, while the final target pose is

located on the structure after the bent section, some intermediate points which are not located

on the structure should be defined so that the robot manipulator passes through these points to

reach to the final target pose in some consecutive steps.

As some specific bend angles like 45o and specially 90o are very common in industrial pip-

ings and 3D structures, specific routines for passing the bent section with these angles were

developed.

The approach used for doing this, was to previously simulate passing a bent section with the

robot model in Solidworks and determine the initial and final Positions of the manipulator on

the structure for passing the bent section, as well as the number of necessary steps and the

necessary intermediate points. Here the initial position means the position of a point on the

structure where the high level planner changes from straight line passing routine to the bent

section passing routine. In the other word, when the manipulator reaches to a specific distance

from the bent section, then it can start to pass the bent section. Then a pre-planned trajectory

for the climbing and gripping mechanisms which have been previously recorded based on the

simulations will be executed. The GRAFCET representation of the algorithm is shown in figure

7.6.

φ angle planner

φ is the rotation angle around the pole axis. Before passing the bent section, the robot should

be placed precisely below the bent section which means the X-Z plane of the robot and the

X-Z plane of the structure should coincide (figure 7.7). The φ angle planner, uses a sharp range

finder in order to estimate the minimum distance between the gripper and the bent section. In

fact, when the mentioned planes coincide, the range finder will show a minimum distance value

(figure 6.8). In this way the φ angle planner can find the appropriate place and compensate the
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Figure 7.6: The GRAFCET representation of the 45o and 90o bent section passing algorithm.

related errors. Figure 7.8 shows the φ angle planner algorithm.

Start up calibration

When the operator starts the robot and place it on the structure, the startup algorithm should

get the zero references of the climbing mechanism and also should calibrate the robot. For the

robot initiation, the operator connects the upper gripper of the robot to the structure and the

lower gripper is open. In this case, before powering actuators of the climbing mechanism and

due to the inertia of the robot, the links move to the minimum energy state. As the mechanical

characteristics of the robot does not change, the minimum energy state always locates on a fix

pose. In this pose, the start up algorithm turns on all motors and send the command so that they

move in a previously determined direction until finding the reference point. This direction is
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Figure 7.7: Z axis rotating mechanism is designed to place the X-Z plane of the robot coinciding
with the X-Z plane of the structure.

determined previously and is a fixed direction, because the minimum energy position and also

position of the zero point reference sensors (opto-transistors) are both fix. The start up flowchart

is shown in figure 7.9. After finding the zero reference points of all actuators, the climbing

mechanism will try to place the lower gripper at the correct distance from the structure and also

perpendicular to it (using the accelerometers and sharp range finders). In this way, the lower

gripper grasps the structure. Then the upper gripper opens and moves to the [0 0 Zmin 180]

position. But before gripping, the position, the angle, and the distance of the upper gripper

relative to the structure is checked using the range finder and inclinometers. Consequently

any error will be compensated before the upper gripper grasps the structure. Now the robot is

calibrated and can start its operation.

7.3.3 Multi step straight line path planner

The high level autonomous path planner should receive an absolute position on the structure

and control the robot to reach to the desired position autonomously. However this is not totally

implemented on the 3DCLIMBER. To perform this objective precisely, integration of additional

localizing sensors (i.e. localization with triangulation methods by ultrasonic transceivers) and

laser range finders or camera are necessary. The problem is mainly detection and overcoming a

bent section autonomously and also absolute localization of the robot on the structure. With the
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Figure 7.8: The GRAFCET representation of the φ angle planner algorithm.

current sensors, a multi step straight path planner is developed which calls the “one step straight

line” algorithm and also “one maximum step” routine several times to pave a desired straight

stroke which is not possible to pave or climb in a single step. The number of times that it calls

the “one maximum step”, and also the initial and final steps are also calculated by the “Multi

step straight line path planner” algorithm. Figure 7.10 shows the algorithm for doing that.
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Figure 7.9: The GRAFCET representation of the start up calibration algorithm.
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Figure 7.10: The GRAFCET representation of the multi step straight line planner.

7.4 Angular deviation compensation and calibration algorithms for

fine manipulation

The error compensation and calibration algorithms were added to the robot control system after

the first tests of the robot. During those tests some problems were revealed which were persua-

sive for integration of additional sensors and algorithms. The experiments and tests of the robot

will be described in the next section, but for understanding the necessity of the algorithms and

the functionality of algorithms, it is necessary to describe some of the revealed problems during

the first test of the robot. Our preliminary experiments showed that shortly after a gripper grasps

the pole, it tends changing its tilt angle. This is due to the torques resulted by the weight of the

robot. Therefore, the closed gripper does not stay perpendicular to the pole until the end of the

step (figure 7.11b). Consequently as the other gripper maintains 180◦ with the first gripper, it
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will not be perpendicular to the pole. Therefore, a perfect gripping action can not be established.

It should be noted that it is usually a small error, but it accumulates in each step and will result in

an over defined system as the gripper tries to grasp the structure while it is not well positioned.

Thus, even if the gripper succeeds in grasping, the actuators of the climbing mechanism will try

to compensate the error, pulling maximum current, and consequently overheating. Therefore,

precise positioning and gripping are necessary and such errors must be compensated in each

step. Adding to all the aforementioned problems, this error is accumulative and the total devia-

tion from the desired position and angle becomes increasingly larger after each step, making it

impossible to grasp the structure and continue the movement after a couple of steps. Therefore,

the operator has to stop the operation, manually calibrate the robot and then resume the opera-

tion.

Furthermore, an important advantage of step-by-step based climbing robots over the wheel

based climbing robots is their better maneuverability due to the existence of a robotic ma-

nipulator and such advantage becomes more outstanding if the manipulator can perform fine

manipulation. Fine manipulation is necessary for some maintenance applications (e.g. the light

bulb changing operation) and if the manipulator can perform fine manipulation, the necessity of

integrating a separate arm can be abolished. However, as it will be described later, fine manip-

ulation with large manipulators can not be done only with internal motor encoders and requires

external feedbacks to compensate positioning errors. In this section we suggest an algorithm for

compensation of such errors.

7.4.1 Error sources

Error sources which are the cause of the mentioned problems can be divided into two main

groups:

A. General error sources of industrial robotic arms: High accuracy is generally difficult to

obtain in large manipulators capable of producing high forces because of the system elas-
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tic and geometric distortions [MDM04]. Due to some sources of errors, namely tolerance

on gears, coupling errors, deflection of the links, etc, positioning errors are unavoidable

in manipulators. This is a general problem of the robotic arms which has been discussed

in the literature. For instance, the control problem of flexible link robotic manipulators

has been studied in the last two decades [CJS84, ESL06]. Some control strategies (e.g.

fuzzy and adaptive control) have been proposed [LL03]. To measure the amount of the

deflection, two strain gauges are usually stuck onto the arm [LL03]. The 3DCLIMBER

consists of a relatively large robotic arm and consequently contains the same mentioned

problems. It should be noticed that the robot is not designed with flexible links concept

and its links are rigid considering the applied forces. But the high torques on joints (up

to 200 N.m) cause small unavoidable deflections on the aluminum links. Such small de-

flections produce big errors on the manipulator pose, when multiplied by large values

(length of the links). On the other hand, most manipulator calibration techniques require

expensive and/or complicated pose measuring devices, such as theodolites [MJD99]. A

precise yet inexpensive solution for compensation of the stated errors of the 3DCLIMBER

is desired.

B. Error sources due to the mobility of the robot’s base: In industrial robotic arms, the

base of the robot is usually fixed to a certain point. A step-by-step based climbing robot

usually consists of a climbing mechanism and two grippers. During climbing, the fixed

gripper is called “Base” and the moving gripper is called “Manipulator”. Obviously, the

base and the manipulator change their role in each step. As the manipulator movements

are programmed relative to the base, errors in pose of the base will cause errors in pose

of the manipulator. This error is illustrated in figure 7.12. The light figure shows the

status without error, and the dark figure shows the status after the error occurs. Here, the

lower gripper (G2) is the base. Due to the errors, the lower gripper is not perpendicular to

the structure which causes errors on X, Z, and angle of the manipulator. As stated, these

errors impair the robots autonomous climbing process and should be compensated in each
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Figure 7.11: Demonstration of the tilt angle error and compensation: a -Correct status. b-After
occurrence of the error. c- Error compensation for the upper gripper. d-Error compensation for
the lower gripper.

Figure 7.12: The error on the placement of the base generates a relative error on the manipulator.

step of the movement and right before grasping the pole. For simplicity of referencing

in the following sections, the errors related to the general errors of the industrial robotic

arms are called type A errors and those related to the mobility of the robot’s base are

called type B errors.

7.4.2 Angle compensation and autonomous calibration algorithm

An autonomous self-calibration algorithm is proposed in order to compensate the errors and

calibrate the system in each step of the robot’s movement. This algorithm requires the absolute

pose of each link, in order to calculate and compensate the previously mentioned errors. The

absolute pose of each link can be obtained with different strategies, namely by triangulation

or by trilateration to a fixed reference system. In any of the previous cases, a reference base

station is required and should be calibrated before starting the robot operation. Sometimes this

is not a practical solution for outdoor industrial applications as the installation and calibration
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of the observer are time consuming tasks and requires an expert. Since the 3DClimber robot

is intended to operate in multiple structures and places, a solution which is embedded into the

robot is highly preferred. Therefore, the proposed solution is based on an algorithm in which the

absolute inclination of the links (inclination of each link relative to the horizontal) and distance

of the manipulator to the structure should be measured. This method does not provide the

absolute position of the robot on the structure, but it provides a precise relative pose of all links

which does not contain the aforementioned error sources. Consequently, all mentioned errors

can be calculated and compensated. To do so, 4 analog inclinometers have been developed,

using accelerometer chips. Also Sharp range finders have been integrated to the grippers of the

system. The sensors which have been applied to the system have been previously described.

Here it should be noted that the inclinometers provide the absolute angle of all links including

the upper and the lower grippers. In the proposed algorithm, each step of the movement is

composed of three phases.

A. Moving to the desired pose: In the 1st phase of each step, the manipulator moves from its

current pose Pc = (Xc,Y c,Zc,θc) to a desired pose Pd = (Xd,Y d,Zd,θd). In this phase

no error compensation algorithm is involved. In the 2nd and the 3rd phases of each step,

Type A and Type B Errors will be compensated. After execution of all three phases, the

gripper which is attached to the manipulator grasps the structure and changes its role from

“Manipulator” to “Base” of the robot.

B. Compensation of Type B Error: In the 2nd phase of each step, inclinometers will measure

the angle deviation error of the robot’s base (δθ), and, consequently, using the trajectory

generating algorithm, the position of the manipulator will be changed from Pd to Pd +

(−δX ,0,δZ,δθ), in which δZ and δX have been calculated as (figure 7.12):

δZ = 2Zcsin(δθ/2) ; δX = 2Zccos(δθ/2)
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This compensates the effect of the deviation of the base of the manipulator. Nonetheless,

the manipulator may not yet have the desired pose for gripping due to the Type A errors.

C. Compensation of Type A Error: In the 3rd phase of each step, errors on positioning of the

manipulator relative to the structure will be compensated. Inclinometers provide absolute

angle measurement, which serves as the external feedback to encoders. This feedback

addresses the problem of fine manipulation of large manipulators because the sensors are

installed directly on the arm and do not contain errors related to gearing backlash, cou-

pling mechanism, and improper placement of the base. However, for special tasks, some

additional algorithms might be used. For instance, for a perfect gripping, the manipula-

tor should be perpendicular to the structure and at a certain distance from the structure.

This assures that the system will not be over defined after gripping. Therefore, in the 3rd

phase of each step, the absolute angle of the manipulator and the distance of the manipu-

lator from the structure will be measured and the relative error will be compensated. The

distance between the pole and the structure is measured using range sensors (figure 6.8).

D. The Proposed Algorithm: Figure 7.13 shows the simplified version of the algorithm that

intends to fuse the three phases in one step. To calculate the current task space position

of the manipulator relative to the base, direct kinematics formulation is applied in which

θ1,θ2 and θ3 are calculated based on the inclinometers.

Inclinometers also provide some other useful information. As the robot should climb from

bent sections, inclinometers can provide useful data about the current angle of the manip-

ulator for grasping a 45◦ or 90◦ bent section. Figure 7.14 shows a simplified schematic of

the control loop.

Figure 7.15 shows the status of the robot before and after execution of the step and af-

ter compensation of the error (only the 1st and the 2nd phases are shown here). Three

important aspects of the algorithm should be noticed:

1. There is an important difference between the 2nd and the 3rd phases of each step.
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Figure 7.13: Self-calibration algorithm.

The 2nd phase is associated with larger errors caused by the deviation angle of the

base. This deviation causes relatively large errors (δX and δZ and δθ) on position

of the manipulator. The 2ndphase of the steps compensates all of these errors. For

instance, considering the gripping action, if due to any other source of error (type A),

the manipulator is not in the appropriate pose for gripping, then the 3rd phase of the

algorithm only compensates (δX and δθ) in order to effectively grasp the structure.

The difference is that the 2nd phase tries to place the manipulator in the desired

pose as much as possible, while the 3rd phase tries to place the manipulator in the

precise gripping position even if the manipulator’s pose differs from the desired
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Figure 7.14: A simplified schematic of the control loop.

Figure 7.15: Autonomous self-calibration illustration.

pose. Therefore, if the 2nd phase is avoided, the robot can still grasp the structure,

but the Z element of the manipulator will noticeably differ from the desired Z. On the

other hand, the 3rd phase of the algorithm, requires to know the distance between the

manipulator and the structure, which might not be always available in some specific

tasks. In those cases, this phase might be eliminated.

2. The proposed algorithm (figure 7.13) is more accurate when the trajectory which

should be paved is smaller. For instance, a straight line trajectory of 800 mm will

have an error about 30 mm which will be compensated with the algorithm, but such

error is not acceptable when the manipulator should also perform a specific task

during the pavement of the trajectory. If we divide this trajectory into four smaller

sub-trajectories of 200 mm, after execution of each sub-trajectory an smaller error

about 7 mm should be compensated.



134 Chapter 7. Path Planning and User Interface

Figure 7.16: Snapshots from the user interface of the climbing robot.

7.5 User interface

A user interface, which is in fact a part of an architecture for controlling the robot is developed,

but it is still under more development and is not finalized. The reason is that in the beginning, the

direct control of the robot through a PC was considered but then a more advanced control archi-

tecture including a server-client based remote control of the robot was considered. Therefore,

some undergraduate student projects were defined for development of the server-client based

remote control of the robot which are ongoing projects and will be shortly described in the next

section. Figures 7.16 shows snapshots from the first version of the user interface, and in fact it

is the most reliable version used as the user interface of the 3DCLIMBER up to now.
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7.6 Server-client based remote control

Remote control of the 3DCLIMBER has many advantages. Should this happen, the user can

control the robot from a distance. This facilitates the inspection works and it is specially useful

if the robot operation should take place in a dangerous disaster.

On the other hand, controlling climbing robots through teleoperation is a challenging task that

demands a flexible and efficient user interface. Autonomous Climbing robots are often equipped

with numerous sensors (proximity sensors, cameras, inertial modules, system status sensors,

strain gauges, etc.) and use different climbing and gripping structures. Several initiatives have

taken place that aim at defining standards, reference architectures, and middleware for the de-

velopment of reusable robotic systems. JAUS (Joint Architecture for Unmanned Systems) is a

set of standards, specifications, and recommendations to facilitate interoperability for unmanned

systems [JAU]. The Player/Stage framework [Pla] provides the user with Player, a device server

that allows the control of a wide variety of robotic sensors and actuators, and Stage, a multi-

ple robot simulator. AuRA (Autonomous Robot Architecture) is a hybrid deliberative/reactive

robot architecture developed at the Georgia Institute of Technology [AB97]. On the other hand,

architectures like JAUS which have been widely used for robotic applications, were mainly con-

cerned with unmanned vehicles. Therefore, modeling of the climbing robot and the structure

that the robot should climb from is not an easy task in JAUS.

The architecture which is under development, is called RoboCom, and it is considered for gen-

eral problem of tele-operation of step-by-step based climbing robots. A Master degree thesis has

been conducted for development of the RoboCom architecture [Mur09]. It includes a TCP/IP

based communication protocol and a GUI which serves as the client. The server side is com-

posed of a single board computer which has the low level control applications, I/O interfaces,

and wireless network adaptor. It communicates with the client through TCP/IP protocol. Robo-

Com architecture includes gripping and climbing classes. To introduce a new robot, one should

specify the number of DOF of the climbing mechanism, the kinematics formulation, dynamics
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Figure 7.17: Segmentation of message codes by component.

formulation (optional), and sensors. It is possible to monitor and command a robot through the

protocol. An operator may perform low level joint control, or higher level task space manipu-

lator control. The current position of the robot’s joints and manipulator is determined through

reading the sensors value. RoboCom protocol only implements the host layers. In order to

achieve actual client/server architecture, TCP/IP protocol is used. All messages are composed

by a header and the data fields. The format of the header is common to all messages. This

allows RoboCom to employ an embedded protocol. The use of an embedded protocol means

that certain fields within the header provide information on how to handle the message and on

how data is encoded before transmission. Figure 7.17 shows the segmentation of message codes

by component.

The client applications can not directly issue commands to the robot drivers. This is done by the

server application. Remote clients can only request the server to execute commands. Joints are

controlled through joints properties setting. Joints are defined by six parameters (figure 7.18).

The 3DCLIMBER robot was defined in the RoboCom architecture by introducing the number

of DOF, the kinematics formulation, and the embedded sensors. A single board computer which

contains the server program and wireless connection was installed on the robot and the robot

was controlled by the client. Figure 7.19 shows the client’s architecture and figure 7.20 shows a

snapshot of the client which is adapted for the 3DCLIMBER robot.
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Figure 7.18: Joints properties.

Figure 7.19: Client software architecture.

7.7 Conclusion

This chapter described trajectory generation, calibration and path planning of the 3DCLIMBER.

The required level of autonomy for the 3DCLIMBER was discussed and then sensors, path plan-

ing, and control algorithms which have been applied in order to fulfill the required autonomy

were presented. The electronics architecture and also the user interfaces were demonstrated. It

was discussed that the existence of an architecture which allows the remote control of climbing

robots generally and 3DCLIMBER specifically through TCP/IP protocol has many advantages.

Consequently a master degree thesis was conducted in development of such architecture, how-

ever it is not yet fully working and has some communication problems. In addition to further

development of the architecture, some other areas are open for investigation, including absolute
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Figure 7.20: Client application GUI adapted for the 3DCLIMBER.

localization of the robot in the structure with an external camera observer or with ultrasonic

transceivers through triangulation and trilateration methods.



Chapter 8

Testing and Results

“A failure will not appear till a unit has passed final inspection.”

citation related to Murphy’s Law.

8.1 Introduction

This chapter will explain the experiments conducted on the 3DCLIMBER, the problems re-

vealed during the experiments and the results of the experiments. Two experiment threads were

considered for this project: The first one, for the prove of the concept and discovering the pos-

sible problems and the second one after solving the problems and integration of autonomous

algorithms.

8.2 First experiment

The first experiment of the robot was in fact a proof of the concept and to check and validate

the design of the mechanisms (Mainly the mechanical design) as well as structural calculations.

Therefore, in the first experiment still many algorithms were under development and only the

139
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low level straight line trajectory generation algorithm was applied. Other algorithms and rou-

tines, namely for passing the bent section, calibration of the robot, start up of the robot, etc. were

not yet developed and thus in this level the operator had to simulate these algorithms manually.

In this case, the robot successfully climbed several steps and passed a bent section while con-

trolled by an expert operator. This proved the concept. Furthermore, as the robot successfully

could make the necessary movement and pass the bent section, it showed that the mechanical

design of the mechanism, calculations, and simulations are all valid. In addition, no part failure

was happened during the experiments which proved the trueness of the structure analysis. Fig-

ures 8.1 and 8.2 show some snapshots from the first experiments of the robot climbing over the

structure.

On the other hand, some problems were also revealed during the first experiments, most of them

were related to the positioning errors. It was decided to solve these problems before the second

experiment of the robot.

One of the problems was the precise placement of the grippers before gripping. Due to some

sources of errors, namely general errors of industrial large size robotic arms as well as problems

related to the mobility of the robot base, some errors were adding to the manipulator position.

This was fully investigated for possible solutions. Finally, some algorithms were developed and

additional sensors (inclinometers and range finders) were developed and integrated. This was

described in the previous section.

Besides the mentioned problems, some suggestions were made in order to promote the robot’s

functionality. First, an external sensor for determining a zero reference point for all degrees of

freedom was necessary to implement. This would facilitate the start up process of the robot

by getting the reference point automatically. Therefore, opto transistors were integrated to the

robot links. Second, in the mechanical design of the system, the minimum safety factor of 2

was considered in both structural design of parts and design of the system dynamics and still in
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Figure 8.1: Sample snapshots of the experimental results.
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Figure 8.2: Sample snapshots of the experimental results (2).
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most of the cases the FOS value was more than 3. As with this safety factor, the experiments

were successful, we decided to increase the length of the links from 220 mm to a bigger value.

Consequently, the considered FOS value for the motors torque (the ratio of the torque that motor

can provide compared to the maximum required torque by joints) was reduced, but in the same

time the stroke of each step increases and thus passing a 45° bend in one step would be possible.

Furthermore, the length of each climbing step and thus the overall climbing speed increases.

Some calculation and simulation showed that a link length of 350 mm makes it possible to pass

a 45° bend in one step. Based on that new links were also developed and applied to the robot.

8.2.1 Safety and tolerance to power failure

One of the most important features of the robot, which was considered as one of the objectives

of the project is tolerance to power failure. In other word, if any failure in the robot’s power

line happens, either in the actuators of the grippers or the climbing mechanism, the robot should

not detach from the structure and fall down and even it should not slip down. To achieve this

objective, the inertia at the output shaft of the motors were increased in order to lock the grippers

in case of any power failure. This means that the multiplication of the motor inertia, gear box

and the linear mechanism (Ball screws and linear guide) is big enough to avoid the grippers

detachment or slippage because of the forces and torques caused by the robot weight.

To test this feature, the robot was attached to the structure and then all powers (For grippers and

for actuators of the climbing structure) were disconnected. In this case the robot stayed on the

structure for several days without any small slippage over the structure.

8.2.2 Test of grippers

Grippers have an effect on the robots safety (as discussed in the previous chapter), the maneu-

verability and also the stability of the robot. As previously mentioned, the grippers of the robot

were designed in a way that a single gripper can overcome all forces and torques caused by the

robot weight and reaction torques of the climbing mechanism actuators. Should this happen,
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one of the grippers can detach from the structure and freely manipulate across the structure.

In this case the other gripper which had grasped the structure should not slip on the structure,

because this reduces the positioning accuracy. This was also tested and the test showed that the

robot can stay on the pole, while only one of the grippers grasps the pole and the other grip-

per is set free and totally detached from the pole. A snapshot from this test is shown in figure 8.3.

3DCLIMBER can climb from structures with a minimum diameter of 200 mm to a maximum

diameter of 350mm. In the other word, grippers can grasp structures with the mentioned diame-

ters. To change these minimum and maximum values, one may use spacers to easily shift these

values to smaller or bigger diameters, but the range will be always equal to 150 mm. However

due to the modularity of the system, the gripper can be easily changed and thus different grip-

pers for different structure sizes or with bigger or smaller operating ranges can be used without

any change on the climbing and control mechanisms.

8.3 Second experiment

The second experiments was performed after integration of the accelerometers, opto transistors,

range finders, some of the mentioned high level algorithms, and also the new bigger links. In

this case the robot was tested again. Figure 8.4 shows the new robot with bigger links (350 mm).

Using the opto transistor and a start up algorithm, the robot gets the zero reference points for all

four motors of the climbing structure in its start up process. The strategy is that in the start up,

while the upper gripper is connected, and the motors are off, the lower gripper will be free to go

to an arbitrary position (the position is almost identical in all startups due to the fixed inertia of

the robot parts). Then motors start to move in a pre specified direction until they find the opto

transistors and indeed their zero reference points.

The error compensation algorithm has been also tested on the 3DCLIMBER robot. As stated
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Figure 8.3: The robot can stay attached to the structure with only one gripper.

Figure 8.4: Sample snapshots of the experiments of the robot with the bigger links.
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in the previous chapter, the analog accelerometer sensors provide a precision of up to 20′

(about 0.3◦). As discussed in the previous chapter, this precision is valid even with the exis-

tence of vibrations up to 10 Hz during operation of the 3DCLIMBER. To attain such precision,

the average value of 200 to 400 samples was calculated. To filter the effects of the mechanical

vibrations of the links during operation of the 3DCLIMBER on the estimated angle, the sam-

pling rate was set up at 100 Hz (10 times larger than the estimated frequency of the mechanical

vibrations of the links). Using Sharp range finders, the distance between the manipulator and

the structure was also estimated. Before integration of the sensors and the proposed algorithm,

the base of the robot had always an angular deviation of 1− 8◦. Due to the mentioned error

sources, fine manipulation was not possible and also the gripper of the robot was not positioned

correctly before gripping, adding extra constraint to the robot and leaving the system over de-

fined. Not only was this likely to damage motors, but this error was accumulative and reached

a level where the operator had to stop the robot and calibrate it manually. Taking advantage of

the self-calibrating algorithm, the manipulator position was corrected in 2 phases. Using this

algorithm, the 3DCLIMBER was tested on the structure. The angular deviation of the base and

manipulator in the worst case were always less than 1◦, and it was not accumulating at each

step. The positioning error of the manipulator on the Z direction was improved from 48 mm

to 6.1 mm (values in the worst case, based on the maximum measured positioning error of the

base). The worst case value was measured on the edges of the manipulator’s workspace, where

maximum torques are applied to the base of the robot, and geometrical parameters which are

multiplied by the angular deviations are at their maximum. In most of the robot’s workspace an

accuracy of 3 mm was easily obtained.

Table 8.1 shows the main characteristics of the first version of the robot and table 8.2 shows the

main characteristics of the second version with bigger links. The second version of the robot

with bigger links is about 4 kg heavier than the first version and has a 20 cm bigger climbing

step. Even both versions pass a 90° bend in a single step, but for a 45° bend, the first robot takes
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Table 8.1: Main characteristics of the robot with 220 mm links

Degrees of Freedom 4
Quantity of Motors 6
Climbing Procedure Step by Step

Weight (kg) 42
Material of the Parts Aluminium 7075-T6

Robot Size (m) 0.5×0.6×0.5
Extended Robot Size (m) 0.5×0.6×0.85

Each step length (m) 0.35
Climbing Speed (m/min) 0.8

Minimum diameter of the pole that gripper is able to grasp 200 mm
Maximum diameter of the pole that gripper is able to grasp 350 mm

Table 8.2: Main characteristics of the robot with 350 mm links

Weight (kg) 46
Robot Size (m) 0.5×0.6×0.55

Extended Robot Size (m) 0.5×0.6×1.10
Each step length (m) 0.55

Climbing Speed (m/min) 1.10

3 step to pass the bend section while the second version can pass it in a single step.

Table 8.3 shows some of the improvements on the robot performance after integration of self-

calibration algorithms and sensors.

8.4 Limitations and problems

Design of climbing robots faces many problems which is not the case for land machines, robots,

and mechanisms. The most important problem is weight optimization of all parts. On the other

hand, it should be noted that a robot which can climb from bends and branches faces much more

problems than the one which can just climb a straight poles. Adding to them the problems con-

cerned with the precise manipulation, it can be stated that the development of the 3DCLIMBER

is similar to the development of an articulated precise industrial arm, which its base is not fixed
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Before integration After integration

Angular error on placing the gripper on the
structure

1◦−8◦ 1◦

Positioning error type Accumulative Reset at each step

Maximum positioning error of the manipulator
in the worst case

48mm 6.1mm

Table 8.3: Improvements on the robot’s performance after integration of self-calibration algo-
rithms and sensors

and contains errors and also should be light, furthermore the problem of gripping the structure

should be addressed.

Consequently, the development of this robot includes the development of novel systems and al-

gorithms. For instance, the problem of precise manipulation of flexible arms has been addressed

previously by integration of strain gauges, but in 3DCLIMBER, we integrated inclinometers

which not only helps compensating external errors related to the flexibility of the links, but also

provides the estimation on the absolute angle of the links and grippers. This contributes pre-

cise positioning of the grippers which results in efficient gripping. Away from that, the size

of the system imposed additional problems. As the objective of the project was to develop an

industrial size robot with real industrial applications, the developed structure for tests and the

robot itself were very large. Also operating the 560 V actuators and their associated drivers face

more problems than operating the small DC motors for small applications. Another remarkable

problem was human resources. My personal background is mechanical engineering and I was

requiring students to help in development of boards, small electrical sensors, etc. Unfortunately,

students do not wish to involve in practical projects easily and even if they involve, they are not

easily integrated into previously started projects and most of them prefer a personal project than

a group work. Due to the lack of human resources and funding, I involved in many different
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areas, ranging from conceptual and detailed mechanical design, installation, and calibration to

design of the control system, integration of sensors, and development of the user interface.





Chapter 9

Biological Inspired Designs and

Actuators
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9.1 Introduction

Biological engineering, the engineering discipline that connects engineering and biology, en-

compasses both “connecting engineering to biology” and “connecting biology to engineering”

in the engineering design process.

Both biologically inspired designs and biologically inspired actuators, have been considered

in the conceptual and detailed design of the 3DCLIMBER. However to avoid the complexity

and maintain conformity, it was not described in the previous chapters. In the other word,

this analysis was performed in parallel with the conceptual and detailed design stages, but it is

presented in this chapter for the sake of conformity. Two main research questions which have

been investigated in the early stages of the 3DCLIMBER design were:

1. How much can the design of the 3DCLIMBER benefit from inspiration, anatomical spe-

cializations, and morphology of climbing animals? (Biologically inspired design.)

2. What are the advantages and disadvantages of the application of biological inspired actu-

ators?

The former question was mainly studied during the conceptual design stage, and the latter during

the detailed design stage.

9.2 Biologically inspired design

There are a diverse range of climbing animals; Animals that spend much of their time moving

on steep, vertical, or overhanging surfaces and have appropriate adaptations for such scanso-

rial locomotion. Climbing animals can be roughly divided into two groups: Those animals

which move steep, vertical, or overhanging rock surfaces - rockface locomotion and those who

move among tall vegetation - arboreal locomotion. These two environments may produce quite

different methods of climbing. However, in some cases the climbing methods are similar, es-

pecially for small animals for which a rockface and a tree trunk may present similar problems
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Figure 9.1: Gecko (Left) and opossum (Right) use balancing, clinging, and sticking techniques
for climbing over trees.

for locomotion [Bri09]. PCRs may inspire more from the arboreal locomotion group, and their

anatomical specializations, namely:

1. Balancing, clinging, and sticking; Examples: tree gecko, and opossum (figure 9.1).

2. Hanging; Examples: sloths (figure 9.2).

3. Leaping and gliding; Examples: bushbabies (figure 9.3).

4. Body clasping; Examples: Tree-kangaroos, coconut crabs, tree snakes, and goanna (fig-

ure 9.4).

5. Clasping with hands/feet; Examples: monkeys, squirrels, birds, and chameleons (fig-

ure 9.5).

6. Brachiating; Examples: Spider monkeys and gibbons (figure 9.6).

To discuss about anatomical specializations of animals, besides the climbing techniques, the

gripping and supporting techniques which make it possible for climbing animals to hold them-

selves attach to the climbing surface, should be taken into account. Arboreal animals include

some common aspects. They frequently display elongated limbs, in order to assist them in
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Figure 9.2: Sloths can hang from a
branch.

Figure 9.3: Bushbabies leap up and
glide down the tree.

Figure 9.4: Tree-kangaroos, goannas, coconut crabs, and tree snakes use body clasping tech-
niques to attach themselves to the tree.

crossing gaps, reaching fruit or other resources, testing the firmness of support ahead, and in

some cases, brachiation. However, some species of lizard display reduced limb size, in order to

avoid the limb movement being obstructed by impinging branches. Many arboreal species have
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Figure 9.5: Monkeys, squirrels, birds, and chameleons, clasping with their hands and feet.

Figure 9.6: Spider monkeys and gibbons can brachiate over trees and swing from one hold to
the next.

prehensile tails, such as chameleons, spider monkeys, and possums, in order to grasp branches.

In the spider monkey and crested gecko, the tip of tail has either a bare patch or adhesive pad,

respectively, resulting in increased friction. Besides, claws can be used to interact with rough

substrates and re-orient the direction of forces the animal applies. This is what allows squirrels

to climb tree trunks that are so large as to be essentially flat, from the perspective of such a

small animal. Adhesion is an alternative to claws, which works best on smooth surfaces. Wet
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Figure 9.7: Humans use different techniques and additional tools to climb trees.

adhesion is common in tree frogs and arboreal salamanders, and functions either by suction or

by capilary adhesion. Dry adhesion is best typified by the specialized toes of geckos, which

use van der Wals forces to adhere to many substrates, even glass. Frictional gripping is used

by primates, relying upon hairless fingertips. Squeezing the branch between the fingertips gen-

erates frictional force which holds the animal’s hand to the branch. However, this type of grip

depends upon the angle of the frictional force, thus upon the diameter of the branch, with larger

branches resulting in reduced gripping ability. Animals other than primates which use gripping

in climbing include the chameleon, which has mitten-like grasping feet, and many birds which

grip branches in perching or moving about.
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Brachiation is a specialized form of arboreal locomotion, used by primates to moves very rapidly

while hanging beneath branches. It involves swinging with the arms from one handhold to

another. Only a few species are brachiators, and all of these are primates; it is a major means of

locomotion among spider monkeys and gibbons, and is occasionally used by female orangutan.

Gibbons are the experts of this mode of locomotion, swinging from branch to branch with

distances up to 15m (50ft), and travelling at speeds of as much as 56 km/h (35 mph). The

adaptation for climbing is unique for each group of arboreal animals. All climbers must have

strong grasping abilities, and they must keep their center of gravity as close as possible to the

object being climbed. Because arthropods are generally small and, thus, not greatly affected by

the pull of gravity, they show little specific structural adaptation for climbing. In contrast, the

larger and heavier-bodied vertebrates have many climbing specializations. In both arthropods

and vertebrates, however, no leg is moved until the others are firmly anchored [Bri09]. As

the objective of the 3DCLIMBER project, was defined as development of an industrial robot,

and the robot should be able to carry relatively heavy test and inspection devices, body and

hand clasping and brachiating were more appropriate sources of inspiration, due to existence of

bigger animals in this group e.g. tree-kangaroos, monkeys, goannas, and gibbons.

• Brachiating: A couple of researches has been conducted on brachiating robots. Fukuda

et al. [FHK91] proposed and simulated a brachiating robot design. Saito and Fukuda

(1996) [SF96] extended this work to create a three-dimensional robot with proportions

that closely resemble a siamang. The robot consists of 12 DOF controlled by 14 motors,

two of which are responsible for grasping. This robot is able to initiate brachiation from a

stationary hanging position and continue moving beneath a horizontal series of ladder-like

rungs. Kajima et al. (2003) [KHF03] constructed an even more complex robot consisting

of 19 links and 20 actuators, called “Gorilla Robot II”. It was designed to be able to

walk bipedally or quadrupedally and brachiate. It has the approximate proportions of a

siamang and weighs 20 kg [Ber04]. According to the studies [ULB03, UB03, CBL00],
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the reason that the gibbons who weight usually less than 10 kg, can brachiate on 56 km/h

is that they do not generate torques on their shoulders and even the amount of torque

on their handhold is surprisingly less than 2 N.m [CBL00]. Gibbons use potential to

kinetic energy conversions and vise versa for accelerating and decelerating. This method

might be studied in order to reduce the amount of the necessary torque on joints, thus

reducing the size of the motor and consequently reducing the total weight of the system.

For the objectives of the 3DCLIMBER, fast arboreal locomotion between many pipes

was not the main consideration and rather a precise and stable locomotions in a single 3D

structure was preferred. Therefore brachiating was not considered as an option for the

3DCLIMBER design.

• Body and hand clasping: As it can be seen in figures 9.4 and 9.5, body clasping tech-

nique takes advantage of hands and other parts of body like as tail in order to clasp a

tree, climb across it, and to always keep their center of gravity closer to the trunk. Hand

clasping group mainly use their hand and their feet. In both groups hands and feet are

both used for clasping and locomotion.

9.2.1 Design inspiration

In the conceptual design stage, the morphology of climbing animals was studied and considered

as a source of design inspiration. Most of the climbing animals, use a step-by-step based climb-

ing in which they first fix a part of their body and then move up the other part of the body. In the

next step the fixed part and the moving part change their role. The same strategy is used in the

3DCLIMBER. To clasp the trunk, they clutch the trunk between their fingertips. This is done

by rotating their limb around the revolute joint of the shoulder. Clutching the branch between

the fingertips generates frictional force which holds the animal’s hand to the branch. However,

this type of grip depends upon the angle of the frictional force, thus larger branches result in

reduced gripping ability. To avoid this and to maintain the same grasping force, the design of

the 3DCLIMBER gripper was based on prismatic motion and not revolute rotation. In this way
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the gripping force is equal in all working range of the gripper.

For climbing over the structure, biological inspired designs were proposed in the conceptual de-

sign steps. As demonstrated in the conceptual design chapter, one of the concepts consisted of 4

arms, similar to what exists in most of climbing animals. However, further analysis revealed that

this design leads to a heavier robot compared to the current single arm design. This is mainly

due to the existing limits in the current technology of the actuators. The following simple cal-

culation shows how far is the current technology from a biological arm. A human arm consists

of seven degrees of freedom (not considering the fingers). According to Clauser [CMW69], the

average mass of the human arm is about 3.2 kg with a standard deviation of 0.464 kg. Another

analysis [KK98] on 44 male basketball players showed that the average value of their pick elbow

torque on flexor is 103 N.m and their shoulder joint is 160 N.m. On the other hand, a brushless

motor equipped with a harmonic drive reduction which is used in the 3DCLIMBER, can deliver

about the same torque, weighs 4.2 kg. As it can be seen, with the current technology driving

one DOF of the arm requires an actuator heavier than the total arm. Therefore in design of

the climbing mechanism, the minimum DOF which could perform the necessary objectives was

considered.

On the other hand, application of biologically inspired actuators rather than electrical motors

was also considered in order to reduce the weight of the robot. This part will be discussed in the

next section.

9.3 Biologically inspired actuators

The second research question of this section was about biologically inspired actuators.

One of the major research areas in the biological inspired robots is biologically inspired actua-

tors. Animals use their muscles to generate force for their movements.

Biologically inspired actuators, are actuators which can insert force or torque in a similar way
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to the muscles. Pneumatic Artificial Muscles also known as “PAM”, “PM”, and McKibben

artificial muscle, are the most similar artificial actuators to animal muscles. 9.8. “PAM” is

famous as a very light actuator in the current literature. The reason stated in the literature

for such a claim is their lower “power to weight” ratio compared to other types of actuators

namely pneumatic cylinders and electrical motors. Consequently, application of PAMs rather

than Electrical motors was considered in the design phase. However, the result of kinematics,

workspace, and dynamic analysis of the climbing mechanism by application of PAMs showed

that the application of PAMs will significantly increase the total weight of the robot compared

to application of electrical actuators. Therefore, we made a more general analysis, comparing

PAMs with electrical motors. A Pneumatic Muscle is an interesting actuator, developed in late

1950’s for use in prosthetics. It shares many properties with actual muscles [CMCG95, NPG63]

and is readily applicable to construction of biomechanically realistic skeletal models [CH96].

These actuators consist of a rubber bladder encased in mesh braid (with flexible yet inextensible

strands) that is rigidly attached at either end to fittings (figure 9.8) [AKBQ06]. The physical

configuration of the muscle gives the muscle its variable-stiffness spring like characteristics,

non-linear passive elasticity, physical flexibility, and very light weight compared to other kinds

of artificial actuators [CH96]. The latter is the most repeated advantage of PMs in the literature

review expressed as “force to weight ratio” [CMCB97, KH00, TL00, VVHDL02], or “power

to weight ratio” [HW90, TC00, MCBC95, NS02]. Current literature states that PMs have two

significantly important characteristics:

• A power/weight ratio of about 1 W/g.

• A power/volume ratio of about 1 W/cm3.

Both these ratios are about five times higher in comparison with an electric motor or a hydraulic

actuator. Of course, a gas supply must be included in the total PM system, so this must be fac-

tored i when comparing the systems performance [RRPB03].
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Figure 9.8: McKibben pneumatic actuators relaxed (top) and inflated (bottom) [rc08].

Due to consideration of PMs as light actuators in current literature, many robots were developed

using PMs [AKBQ06, KAB02, VVvH+05]. On the other hand, the “power to weight ratio” is

not the only factor which should be evaluated when comparing the weight of a particular system.

Having a lower power to weight ratio does not necessarily mean that using PMs would lead to

a lighter system since many other factors should be considered. On design process of a revolute

joint, the actuator should be able to deliver the required torque of “τ” in a specific angle of “α”.

Usually an electrical motor is coupled with a reduction gearing which might be heavier than

the motor itself. Although the electrical motor provides the same power as the motor plus the

reduction gearing, the power to weight ratios are different. Moreover, a pneumatic muscle may

have a high power to weight ratio but it can apply a big force in a short stroke while a bigger

stroke might be required. Therefore, an analysis on the amount of the output torque of motors,

and output force and stroke os PMs can lead to more realistic results than comparing their power

to weight ratio.

Another important parameter which was also neglected in the literature for the comparison be-

tween actuators is that driving a joint by pneumatic muscles require at least 2 PMs, as one PM

only exerts force in one direction. Therefore for a fair comparison between the weight of the

PMs and other actuators, namely pneumatic cylinders or electrical motors to be used in a spe-
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cific system, the weight of the PM should be multiplied by 2. There might exist applications

which do not require insertion of force (or torque) in both directions, but normally in robotics

applications like an articulated arm, the torque control of the joints in both directions is required.

Plettenburg also questioned consideration of the PMs as one of the lightest actuators only due

to their lower power to weight ratio compared with other actuators [Ple05]. He used the energy

to weight ratio for comparison between PMs and pneumatic cylinders and concluded that PMs

have a somewhat better energy to mass ratio compared to standard industrial cylinders, but a re-

design of piston in cylinder actuators shows the energy to mass ratio of these cylinder actuators

to be superior to pneumatic artificial muscles. But this research did not consider the fact that the

weight of PMs should be multiplied by two to be able to drive a system in both directions.

Therefore, as it seems that previous comparisons between PMs and other actuators, were not

precise, we made a comparison study between PMs and electrical actuators. The comparison is

based on a single DOF revolute joint. To drive such a joint the actuator should be able to deliver

a specific torque in a specific travel angle. Then the weight of the PMs which can drive such a

joint and the weight of an electrical motor which can drive the same joint were estimated and

compared. This procedure was repeated for a range of torques and travel angles and the selected

data is presented as graphs and discussed.

9.3.1 Comparison procedure

A reliable method for comparison between the two types of actuators is to consider a specific

system to be derived by both actuators and then compare the weight of the actuators. To do so,

a one DOF joint is considered as it is shown in figure 9.9. The first link is fixed to the base, and

the second link is derived by the joint. The objective is driving the revolute joint.

To drive the joint either an electrical motor or two PMs as flexor and extensor (figure 9.10) can

be used. The joint should insert a torque equal to τ N.m in a circular path of α radian. A com-
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Figure 9.9: The one DOF joint considered for the comparison study.

Figure 9.10: A rotational joint derived by two PMs as extensor and flexor.

parison between the τ.α values for a range of torques and travel angles of PMs and electrical

motors was performed and graphs showing the weight of each system for a range of τ.α were

extracted.

It should be mentioned that the “energy to mass” ratio introduced in [Ple05], is more compre-

hensive than “power to weight” ratio for comparison between the weight of actuators, since the

“energy to mass” ratio considers the torque and the travel angle of the actuator which are the

most important parameters in selection of an actuator for a specific application. On the other
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hand, an electrical motor can apply an equal force during the rotation of the joint but a PM exerts

a bigger force at the beginning of its stroke and a smaller force at the end of its stroke. The “en-

ergy to mass” ratio integrals the force in the domain of the contraction. But to select an actuator

for a revolute joint in an articulated robotic arm, the designer usually looks for the amount of

the torque that the actuator can provide. The energy that a system can provide does not state the

amount of torque that it can provide in a certain point of the workspace. Furthermore, the whole

energy that an actuator generates may not be required by the joint and therefore our approach

considers the amount of torque that the actuator can provide in a travel angle equal to the stroke

that is demanded by the actuator.

Electrical Motors

Electrical motors are usually coupled with a reduction gearing in order to increase their torque

and decrease their rotation speed. The efficiency and the weight of gearing systems for a spe-

cific reduction ratio vary according to the type of the gearing system. Harmonic Drive reduction

systems are proved to be one of the most efficient and lightest solutions for gearing systems

[LLC08]. Thus, the motors used in this study were selected from the Harmonic Drive products.

The data of rotation velocity, nominal torque, maximum torque, and weight of more than 40

electrical rotary actuators (the combination of the electrical motor and the reduction gearing)

were collected from Harmonic Drive catalogue. For this study the nominal torque of the actu-

ators was considered for analysis. In contrast with PMs which have a limited stroke, electrical

rotarty actuators can rotate continuously and therefore the travel angle α is infinite and conse-

quently the τ.α value is also infinite. This value is only limited by the travel angle demanded

by the joint for a specific application. Thus, the nominal torque of the motor was multiplied by

α values in a range of 1 to 5 radian, to calculate the τ.α value. Therefore, depending on the

required travel angle, one may select the appropriate curve in the graph shown in figure 9.13.
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Figure 9.11: A screen shot from the MuscleSim package [FES08].

Pneumatic Muscles

Festo PMs were considered for the comparison due to the existence of a simulation package,

MuscleSim, which provides the information about the weight, force, contraction, and length of

the Pneumatic Muscles. Figure 9.11 shows a screen shot from the MuscleSim package. An

earlier simple analysis made by the authors, showed that PMs from different suppliers, show

very similar characteristics in practice, and thus using products from other companies will not

change the results of this analysis. To drive the joint, two PMs as flexor and extensor are re-

quired (figure 9.12). The τ.α value of the joint is always equal to the F.s value of the pneumatic

muscle, in which “s” is the stroke of the PM, and F is the contraction force at the maximum

stroke. The reason is that the PM should rotate the second link via a lever and the longer the

lever the higher the torque and the smaller the travel angle and vice versa. But the F.s value

for each PM remains constant and equal to the τ.α value that it can deliver. Thus the F.s value

and the weight of 16 PMs with different lengths and outer diameters of 20mm and 40mm were

obtained using MuscleSim package. A maximum contraction of 20 percent and a working pres-

sure of 6 bars were considered for all PMs. Then the weight of each PM was multiplied by 2, as

2 PMs are required for driving the joint in both directions.
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Figure 9.12: Two pneumatic muscles are required to drive a revolute joint in both directions
[OL02].

9.3.2 Comparison

Figure 9.13 shows the τ.α values against the weight for PMs and also for electrical rotary ac-

tuators with the output speed of 30 rpm and figure 9.14 shows the same graph for the rotatry

actuators with the output speed in a range of 40 to 60 rpm. Each chart includes 6 curves, one

curve for PMs, and five curves for electrical motors for travel angles of 1 to 5 radians.

As it can be seen in figure 9.13, for low τ.α values the PM curve is almost matching with the

curve of the rotary actuator, if a travel angle of 1 radian is required, and for higher τ.α values it

matches the curve with the travel angle of 2 radians. A rough conclusion is that a PM system is

lighter than the rotary actuator if the required travel angle for the joint is lower than 1 radians.

But other factors should be considered for the actuator selection which will be discussed in the

next section. Comparing the chart in figure 9.14 with the chart in figure 9.13, it can be concluded

that for higher velocity requirements, the situation changes in favor of PMs. It means that for

higher velocity requirements electrical motors provide lower τ.α values. The final conclusion is

that the rate of the increase in the value of τ.α against the increase on the weight of the actuator

in PMs is superior than those of rotary electrical actuators.
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Figure 9.13: The τ.α values for PMs (red) and electrical rotary actuators with 30 rpm rotational
speed and travel angles of α = 1 to α = 5 against the weight of the actuators.

Installation Length

In a multi joint serial arm, the electrical rotary actuator is either directly coupled to the joint

or installed on the base of the robot. In the second case, the motion is usually transferred with

belts. But PMs are long actuators which are usually installed on the previous link of the joint

(figure 9.12). Therefore, this link should be long enough so that the PM can be installed on that.

On the other hand, longer links are not desired because they impose higher torque requirements

to their previous joints. Thus if for a certain τ.α value, the PM actuator is lighter than the

electrical motor according to the presented charts, they can be used in the arm provided that

the previous link of the joint is long enough to allow the installation of the PM. To facilitate

the decision making process, the installation length of the PM samples was calculated using the

MuscleSim and then a graph was extracted from those data which shows the installation length

against each τ.α value. The graph is shown in figure 9.15. It can be seen that the installation

length is increasing with the increase of τ.α values. The minimum possible installation length

for a PM with a 20 mm diameter in Festo products is 145 mm considering the connections. On

the other hand, for many types of biologically inspired robotic applications namely humanoid

robots and mobile legged robots, the length of the links hardly exceeds 300mm. This restricts

the usage of PMs in robotic applications. It should be mentioned that according to figure 9.13
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Figure 9.14: The τ.α values for PMs (red) and electrical rotary actuators with 40 to 60 rpm
rotational speed and travel angles of α = 1 to α = 5 against the weight of the actuators.

Figure 9.15: The installation length of pneumatic muscles against their τ.α value.

for lower τ.α values, the PM is a lighter solution than electrical rotary actuator provided that the

required travel angle is less than 1 radian. According to figure 9.15 for an installation length of

300 mm, τ.α = 22.6 N.m, and according to figure 9.13 in this case the PM is a lighter solution

if the required travel angle is less than 0.8 radian (equal to 45◦).

9.3.3 Numerical example

To clarify the comparison study, a numerical example from the 3DCLIMBER climbing mech-

anism is presented. The schematic drawing of the climbing structure is shown in figure 4.2.

According to the kinematics analysis, the optimum length of the 3rd link is 350 mm and the 3rd



9.3. Biologically inspired actuators 169

joint demands for τ.α = 250 N.m. A travel angle equal to 1.75 radians with an output speed of

60rpm is also desired. FHA-25C-160H Harmonic Drive rotary actuator can provide this value

and weights 4.2 kg. The weight of the rotary actuator can also be estimated from figure 9.14.

From the same chart it can be seen that a PM with the same τ.α value weights slightly more

than 4 kg. But figure 9.15 shows that the length of such a muscle is about 2500 mm which is 10

times more than the length of the 3rd link and consequently this PM can not be installed on the

arm. There exist possibilities of installing the PAM in other places and not directly on the link,

but a PAM with a length of 2500 mm is definitely very difficult to install on the 3DCLIMBER

robot.

Parallel Configuration of PMs

PMs may be connected in parallel to have a greater τ.α value in a shorter length, the final

actuator, however, becomes spacious. Therefore, we analyzed the possibility of utilizing such

configuration in the same numerical example. Thus a PM which can be fitted in 250mm should

be selected. From figure 9.15, it can be seen that a pair of PMs with a 250mm setup length can

deliver τ.α = 20 N.m, and weighs 2.7 kg (figure 9.13). To deliver τ.α = 250 N.m, 12 pairs of

PMs should be connected in parallel. The total weight would be 32.4 kg which is about 8 times

heavier than that of the FHA-25C-160H Harmonic Drive rotary actuator.

9.3.4 Discussion about biologically inspired actuators

As a rough conclusion from figure 9.13, if the required travel angle is more than 2 radians, elec-

trical motors are lighter solutions and for a travel angle in the range of [0.7-2] it depends on the

required torque. Eventually, if the application demands for a travel angle of less than 0.7 radian,

then the PM solution might be slightly lighter than the electrical rotary actuator solution.

To see if PMs are a better solution than an electrical rotary actuator for a specific application one

may use the graph showed in figure 9.13 and if PMs were lighter than it, the graph presented in

figure 9.15 might be used in order to see if the geometry of the mechanism allows for installation
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of the PM with the specific τ.α value or not.

As it can be seen in figure 9.13 and figure 9.14, the difference between the weight of electrical

rotary actuators and the weight of PMs is small, and therefore by changing one of the parameters

of the comparison the curves might change. For example, considering 10 percent contraction

instead of 20 percent, may slightly change the charts in favor of PMs. This study showed that

PMs are not lighter than electrical rotary actuators as it is claimed in the current literature, and

the weight of PMs and electrical rotary actuators are very similar for a big range of τ.α values,

provided that the design of the mechanism allows the installation of long PMs.

The fact that PMs require a big installation length, may make them unsuitable for many ap-

plications. For multi joint robotic arms, the length of each link is determined by many factors

namely the geometrical constraints and the driving torque of its previous joints, and usually is

determined before selection of actuators for the system, thus it can not be increased to fit the in-

stallation length of the PMs. But electrical rotary actuators do not have such restrictions. Even-

tually, the fact that the current literature is considering PMs as lighter solutions than electrical

motors for robotics applications is highly questionable as they just consider the power/weight

ratio of actuators which is not the main factor in the selection of a light actuator for a specific

application. The point that a pneumatic muscle can only exert force in one direction is also

neglected in the literature. Taking into account the other common problems on the control of

pneumatic systems and also the weight of the gas reservoir on mobile robots make PMs even

more unfavorable. The result of the analysis about PAMs has been published in [TMdA08a].

9.4 Conclusion

This chapter analyzed integration of biologically inspired design and actuators in the 3DCLIMBER

in order to reduce the weight of the robot and increase the efficiency. The analysis was per-

formed in the conceptual and detailed design phases of the project, but it is presented in this
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chapter in order to maintain conformity. In order to evaluate the possibility of taking advantages

of biological inspiration for promoting the 3DCLIMBER design, two main research questions

were considered to be answered. Some studies and analyses were conducted which led us to the

following answers:

1. Biologically inspired design, can be a source of inspiration in the design of climbing

and gripping mechanisms. But due to limitations of the current technologies the exact

emulation of climbing animals is not possible. Animals take advantage of numerous

degrees of freedom in their arm and body, and also a big torque to weight ratio compared

to current actuators technology. The gripping mechanism of the 3DCLIMBER is inspired

by the climbing animals which clasp the structure by their hands and feet like monkeys.

2. Biologically inspired actuators, can not reduce the overall weight of the system. Our

study showed that the current technology of PAMs, the most known biologically inspired

actuators, is applicable for applications which demand for low stroke and torque.





Chapter 10

Conclusions and Future Works

The Plan of the 3DCLIMBER project is to develop an industrial PCR able to climb over 3D-

complex human-made structures including T-junctions and perform test and maintenance tasks

in those structures and also be able to semi-autonomously climb over 3D structures and perform

in target tasks assisted by a remote operator. Such robot can have a high potential economic im-

pact in several practical applications, including construction, testing, repairing, and maintenance

of 3D complex human-made structures, namely electrical energy poles, nuclear and petrochem-

ical plants, shipyards, selective cutting of tree branches, etc.

A fundamental difference between a climbing machine and a general ground based mobile robot

is that the climber should support its own weight in the operating environment. On the other

hand, climbing over 3D structures is more problematic than climbing on walls due to the lack

of regular surfaces where vacuum or similar methods can be used for gripping. During the last

decade, many wall climbing robots have been developed but only a few pole climbing robots

were introduced. Furthermore as mentioned in the literature review, even these few develop-

ments on pole climbing robots mainly tried to address the climbing problem and not the manip-

ulation problems. The developed robots were unable to pass either bends or T-junctions.

To design the 3DCLIMBER, some concepts were introduced and discussed and the best one

173
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(regarding the project objectives) was developed. Weight optimization was considered as a key

issue in design of custom design parts and selection of commercial parts and actuators. Then

necessary sensors were integrated and a control application and a GUI was developed with C].

An industrial size test structure was also developed and the robot was tested on that. The first

test of the robot validated the concept and mechanical design of parts and mechanisms. Based

on the success of the first experiment, the factor of safety was decreased in some designs but

the climbing speed was increased. Also by integration of new sensors the manipulation pre-

cision was significantly increased and some gripping problems were solved. Self-calibration

algorithms were also integrated, which significantly promoted the reliability of the performance

for autonomous navigation.

In addition to the optimized design of the robot which led to a lighter robot compared to previ-

ously developed PCRs, the main improvement of this robot in comparison with the previously

developed PCRs is its greater maneuverability and safety. First of all, the specific Z-axis rotation

mechanism, provides fast manipulation around the structure which is necessary for inspection

purposes and furthermore facilitates and accelerates locating the climbing mechanism below a

specific bent section in T-junctions. The second reason which increases the maneuverability

and safety are grippers. Long V-shaped grippers with their high inertia system (due to high

ratio gearbox and low pitch ball screw of the rotational to linear transformation mechanism),

allow the robot stay safely on the structure with only one of the grippers, while the other gripper

can take the role of a manipulator and manipulate over the pole freely. Moreover, the grippers

are tolerant to power failure meaning that they keep their last position in case of power failure

without sliding on the structure. The third factor contributing to the improvements on the ma-

neuverability is better manipulating accuracy. High accuracy is generally difficult to obtain in

large manipulators due to well known error sources, but is even more difficult considering the

fact that the base of the robot is not fixed and contains accumulative errors. This problem was

addressed by integration of a self calibration algorithm and low cost redundant sensors such as
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accelerometers and range sensors.

10.1 Future works and novel concepts

The current version of the 3DCLIMBER can reliably climb from 3D structures and manipulate

on the structure with an acceptable accuracy. Yet, the project is not finished and still many areas

can be explored. At the end of this thesis, I would like to not only explain the future works, but

also to categorize the possible developments which can be considered for the continue of this

project. Some suggestions are integration of new systems for the further development of the

current version of the 3DCLIMBER. These suggestions do not change the mechanical design of

the robot. The second category of suggestions introduces new concepts which can be developed

separately or can be integrated to the 3DCLIMBER in order to promote its functionality. The

second category does include some changes on the mechanical design of the parts and systems.

In any case these suggestions are results of many hours of discussion between members of the

team, and consequently are mature ideas rather than some pure undiscussed concepts.

In summary, research objectives of the team in the current status can be divided into 2 sections;

First, completing and automating the current robot and second, evolution of the mechanical

design. Consequently, following goals are considered for further developments:

10.1.1 A lighter climbing robot

• Dedicated drivers: Commercial motor drivers are multi purpose drivers and therefore

are heavy. On the other hand, each driver is for one motor and as the robot uses 3 motors

from the same type, some parts in all drivers are common (i.e. AC to DC converters).

Therefore, development of dedicated drivers by application of commercial driver parts,

would decrease the weight of the drivers and consequently the weight of the robot.

• Novel designs: Possible approaches for reducing the weight of the robot through lighter

gripper and climbing mechanism design, and application of lighter non metallic materials
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in the design should be examined.

10.1.2 Gripping mechanisms

The current gripper is a specific design for gripping circular profiles but is relatively heavy

(About 10 kg each). On the other hand, some other approaches and designs should be analyzed

in order to find probable solutions which are either lighter or offer more advantages. For in-

stance, possibility of integrating semi flexible materials, that have compliance, flexibility, and

enough rigidity for grasping can be studied. Combination of such materials with tactile sen-

sors provides many advantages. For instance, compliance is necessary at the end effector (here

gripper) in order to compensate small errors. This compliance can be considered by compliant

materials or compliant mechanisms. Current gripper design is rigid which offers some advan-

tages such as easier control, but integration of a gripper with some degree of compliance may

address some of positioning problems, and thus should be investigated.

Here two gripping concepts are briefly introduced:

• Biomimetic gripping mechanisms: The Biomimetic approaches for climbing robot have

been recently studied [MS06, GSC+05, AMS08]. However these research are dedicated

for small scale climbing robots in a gecko scale. For industrial and large scale robots,

Biomimetic solutions can be studied through investigating the techniques used by large

scale animals. A number of researches have been conducted on large scale Biomimetic

climbing robots [YSHF08, SMA08], which have tried patterning human and monkeys

climbing strategies to a robot for climbing poles and ladders. Even though the general

ideas of the developed robot in [YSHF08, SMA08] are biomimetic, but the gripper de-

signs are for climbing from structures with specific design and are not applicable to the

3DCLIMBER. Therefore, a research might be conducted on Biomimetic approaches for

grasping the poles and upon reaching a successful light gripper design, it might be devel-

oped. Anyway during this project, a research was performed about climbing animals, but
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this is a vast research area and can be explored more.

A problem associated with biological solutions for grippers is excessive degrees of free-

dom. A simplified Biomimetic solution can also be considered. Figure 10.1 shows a

gripper concept consisting of several links which are connected through a revolute joint.

It is inspired by human arm while encircling a pole or a palm tree. However, for circular

profiles the angle of all revolute joints can be equal. Consequently, each gripper (both

right and left arms) can be controlled by a single motor. Using gear mates or belts, rev-

olute joints can be connected to each other and only the final joint will be derived by a

motor.

• Wheel gripper: Another approach for fast pole climbing is using wheels. Continuous

motion PCRs which use tires both for climbing and gripping to the pole are faster and

lighter than step-by-step motion PCRs. Their main drawback is the lack of maneuver-

ability. If one robot aims to perform more complicated tasks, namely welding, testing,

or painting of pipes, then a step-by-step based design is a better choice. Integration of a

dedicated designed wheel in the current design which acts as both grippers and for climb-

ing along straight pole, will lead to a hybrid design with high climbing speed in straight

poles as well as good maneuverability for passing bents and branches and maintenance.

Another very important issue, which can be added by integration of wheels through a

comprehensive design, would be navigation on the terrain. If such an integrated design

can be designed and developed in a way that the climbing robot could also navigate on

terrain, it would significantly increase the usability of the robot for real applications. In

a petrochemical plant where many pipes with bents and branches exist, a robot should

be able to navigate on terrain autonomously, reach to the specific pole and then climb

from the pole. Using Hub motors technology, in which a brushless electrical motor is

embedded inside a wheel would facilitate integration of wheels. Figures 10.2,10.3, and

10.4 show a concept for integration of wheels.
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Figure 10.1: The conceptual design model of the one-DOF biologically inspired gripper con-
cept.

Figure 10.2: Integrated wheel increases the climbing speed

10.1.3 Server-client based remote control

As previously described, an architecture for the server-client based remote control of the 3DCLIMBER

robot is under development. For a reliable communication between the server and the client ap-
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Figure 10.3: Wheels might help the robot moving on the ground.

Figure 10.4: Close view of the robot model moving on the ground.

plications through TCP/IP protocol, the application should be tested and validated. Therefore,

the validation of the application and its implementation on the 3DCLIMBER can be considered

as one of the actions with the highest priority.

10.1.4 Absolute localization on the structure

Recently, the necessary hardware and software for the 3D localization of an object through

trilateration methods using ultrasonic transceivers was developed under undergraduate projects.

These systems can be used for localization of all types of mobile robots including the 3DCLIMBER.

Consequently, application of one of this systems to the 3DCLIMBER is under study. Should
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this happen, the server application can automatically locate the robot in a multi-branch structure

and report the position.

10.1.5 Optimization of the gait generation

Currently the gait generation for controlling the 3DCLIMBER is not optimized. As an exam-

ple, while the manipulator is moving above, the upper gripper remains open until the end of

the movement. It means that these two actions are performed consecutively while it might be

possible that some of their time lines coincide i.e. a part of both actions could be achieved

simultaneously.

10.2 Main contributions and publications

Main contributions of this project are listed as below:

• Design of a benchmark for evaluation of pole climbing robots: A benchmark not only

helps to compare different robots with the same application, but it also helps for a better

perception of the problem which result in a better solution. The proposed benchmark for

PCRs was the first one and up to now it is the only benchmark designed for PCRs and

it was published as a book chapter in [TMdA08b]. The benchmark is designated for a

wide range of PCR applications, so that one may find the best mechanism for a specific

application by adjusting the weight factors.

• Design and introduction of 4 novel concepts for PCRs: These designs were not developed

previously, being a source of novel ideas for conceptual design of PCRs [TMdAZ06].

• A detailed analysis on minimum DOF that a PCR requires in order to scan a 3D struc-

ture [TMdA06a]: This analysis is a source for anyone who intends to design a PCR able to

pass bends and T-junctions. As a result of this study a minimum of 4 degrees of freedom

are necessary for climbing across the 3D scaffolds. It also revealed that the determined

4 degrees of freedom are enough for scanning the whole structure surface. Previously
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developed PCRs which were claimed that are able of passing bends had 6 degrees of

freedom [BGA02, SSA+06]. Extra degrees of freedom makes a robot massive and not

necessarily increases its efficiency.

• Detailed design, optimization, kinematics, and dynamic analysis, development, and con-

trol of the 3DCLIMBER which can climb and manipulate on 3D structures with bends

and branches [TMMdA08]: The robot fulfills all of the project objectives, being able to

pass bends and T-junctions, operate in a range of cross section sizes, and overcome the

step changes on the cross section. It is very tolerant to power failures and after grasping

the structure, it can stay on the structure with the actuator’s power disconnected.

• Development and integration of a self-calibration algorithm for the 3DCLIMBER which

can be also used for other step by step based pole climbing robots: Accelerometers were

integrated for the first time to climbing robots in order to measure the absolute inclination

of the grippers and links from the horizon. This information helped to calibrate the gripper

pose after each step, compensate the positioning errors of the manipulator (errors related

to the placement of the base and also well known large manipulator errors), and perform

precise manipulation. Integration of the sensors and the relative algorithms reduced the

worst case positioning error of the robot from 48mm to 6.1mm [TMdA09].

• An analysis on arboreal locomotion of climbing animals, their gripping mechanisms and

their climbing mechanisms [TMB10].

• A comparison analysis between pneumatic muscles and electrical motors: This analysis

showed that pneumatic muscles are not appropriate for a wide range of robotic applica-

tions. Current literature persists that pneumatic muscles are lighter then electrical actua-

tors considering that they have a lower power to weight ratio. In an article [TMdA08a],

it was demonstrated that the “power to weight ratio” parameter is not a good parameter

for comparison between the actuator weights. We showed in some charts that only in a
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small range of applications which require short stroke or rotation the pneumatic muscles

are lighter than electrical actuators and in a wider range of applications they are heavier.



Appendix A

Technologies

Commercial drivers, sensors, electronics, standard and non-standard mechanical components,

etc. which have been integrated in the 3DCLIMBER robot are presented in this appendix.
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Figure A.1: Construction of the HCR guide and the slider.

Figure A.2: Permissible moments.

Figure A.3: Load rating.

Figure A.4: The construction of the kr2602 THK guide.

Figure A.5: Permissible forces and moments on kr2602 linear guide.
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Figure A.6: The bevel gear (Left) and the coupling (Right) which have been used for the
3DCLIMBER’S grippers.

Figure A.7: The harmonic drive gearing technology (left) and the FHA-25C-160H actua-
tor(right).
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Figure A.8: SICK/STEGMANN sine/cosine encoder with HIPERFACE interface.

Figure A.9: IBL2403 DC motor driver from TECHNOSOFT.

Figure A.10: NI USB-6009 data acquisition from National Instrument.
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Figure A.11: MDX 60/61B driver from SEW is used for control of AC motors of the 3-DOF
serial arm





Appendix B

Notation

The following table summarizes the notation used in this thesis.
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θn Angular position of the nth joint.
ωn Angular velocity of the nth joint.
αn Angular acceleration of the nth joint.
In Moment of inertia of the nth link.
mn Weight of the nth link.
s123 sin(θ1+θ2+θ3)
c123 cos(θ1+θ2+θ3)
l0, l1, l2andl3 Length of the 4-DOF climbing mechanism links.
4
0T Transform matrix between the 4th and the 1st coordinate systems.
Px,Py,Pz,θ Cartesian representation of the manipulator position relative to the base.
Pc Current position of the manipulator relative to the base.
Pd Desired position of the manipulator relative to the base.
τ1,τ2,τ3 Driving torques of the 3-DOF serial arm.
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